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Abstract

We introduce a unified logical theory, based on signed theories and Quantified Boolean For-
mulas (QBFs) that can serve as the basis for representing and computing various argumentation-
based decision problems. It is shown that within our framework we are able to model, in a simple
and modular way, a wide range of semantics for abstract argumentation theory. This includes
complete, grounded, preferred, stable, semi-stable, stage, ideal and eager semantics. Further-
more, our approach is purely logical, making for instance decision problems like skeptical and
credulous acceptance of arguments simply a matter of entailment and satisfiability checking.
The latter may be verified by off-the-shelf QBF-solvers.

1 Introduction

Dung’s abstract argumentation theory [37] has been shown to be able to model a range of formalisms
for nonmonotonic reasoning, including Default Logic [66], Pollock’s OSCAR system [62, 63], logic
programming under stable model semantics [50, 51], three-valued stable model semantics [75], and
well-founded model semantics [69], Nute’s Defeasible Logic [53], and so on. A key concept in Dung’s
theory is that of an argumentation framework , which is essentially a directed graph in which the
nodes represent arguments and the arrows represent an attack relation between the arguments.
When applied to model nonmonotonic reasoning, an argument can be seen as a defeasible proof
for a particular claim. The precise contents of the argument depend on the particular logical
formalism one is modeling. When applying argumentation to model logic programming, one can
have arguments that consist of a number of logic programming rules (like a tree of rules, as in [75]
or a list of rules, as in [65]). When applying argumentation to model default logic, one can have
arguments that consist of a number of defaults (like a list of defaults, as in [2, 27]). The attack
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relation (the arrows in the graph) then states which of these defeasible proofs can be seen as reasons
against other defeasible proofs.

When applied in the context of nonmonotonic reasoning, argumentation can be seen as a three
steps process. In the first step, one starts with a knowledge base (like a logic program or a default
theory) and constructs the associated argumentation framework. In the second step one selects zero
or more sets of arguments, according to a pre-defined criterion called an argumentation semantics.
A key feature of an argumentation semantics is that it is defined purely on the structure of the
graph (argumentation framework) without looking on the actual contents of the arguments. In
the third step, one starts with the (zero or more) sets of arguments yielded by the argumentation
semantics, and for each of these sets of arguments one constructs the associated set of conclusions.
This is usually done by identifying for each argument (defeasible proof) in the set the claim that
it aims to prove.

The three step procedure sketched above can be used to model a wide range of formalisms
for nonmonotonic reasoning. As an example, if one starts from a knowledge base consisting of
a logic program, and constructs arguments as sequences of rules that attack each other on their
weakly negated statements (Step 1), then applies the principle of stable semantics on the resulting
argumentation framework (Step 2) and takes for each selected argument the head of its top-rule
(Step 3), the resulting sets of conclusions are precisely the stable models (in the sense of [50]) of
the logic program one started with [37]. Similar results have been obtained for default logic [37],
logic programming under well-founded model and three-valued stable model semantics [37, 75], and
Nute’s defeasible logic [53].

One of the key advantages of the argumentation approach to nonmonotonic reasoning is that
of modularization. The entailment process is remodeled in the form of three modular steps. Fur-
thermore, the nonmonotonicity is isolated in the second step (applying argumentation semantics).
The first step is monotonic, since having more information in the knowledge base leads to a su-
perset of arguments and the associated widening of the attack relation. Similarly, the third step is
monotonic, since a superset of arguments will yield an associated superset of conclusions. Only the
second step is nonmonotonic, since the presence of additional arguments can cause other arguments
not to be selected anymore by the argumentation semantics. Thus, the second step is the one that
makes the overall process nonmonotonic.

Another advantage of the argumentation approach is that it becomes possible to specify non-
monotonic entailment in terms of dialogue (as is for instance done in [24, 30, 32] or other dialectical
proof procedures like those in [34, 35, 38, 56, 65, 61, 71]). In contrast to traditional logical ap-
proaches, argumentation derives not so much what is true in a model theoretical way, but what
is defensible in rational discussion. It turns out that some of the argumentation semantics that
have been stated in the literature correspond to different ideas about what constitutes rational
discussion.

Of the three step procedure, as pioneered by Dung [37], the second step has received the most
subsequent research attention. Although one may say that an argumentation framework and the
associated argumentation semantics (Step 2) should be seen as an abstraction of an argumentation
formalism rather than a full argumentation formalism itself, such an abstraction can nevertheless
be regarded as one of the simplest ways to examine the concept of nonmonotonicity, without having
to deal with traditional notions of logical entailment. One particular issue to be aware of, however,
is that as mentioned before, the argumentation semantics is defined purely on the structure of
the graph, and does not examine the actual contents of the arguments. Although under some
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circumstances this can lead to the selection of sets of arguments with inconsistent conclusions (as
is for instance pointed out in [33]) it has also been shown that for a wide range of semantics (more
specifically: for semantics that are admissibility-based) the resulting conclusions will not only be
consistent but also satisfy other desirable properties, provided that the argumentation framework is
constructed (Step 1) according to particular principles (see [26, 52, 64] for more details). This makes
admissibility-based semantics of particular interest compared to non-admissibility based semantics.

Several admissibility-based semantics have been stated in the literature, including grounded,
complete, preferred and stable semantics [37], semi-stable semantics [21, 70], ideal semantics [38]
and eager semantics [22]. One particular issue that has been studied recently is how these semantics
can be expressed in a purely logical way. It was shown that complete and stable semantics can be
expressed in propositional logic [14, 28] and grounded, preferred, and semi-stable semantics can be
expressed using second-order modal logic [54, 55].

In this paper we provide a uniform and simple approach, based on signed theories and quantified
Boolean formulas (QBFs), that is able to adequately capture all of the above mentioned argumen-
tation semantics. QBFs are formulas involving only propositional languages and quantifications
over propositional variables. Their application is vast, covering many areas among which are plan-
ning [67], verification [12, 59], and different computational paradigms for non-monotonic reasoning,
such as default reasoning [15], circumscribing inconsistent theories [16] and computations of belief
revision operators [36]. In our case, the use of signed theories and QBFs implies that decision
problems like skeptical and credulous acceptance of arguments are a matter of logical entailment
and satisfiability, which can be verified by existing QBF-solvers.

The rest of this paper is organized as follows: In the next section we review the main notions
for our framework. We recall the two most common methods of giving a semantics to abstract
argumentation frameworks (Sections 2.1 and 2.2), and review the means for expressing them by
propositional logical theories, namely by signed formulas in the context of three-valued semantics
(Section 2.3). Then, in Section 3, we show how complete semantics, which serves as the basis
of many other admissibility-based semantics, can be described using three-valued semantics and
signed theories. This also yields a simple way of representing stable semantics (Section 3.2). Based
on these results, in Section 4 we continue to model grounded, preferred, semi-stable, ideal and eager
semantics, using an approach based on quantified Boolean formulas, similar to the one taken in [3, 7]
for reasoning with paraconsistent preferential entailments, and in [8] for repairing inconsistent
databases. To illustrate that our approach is not restricted to admissibility-based semantics, we
also show how the notion of stage semantics [23, 70] can be represented in our framework.

A clear advantage of approaches based on pure logic, including the present one, is that these
allow one to reuse standard and well-studied notions, notations, techniques and results from formal
logic, and apply them in the context of argumentation theory. In the last part of this paper
(Section 5 onwards) we discuss some of the benefits of our approach and compare it to related works.
To the best of our knowledge, our approach is the most comprehensive and uniform formalization of
argumentation semantics which is based on pure logic and remains, ultimately, on the propositional
level.1

1A short version of this paper, containing the material in Sections 2–4 (without full proofs), was presented at
COMMA’2012 [6]. In addition to containing the full proofs, the current paper shows that a 3-valued semantics
suffices for our needs, rather than the 4-valued semantics applied in [6]. It should be mentioned, however, that
4-valued semantics do have an added value for specifying the semantics of argumentation frameworks when the aim
is to support conflict-tolerance, as explained in [4].
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2 Preliminaries

First, we briefly review some of the basic definitions of argumentation theory, based on Dung’s
seminal work [37]. In this paper we restrict ourselves to consider only finite argumentation frame-
works.

Definition 1. A (finite) argumentation framework is a pair A = ⟨Ar , att⟩, where Ar is a finite set,
the elements of which are called arguments, and att is a binary relation on Ar×Ar whose instances
are called attacks. When (A,B) ∈ att we say that A attacks B (or that B is attacked by A).

One of the key questions of argumentation theory is what are the combinations of arguments
that can collectively be accepted for a given argumentation framework. One can distinguish two
main approaches for answering this question. The first and oldest approach is based on argument
extensions [10, 37]. The second somewhat newer approach is based on argument labellings [20, 28,
57, 70]. Below, we recall both of these approaches.

2.1 Extension-Based Semantics

The purpose of the extension-based approach is to define sets of arguments that can collectively
be accepted in a framework. For defining different kinds of extensions we first define the notions
of conflict-freeness and defense.

Definition 2. Let A = ⟨Ar , att⟩ be an argumentation framework, A ∈ Ar an argument, and
Args ⊆ Ar a set of arguments. We denote by A+ the set of arguments attacked by A, i.e.,
A+ = {B ∈ Ar | att(A,B)}, and denote by A− the set of arguments that attack A, i.e., A− = {B ∈
Ar | att(B,A)}. Similarly, Args+ =

∪
A∈Args A

+ and Args− =
∪

A∈Args A
− denote, respectively,

the set of arguments that are attacked by some argument in Args and those arguments that attack
some argument in Args. The set Args ∪Args+ is called the range of Args. Now,

– Args is conflict-free iff Args∩Args+ = ∅ (no argument in Args is attacked by another argument
in Args),

– Args defends A iff A− ⊆ Args+ (any argument that attacks A is attacked by Args),

– F (Args) ∈ 2Ar is defined by F (Args) = {A ∈ Ar | A− ⊆ Args+} (the set of the arguments
that are defended by Args),2

– Args is admissible for A iff Args is conflict-free and Args ⊆ F (Args).

The requirements defined above express basic properties that every plausible extension should
have. Intuitively, a set of arguments is conflict-free if all of its elements ‘can stand together’ (since
they do not attack each other), and admissibility guarantees that such elements ‘can stand on their
own’, i.e., are able to respond to any attack by their own attack (see also [10]).

Next, we consider several acceptability semantics for an argumentation framework, as defined
in [27]. It can be shown (see [27]) that the definitions below of grounded, preferred and stable
semantics are in fact equivalent to Dung’s original versions of the accessibility semantics with the
same names. Furthermore, although our definitions of ideal and eager semantics deviate from the
work of [25, 38], it is shown in Appendix A that our definition is in fact equivalent to the original
ones.

2In terms of Dung [37], the arguments in F (Args) are acceptable with respect to Args.
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Definition 3. Let A = ⟨Ar , att⟩ be an argumentation framework and Args ⊆ Ar a conflict-free
set of arguments. Below, the minimum and maximum are taken with respect to set inclusion.

– Args is a complete extension of A iff Args = F (Args).

– Args is a grounded extension of A iff it is a minimal complete extension of A.

– Args is a preferred extension of A iff it is a maximal complete extension of A.

– Args is an ideal extension of A iff it is a maximal complete extension that is a subset of each
preferred extension of A.

– Args is a stable extension of A iff it is a complete extension of A and Args+ = Ar\Args.

– Args is a semi-stable extension of A iff it is a complete extension of A where Args ∪Args+ is
maximal among all complete extensions of A.

– Args is an eager extension of A iff it is a maximal complete extension that is a subset of each
semi-stable extension of A.

– Args is a stage extension of A iff Args ∪Args+ is maximal among all conflict-free sets of A.

A well-known property of argumentation theory is that for each argumentation framework there
exists exactly one grounded extension [37]. It contains all the arguments which are not attacked,
as well as those arguments which are directly or indirectly defended by non-attacked arguments.
Furthermore, for each argumentation framework there exists at least one complete extension, at
least one preferred extension and zero or more stable extensions. Note that the notion of semi-
stable extensions is similar to that of preferred extensions, where instead of maximizing Args,
one maximizes its range, Args ∪ Args+. This also implies that for every (finite) argumentation
framework there is at least one semi-stable extension, since such frameworks have at least one
and at most a finite number of complete extensions from which one has to choose those with a
maximal range. The definition of stage extensions is similar to that of semi-stable extensions,
but with respect to conflict-free sets (rather than with respect to complete extensions, as in the
case of of semi-stable extensions). Thus, similar arguments to those above imply that every finite
argumentation framework has at least one stage extension.3 Finally, the existence of preferred and
semi-stable extensions in every (finite) argumentation framework respectively imply the existence
of ideal and eager extensions in such frameworks. In [22, 38] it is shown that both the ideal and
eager extensions of an argumentation framework are unique.

Example 4. An argumentation framework can be represented as a directed graph in which the
arguments are represented as nodes and the attack relation is represented by arrows. Consider,
for instance, the argumentation framework A1 of Figure 1. Here, ∅, {A}, {B} and {B,D} are
admissible sets. The complete extensions of A1 are ∅, {A}, and {B,D}, the grounded extension is
∅, the preferred extensions are {A} and {B,D}, the ideal extension is ∅, the only stable extension

3Recall that in this paper we consider only finite argumentation frameworks. However, it is interesting to note
that in [31] it is shown that there exist infinite argumentation frameworks that do not have semi-stable extensions
or stage extensions. Weydert [73] has shown, on the other hand, that even infinite argumentation frameworks have
at least one semi-stable extension, as long as each argument has a finite number of attackers.
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Figure 1: The argumentation framework A1

is {B,D}, and this is also the only semi-stable extension, eager extension, and stage extension of
A1.

4

For another example, consider the argumentation framework A2 of Figure 2. This time, the

DC

A

B

Figure 2: The argumentation framework A2

conflict-free sets are ∅, {B}, {C}, {D} and {B,D}. The admissible sets are ∅, {B} and {B,D}.
There is just one complete extension {B,D}, which is also the only grounded, preferred, ideal,
semi-stable, eager and stage extension of A2. Note that A2 does not have any stable extension.

2.2 Labelling-Based Semantics

An alternative way to describe argumentation semantics is based on the concept of an argument
labelling [20, 28]. Below, we recall the main definitions and results concerning this approach (see
also [25, 28]).

Definition 5. Let A = ⟨Ar , att⟩ be an argumentation framework. An argument labelling is a
complete function lab : Ar → {in, out, undec}. We shall sometimes write In(lab) for {A ∈ Ar |
lab(A) = in}, Out(lab) for {A ∈ Ar | lab(A) = out} and Undec(lab) for {A ∈ Ar | lab(A) = undec}.

An argument labelling (sometimes simply called a labelling) in essence expresses a position on
which arguments one accepts (labelled in), which arguments one rejects (labelled out) and which
arguments one abstains from having an explicit opinion about (labelled undec). Since a labelling
lab can be seen as a partition of Ar , we sometimes write it as a triple ⟨In(lab),Out(lab),Undec(lab)⟩.

4The latter follows from the fact that if an argumentation theory A has a stable extension E, this extension has
maximal range: E ∪ E+ is the whole set of arguments, thus E is also a semi-stable extension and a stage extension
of A.
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Although a labelling allows one to express any position regarding which arguments to accept,
reject and abstain, some of these positions can be seen as more reasonable than others. This
motivates the next definition of particular kinds of labellings.

Definition 6. Consider the following conditions on a labelling lab and an argument A in a frame-
work ⟨Ar , att⟩:

Pos1: If lab(A) = in then there is no B ∈ A− such that lab(B) = in.

Pos2: If lab(A) = in then for every B ∈ A− it holds that lab(B) = out.

Neg: If lab(A) = out then there exists some B ∈ A− such that lab(B) = in.

Neither: If lab(A) = undec then not for every B ∈ A− it holds that lab(B) = out and there does
not exist a B ∈ A− such that lab(B) = in.

Now, given a labelling lab of an argumentation framework ⟨Ar , att⟩, we say that

1. lab is conflict-free if for every A ∈ Ar it satisfies conditions Pos1 and Neg,

2. lab is admissible if for every A ∈ Ar it satisfies conditions Pos2 and Neg,

3. lab is complete if it is admissible and for every A ∈ Ar it satisfies condition Neither.

It follows directly that every complete labelling is also an admissible labelling, and every admis-
sible labelling is also a conflict-free labelling, just like every complete extension is also an admissible
set, and every admissible set is also a conflict-free set. Formally, the relations between the labellings
approach and the extensions approach can be stated as follows:

Proposition 7. [28] Let A = ⟨Ar , att⟩ be an argumentation framework, E the set of all conflict-free
sets of A, and L the set of all conflict-free labellings of A. We define a function Lab2Ext : L → E
as Lab2Ext(lab) = In(lab) and a function Ext2Lab : E → L as Ext2Lab(Args) = ⟨Args,Args+,Ar \
(Args ∪Args+)⟩. It holds that:

1. if Args is an admissible (respectively, complete) set, then Ext2Lab(Args) is an admissible
(respectively, complete) labelling,

2. if lab is an admissible (respectively, complete) labelling, then Lab2Ext(lab) is an admissible
(respectively, complete) set,

3. when the domain and range of Ext2Lab and Lab2Ext are restricted to complete extensions and
complete labellings, then these functions become bijections and each other’s inverses, making
complete extensions and complete labellings one-to-one related.

Note 8. In relation to Proposition 7, we note the following:

1. By the last proposition and the fact that every argumentation framework has at least one
conflict-free/admissible/complete extension, there is a conflict-free/admissible/complete la-
belling for every argumentation framework.
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2. Unlike the case of complete labellings and complete extensions, the correspondence be-
tween the admissible (respectively, conflict-free) labellings of an argumentation framework
and its admissible (respectively, conflict-free) sets is many-to-one (rather than one-to-one;
see Proposition 7). For instance, the labellings lab1 = ⟨{B,D}, {A,C}, {E}⟩ and lab2 =
⟨{B,D}, {A,C,E}, ∅⟩ are both admissible for A1 (Figure 1) and both of them correspond to
the admissible set {B,D} (i.e., Lab2Ext(lab1) = Lab2Ext(lab2) = {B,D}).

Based on the concepts of conflict-free labellings and complete labellings, we can proceed to
define preferred, grounded, stable, semi-stable, ideal, eager and stage labellings as follows.

Definition 9. Let A = ⟨Ar , att⟩ be an argumentation framework, and let labcmp be a complete
labelling of A. Below, the minimum and maximum are taken with respect to set inclusion.

1. labcmp is a grounded labelling of A, iff In(labcmp) is minimal in
{In(lab) | lab is a complete labelling of A}.

2. labcmp is a preferred labelling of A, iff In(labcmp) is maximal in
{In(lab) | lab is a complete labelling of A}.

3. labcmp is a stable labelling of A, iff Undec(labcmp) = ∅.

4. labcmp is a semi-stable labelling of A, iff Undec(labcmp) is minimal in
{Undec(lab) | lab is a complete labelling of A}.

5. labcmp is an ideal labelling of A, iff In(labcmp) is maximal in
{In(lab) | lab is a complete labelling of A whose set of in-labelled arguments is a subset
of the set of in-labelled arguments of every preferred labelling of A}.

6. labcmp is an eager labelling of A, iff In(labcmp) is maximal in
{In(lab) | lab is a complete labelling of A whose set of in-labelled arguments is a subset
of the set of in-labelled arguments of every semi-stable labelling of A}.

Furthermore, let labcf be a conflict-free labelling of A. Then:

7. labcf is an stage labelling of A, iff Undec(labcf ) is minimal in
{Undec(lab) | lab is a conflict-free labelling of A}.

Note 10. Although the above definition of the ideal and eager labelling is textually different than
those in [25], it is proved in Appendix A that these definitions are in fact equivalent. The modified
definitions allow for more direct and uniform representations in our framework of these labellings.

The correspondence (through Ext2Lab and Lab2Ext) between the grounded (respectively: pre-
ferred, stable, semi-stable) labellings and the grounded (respectively: preferred, stable, semi-stable)
extensions is shown in [28]. The correspondence between the ideal (respectively stage) labellings
and the ideal (respectively stage) extensions is shown in [25]. Note that each one of the grounded
labelling, the ideal labelling and the eager labelling is unique for a particular argumentation frame-
work, since so are their corresponding extensions.
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2.3 Three-Valued Semantics and Signed Formulas

As indicated previously, our purpose in this paper is to provide a third, logic-based, perspective on
argumentation frameworks, and to relate it to the two other points of view presented in the two
previous subsections. In this section we define the framework for doing so, using signed theories.
Following [3], we introduce these theories in the context of three-valued semantics (see also [7]).

Consider the truth values t (‘true’), f (‘false’) and ⊥ (‘neither true nor false’). A natural
ordering, reflecting differences in the ‘measure of truth’ of these elements, is f < ⊥ < t. The meet
(minimum) ∧, join (maximum) ∨, and the order reversing involution ¬, defined by ¬t = f , ¬f = t,
and ¬⊥ = ⊥, are taken to be the basic operators on ≤ for defining the conjunction, disjunction,
and the negation connectives (respectively) of Kleene’s well-known three-valued logic (see [58]).
Another operator which will be useful in the sequel is defined as follows: a ⊃ b = t if a ∈ {f,⊥},
and a ⊃ b = b otherwise (see [5] for some explanations why this operator is useful for defining an
implication connective). The truth tables of these basic connectives are given below.

∨ t f ⊥
t t t t
f t f ⊥
⊥ t ⊥ ⊥

∧ t f ⊥
t t f ⊥
f f f f
⊥ ⊥ f ⊥

⊃ t f ⊥
t t f ⊥
f t t t
⊥ t t t

¬
t f
f t
⊥ ⊥

The truth values may also be represented by pairs of two-valued components of the lattice
({0, 1}, 0< 1) as follows: t= (1, 0), f = (0, 1), ⊥= (0, 0). This representation may be intuitively
understood as follows: If a formula ψ is assigned the value (x, y), then x indicates whether ψ should
be accepted and y indicates whether ψ should be rejected. As shown in the next lemma, the basic
operators considered above may also be expressed in terms of this representation by pairs.

Lemma 11. Let x1, x2, y1, y2 ∈ {0, 1}. Then:

(x1, y1) ∨ (x2, y2) = (x1 ∨ x2, y1 ∧ y2), (x1, y1) ∧ (x2, y2) = (x1 ∧ x2, y1 ∨ y2),
(x1, y1) ⊃ (x2, y2) = (¬x1 ∨ x2, x1 ∧ y2), ¬(x, y) = (y, x).

In our context, the three values above are used for evaluating formulas in a propositional
language L, consisting of a set of atomic formulas Atoms(L), the propositional constants t and f,
and logical symbols ¬,∧,∨,⊃. We denote the atomic formulas of L by p, q, r, formulas by ψ, ϕ,
and sets of formulas (theories) by T , S. The set of all atoms occurring in a formula ψ is denoted
by Atoms(ψ), and Atoms(T ) = {Atoms(ψ) | ψ ∈ T } is the set of all the atoms occurring in the
theory T . Now, a valuation ν is a function that assigns to each atomic formula a truth value from
{t, f,⊥}, and ν(t) = t, ν(f) = f . Any valuation is extended to complex formulas in the obvious
way. In particular, ν(ψ ◦ ϕ) = ν(ψ) ◦ ν(ϕ) for every ◦ ∈ {¬,∧,∨,⊃}. A valuation ν satisfies ψ iff
ν(ψ) = t. A valuation that satisfies every formula in T is a model of T . The set of models of T is
denoted by mod(T ).

Definition 12. Let L be a propositional language with a set of atoms Atoms(L). A signed alphabet
Atoms±(L) is a set that consists of two symbols p⊕, p⊖ for each atom p ∈ Atoms(L). The language
over Atoms±(L) is denoted by L±. A valuation ν for L± is called coherent , if there is no p ∈
Atoms(L) such that both ν(p⊕) = 1 and ν(p⊖) = 1. Now,
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• The (coherent) two-valued valuation ν2 on Atoms±(L) that is induced by (or associated with)
a three-valued valuation ν3 on Atoms(L), is defined as follows: If ν3(p) = (x, y) for some
x, y ∈ {0, 1}, then ν2(p⊕) = x and ν2(p⊖) = y.

• The three-valued valuation ν3 on Atoms(L) that is induced by a coherent two-valued valuation
ν2 on Atoms±(L) is defined, for every atom p ∈ Atoms(L), by ν3(p) = (ν2(p⊕), ν2(p⊖).

In what follows we denote by ν2 a valuation into {0, 1}, and by ν3 a valuation into {t, f,⊥}.

Definition 13. For an atom p and formulas ψ, ϕ, we define the following formulas in L±:

τ1(p) = p⊕, τ2(p) = p⊖,
τ1(¬ψ) = τ2(ψ), τ2(¬ψ) = τ1(ψ),
τ1(ψ ∧ ϕ) = τ1(ψ) ∧ τ1(ϕ), τ2(ψ ∧ ϕ) = τ2(ψ) ∨ τ2(ϕ),
τ1(ψ ∨ ϕ) = τ1(ψ) ∨ τ1(ϕ), τ2(ψ ∨ ϕ) = τ2(ψ) ∧ τ2(ϕ),
τ1(ψ ⊃ ϕ) = ¬τ1(ψ) ∨ τ1(ϕ), τ2(ψ ⊃ ϕ) = τ1(ψ) ∧ τ2(ϕ).

Given a set T of formulas in L, we denote τi(T ) = {τi(ψ) | ψ ∈ T }, for i = 1, 2.

Example 14. Let ψ = ¬(p ∧ ¬q) ⊃ ¬q. Then τ1(ψ) = τ1(¬(p ∧ ¬q) ⊃ ¬q) = ¬τ1(¬(p ∧ ¬q)) ∨
τ1(¬q) = ¬τ2(p∧¬q)∨τ2(q) = ¬(τ2(p)∨τ2(¬q))∨τ2(q) = ¬(τ2(p)∨τ1(q))∨τ2(q) = ¬(p⊖∨q⊕)∨q⊖.

We call τi(ψ) (i = 1, 2) the signed formulas that are obtained from ψ. As the following propo-
sition shows, if τ1(ψ) (respectively, τ2(ψ)) is true in the two-valued context, then ψ (respectively,
¬ψ) holds in the three-valued context.

Proposition 15. [3] If ν2 is induced by ν3 or ν3 is induced by ν2, then ν3 satisfies a formula ψ
iff ν2 satisfies τ1(ψ), and ν

3 satisfies ¬ψ iff ν2 satisfies τ2(ψ).
5

Definition 16. For a formula ψ in L we define the following signed formulas in L±:

val(ψ, t) = τ1(ψ) ∧ ¬τ2(ψ),
val(ψ, f) = ¬τ1(ψ) ∧ τ2(ψ),
val(ψ,⊥) = ¬τ1(ψ) ∧ ¬τ2(ψ).

Proposition 17. If ν2 is induced by ν3, or ν3 is induced by ν2, then for every formula ψ, ν3(ψ) = x
iff ν2(val(ψ, x)) = 1.

Proof. Consider, e.g., x = ⊥. Then ν2(val(ψ,⊥)) = 1 iff ν2(¬τ1(ψ)∧¬τ2(ψ)) = 1, iff ν2(¬τ1(ψ)) = 1
and ν2(¬τ2(ψ)) = 1, iff ν2(τ1(ψ)) = 0 and ν2(τ2(ψ)) = 0, iff (Proposition 15) ν3(ψ) = ⊥. The
proof of the other cases is similar.

Note 18. By the last proposition there is a one-to-one correspondence between the three-valued
models of T and the coherent two-valued models of τ1(T ): ν3 is a model of T if the coherent
two-valued valuation that is associated with ν3 is a model of τ1(T ), and ν2 is a coherent model of
τ1(T ) if the three-valued valuation that is associated with ν2 is a model of T .

5In [3] this proposition is shown for a four-valued setting, but it can be easily modified for our three-valued setting.
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3 Signed Theories for Complete and Stable Semantics

We are now ready for the main goal of this paper: using signed theories representing and computing
the various semantics of abstract argumentation systems, as depicted in Definitions 3 and 9. In the
next two sections we provide a method that for each argumentation framework A and a semantics
Sem for A, construct a theory T HSem(A), whose models correspond to the extensions of type Sem
of A.

3.1 Complete Semantics

First, we consider complete extensions and labellings, which are the basis for most of the argumen-
tation semantics considered previously. Note that Proposition 7 suggests that complete extensions
may be represented by a three-valued semantics, in which the labels in, out, and undec correspond,
respectively, to the truth values t, f and ⊥. Next, we formalize this.

Definition 19. Given an argumentation framework A = ⟨Ar , att⟩, we let

LABA(x) =


val(x, t) ⊃

∧
y∈Ar

(
att(y, x) ⊃ val(y, f)

)
,

val(x, f) ⊃
∨

y∈Ar

(
att(y, x) ∧ val(y, t)

)
,

val(x,⊥) ⊃
(
¬
∧

y∈Ar

(
att(y, x) ⊃ val(y, f)

)
∧ ¬

∨
y∈Ar

(
att(y, x) ∧ val(y, t)

))
 .

The set of expressions LABA(x) defined above is an abbreviation for the signed theory that
is induced by A = ⟨Ar , att⟩. Here, x should be sequentially substituted by the elements of Ar ,
val(x, v) are the signed formulas in Definition 16, att(y, x) is replaced by the propositional constant
t if (y, x) ∈ att (that is, if y attacks x in A), and otherwise att(y, x) is replaced by the propositional
constant f. By this, the formulas in LABA represent requirements Pos2, Neg and Neither of a
complete labelling, given in Definition 6

Given an argumentation framework A = ⟨Ar , att⟩, in what follows we denote by LABA[Ai/x]
the expressions in Definition 19, evaluated with respect to the argument Ai ∈ Ar .

Example 20. Consider the argumentation framework A1 in Figure 1 (Example 4). We have that
att(y,A) and att(A, y) should be substituted by t iff y = B, otherwise att(y,A) and att(A, y) are
substituted by f. Thus, by some simple rewriting (such as t ∧ x ≡ x, f ⊃ x ≡ t and so forth), we
have that:

LABA1 [A/x] =
{
val(A, t) ⊃ val(B, f), val(A, f) ⊃ val(B, t), val(A,⊥) ⊃ (¬val(B, f)∧¬val(B, t))

}
.

Intuitively, this means that if A is accepted B should be rejected, if A is rejected B should be
accepted, and if A does not have a definite value then so should be B. More explicitly, LABA1 [A/x]
is the following signed theory:

(A⊕ ∧ ¬A⊖) ⊃ (B⊖ ∧ ¬B⊕),
(A⊖ ∧ ¬A⊕) ⊃ (B⊕ ∧ ¬B⊖),
(¬A⊕ ∧ ¬A⊖) ⊃ (¬(B⊖ ∧ ¬B⊕) ∧ ¬(B⊕ ∧ ¬B⊖))
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By sequentially evaluating the expressions of Definition 19 with respect to all the arguments in
Ar , we get a signed theory whose propositional variables are Ar± = {A⊕

i | Ai ∈ Ar} ∪ {A⊖
i | Ai ∈

Ar}. The models of this theory must be coherent (Definition 12) in order to prevent situations that
an argument is accepted and rejected at the same time. Thus, we define the following coherence
conditions on Ar :

COH(Ar) = {¬(A⊕
i ∧A⊖

i ) | Ai ∈ Ar}.

Definition 21. Given an argumentation framework A = ⟨Ar , att⟩, we denote

CMP(A) =
∪

Ai∈Ar

LABA[Ai/x] ∪ COH(Ar).

We call CMP(A) the signed theory that is induced by A.

Note that here and in what follows we freely exchange an argument Ai ∈ Ar , the propositional
variable that represents Ai (with the same notation), and the corresponding signed variables A⊕

i ,
A⊖

i in CMP(A). Now, given an argumentation framework A = ⟨Ar , att⟩ and a valuation ν on
Ar±, we denote:

In(ν) = {Ai ∈ Ar | ν(A⊕
i ) = 1, ν(A⊖

i ) = 0},
Out(ν) = {Ai ∈ Ar | ν(A⊕

i ) = 0, ν(A⊖
i ) = 1},

Undec(ν) = {Ai ∈ Ar | ν(A⊕
i ) = 0, ν(A⊖

i ) = 0}.

Proposition 22. Let A = ⟨Ar , att⟩ be an argumentation framework. Then for every complete
extension E of A there is a model ν of CMP(A), such that In(ν) = E and Out(ν) = E+.

Proof. Let E be a complete extension of A. By Proposition 7, Ext2Lab(E) is a complete labelling.
Recall that for every Ai ∈ Ar it holds that

Ext2Lab(E)(Ai) =


in if Ai ∈ E,
out if Ai ̸∈ E and there is B ∈ E s.t. att(B,A) ∈ att ,
undec otherwise.

Now, define a (coherent) valuation ν on Ar± as follows:

ν(A⊕
i ) =

{
1 if Ext2Lab(E)(Ai) = in,
0 otherwise.

ν(A⊖
i ) =

{
1 if Ext2Lab(E)(Ai) = out,
0 otherwise.

It holds that In(ν) = In(Ext2Lab(E)) = E, and Out(ν) = Out(Ext2Lab(E)) = E+, so it remains to
show that ν is a model of CMP(A). Indeed, since there is no Ai for which both ν(A⊕

i ) = 1 and
ν(A⊖

i ) = 1, ν clearly satisfies COH(Ar). The reason that ν also satisfies
∪

Ai∈ArLABA[Ai/x] is due
to the facts that the latter formalizes complete labelling and that ν corresponds to the complete
labelling Ext2Lab(E) in the sense that In(ν) = In(Ext2Lab(E)), Out(ν) = Out(Ext2Lab(E)), and
Undec(ν) = Undec(Ext2Lab(E)). For instance, suppose that Ext2Lab(E)(A) = out for some A ∈
Ar . Then ν(A⊕) = 0 and ν(A⊖) = 1, and so ν(val(A, t)) = 0 and ν(val(A,⊥)) = 0. Thus, ν satisfies
the formulas that are obtained from the first and the third expression in Definition 19 when x = A.
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Also, since Ext2Lab(E) is a complete labelling and Ext2Lab(E)(A) = out, there is a B ∈ Ar that
attacks A and for which Ext2Lab(E)(B) = in. For this B, we therefore have that att(B,A) is
replaced in the signed theory by the constant t, and that B ∈ In(ν), i.e., ν(val(B, t)) = 1. It follows
that ν(att(B,A)∧ val(B, t)) = 1, thus ν(∨y∈Ar (att(y,A)∧ val(y, t))) = 1, and so ν satisfies also the
formula corresponding to the second expression in Definition 19 when x = A. The cases in which
Ext2Lab(E)(A) = in and Ext2Lab(E)(A) = undec are similar.

Proposition 23. Let A = ⟨Ar , att⟩ be an argumentation framework. Then for every model ν of
CMP(A) there is a complete extension E of A such that E = In(ν) and E+ = Out(ν).

Proof. Let ν be a model of CMP(A). Then in particular ν satisfies COH(Ar), and so we have that
Ar = In(ν)∪Out(ν)∪Undec(ν). Consider now the function Mod2Lab(ν), defined for every Ai ∈ Ar
as follows:

Mod2Lab(ν)(Ai) =


in if ν(Ai) ∈ In(ν),
out if ν(Ai) ∈ Out(ν),
undec otherwise (if ν(Ai) ∈ Undec(ν)).

It is easy to verify that since ν is a model of
∪

Ai∈ArLABA[Ai/x], Mod2Lab(ν) is a complete labelling
of Ar in the sense of Definition 6. Indeed, if Mod2Lab(ν)(A) = in for some A ∈ Ar , then ν(A) ∈
In(ν), i.e., ν(A⊕) = 1 and ν(A⊖) = 0. Thus, val(A, t) = 1. By the first expression of Definition 19
when x = A, then, ν(∧y∈Ar (att(y,A) ⊃ val(y, f))) = 1, which implies that for every attacker B of
A, val(B, f) = 1. Hence B ∈ Out(ν), and so Mod2Lab(ν)(B) = out. This assures condition Pos2
of Definition 6. Similarly, the other two expressions of Definition 19 guarantee conditions Neg
and Neither in Definition 6. By Proposition 7, then, the set E = In(Mod2Lab(ν)) is a complete
extension of A. Also, by the definition of Mod2Lab(ν), E = In(ν) and E+ = Out(ν).

By the previous propositions and their proofs we have the following result:

Proposition 24. Let A = ⟨Ar , att⟩ be an argumentation framework. Then there is a one-to-one
correspondence between the elements of the following sets:

– The complete extensions of A,

– The complete labellings of A,

– The models of CMP(A).

Proof. The correspondence between the complete extensions of A and its complete labellings is
shown in Proposition 7; A one-to-one mapping from the complete extensions of A to the models of
CMP(A) is described in the proof of Propositions 22, and a one-to-one mapping from the models
of CMP(A) to the complete labellings of A is described in the proof of Proposition 23.

Note, in particular, that ν is a model of the signed theory that is induced by A if and only
if In(ν) is a complete extension of A. In terms of three-valued models this may be expressed as
follows:

Proposition 25. Let A = ⟨Ar , att⟩ be an argumentation framework. Then E is a complete exten-
sion of A iff there is a three-valued valuation ν3 that is associated with a model ν of CMP(A) such
that:
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a) E = {Ai ∈ Ar | ν3(Ai) = t},

b) E+ = {Ai ∈ Ar | ν3(Ai) = f},

c) Ar \ (E ∪ E+) = {Ai ∈ Ar | ν3(Ai) = ⊥}.

Proof. By Propositions 22 and 23 we have that E is a complete extension of A iff there is a
two-valued model ν of CMP(A) such that

E = In(ν), E+ = Out(ν), Ar \ (E ∪ E+) = Undec(ν). (1)

Since ν3 is a three-valued valuation that is associated with ν, we have that

In(ν) = {Ai ∈ Ar | ν3(Ai) = t},
Out(ν) = {Ai ∈ Ar | ν3(Ai) = f},
Undec(ν) = {Ai ∈ Ar | ν3(Ai) = ⊥}.

(2)

By (1) and (2) the proposition follows.

The set In(ν) when ν is a two-valued valuation and {Ai ∈ Ar | ν(Ai) = t} when ν is a three-
valued valuation, is called the set of arguments that is accepted by ν. Thus, Proposition 24 indicates
that E is a complete extension of A iff it is accepted by some model of CMP(A), and Proposition 25
indicates that E is a complete extension of A iff it is accepted by some three-valued valuation that
is associated with a model of CMP(A).

Example 26. Consider again the argumentation framework A1 in Figure 1 and Example 4. In

this case, LABA1 =
∪

Ai∈Ar

LABA[Ai/x] is the following theory:

val(A, t) ⊃ val(B, f), val(A, f) ⊃ val(B, t),
val(B, t) ⊃ val(A, f), val(B, f) ⊃ val(A, t),
val(C, t) ⊃ (val(B, f) ∧ val(E, f)), val(C, f) ⊃ (val(B, t) ∨ val(E, t)),
val(D, t) ⊃ val(C, f), val(D, f) ⊃ val(C, t),
val(E, t) ⊃ val(D, f), val(E, f) ⊃ val(D, t),

val(A,⊥) ⊃ (¬val(B, f) ∧ ¬val(B, t)),
val(B,⊥) ⊃ (¬val(A, f) ∧ ¬val(A, t)),
val(C,⊥) ⊃ ¬(val(B, f) ∧ val(E, f)) ∧ ¬(val(B, t) ∨ val(E, t)),
val(D,⊥) ⊃ (¬val(C, f) ∧ ¬val(C, t)),
val(E,⊥) ⊃ (¬val(D, f) ∧ ¬val(D, t)).

Thus, the signed theory CMP(A1) = LABA1 ∪ COH(Ar) that is induced by A1 is:
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(A⊕ ∧ ¬A⊖) ⊃ (B⊖ ∧ ¬B⊕), (A⊖ ∧ ¬A⊕) ⊃ (B⊕ ∧ ¬B⊖),
(B⊕ ∧ ¬B⊖) ⊃ (A⊖ ∧ ¬A⊕), (B⊖ ∧ ¬B⊕) ⊃ (A⊕ ∧ ¬A⊖),
(C⊕ ∧ ¬C⊖) ⊃ ((B⊖ ∧ ¬B⊕) ∧ (E⊖ ∧ ¬E⊕)), (C⊖ ∧ ¬C⊕) ⊃ ((B⊕ ∧ ¬B⊖) ∨ (E⊕ ∧ ¬E⊖)),
(D⊕ ∧ ¬D⊖) ⊃ (C⊖ ∧ ¬C⊕), (D⊖ ∧ ¬D⊕) ⊃ (C⊕ ∧ ¬C⊖),
(E⊕ ∧ ¬E⊖) ⊃ (D⊖ ∧ ¬D⊕), (E⊖ ∧ ¬E⊕) ⊃ (D⊕ ∧ ¬D⊖),

(¬A⊕ ∧ ¬A⊖) ⊃ (¬(B⊖ ∧ ¬B⊕) ∧ ¬(B⊕ ∧ ¬B⊖)),
(¬B⊕ ∧ ¬B⊖) ⊃ (¬(A⊖ ∧ ¬A⊕) ∧ ¬(A⊕ ∧ ¬A⊖)),
(¬C⊕ ∧ ¬C⊖) ⊃ ¬((B⊖ ∧ ¬B⊕) ∧ (E⊖ ∧ ¬E⊕)) ∧ ¬((B⊕ ∧ ¬B⊖) ∨ (E⊕ ∧ ¬E⊖)),
(¬D⊕ ∧ ¬D⊖) ⊃ (¬(C⊖ ∧ ¬C⊕) ∧ ¬(C⊕ ∧ ¬C⊖)),
(¬E⊕ ∧ ¬E⊖) ⊃ (¬(D⊖ ∧ ¬D⊕) ∧ ¬(D⊕ ∧ ¬D⊖).

¬(A⊕ ∧A⊖), ¬(B⊕ ∧B⊖), ¬(C⊕ ∧ C⊖), ¬(D⊕ ∧D⊖), ¬(E⊕ ∧ E⊖).

The (two-valued) models of the theory above are the following:

A⊕ A⊖ B⊕ B⊖ C⊕ C⊖ D⊕ D⊖ E⊕ E⊖

µ1 1 0 0 1 0 0 0 0 0 0
µ2 0 1 1 0 0 1 1 0 0 1
µ3 0 0 0 0 0 0 0 0 0 0

The three-valued valuations that are associated with these models are the following:

ν A B C D E

ν1 t f ⊥ ⊥ ⊥
ν2 f t f t f
ν3 ⊥ ⊥ ⊥ ⊥ ⊥

The sets of atoms that are assigned the value t by these valuations are {A}, {B,D}, and ∅. These
are exactly the complete extensions of A1, as indeed suggested by Proposition 25.

3.2 Stable Semantics

By Definition 3, a stable extension of an argumentation framework A = ⟨Ar , att⟩ is a complete
extension E of A such that E ∪ E+ = Ar . It follows, then, that:

Proposition 27. Let A be an argumentation framework. Then E is a stable extension of A iff
there is a model ν of CMP(A) such that In(ν) = E, Out(ν) = E+, and Undec(ν) = ∅.

Proof. This is a particular case of Propositions 22 and 23: Since E is a stable extension, Ar \ (E ∪
E+) = ∅, and so Undec(ν) = ∅. Conversely: if Undec(ν) = ∅ then Ar \ (E ∪ E+) = ∅, and so E is
a stable extension.

The last proposition can be represented by a corresponding signed theory as follows:

Definition 28. Given an argumentation framework A = ⟨Ar , att⟩, we denote:

SE(A) = CMP(A) ∪ EM(Ar),

where EM(Ar) is a set of signed formulas that ‘excludes the middle-value’ (⊥):

EM(Ar) = {(A⊕
i ∨A⊖

i ) | Ai ∈ Ar}.
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Proposition 29. Let A = ⟨Ar , att⟩ be an argumentation framework, and let E be a complete
extension of A. Then

a) E is a stable extension of A iff there is a two-valued model ν2 of SE(A) such that E = In(ν2)
and E+ = Out(ν2).

b) E is a stable extension of A iff there is a three-valued valuation ν3 that is associated with a
model of SE(A) such that E = {Ai ∈ Ar | ν3(Ai) = t} and E+ = {Ai ∈ Ar | ν3(Ai) = f}.

Proof. Part (a) is an immediate corollary of Proposition 27, noting that, by EM(Ar), a model ν2

of CMP(A) is also a model of SE(A) iff Undec(ν2) = ∅. Part (b) is the analogue of Part (a) in
terms of three-valued valuations.

Example 30.

a) Consider the signed theory CMP(A1) of Example 26, induced by the argumentation frame-
workA1 in Figure 1 and Example 4. In the notations of that example, among the three models
of CMP(A1), only µ2 satisfies EM(Ar1), so µ2 is the only two-valued model of SE(A1). Now,
since {B,D} = In(µ2) = {x | ν2(x) = t}, it follows that {B,D} is the only stable extension
of A1, as guaranteed by Proposition 29.

b) Consider the argumentation framework A2 in Figure 2 and Example 4. The fact that there is
no stable extension for A2 implies, by Proposition 29, that SE(A2) is not satisfiable (although
CMP(A2) is satisfiable).

4 Signed QBFs for More Extension-Based Semantics

As shown in the previous section, the signed theory CMP(A) may be used for representing the
complete and stable extensions of A. In this section we show how CMP(A) can be augmented
with (signed) quantified Boolean formulas (QBFs) for representing the other semantics specified
by Definition 3. For this, we first recall what QBFs are.

4.1 QBFs and Signed QBFs

First, we extend the language L (respectively, L±) with universal and existential quantifiers ∀, ∃
over propositional variables. We denote the extended language by LQ (respectively, L±

Q). The

elements of LQ are called quantified Boolean formulas (QBFs), and the elements of L±
Q are called

signed QBFs. QBFs and signed QBFs are denoted here by the Greek letters Ψ,Φ, and sets of
(signed) QBFs are denoted by Γ. Intuitively, the meaning of a QBF of the form ∃p ∀q ψ is that
there exists a truth assignment of p such that for every truth assignment of q, ψ is true. Clearly,
every QBF is associated with a logically equivalent propositional formula, thus QBFs can be seen
as a conservative extension of classical propositional logic. Next we formalize this intuition.

Consider a QBF Ψ over LQ. An occurrence of an atom p in Ψ is called free if it is not in the
scope of a quantifier Qp, for Q ∈ {∀,∃}. We denote by Ψ[ϕ1/p1, . . . , ϕn/pn] the uniform substitution
of each free occurrence of a variable (atom) pi in Ψ by a formula ϕi, for i = 1, . . . , n. Now, the
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definition of a valuation can be extended to QBFs as follows:

ν(¬ψ) = ¬ν(ψ),
ν(ψ ◦ ϕ) = ν(ψ) ◦ ν(ϕ), where ◦ ∈ {∧,∨,⊃},
ν(∀p ψ) = ν(ψ[t/p]) ∧ ν(ψ[f/p]),
ν(∃p ψ) = ν(ψ[t/p]) ∨ ν(ψ[f/p]).

As usual, we say that a (two-valued) valuation ν satisfies a QBF Ψ if ν(Ψ) = 1, ν is a model of a
set Γ of QBFs (notation: ν∈mod(Γ)) if ν satisfies every element of Γ, and a QBF Ψ is (classically)
entailed by Γ (notation: Γ |=2 Ψ) if every model of Γ is also a model of Ψ.6

4.2 Semi-Stable Semantics

Recall that a semi-stable extension of an argumentation framework A = ⟨Ar , att⟩ is a complete
extension E of A that maximizes the set E∪E+. In other words, a semi-stable extension E of A is
a complete extension of A that minimizes the set Ar \ (E∪E+). By the last item of Proposition 25
we therefore have the following result:

Proposition 31. Let A = ⟨Ar , att⟩ be an argumentation framework. Then E is a semi-stable
extension of A iff there is a three-valued valuation ν3 that is associated with a model of CMP(A)
such that

a) E = {Ai ∈ Ar | ν3(Ai) = t} and E+ = {Ai ∈ Ar | ν3(Ai) = f},

b) ν3 has a minimal (with respect to set inclusion) ⊥-assignments among the valuations that
are associated with the models of CMP(A): There is no three-valued valuation µ3 that is
associated with a model of CMP(A), such that

{Ai ∈ Ar | µ3(Ai) = ⊥} ( {Ai ∈ Ar | ν3(Ai) = ⊥}.

It follows that for representing the semi-stable extensions of A we have to identify the models
of the signed theory that is induced by A and ‘filter out’ those models that do not minimize the
⊥-assignments. In other words, we have to select the ≤⊥-minimal models of CMP(A), where:

• for two-valued valuations ν, µ on Ar±, ν ≤⊥ µ iff Undec(ν) ⊆ Undec(µ),

• for three-valued valuations ν, µ on Ar , ν ≤⊥ µ iff {Ai | ν(Ai) = ⊥} ⊆ {Ai | µ(Ai) = ⊥}.

In the above notations, then, Proposition 31 indicates that E is a semi-stable extension of A iff it is
accepted by some three-valued valuation that is associated with a ≤⊥-minimal model of CMP(A).

A simple way of representing the ≤⊥-minimal models of CMP(A) is to augment CMP(A) with
a condition that assures minimization of ⊥-assignments. Such a condition can be expressed by the
circumscriptive-like [60] QBF defined next.

6See [17] for a detailed description of quantified Boolean formulas, including some historical remarks and relevant
complexity issues.
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Definition 32. Given an argumentation theory A = ⟨Ar , att⟩ with |Ar | = n, let CMP(A) be
the signed theory induced by A and let Ar± = {A⊕

i | Ai ∈ Ar} ∪ {A⊖
i | Ai ∈ Ar} be the set of

atoms in CMP(A). We denote by
d

CMP(A) the conjunction of the formulas in CMP(A).7 Now,
Min≤⊥(CMP(A)) denotes the following QBF:

∀ p⊕1 , p
⊖
1 , . . . , p

⊕
n , p

⊖
n

(l
CMP(A)

[
p⊕1 /A

⊕
1 , p

⊖
1 /A

⊖
1 , . . . , p

⊕
n /A

⊕
n , p

⊖
n /A

⊖
n

]
⊃( ∧

Ai∈Ar

(
val(Ai,⊥)

[
p⊕1 /A

⊕
1 , p

⊖
1 /A

⊖
1 , . . . , p

⊕
n /A

⊕
n , p

⊖
n /A

⊖
n

]
⊃ val(Ai,⊥)

)
⊃

∧
Ai∈Ar

(
val(Ai,⊥) ⊃ val(Ai,⊥)

[
p⊕1 /A

⊕
1 , p

⊖
1 /A

⊖
1 , . . . , p

⊕
n /A

⊕
n , p

⊖
n /A

⊖
n

])) )
.

Definition 33. Given an argumentation framework A = ⟨Ar , att⟩, we denote

SSE(A) = CMP(A) ∪ {Min≤⊥(CMP(A))}.

Proposition 34. Let A = ⟨Ar , att⟩ be an argumentation framework. Then E is a semi-stable
extension of A iff there is a three-valued valuation ν3 that is associated with a model of SSE(A)
such that E = {Ai ∈ Ar | ν3(Ai) = t} and E+ = {Ai ∈ Ar | ν3(Ai) = f}.

Proof. By Proposition 31, we only have to show that the fact that ν3 is associated with a model of
Min≤⊥(CMP(A)) is a necessary and sufficient condition for assuring that there is no three-valued
valuation µ3 that is associated with a model of CMP(A) and for which µ3 <⊥ ν3. This is equivalent
to showing that ν2 (is a two-valued model that) satisfies Min≤⊥(CMP(A)) iff there is no model
µ2 of CMP(A) for which µ2 <⊥ ν2. Indeed, by Definition 32, and since ν(val(Ai,⊥)) = 1 iff
Ai ∈ Undec(ν), we have that ν2 is a model of Min≤⊥(CMP(A)) iff for every model µ2 of CMP(A)
such that Undec(µ2) ⊆ Undec(ν2), also Undec(ν2) ⊆ Undec(µ2). In other words, ν2 is a model of
Min≤⊥(CMP(A)) iff there is no model µ2 of CMP(A) for which Undec(µ2) ( Undec(ν2), i.e., iff
there is no model µ2 of CMP(A) such that µ2 <⊥ ν2. It follows that ν2 is a model of SSE(A) iff
it is a ≤⊥-minimal model of CMP(A), as required.

Note 35. By Proposition 27, the set E in the last proposition is also a stable extension of A iff
{Ai ∈ Ar | ν3(Ai) = ⊥} is empty.

This vindicates the following well-known fact (mentioned previously):

Corollary 36. Each (finite) argumentation framework has at least one semi-stable extension, but
not necessarily a stable extension.

Proof. As noted previously, each argumentation system has at least one complete extension. By
the correspondence between complete extensions and the models of CMP(A) (Proposition 24), it
follows that CMP(A) is satisfiable for every A. Furthermore, since the argumentation framework
A is finite, one concludes that Min≤⊥(CMP(A)) is a minimization over a finite and nonempty set
(the models of CMP(A)), thus the set of models of SSE(A) is non-empty either. By Proposition 34,
then, there is always a semi-stable extension for A, and by Note 35, A may not have any stable
extension (in case that the condition of that note fails, and any model of SSE(A) has some ⊥-
assignment).

7Recall that A is a finite argumentation framework and so CMP(A) is a finite theory.
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Note 37. The proof of the last corollary shows, in particular, that for every finite argumentation
framework A, the signed theories CMP(A) and SSE(A) are satisfiable.

Proposition 38. Let A be an argumentation framework. Then either there is no stable extension
for A, or the stable extensions of A are the same as the semi-stable extensions of A.8

Proof. Let ν3 be a three-valued valuation that is associated with a model ν of SSE(A) (by the
proof of Corollary 36 such a valuation always exists). Now,

• if Undec(ν) ̸= ∅, then for every model µ of SSE(A), Undec(µ) ̸= ∅ (otherwise, ν cannot
be a ≤⊥-minimal model of CMP(A), and as such it cannot be a model of SSE(A)), thus
there is no three-valued valuation µ3 that is associated with a model µ of SSE(A) such that
{Ai ∈ Ar | µ3(Ai) = ⊥} is empty. By Note 35, then, there is no stable extension for A.

• if Undec(ν) = ∅, then by similar considerations as above, for every model µ of SSE(A),
Undec(µ) = ∅, and so by Note 35 again, every set that is accepted by a model of SSE(A) is a
stable extension of A. By Proposition 34, these are exactly the semi-stable extensions of A,
thus in this case the stable extensions of A and the semi-stable extensions of A coincide.

Note 39. Proposition 38 and its proof imply that either all of the three-valued valuations that
are associated with a model of SSE(A) are actually two-valued (i.e., they are into {t, f}), in which
case the sets of the stable extensions and of the semi-stable extensions of A coincide, or else all the
three-valued valuations that are associated with a model of SSE(A) have ⊥-assignments, in which
case A lacks stable extensions. This shows an important property of semi-stable semantics: it is
faithful to the stable semantics as long as the corresponding theory SSE(A) is classically consistent
(i.e., if SSE(A) has two-valued models), and it is not trivialized otherwise (since SSE(A) is always
satisfiable).9

Example 40. Consider the signed theory CMP(A1) of Example 26, induced by the argumentation
framework A1 in Figure 1 and Example 4. Among the three models of CMP(A1), only µ2 satisfies
Min≤⊥(CMP(A1)), so µ2 is the only two-valued model of SSE(A). Now,

1. In the notations of Example 26, the three-valued valuation ν2 that is associated with µ2 is the
one that minimizes the ⊥-assignments among the three-valued valuations that are associated
with some (two-valued) model of CMP(A1).

2. It holds that {B,D} = In(µ2) = {x | ν2(x) = t}, and as noted in Example 4, {B,D} is indeed
the only semi-stable extension of A1.

Note 41. Another by-product of Proposition 34 is that the problem of checking whether a given
set of arguments is a [semi-]stable extension of A is (polynomially) reducible to a satisfiability

8For another proof of the second case, in which A has at least one stable extension, see Theorem 5 of [27].
9This shows that, in terms of [27], semi-stable semantics is ’backward compatible’ with stable semantics. In

terms of [9], the correlated entailment relation |∼SSE, defined by SSE(A) |∼SSE ψ iff mod(SSE(A)) ⊆ mod(ψ), is
‘inconsistency-tolerant’.
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checking with respect to SSE(A). Indeed, given an argumentation theory A = ⟨Ar , att⟩ and a set
E ⊆ Ar , consider the three-valued valuation νE on Ar , defined as follows:

νE(A) =


t if A ∈ E,
f if A ̸∈ E and A ∈ E+,
⊥ otherwise.

 .

By Proposition 34, E is a semi-stable extension of A if (and only if) the two-valued valuation that
is associated with νE is a model of SSE(A). If, in addition, there is no A ∈ E such that νE(A) = ⊥
then E is a stable extension of A.

4.3 Grounded and Preferred Semantics

Grounded extensions and preferred extensions of a given argumentation framework A can be rep-
resented in a way resembling the way semi-stable extensions of A were represented in the last
subsection. The key observations for that are the following propositions, which directly follow from
Definition 3 and Proposition 25 (cf. Proposition 31):

Proposition 42. Let A = ⟨Ar , att⟩ be an argumentation framework. Then E is a preferred
extension of A iff there is a three-valued valuation ν3 that is associated with a model of CMP(A)
such that

a) E = {Ai ∈ Ar | ν3(Ai) = t} and E+ = {Ai ∈ Ar | ν3(Ai) = f},

b) ν3 has a maximal (with respect to set inclusion) t-assignments among the valuations that
are associated with the models of CMP(A): There is no three-valued valuation µ3 that is
associated with a model of CMP(A), such that

{Ai ∈ Ar | ν3(Ai) = t} ( {Ai ∈ Ar | µ3(Ai) = t}.

Proposition 43. Let A = ⟨Ar , att⟩ be an argumentation framework. Then E is a grounded
extension of A iff there is a three-valued valuation ν3 that is associated with a model of CMP(A)
such that

a) E = {Ai ∈ Ar | ν3(Ai) = t} and E+ = {Ai ∈ Ar | ν3(Ai) = f},

b) ν3 has a minimal (with respect to set inclusion) t-assignments among the valuations that
are associated with the models of CMP(A): There is no three-valued valuation µ3 that is
associated with a model of CMP(A), such that

{Ai ∈ Ar | µ3(Ai) = t} ( {Ai ∈ Ar | ν3(Ai) = t}.

It follows that this time, for representing preferred (respectively, grounded) extensions of A, we
have to augment CMP(A) with a criterion that assures maximality (respectively, minimality) with
respect to the following partial order:

• for two-valued valuations ν, µ on Ar±, ν ≤t µ iff In(ν) ⊆ In(µ),

• for three-valued valuations ν, µ on Ar , ν ≤t µ iff {Ai | ν(Ai) = t} ⊆ {Ai | µ(Ai) = t}.
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Again, this can be done by corresponding QBFs. Minimization of t-assignments among the
valuations that are associated with a model of CMP(A) can be specified by a QBF, denoted
Min≤t(CMP(A)), that is obtained from Min≤⊥(CMP(A)) (Definition 32) by replacing every oc-
currence of val(Ai,⊥) with the signed formula val(Ai, t).

Similarly, maximization of t-assignments among the valuations that are associated with a model
of CMP(A) can be specified by the following QBF, denoted Max≤t(CMP(A)):
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Definition 44. Given an argumentation framework A = ⟨Ar , att⟩, we denote:

GE(A) = CMP(A) ∪ {Min≤t(CMP(A))}.

PE(A) = CMP(A) ∪ {Max≤t(CMP(A))}.

Proposition 45. Let A = ⟨Ar , att⟩ be an argumentation framework, and let E be a complete
extension of A. Then

a) E is a grounded extension of A iff there is a three-valued valuation ν3 that is associated with
a model of GE(A) such that E = {Ai ∈ Ar | ν3(Ai) = t} and E+ = {Ai ∈ Ar | ν3(Ai) = f}.

b) E is a preferred extension of A iff there is a three-valued valuation ν3 that is associated with
a model of PE(A) such that E = {Ai ∈ Ar | ν3(Ai) = t} and E+ = {Ai ∈ Ar | ν3(Ai) = f}.

Proof. Similar to that of Proposition 34.

Again, Proposition 45 allows us to vindicate the following known result:

Corollary 46. Each argumentation framework has at least one grounded extension and at least
one preferred extension.

Proof. Similar to that of Corollary 36.

Example 47. Consider the signed theory CMP(A1) of Example 26, induced by the argumentation
framework A1 in Figure 1 and Example 4. Among the three models of CMP(A1), µ3 satisfies
Min≤t(CMP(A1)) and both of µ1 and µ2 satisfy Max≤t(CMP(A1)). Thus mod(GE(A1)) = {µ3}
and mod(PE(A1)) = {µ1, µ2}. It follows that, in the notations of Example 26,

a) ν3 is the only three-valued valuation that is relevant for Part (a) of Proposition 45, and so
{x | ν3(x) = t} = ∅ is the unique grounded extension of A1.

b) ν1 and ν2 are the three-valued valuations that are relevant for Part (b) of Proposition 45, and
so both {x | ν1(x) = t} = {A} and {x | ν2(x) = t} = {B,D} are the preferred extensions of
A1.

This is indeed in-line with the indications in Example 4.
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4.4 Ideal and Eager Semantics

By using the signed QBF theory PE that represents preferred extensions, it is possible to represent
ideal extensions by signed QBF theories as well.

Definition 48. Given an argumentation theory A = ⟨Ar , att⟩ with |Ar | = n, let
d

PE(A) be the
conjunction of the formulas in PE(A). We denote the following QBF by SubSet≤t(PE(A)):
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Now, we define:
PreIE(A) = CMP(A) ∪ {SubSet≤t(PE(A))},
IE(A) = PreIE(A) ∪ {Max≤t(PreIE(A))},

where Max≤t(PreIE(A)) is obtained from Max≤t(CMP(A)) (defined before Definition 44) by sub-
stituting

d
CMP(A) by

d
PreIE(A) (the conjunction of the formulas in PreIE(A)).

In terms of labelling functions, PreIE (denoting ‘pre-ideal’ extensions) states that the labelling
has to be a complete one, and its set of in-labelled arguments should be a subset of each of the in-
labelled arguments of each preferred labelling. In turn, IE selects among these (pre-ideal) labellings
the one whose set of in-labelled arguments is maximal w.r.t. set-inclusion (i.e., the in-maximal pre-
ideal set). Hence, IE selects the ideal labelling, or – dually – the ideal extension. Thus, we have:

Proposition 49. Let A be an argumentation framework. Then E is the ideal extension of A iff
there is a model ν of IE(A) such that In(ν) = E and Out(ν) = E+.

Eager semantics is defined like ideal semantics, but with respect to semi-stable extensions
instead of preferred extensions. So in order to represent eager extensions we just have to replace
in Definition 48 the signed QBF theory PE , representing preferred extensions, by the signed QBF
theory SSE , representing semi-stable extensions. Thus, we have:

Definition 50. Given an argumentation theory A = ⟨Ar , att⟩, we denote

PreEE(A) = CMP(A) ∪ {SubSet≤t(SSE(A))},
EE(A) = PreEE(A) ∪ {Max≤t(PreEE(A))},

where SubSet≤t(SSE(A)) is obtained from SubSet≤t(PE(A)) (Definition 48) by substituting
d

PE(A)
by

d
SSE(A), andMax≤t(PreEE(A)) is obtained fromMax≤t(CMP(A)) by substituting

d
CMP(A)

by
d
PreEE(A).

Similar considerations as before imply that PreEE represents the ‘pre-eager’ extensions of A
(i.e., the complete labellings of A whose set of in-labelled arguments is a subset of the set of in-
labelled arguments of every semi-stable labelling of A), and EE represents the ‘pre-eager’ labelling
with a maximal (w.r.t. set inclusion) set of in-assignments. Thus, EE represents the eager extension
of A:

Proposition 51. Let A be an argumentation framework. Then E is the eager extension of A iff
there is a model ν of EE(A) such that In(ν) = E and Out(ν) = E+.
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4.5 Stage Semantics

The definition of stage extensions resembles that of semi-stable extensions. Both extensions are sets
of arguments with maximal range, but whereas for semi-stable semantics the range is maximized
with respect to all complete extensions, for stage semantics the range is maximized with respect to
all conflict-free sets. It is not surprising, therefore, that the representations (and so the computa-
tions) of these kinds of extensions are also somewhat similar: In both cases we incorporate a signed
QBF for minimizing ⊥-assignments (and so maximizing the ranges of the associated extensions),
but the difference is in the set of valuations to which this minimization applies. In contrast to
semi-stable extensions, for representing stage extensions we need a signed theory that formalizes
conflict-free labellings. This is what we do next.

Definition 52. Given an argumentation framework A = ⟨Ar , att⟩, let

CFLABA(x) =

{
val(x, t) ⊃

∧
y∈Ar (att(y, x) ⊃ ¬val(y, t)),

val(x, f) ⊃
∨

y∈Ar (att(y, x) ∧ val(y, t)),

}
.

As in Definition 19, the expressions above abbreviate the signed theory that is obtained by
sequentially substituting the free variable x by atomic formulas representing the elements of Ar ,
val(x, v) are the signed formulas in Definition 16, and every expression of the form att(y, x) is
replaced by the propositional constant t if (y, x) ∈ att and otherwise att(y, x) is replaced by the
propositional constant f. By this, the formulas in CFLABA represent conditions Pos1 and Neg of
a conflict-free labelling, given in Definition 6. Again, we denote by CFLABA[Ai/x] the expressions
of Definition 52, evaluated with respect to the argument Ai ∈ Ar .

Definition 53. Given an argumentation framework A = ⟨Ar , att⟩, we denote

CF(A) =
∪

Ai∈Ar

CFLABA[Ai/x] ∪ COH(Ar).

Proposition 54. There is a one-to-one correspondence between the conflict-free labellings of an
argumentation framework A and the models of CF(A).

Proof. Suppose first that lab is a conflict-free labelling of A. We will show that the following
coherent valuation ν on Ar± is a model of CF(A):

ν(A⊕
i ) =

{
1 if lab(Ai) = in,
0 otherwise.

ν(A⊖
i ) =

{
1 if lab(Ai) = out,
0 otherwise.

First, note that there is no Ai ∈ Ar for which both ν(A⊕
i ) = 1 and ν(A⊖

i ) = 1, thus ν satisfies
COH(Ar). To see that for every Ai ∈ Ar ν satisfies CFLABA[Ai/x], note that In(ν) = In(lab),
Out(ν) = Out(lab), and Undec(ν) = Undec(lab). Thus, properties Pos1 and Neg of lab, specified
in Definition 6, assure, respectively, that ν satisfies the two schemes of formulas in Definition 52. It
follows that ν is a model of CF(A), as required. In particular, two different conflict-free labellings
of A correspond to two different models of CF(A).
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For the converse, let ν be a model of CF(A). Then in particular ν satisfies COH(Ar), and so
Ar = In(ν) ∪ Out(ν) ∪ Undec(ν). Consider now the following function on Ar :

lab(Ai) =


in if ν(Ai) ∈ In(ν),
out if ν(Ai) ∈ Out(ν),
undec otherwise.

It is easy to verify that since ν is a model of ∪Ai∈ArCFLABA[Ai/x], lab is a conflict-free labelling
of A (one has to check that the two schemes of formulas in Definition 52 assure, respectively, the
conditions Pos1 and Neg in Definition 6). In particular, two different models of CF(A) correspond
to two different conflict-free labellings of A.

Definition 55. Given an argumentation framework A = ⟨Ar , att⟩, we denote:

SGE(A) = CF(A) ∪ {Min≤⊥(CF(A))}.

Proposition 56. Let A = ⟨Ar , att⟩ be an argumentation framework. A subset E of Ar is a stage
extension of A iff there is a three-valued valuation ν3 that is associated with a model ν2 of SGE(A),
such that E = In(ν2) = {Ai ∈ Ar | ν3(Ai) = t} and E+ = Out(ν2) = {Ai ∈ Ar | ν3(Ai) = f}.

Proof. (Outline) By Proposition 54, there is a one-to-one correspondence between the (two-valued)
models of CF(A) and the conflict-free labellings of A. It is not difficult to see that the correspon-
dence in the proof of that proposition carries on to a one-to-one matching between the ≤⊥-minimal
models of CF(A) and the conflict-free labellings of A with minimal undec-assignments. In turn, as
noted in Section 2.2, there is a one-to-one correspondence between the latter and the stage exten-
sions of A (see also [25]). Moreover, if lab and E are a labelling and an extension that are matching
under this correspondence, then E = In(lab) and E+ = Out(lab). From the claims above and by
Proposition 54 again, it follows that there is a one-to-one correspondence between the ≤⊥-minimal
models of CF(A) and the conflict-free labellings of A with minimal undec-assignments, so that if ν2

and E are a two-valued valuation and an extension that are matching under this correspondence,
then E = In(ν2) and E+ = Out(ν2). But the ≤⊥-minimal models of CF(A) are exactly the models
of SGE(A), and so the proposition is obtained.

5 Some Notes on Complexity

The results of Sections 3 and 4 may be used for providing related complexity results or vindicat-
ing known results. For instance, Proposition 29 shows that checking whether an argumentation
framework A has stable extensions is polynomially reducible to checking whether (the propositional
theory) SE(A) is satisfiable. The same proposition also shows that deciding whether an argument
A belongs to all the stable extensions of A is equivalent to checking whether A⊕ classically follows
from the SE(A). Indeed, the latter means that A is acceptable (assigned t) by every three-valued
model that is associated with a two-valued model of SE(A), thus A is in every stable model of A.

Similar considerations show that Proposition 34 implies that deciding whether an argument A
belongs to all the semi-stable extensions of an argumentation framework A is equivalent to checking
whether A⊕ classically follows from the (signed) QBF-theory SSE(A). This decision problem is in
ΠP

2 (see [3, Proposition 5.15]). Propositions 45 and 56 yield similar results concerning preferred,
grounded, and stage semantics. Thus, we have obtained the following result.
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Proposition 57. Deciding whether an argument A belongs to all the semi-stable (alternatively:
the preferred, stage) extensions of an argumentation framework A is in ΠP

2 .

The result of the last proposition for semi-stable and stage semantics is also shown in [40].
Recently, Dvořák and Woltran [44] have proven a matching lower bound:

Proposition 58. Deciding whether an argument A belongs to all the semi-stable extensions (alter-
natively: to all the stage extensions) of an argumentation framework A is ΠP

2 -hard.

By similar considerations, our representation of semi-stable (alternatively: preferred, grounded,
stage) extensions by signed QBFs may be used for investigating the complexity of deciding whether
an argument A belongs to some semi-stable (alternatively: preferred, grounded, stage) extension
of a given argumentation framework A:

Proposition 59. Deciding whether an argument A belongs to some semi-stable (alternatively: some
preferred, stage) extension of an argumentation framework is in ΣP

2 .

The last results concerning semi-stable and stage semantics are again obtained also in [40], and
in [44] these decision problems are shown to be ΣP

2 -hard.

Interestingly, for obtaining the lower bounds for semi-stable and stage semantics, Dvořák and
Woltran [44] also use quantified Boolean formulas. However, they reduce QBFs to argumentation
frameworks, while we need the converse: representing argumentation semantics by QBFs.10

Note 60. While Propositions 57 and 59 show that our translations result in QBF-fragments that
are contained in the same complexity class as the encoded problems, known complexity results
regarding grounded, ideal and eager semantics (see e.g. [41, 42]) indicate that translations to simpler
QBFs may exist (since we are using QBFs with two quantifier alternations for grounded semantics
and more than two alternations for ideal and eager semantics). Whether it is possible in these
cases to keep the encoding optimal without violating the uniformity of our representation remains
an open question.

6 Related Work

An early approach to characterize Dung’s abstract argumentation semantics in an alternative way
was provided in [13]. Here, the idea is to reformulate abstract argumentation semantics in terms
of equations, although no indication is given how to use such characterizations for the purpose of
computing these semantics. An investigation of some of the logical properties of argumentation
semantics was provided in [18]. The emphasis is on modeling the properties of the attack and
defense relations, and their interaction with the various argument-based extensions. A limitation
is that notions like a preferred, complete or grounded extension are taken as primitives, and that
although some relations are studied, a full logical characterization of these concepts is absent.

One of the first logical characterizations of argumentation semantics was provided by Besnard
and Doutre in [14]. The authors provide formulas in propositional logic whose models coincide
with the conflict-free sets, admissible sets, complete extensions and stable extensions of a partic-
ular argumentation framework. Preferred and grounded semantics can then be characterized by

10A somewhat similar approach is taken in [39], where monadic second-order logic is applied to study the compu-
tational complexity of a number of decision problems in argumentation frameworks with bounded tree width.
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maximizing (respectively, minimizing) over the models of the formula describing the admissible
sets (respectively, the formula describing the complete extensions), although no attempt is made to
describe such maximization and minimization in a purely logical way. Besnard and Doutre also pro-
vide alternative logical formalizations in which the check whether a particular set is a conflict-free
set (or admissible set, complete extension, or stable extension) is done by checking the satisfiability
of an associated propositional formula.

Based on the notion of complete labellings, a first-order logic treatment of complete semantics
is provided in [28]. For concepts like semi-stable semantics, however, the authors use second-order
constructs to express maximization (or minimization) of particular labels. A different characteri-
zation of complete semantics, using modal logic, is also provided.

An alternative way of using modal logic to characterize argumentation semantics has been
introduced by Grossi in [54]. Basically, the idea is to express the “is attacked by” relation as a
modality. In this way, it becomes possible to fully characterize the notions of an admissible set,
a complete extension and a stable extension using modal logic formulas. Recently, Grossi has
shown that second-order modal logics can be used also for characterizing semantics like grounded,
preferred and semi-stable, that rely on minimization or maximization (see [55]). Higher-order
languages are also used by Dvořák, Szeider and Woltran [43] for representing different kinds of
argumentation semantics and for analyzing the computational complexity of some argumentation
frameworks with specific structural properties. In comparison to these works, we note that our
approach involves simpler languages and avoids the incorporation of computationally challenging
logic-based apparatus (such as modal µ-calculus and Hintikka games for model checking). On the
other hand, it should be noted that the representation in [54, 55] is adequate for every argumentation
framework with a fixed semantics, while our representation varies according to the argumentation
framework at hand.

An early approach of applying QBFs to model argumentation problems was provided in [47].
However, instead of modeling Dung’s abstract argumentation frameworks, as is done in the current
paper, the authors take Assumption Based Argumentation (ABA) [19] as their starting point.
Within the approach of ABA, the authors are then able to model admissibility, stable semantics
and preferred semantics using QBFs.

There are a number of recent works on computing argumentation semantics, motivated by
implementation considerations, which are based on automated tools for computerized reasoning.
For instance, in [1], Amgoud and Devred define several argumentation semantics as constraint
solving problems (CSP), and so CSP-solvers can be used for computing the extensions and also for
solving various decision problems.

A different, equational approach, was recently introduced by Gabbay in [48, 49]. According
to this approach an argumentation framework is described by a set of equations in which the
arguments are variables in [0, 1] and the attack relation is a generator of equations. The corre-
spondence between a solution s for the equations and a three-valued labelling lab of the underlying
argumentation framework is given by In(lab) = {x | s(x) = 1}, Out(lab) = {x | s(x) = 0}, and
Undec(lab) = {x | s(x) = 1

2}. A primary consideration of this approach is to give more sensitivity
to loops in the graph of the framework. Thus, for instance, the more undecided elements y attack
x, the closer to 0 its value gets.

Some of the most expressive approaches, not only for representing argumentation semantics
but also for computing them, have been studied in the field of logic programming (See [68] for an
overview). Worth mentioning is the work of Wakaki and Nitta [72] in which, based on the notion
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of argument labellings, answer set programs are stated for computing complete, stable, preferred,
grounded and semi-stable semantics. The computation of the latter three semantics relies on meta-
logic programs that select the maximal (respectively minimal) elements of the answer sets yielded
by the answer set program that computes the complete labellings. The currently most advanced
approach for applying answer set programming to compute a wide range of argumentation semantics
is provided by the ASPARTIX system [45, 46]. Like the work of [72], ASPARTIX is able to compute
complete, stable, preferred, grounded and semi-stable semantics, but without the need to apply
meta-logic programs. In addition, ASPARTIX is also able to compute ideal and CF2 semantics [11],
making it one of the few approaches that can meet up to the approach presented in the current
paper when it comes to the range of semantics one is able to capture and reason with.

In comparison with the above mentioned approaches, then, the advantage the present approach
is by its purely logic-based nature, which remains, de facto, on the propositional level, and yet
provides a uniform formulation of a relatively wide range of semantics for abstract argumentation
frameworks.

7 Summary and Discussion

Table 1 summarizes the one-to-one correspondence between different extension-based semantics,
argumentation labellings, and models of signed (QBF) theories.

extension labelling signed (QBF) theory

complete complete CMP Def. 21

stable complete without undec SE [CMP + EM] Def. 28

semi-stable complete with minimal undec SSE [CMP +Min≤⊥(CMP)] Def. 33

preferred complete with maximal in PE [CMP +Max≤t(CMP)] Def. 44

grounded complete with minimal in GE [CMP +Min≤t(CMP)] Def. 44

pre-ideal complete with in-subset of preferred PreIE [CMP + SubSet≤t(PE)] Def. 48

ideal pre-ideal with maximal in IE [PreIE +Max≤t(PreIE)] Def. 48

pre-eager complete with in-subset of semi-stable PreEE [CMP + SubSet≤t(SSE)] Def. 50

eager pre-eager with maximal in EE [PreEE +Max≤t(PreEE)] Def. 50

stage conflict-free with minimal undec SGE [CF +Min≤⊥(CF)] Def. 55

Table 1: The relations among the three approaches to abstract argumentation semantics

Given an argumentation framework A = ⟨Ar , att⟩, we denote:

Sem(A) = {E ⊆ Ar | E is a Sem-extension of A},

where Sem is a generic name for any one of the extension-based semantics considered in this paper
(see Definition 3 and the leftmost column of Table 1). We also denote by T HSem(A) the signed
theory, applied to A, which represents Sem. By these representations we gain, for free, a variety
of new notions, techniques and results regarding abstract argumentation. Below, we list some of
them.

1. A new perspective for argumentation semantics. The two traditional attitudes towards the se-
mantics of abstract argumentation frameworks, considered in Section 2, namely the extended-

27



based approach and the labelling-based approach, are accompanied by a third point of view,
which in many cases has a one-to-one correspondence to the other two (see Table 1). The
correspondence among these three points of views may be formulated in terms of appropriate
mappings as in Proposition 7.

Proposition 61. Let A = ⟨Ar , att⟩ be an argumentation framework, E the set of all conflict-
free sets of A, and CF(A) the signed theory of Definition 53. We define a function Mod2Ext :
mod(CF(A)) → E by Mod2Ext(ν) = In(ν), and a function Ext2Mod : E → mod(CF(A)) by
Ext2Mod(E) = νE, where νE(A

⊕) = 1 iff A ∈ E and νE(A
⊖) = 1 iff A ∈ E+. Then:

(a) if E is a complete extension of A, then Ext2Mod(E) is in mod(CMP(A)).

(b) if ν is in mod(CMP(A)), then Mod2Ext(ν) is a complete extension of A.

(c) when the domain and range of Ext2Mod and Mod2Ext are restricted, respectively, to
Sem(A), where Sem is a semantics that includes only complete extensions, and to models
of T HSem(A) representing Sem in A, these functions become bijections and each other’s
inverses, making the extensions in Sem(A) and the models of T HSem(A) one-to-one
related.

Proposition 62. Let A = ⟨Ar , att⟩ be an argumentation framework, L the set of all conflict-
free labellings of A, and CF(A) the signed theory of Definition 53. We define a function
Mod2Lab : mod(CF(A)) → L as Mod2Lab(ν) = ⟨In(ν),Out(ν),Undec(ν)⟩11 and a function
Lab2Mod : L → mod(CF(A)) as Lab2Mod(lab) = νlab, where νlab(A

⊕) = 1 iff A ∈ In(lab) and
νlab(A

⊖) = 1 iff A ∈ Out(lab). Then:

(a) if lab is a complete labelling of A, then Lab2Mod(lab) is in mod(CMP(A)).

(b) if ν is in mod(CMP(A)), then Mod2Lab(ν) is a complete labelling of A.

(c) when the domain and range of Lab2Mod and Mod2Lab are restricted, respectively, to the
set LABSem(A) of the Sem-labellings of A for a semantics Sem that includes only com-
plete extensions, and to the models of T HSem(A) representing Sem in A, these functions
become bijections and each other’s inverses, making the labellings in LABSem(A) and
the models of T HSem(A) one-to-one related.

2. Recapturing traditional notions from the literature of abstract argumentation. Some of the
standard notions used in the context of abstract argumentation theory have natural equiva-
lents in the context of logic-based formalizations, among which are the following:

• Skeptical acceptance. An argument Ai is skeptically accepted by A according to Sem,
if Ai ∈ E for every E ∈ Sem(A). In the logic-based perspective, this means that the
propositional variable that corresponds to Ai is satisfied by all the models of T HSem(A).
It follows that skeptical acceptance is dual to the notion of logical entailment in our
framework. Thus, for instance, Ai is skeptically accepted with respect to the semi-stable
semantics if SSE(A) ⊢ A⊕

i , or, equivalently, if SSE(A) ⊢ val(Ai, t). The implications of
this on the computational complexity of skeptical acceptance with respect to different
extension-based semantics are discussed in Section 5.

11See also the proof of Proposition 23.
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• Credulous acceptance. An argument Ai is credulously accepted by A according to Sem,
if there is some E ∈ Sem(A) such that Ai ∈ E. In the logic-based perspective, then, this
means that the propositional variable that corresponds to Ai is satisfied by some model
of T HSem(A), and so credulous acceptance is dual to the notion of logical satisfiability
in our framework. For instance, the fact that Ai is skeptically accepted with respect
to the semi-stable semantics means that the theory SSE(A) ∪ {val(Ai, t)} is classically
consistent.12 The complexity of these problems are considered in Section 5.

• Labelling-based justification status. In terms of labelling-semantics, the two acceptance
criteria considered previously refer only to arguments that are assigned the label in by
some or all of the Sem-labelling functions of A. In essence, the notion of a justification
status of an argument [41, 74] is a generalization of these criteria, referring to all the
possible combinations of labellings that the argument under consideration may have for
a specific semantics. Thus, for instance, we say that Ai is weakly rejected an argument
Ai can be rejected in a semantics Sem of A, if there is a Sem-labelling function of A
that assigns the label out to Ai. In our framework, this can be verified by checking the
consistency of T HSem(A) ∪ {val(Ai, f)}.

3. Towards an automated verification of semantical properties. Some basic properties concerning
the semantics of a given argumentation framework may be verified by the logical satisfiability
or validity of the associated formula. Below are some examples for such cases.

• The existence of a stable extension. This may be verified simply by checking whether
SE has any model (i.e., whether it is consistent). Note that this also determines whether
the semi-stable extensions and the stage extensions coincide with the stable extensions.

• The existence of a non-empty extension. This is another basic question that is studied
in the literature of argumentation theory (see, for instance, [41], where the existence of
non-empty complete extensions is investigated). In our framework, this may be verified
by checking the consistency of the following theory:

T HSem(A) ∪
∨

Ai∈Ar

val(Ai, t).

• Checking coinciding semantics. Let Sem1 and Sem2 be two extension-based semantics
of A with corresponding theories T HSem1(A) and T HSem2(A), respectively. Checking
whether these semantics coincide is equivalent to checking the validity ofl

T HSem1(A) ↔
l

T HSem2(A)

where, as before,
d

T H is the conjunction of the formulas in T H. A special case would
be to check whether the argumentation framework is coherent [37], that is, whether the
preferred extensions and the stable extensions coincide.

The one-to-one relationships between extensions, labelling functions, and the models of the
corresponding signed theories, as depicted in Table 1, also allows for a straightforward ap-
proach for counting the Sem-extensions of A (that is, for computing the size of Sem(A)).
This can be done simply by computing the size of mod(T HSem(A)).

12That is, SSE(A) ∪ {val(Ai, t)} ̸⊢ f, where f is the propositional constant representing falsity.
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4. Alternative ways of deriving fundamental properties of abstract argumentation. As suggested,
e.g., by Corollary 36, Proposition 38, Corollary 46, and some other results in this paper, rea-
soning with signed QBF-theories provides an alternative method of vindicating basic results
from argumentation theory. Other evidence for this is provided by the following connections
between different extensions, which are obvious from our representation:

– Every stable, semi-stable, preferred, grounded, ideal and eager extension of A is a com-
plete extension of A (Because the theories of these extensions contain CMP).

– Every stable extension of A is a semi-stable extension of A (It is easy to verify that
mod(SE(A)) ⊆ mod(SSE(A))).

– Every stable extension of A is a stage extension of A (Indeed, since mod(CMP(A)) ⊆
mod(CF(A)), it follows that mod(SE(A)) ⊆ mod(SGE(A)) as well).

5. Practical Considerations. Apart of being a general and uniform way of representing some of
the most common extension-based semantics of abstract argumentation theory, an important
advantage of our approach is that it yields an easy way of computing these semantics by in-
corporating off-the-shelf computational models for processing QBFs (A list of available QBF-
solvers and evaluations of their performance appears, e.g., in http://www.qbflib.org/).
Whether these methods provide workable solutions for realistic problems can only be deter-
mined by implementation and testing. This is a subject for future work.
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[42] W. Dvořák, P. E. Dunne, and S. Woltran. Parametric properties of ideal semantics. In
Proce. 22nd International Joint Conference on Artificial Intelligence (IJCAI’11), pages 851–
856, 2011.
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A Ideal and Eager Semantics Revisited

In what follows we show that our notions of ideal and eager semantics coincide with those of [25, 38].
In [38] the concept of an ideal set is defined as follows.

Definition 63. Let A = ⟨Ar , att)⟩ be an argumentation framework. An ideal set of A is an
admissible set that is a subset of each preferred extension.

As is proved in [38], every argumentation framework has a unique maximal ideal set.

Proposition 64. Let A = ⟨Ar , att)⟩ be an argumentation framework, let Args ie be its ideal
extension in the sense of Definition 3 and let Argsmi be its maximal ideal set. It holds that
Argsmi = Args ie.

Proof. Args ie is the maximal complete extension that is a subset of each preferred extension, while
Argsmi is the maximal admissible set that is a subset of each preferred extension. It has already
been proved in [38] that Argsmi is a complete extension. Hence, Argsmi is a complete extension
that is a subset of each preferred extension. We now prove that it is also a maximal (with respect to
set inclusion) complete extension that is a subset of every preferred extension. Suppose that there
exists a complete extension Args ′ ) Argsmi that is a subset of each preferred extension. Then, since
every complete extension is also an admissible set, it holds that Args ′ is also an admissible set that
is a subset of each preferred extension (that is, Args ′ is an ideal set). Since Argsmi is the unique
biggest ideal set, it follows that Args ′ ⊆ Argsmi which is in contradiction with Args ′ ) Argsmi.

From Proposition 64 together with the fact that the maximal ideal set is unique, it follows that
the ideal extension is also unique.

Next, we show that the definition of the ideal labelling in this paper (see Definition 9) is
equivalent to the definition of the ideal labelling in [25]. Let ⊑ be a relation between labelling
functions defined by lab1 ⊑ lab2 iff In(lab1) ⊆ In(lab2) and Out(lab1) ⊆ Out(lab2). In [25] the
ideal labelling is defined as the ⊑-maximal admissible labelling that is ⊑-smaller or equal to each
preferred labelling.

Proposition 65. Let A = ⟨Ar , att⟩ be an argumentation framework, let labid1 be the ideal labelling
according to Definition 9, and let labid2 be the ideal labelling as defined in [25]. It holds that
labid1 = labid2.

Proof. labid1 is a complete labelling with maximal in-assignments among the complete labellings
whose set of in-labelled arguments is a subset of the set of in-labelled arguments of each preferred
labelling. labid2 is the unique (as proven in [25]) ⊑-maximal admissible labelling that is ⊑-smaller
or equal to each preferred labelling. It is shown in [29] that labid2 is a complete labelling. Hence,
labid2 is a complete labelling that is ⊑-smaller or equal to each preferred labelling. We now show
that labid2 is also a ⊑-maximal complete labelling that is ⊑-smaller or equal to each preferred
labelling. Suppose there exists a complete labelling lab′ with labid2 ⊑ lab′ and labid2 ̸= lab′ such
that lab′ is ⊑-smaller or equal to each preferred labelling. Then lab′ is also a complete labelling
whose set of in-labelled arguments is a subset of the set of in-labelled arguments of each preferred
labelling (this is because from lab1 ⊑ lab2 it follows that In(lab1) ⊆ In(lab2)). However, from the
fact that labid2 ⊑ lab′ and labid2 ̸= lab′ it follows that In(labid2) ( In(lab′). This contradicts the
fact that labid1 is a complete labelling with maximal in-assignments among the complete labellings
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whose set of in-labelled arguments is a subset of the set of in-labelled arguments of each preferred
labelling.

From Proposition 65, together with the fact that the ⊑-maximal admissible labelling that is
⊑-smaller or equal to each preferred labelling is unique [25], it follows that the ideal labelling (as
defined in Definition 9) is unique. It also follows that the ideal labelling and the ideal extensions
are one-to-one related to each other by means of the functions Ext2Lab and Lab2Ext.

As for eager semantics, one can obtain similar results. Originally, in [22], the eager extension
was defined as the (unique) maximal admissible set that is a subset of each semi-stable extension.
In order to have the proofs of eager semantics similar to those of ideal semantics, we first define
the concept of an eager set .

Definition 66. Let A = ⟨Ar , att⟩ be an argumentation framework. An eager set of A is an
admissible set that is a subset of each semi-stable extension.

In [22] it is shown that every argumentation framework has a unique maximal eager set.

Proposition 67. Let A = ⟨Ar , att)⟩ be an argumentation framework, let Argsee be its eager
extension in the sense of Definition 3 and let Argsme be its maximal eager set. It holds that
Argsme = Argsee.

Proof. Argsee is the maximal complete extension that is a subset of each semi-stable extension,
while Argsme is the maximal admissible set that is a subset of each semi-stable extension. It has
already been proved in [22] that Argsme is a complete extension. Hence, Argsme is a complete
extension that is a subset of each semi-stable extension. It therefore remains to show that it is also
a maximal (with respect to set inclusion) complete extension that is a subset of every semi-stable
extension. The proof of this is similar to that in Proposition 64 (concerning preferred extensions
instead of semi-stable extensions).

From Proposition 67, together with the fact that the maximal eager set is unique [22], it follows
that the eager extension (Definition 3) is also unique.

In [29] the eager labelling is described as the ⊑-maximal admissible labelling that is ⊑-smaller or
equal to each semi-stable labelling. As shown next, this description is equivalent to the description
of the eager labelling in Definition 9.

Proposition 68. Let A = ⟨Ar , att⟩ be an argumentation framework, let labeg1 be the eager labelling
as defined in Definition 9, and let labeg2 be the ⊑-maximal admissible labelling that is ⊑-smaller
or equal to each semi-stable labelling. It holds that labeg1 = labeg2.

Proof. Similar to that of Proposition 65 (by the fact that labeg2 is a complete labelling; see [29]).

From Proposition 68, together with the fact that the ⊑-maximal admissible labelling that is
⊑-smaller or equal to each semi-stable labelling is unique [29], it follows that the eager labelling (as
defined in Definition 9) is unique. It also follows that the eager labelling and the eager extensions
are one-to-one related to each other by means of the functions Ext2Lab and Lab2Ext.

The above results give us the freedom to describe ideal and eager semantics either in terms of
complete extensions (labellings) or in terms of of admissible sets (labellings). Although a character-
ization in terms of admissible sets would be more in line with the literature [22, 38], a characteriza-
tion in terms of complete semantics, as is done in the current paper, allows us to treat all semantics
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(except stage) in a uniform way, requiring a minimal number of concepts and emphasizing the fact
that they all select among the complete extensions (labellings).13

13An alternative would be to try to describe the different semantics entirely in terms of admissible sets (labellings)
instead of in terms of complete extensions (labellings). Although this would be possible for stable, preferred, semi-
stable, ideal and eager semantics, it is not a-priori clear how this could be done for instance for grounded semantics.
When the aim is to characterize, in a uniform way, a wide range of semantics, complete extensions (labellings) seems
to have advantages above admissible sets (labellings).
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