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Abstract

In the current paper, we re-examine the connection between formal argu-
mentation and logic programming from the perspective of semantics. We
observe that one particular translation from logic programs to instantiated
argumentation (the one described by Wu, Caminada and Gabbay) is able to
serve as a basis for describing various equivalences between logic program-
ming semantics and argumentation semantics. In particular, we are able to
show equivalence between regular semantics for logic programming and pre-
ferred semantics for formal argumentation. We also show that there exist
logic programming semantics (L-stable semantics) that cannot be captured
by any abstract argumentation semantics.

Keywords: Abstract Argumentation Semantics, Logic Programming
Semantics

1. Introduction

The connection between logic programming and formal argumentation
goes back to logic programming inspired formalisms like the work of Prakken
and Sartor [1] or the work of Simari and Loui [2], as well as to the seminal
work of Dung [3] in which various connections were pointed out. To some
extent, the work of Dung [3] can be seen as an attempt to provide an abstrac-
tion of certain aspects of logic programming. The connection between logic
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programming and argumentation is especially clear when it comes to com-
paring the different semantics that have been defined for logic programming
with the different semantics that have been defined for formal argumenta-
tion. In the current paper, we continue this line of research. We do this
by pointing out that one particular translation from logic programming to
formal argumentation (the one of Wu et al. [4]) is able to account for a whole
range of equivalences between logic programming semantics and formal argu-
mentation semantics. This includes both existing results like the equivalence
between stable model semantics (LP) and stable semantics (argumentation)
[3], between well-founded semantics (LP) and grounded semantics (argumen-
tation) [3], and between partial stable model semantics (LP) and complete
semantics [4], as well as a newly proved equivalence between regular model
semantics (LP) and preferred semantics (argumentation).

Our work is based on the fact that argumentation semantics are defined
on the argument level, whereas logic programming semantics are defined on
the conclusion level (with an argument being a defeasible derivation for a
particular conclusion). Moreover, it holds that some of the most common
argumentation semantics (grounded, preferred, semi-stable and stable) are
based on selecting the complete labellings [5, 6] where a particular label is
maximal or minimal whereas some of the most common logic programming
semantics (well-founded, regular, L-stable and stable) are based on selecting
the P-stable models where a particular truth value is maximal or minimal.
This, together with the previously observed equivalence between complete
labellings and P-stable models [4] allows us to examine any additional equiv-
alences in a systematic way: does maximizing or minimizing a particular label
on the argument level coincide with maximizing or minimizing a particular
truth value on the conclusion level?

The results of the current paper, however, are relevant for more than
just the connection between logic programming and formal argumentation.
They also shed light on specific aspects of instantiated argumentation theory
in general (e.g. [7, 8, 9]). In particular, we show the connection between
argument-labellings at the abstract level and conclusion-labellings at the
instantiated level. With one notable exception, we are able to show that
maximizing (or minimizing) a particular label (in, out or undec) at the ar-
gument level coincides with maximizing (or minimizing) the same label at
the conclusion level. These results are relevant as they indicate the possibili-
ties (and limitations) of applying argument-based abstractions to formalisms
for non-monotonic reasoning.
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This paper is structured as follows. First, in Section 2, we introduce the
main concepts to be applied in the current paper, such as the various se-
mantics of abstract argumentation and logic programming to be examined.
Then, in Section 3 we provide an overview of the three step process of instan-
tiated argumentation and how it is applied in the particular context of logic
programming based argumentation. In Section 4 we examine some existing
work on the minimization and maximization of argument labellings. Simi-
larly, in Section 5 we examine the issue of minimization and maximization
of conclusion labellings. The connection between argument labellings and
conclusion labellings is then studied in Section 6. We use this connection to
study the equivalence between argumentation semantics and logic program-
ming semantics in Section 7. For this, we point out that argument labellings
coincide with argument extensions and conclusion labellings coincide with
logic programming models. One notable exception on the equivalence be-
tween argumentation semantics and logic programming semantics is studied
in Section 8, where we examine possible ways in which this equivalence can be
restored. A reverse translation from argumentation frameworks to logic pro-
grams is then specified in Section 9, and it is observed that for this translation
the equivalence of argumentation semantics and logic programming seman-
tics is even stronger than for the translation of (unrestricted) logic programs
to argumentation frameworks. Finally, we round off with a discussion of the
obtained results in Section 10.

2. Preliminaries

In this section, we introduce the main definitions used throughout the
paper as well as the first connections between formal argumentation and
logic programming. We start with the definitions of abstract argumentation
frameworks and their various semantics and then move on to logic programs
and their various semantics. In order to highlight similarities between these
concepts, we provide definitions of each formalism in a similar fashion.

2.1. Abstract Argumentation Frameworks and Semantics

In the current paper, we follow the approach of Dung [3]. To simplify
things, we restrict ourselves to finite argumentation frameworks.

Definition 1 ([3]). An argumentation framework is a pair (Ar , att) where
Ar is a finite set of arguments and att ⊆ Ar × Ar.
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Arguments are related to others by the attack relation att , in the sense
that an argument A attacks the argument B iff (A,B) ∈ att . An argumen-
tation framework can be depicted as a directed graph where the arguments
are nodes and each attack is an arrow.

Definition 2 ([3]). (defense/conflict-free). Let (Ar , att) be an argumenta-
tion framework, A ∈ Ar and Args ⊆ Ar.

• Args is said to be conflict-free iff there exists no arguments A,B ∈ Args
such that (A,B) ∈ att.

• Args is said to defend an argument A iff every argument that attacks
A is attacked by some argument in Args.

• The characteristic function F : 2Ar → 2Ar is defined as F (Args) =
{A|A is defended by Args}.

• A conflict-free set Args is said to be admissible iff Args⊆F (Args), that
is the arguments in the set can defend themselves against any attackers
in the framework.

• We write Args+ = {A|A is attacked by an argument in Args} to refer
to the set of arguments attacked by Args.

The traditional approaches to argumentation semantics are based on sets
(commonly referred to as “extensions”) of arguments. Some of the main-
stream approaches are summarized in the following definition.1

Definition 3. (extension-based argumentation semantics). Given an argu-
mentation framework AF = (Ar , att) and S ⊆ Ar:

• S is a complete extension of AF iff S is a conflict-free fixpoint of F
(that is, if S is conflict-free and S = F (S)).

• S is a grounded extension of AF iff S is the minimal (w.r.t. set inclu-
sion) conflict-free fixpoint of F .

1The characterization of the extension-based semantics in Definition 3 is slightly dif-
ferent than the way these were originally defined, by Dung [3], but equivalence is proved
by Caminada and Gabbay [6].
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• S is a preferred extension of AF iff S is a maximal (w.r.t. set inclusion)
conflict-free fixpoint of F .

• S is a stable extension of AF iff S is a conflict-free fixpoint of F such
that S ∪ S+ = Ar.

• S is a semi-stable extension of AF iff S is a conflict-free fixpoint of F
with maximal S ∪ S+ (w.r.t. set inclusion).

From Definition 3, it directly follows that every grounded, preferred, sta-
ble or semi-stable extension of a given argumentation framework is also a
complete extension of that argumentation framework.

Example 1. Let AF = (Ar , att) be an abstract argumentation framework
such that Ar = {A1, . . . , A6} and att ={(A6, A4), (A4, A6), (A4, A5), (A5, A3),
(A3, A3)}. We depict AF as a directed graph, in Figure 1.

A6

A3

A4

A1

A2

A5

Figure 1: An abstract argumentation framework with 6 arguments.

Concerning semantics, AF has:

• Complete extensions: {A1, A2}, {A1, A2, A5, A6}, and {A1, A2, A4}.

• Grounded extension: {A1, A2}.

• Preferred extensions: {A1, A2, A5, A6}, and {A1, A2, A4}.

• Stable extensions: {A1, A2, A5, A6}.

• Semi-stable extensions: {A1, A2, A5, A6}.

5



It is worth to note that semi-stable semantics coincides with the stable
semantics whenever the framework has at least one stable extension. The
reason is straightforward: A stable extension of (Ar , att) is characterized by
having S ∪ S+ = Ar, which implies having maximal S ∪ S+. As a conse-
quence, every stable extension is also a semi-stable extension. Furthermore,
the existence of at least one stable extensions is sufficient for every semi-stable
extension also to be a stable extension.

2.2. Logic Programs and Semantics

In the current paper, we account for propositional normal logic programs2,
which we call logic programs or simply programs from now on.

Definition 4. A rule r is an expression r : c← a1, . . . , an, not b1, . . . , not bm
(n ≥ 0, m ≥ 0) where c, each ai (1 ≤ i ≤ n) and each bj (1 ≤ j ≤ m) are
atoms and not represents negation as failure. c is called the head of the rule,
and a1, . . . , an, not b1, . . . , not bm is called the body of the rule. Furthermore,
a1, . . . , an is called the strong part of the body and not b1, . . . , not bm is called
the weak part of the body. Let r be a rule, we write head(r) to denote its
head (the atom c), body+(r) to denote the set {a1, . . . , an} and body−(r) to
denote the set {not b1, . . . , not bm}. A logic program P is then defined as a
finite set of rules. If every rule r ∈ P has body−(r) = ∅, we say that P is a
positive program. The Herbrand Base of a program P is the set HBP of all
atoms appearing in the program.

A wide range of logic programs semantics can be defined based on the
3-valued interpretations of programs [11], defined as follows.

Definition 5. A 3-valued Herbrand Interpretation I of a logic program P is
a pair 〈T, F 〉 with T, F ⊆ HBP and T ∩ F = ∅. The atoms in T are said to
be true, the atoms in F are said to be false and the atoms in HBP \ (T ∪F )
are said to be undefined.

Let I be a 3-valued Herbrand Interpretation of the logic program P .
The reduct of P with respect to I (written as P/I) is the logic program
constructed using the following steps.

2These are logic programs whose rules may contain weak but not strong negation, and
where the head of each rule is a single atom [10].
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1. Starting from P , remove each rule r from P that has not bi ∈ body−(r)
for some bi ∈ T ;

2. From the result of step 1, for each rule, for every bi ∈ F , remove not bi
from the body of the rule.

3. From the result of step 2, replace any remaining occurrences of not bi
by u.

In the above procedure, u is an atom not in HBP which is undefined
in all interpretations of P (a constant). It can be observed that P/I is a
positive program, since all instances of weak negation have been removed.
As a consequence, P/I has a unique least 3-valued model [11] denoted as
ΨP (I) = 〈TΨ, FΨ〉3 with minimal TΨ and maximal FΨ (w.r.t. set inclusion)
such that, for every a ∈ HBP :

• a ∈ TΨ if there is a rule r′ ∈ P/I with head(r′) = a and body+(r′) ⊆ TΨ;

• a ∈ FΨ if every rule r′ ∈ P/I with head(r′) = a has body+(r′)∩FΨ 6= ∅;

Given the above preliminaries, we are now ready to describe the logic
programming semantics studied in this paper.

Definition 6. (logic programming semantics). Let I = 〈T, F 〉 be a 3-valued
Herbrand Interpretation of logic program P .

• I is a partial stable4 (or P-stable) model of P iff ΨP (I) = I.

• T is a well-founded model of P iff I is a P-stable model of P where T
is minimal (w.r.t. set inclusion) among all P-stable models of P .

• T is a regular model of P iff I is a P-stable model of P where T is
maximal (w.r.t. set inclusion) among all P-stable models of P .

3The above definition consists of a least fix-point of the immediate consequence operator
Ψ defined by Przymusinski [11], which is guaranteed to exist and be unique for positive
programs.

4We use “partial models” in the sense of the 1991 paper of Przymusinski [12], where
partial models are the same as the 3-valued models. The name “partial models” was
previously used in a 1990 paper of Saccà and Zaniolo [13] to refer to M-stable models
(equivalent to regular models as shown by You et al. [14]) instead of P-stable models
(equivalent to 3-valued models as shown by Eiter et al. [15]), but this nomenclature is no
longer used.
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• T is a (2-valued) stable model of P iff I is a P-stable model of P where
T ∪ F = HBP .

• T is an L-stable model of P iff I is a P-stable model of P where T ∪F
is maximal (w.r.t. set inclusion) among all P-stable models of P .

Some of the definitions above are not standard in the logic programming
literature, but can be found via equivalence results in different papers. The
definition of a partial stable model is compatible with that in the work of
Przymusinski [11, 12] (where it is also called a 3-valued stable model). The
above definition of a stable model and the well-founded model also goes
back to the work of Przymusinski [11]. The other definitions, namely of
regular and L-stable models are based on the work of Eiter et al. [15], where
authors discuss partial stable models (P-stable models) and variations such
as maximal (M-stable) models and least undefined (L-stable) models. In
their paper [15] it is shown that for normal logic programs, P-stable models
coincide with Przymusinski’s original notion of 3-valued stable models [11],
even though they only consider the T part of the 3-valued interpretations.
The M-stable models are then defined as the maximal P-stable models and
shown to be equivalent to the regular models. Our definition of L-stable
models is then the same as in the work of Eiter et al. [15], where it is based
on Przymusinski’s notion of 3-valued stable models [11] instead of being based
on the equivalent notion of P-stable models.

The advantage of our slightly different (though equivalent) way of describ-
ing logic programming semantics (Definition 6) is that well-founded, regular,
stable and L-stable models are all specified as special cases of P-stable models.
This is similar to what happens in Defintion 3, where grounded, preferred,
stable and semi-stable extensions are specified as special forms of complete
extensions. In fact, the similarity between Definition 6 and Definition 3 will
turn out to be quite useful for examining the differences and similarities
between argumentation and logic programming (see sections 6 and 7).

The following example should help the reader to further understand the
above concepts.

Example 2. Consider a normal logic program P with rules {r1, ..., r6}:

r1 : b← c, not a r2 : a← not b
r3 : p← c, d, not p r4 : p← not a
r5 : c← d r6 : d←
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The logic program from Example 2 has:

• P-stable models: 〈{d, c}, { }〉, 〈{d, c, p, b}, {a}〉, 〈{d, c, a}, {b}〉.

• Well-founded model: {d, c}.

• Regular models: {d, c, p, b}, {d, c, a}.

• Stable models: {d, c, p, b}.

• L-stable models: {d, c, p, b}.

It is worth to note that L-stable semantics coincides with the stable se-
mantics whenever the program has one or more stable models. The rea-
son is straightforward: Any stable model of P is a P-stable model with
T ∪ F = HBP , which means maximal T ∪ F . As a consequence, every sta-
ble model is also an L-stable model. Furthermore, the existence of at least
one stable model is sufficient to assure that each L-stable model is also a
(2-valued) stable model. We also note that each logic program has a unique
well-founded model, and that there exist logic programs that do not have
any (2-valued) stable models.

3. Logic Programming as Argumentation; a three-step process

In the current section, we examine how argumentation theory can be ap-
plied in the context of logic programming. In essence, our treatment is based
on the approach of Wu et al. [4].5 The idea is to apply the standard three-
step process of instantiated argumentation, similar to what is done in, for
instance, ASPIC [7, 8] and logic-based argumentation [18]. One starts with
a particular knowledge base and constructs the associated argumentation
framework (step 1), then applies abstract argumentation semantics (step 2)
and subsequently looks at what the results of the argumentation semantics
imply at the level of conclusions (step 3). We now specify what this process
looks like in the specific context of logic programming.

5One particular difference is that in our current approach, arguments are recursive
structures, whereas in the approach of Wu at al. [4], they are trees of rules. The disad-
vantage of the latter approach is that if one identifies the nodes of a tree with rules, one
is not able to apply the same rule at different positions in the argument. The approach in
the current paper, which is based on ASPIC [8, 16] and the ideas of Vreeswijk [17], avoids
this problem.
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3.1. Step 1: Argumentation Framework Construction

The approach of instantiated argumentation starts with a particular given
knowledge base. In the context of logic programming, the knowledge base
consists of a logic program. For current purposes, we consider this logic
program to be normal, as we defined previously. Based on a particular logic
program P , one can then start to construct arguments, which is done in the
following recursive way:

Definition 7. Let P be a logic program.

• If c ← not b1, . . . , not bm is a rule in P then it is also an argument
(say A) with

– Conc(A) = c,

– Rules(A) = {c← not b1, . . . , not bm},
– Vul(A) = {b1, . . . , bm}, and

– Sub(A) = {A}.

• If c ← a1, . . . , an, not b1, . . . , not bm is a rule in P and for each ai
(1 ≤ i ≤ n) there exists an argument Ai with Conc(Ai) = ai and
c ← a1, . . . , an, not b1, . . . , not bm is not contained in Rules(Ai) then
c← (A1), . . . , (An), not b1, . . . , not bm is an argument (say A) with

– Conc(A) = c,

– Rules(A) = Rules(A1) ∪ . . . ∪ Rules(An) ∪ {c← a1, . . . , an,
not b1, . . . , not bm}

– Vul(A) = Vul(A1) ∪ . . .∪ Vul(An) ∪ {b1, . . . , bm}, and

– Sub(A) = {A} ∪ Sub(A1) ∪ . . . ∪ Sub(An).

In essence, an argument can be seen as a tree-like structure of rules (the
only difference with a real tree is that a rule can occur at more than one
place in the argument)6 and in examples we often represent it as such. If A

6 Notice that Definition 7 allows the same rule to occur multiple times if it is in different
branches, but not if it is in the same branch. This implies that, for instance, for logic
program P = {a ← b, c; b ← d; c ← d; d ←; e ← f ; f ← e; f ←}, a ← (b ← (d ←)),
(c ← (d ←)) is a well-formed argument, whereas e ← (f ← (e ← (f ←))) is not. This is
to prevent a finite logic program from generating an infinite number of arguments, which
would be particularly troublesome in the context of semi-stable semantics (see [19, 20]).
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is an argument then Conc(A) is referred to as the conclusion of A, Rules(A)
is referred to as the rules of A, Vul(A) is referred to as the vulnerabilities of
A and Sub(A) is referred to as the subarguments of A.

Example 3. Given the logic program P from Example 2, one can construct
the following arguments:

A1 : d← A2 : c← (A1)
A3 : p← (A2), (A1), not p A4 : a← not b
A5 : p← not a A6 : b← (A2), not a

In our example, it holds that Conc(A1) = d, Conc(A2) = c, Conc(A3) = p,
Conc(A4) = a, Conc(A5) = p and Conc(A6) = b. Furthermore, Vul(A1) =
Vul(A2) = ∅, Vul(A3) = {p}, Vul(A4) = {b}, and Vul(A5) = Vul(A6) = {a}.
The arguments are graphically depicted in Figure 2.

[A1] d← [A2] c← d [A3] p← c, d, not p
| � �

d← c← d d←
|

d←

[A4] a← not b [A5] p← not a [A6] b← c, not a
|

c← d
|

d←

Figure 2: Arguments constructed from P .

We draw attention of the reader to the relations amongst these arguments.
Observe, for instance, that A1 is a subargument of A2. Furthermore, A2 is a
subargument of A3 and A6 and, as consequence, A1 is a subargument of A3

and A6.
The next step in constructing the argumentation framework is to deter-

mine the attack relation: An argument attacks another iff its conclusion is
one of the vulnerabilities of the attacked argument.
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Definition 8. Let A and B be arguments in the sense of Definition 7. We
say that A attacks B iff Conc(A) ∈ Vul(B).

For the arguments of Figure 2, it holds that A6 attacks A4, A4 attacks
A6 (mutual attacks), A4 attacks A5, A5 attacks A3, and A3 attacks itself.
The resulting argumentation framework (depicted in Figure 3) is essentially
the same argumentation framework as in Example 1 (more precisely, it is
isomorphic).

The notion of attack has a clear conceptual meaning. The fact that
b ∈ Vul(A) means that A is constructed using at least one rule containing
not b in its body. In essence, A is a defeasible derivation that depends on
b not being derivable. An argument B that provides a (possibly defeasible)
derivation of b (that is, Conc(B) = b) can therefore be seen as attacking A.

Using the thus defined concepts of arguments and attacks, one is then able
to define the argumentation framework that is associated to a particular logic
program.

Definition 9. Let P be a logic program. We define its associated argumen-
tation framework as AFP = (ArP , attP ) where ArP is the set of arguments
in the sense of Definition 7 and attP is the attack relation in the sense of
Definition 8.

As an example, the argumentation framework associated with the logic
program of Example 2 is depicted in Figure 3.

3.2. Step 2: Applying Argumentation Semantics

Once the argumentation framework has been constructed, the next ques-
tion becomes which arguments should be accepted and which arguments
should be rejected. As we have seen in Section 2, several approaches have
been stated in the literature for determining this. For current purposes, we
focus on the concept of complete semantics [3], which can be defined using
the concept of a complete labelling [5, 6].

Definition 10. Let AF = (Ar , att) be an argumentation framework. An
argument labelling is a function ArgLab : Ar → {in, out, undec}. An argu-
ment labelling is called a complete argument labelling iff for each A ∈ Ar it
holds that:

• if ArgLab(A) = in then for every B ∈ Ar that attacks A it holds that
ArgLab(B) = out
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A6

b← c, not a
|

c← d
|

d←
A4

a← not b

A1

d←

A2

c← d
|

d←

A5

p← not a

A3

p← c, d, not p
� �

c← d d←
|

d←

Figure 3: The abstract framework built using arguments instantiated from P

• if ArgLab(A) = out then there exists a B ∈ Ar that attacks A such
that ArgLab(B) = in

• if ArgLab(A) = undec then (i) not every B ∈ Ar that attacks A has
ArgLab(B) = out and (ii) no B ∈ Ar that attacks A has ArgLab(B) =
in

With an argument labelling, one can express any arbitrary position on
which arguments to accept (labelled in), which arguments to reject (labelled
out) and which arguments to abstain from having an explicit opinion about
(labelled undec). However, some of these positions are more reasonable than
others. The idea of a complete labelling is that a position is reasonable iff
one has sufficient reasons for each argument one accepts (all its attackers are
rejected), for each argument one rejects (it has an attacker that is accepted)
and for each argument one abstains (there are insufficient grounds to accept
it and insufficient grounds to reject it).

When ArgLab is an argument labelling, we write in(ArgLab) to denote the
set of {A | ArgLab(A) = in}, out(ArgLab) for {A | ArgLab(A) = out} and
undec(ArgLab) for {A | ArgLab(A) = undec}. Since an argument labelling
essentially defines a partition among the arguments (into a set of in-labelled
arguments, a set of out-labelled arguments and a set of undec-labelled argu-
ments), we sometimes write ArgLab as a triple (Args1,Args2,Args3) where
Args1 = in(ArgLab), Args2 = out(ArgLab) and Args3 = undec(ArgLab).
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In the argumentation framework of Figure 3, there are three possible
complete labellings: ArgLab1 = ({A1, A2}, { }, {A3, A4, A5, A6}), ArgLab2 =
({A1, A2, A5, A6},{A3, A4},{ }) and ArgLab3 =({A1, A2, A4},{A5, A6},{A3}).

3.3. Step 3: converting argument labellings to conclusion labellings

When it comes to practical questions like what to believe or what to do,
in the end what is important are not so much the arguments themselves
but their conclusions. In the argumentation process, this means that for
each position on which arguments to accept, reject or abstain we need to
determine the associated position on which conclusions to accept, reject or
abstain.

For current purposes, we follow the approach described by Wu and Cam-
inada [21]. Here, the idea is for each conclusion to identify the “best” ar-
gument that yields it. We assume a strict total order between the different
individual labels such that in > undec > out. The best argument for a par-
ticular conclusion is then the argument with the highest label. In case there
is no argument at all for a particular conclusion, the conclusion is simply
labelled out.

Definition 11 ([21]). Let P be a logic program. A conclusion labelling is
a function ConcLab : HBP → {in, out, undec} where HBP is the set of all
atoms occurring in P .
Let AFP = (ArP , attP ) be an argumentation framework and ArgLab be an
argument labelling of AFP . We say that ConcLab is the associated conclusion
labelling of ArgLab iff ConcLab is a conclusion labelling such that for each c ∈
HBP it holds that ConcLab(c) = max({ArgLab(A) | Conc(A) = c} ∪ {out})
where in > undec > out. We say that a conclusion labelling is complete iff
it is associated with a complete argument labelling.

When ConcLab is a conclusion labelling, we write in(ConcLab) to denote
the set {c | ConcLab(c) = in}, out(ConcLab) for {c | ConcLab(c) = out}
and undec(ConcLab) for {c | ConcLab(c) = undec}. Because a conclusion
labelling essentially defines a partition among HBP into three sets of in-
labelled, out-labelled and undec-labelled conclusions respectively), we write
ConcLab as a triple (Concs1, Concs2, Concs3) where Concs1 = in(ConcLab),
Concs2 = out(ConcLab) and Concs3 = undec(ConcLab).

Recall that the complete argument labellings of argumentation frame-
work in Figure 3 are: ArgLab1 = ({A1, A2}, { }, {A3, A4, A5, A6}), ArgLab2 =
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({A1, A2, A5, A6}, {A3, A4}, { }), and ArgLab3 = ({A1, A2, A4}, {A5, A6},
{A3}). In the same example, observe that two of the involved arguments
yield conclusion p, namely A3 : p ← (A5), (A6), not p and A5 : p ← not a.
Observe that A3 is labelled out, while A5 is labelled in by ArgLab2. As
a consequence, the label of p in the conclusion labelling associated with
ArgLab2 is in. Using a similar reasoning, we obtain that the associated
conclusion labelling ConcLab1 of ArgLab1 is ({c, d}, { }, {p, a, b}), the as-
sociated conclusion labelling ConcLab2 of argument labelling ArgLab2 is
({c, d, p, b}, {a}, { }), and the associated conclusion labelling ConcLab2 of
argument labelling ArgLab2 is ({c, d, a}, {b}, {p}).

4. On the Minimization and Maximization of Argument Labellings

Now that the general overview of the three-step process has been pro-
vided, we subsequently zoom in on some of its steps, starting with the ar-
gument labellings level (step 2). In particular, we provide a brief overview
(based on work originally published by Caminada et al. [5, 6]) of how the
different argument labellings relate to each other, especially when it comes
to maximizing or minimizing a particular label.

Theorem 12 ([5, 6]). Let ArgLab be a complete argument labelling of argu-
mentation framework AF = (Ar , att). It holds that

• in(ArgLab) is maximal (w.r.t. set-inclusion) among all complete argu-
ment labellings of AF iff out(ArgLab) is maximal (w.r.t. set-inclusion)
among all complete argument labellings of AF .

• in(ArgLab) is minimal (w.r.t. set-inclusion) among all complete argu-
ment labellings of AF iff out(ArgLab) is minimal (w.r.t. set-inclusion)
among all complete argument labellings of AF .

Theorem 13. Let AF = (Ar , att) be an argumentation framework. The
complete argument labelling ArgLab where in(ArgLab) is minimal (w.r.t. set
inclusion) among all complete argument labellings is unique.

Theorem 14. Let AF = (Ar , att) be an argumentation framework and
ArgLab be one of its complete argument labellings. Then undec(ArgLab)
is maximal (w.r.t. set-inclusion) among all complete argument labellings iff
in(ArgLab) is minimal (w.r.t. set-inclusion) among all complete argument
labellings.
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To summarize, the complete argument labellings where in is maximal are
the same as the complete argument labellings where out is maximal (The-
orem 12). These argument labellings are referred to as preferred argument
labellings. Furthermore, the unique complete argument labelling where in is
minimal (Theorem 13) is the same as the unique complete argument labelling
where out is minimal (Theorem 12) and the same as the unique complete
argument labelling where undec is maximal (Theorem 14). This argument
labelling is referred to as the grounded argument labelling. The complete
argument labellings where undec is minimal are referred to as semi-stable
argument labellings. The complete argument labellings where undec is empty
are referred to as argstable argument labellings. In fact, from our results, it
follows that (i) every argstable argument labelling is also semi-stable and
(ii) every semi-stable argument labelling is also preferred. These kinds of
argument labellings are further summarized in Table 1.

Condition Resulting Argument Labelling
NONE Complete

MAX In Preferred
MAX Out Preferred

MAX Undec Grounded
MIN In Grounded

MIN Out Grounded
MIN Undec Semi-stable
NO Undec Argstable

Table 1: Kinds of argument labellings

It is relatively straightforward to define associated classes of conclusion
labellings. For instance, a conclusion labelling is said to be a preferred con-
clusion labelling iff it is the associated conclusion labelling of a preferred ar-
gument labelling. Similarly, a conclusion labelling is said to be the grounded
conclusion labelling iff it is the associated conclusion labelling of the grounded
argument labelling, and a conclusion labelling is said to be a semi-stable con-
clusion labelling iff it is the associated conclusion labelling of a semi-stable
argument labelling. Furthermore, a conclusion labelling is said to be an
argstable conclusion labelling iff it is the associated conclusion labelling of an
argstable argument labelling.
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5. On the Minimization & Maximization of Conclusion Labellings

The concepts of preferred, grounded, semi-stable, and argstable conclu-
sion labellings, as defined at the end of the previous section, are based on the
common idea of performing the maximization/minimization at the level of
argument labellings and then identifying the associated conclusion labellings.
An alternative procedure would be simply to identify all complete conclusion
labellings and then to perform the maximization/minimization right at the
level of the conclusion labellings. In the current section, we analyze this al-
ternative procedure. We observe that the thus derived conclusion labellings
relate to each other in a way that is very similar to how the different types
of argument labellings of the previous section relate to each other.

Theorem 15. Let ConcLab be a complete conclusion labelling of logic pro-
gram P and the associated argumentation framework AFP = (ArP , attP ). It
holds that

• in(ConcLab) is maximal (w.r.t. set-inclusion) among all complete con-
clusion labellings of AF iff out(ConcLab) is maximal (w.r.t. set-
inclusion) among all complete conclusion labellings of AF .

• in(ConcLab) is minimal (w.r.t. set-inclusion) among all complete con-
clusion labellings of AF iff out(ConcLab) is also minimal (w.r.t. set-
inclusion) among all complete conclusion labellings of AF .

Theorem 16. Let P be a logic program and AFP = (ArP , attP ) be its asso-
ciated argumentation framework. The complete conclusion labelling ConcLab
of AFP where in(ConcLab) is minimal (w.r.t. set inclusion) among all com-
plete conclusion labellings of AFP is unique.

Theorem 17. Let P be a logic program, AFP = (ArP , attP ) be the associated
argumentation framework of P and ConcLab be one of the complete conclu-
sion labellings of AFP . It holds that undec(ConcLab) is maximal (w.r.t. set-
inclusion) among all complete conclusion labellings of AFP iff in(ConcLab)
is minimal (w.r.t. set-inclusion) among all complete conclusion labellings of
AFP .

To summarize, the complete conclusion labellings where in is maximal
are the same as the complete conclusion labellings where out is maximal
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(Theorem 15). These argument labellings are referred to as regular conclu-
sion labellings. Furthermore, the unique complete conclusion labelling where
in is minimal (Theorem 16) is the same as the unique complete conclusion
labelling where out is minimal (Theorem 15) and the same as the unique
complete conclusion labelling where undec is maximal (Theorem 17). This
conclusion labelling is referred to as the well-founded conclusion labelling.
The complete conclusion labellings where undec is minimal are referred to
as L-stable conclusion labellings. Furthermore, the complete conclusion la-
bellings where undec is empty are referred to as concstable conclusion la-
bellings. In fact, from our results, it follows that (i) every concstable conclu-
sion labelling is also L-stable and (ii) every L-stable conclusion labelling is
also a regular conclusion labelling. These kinds of conclusion labellings are
further summarized in Table 2.

Condition Resulting Conclusion Labelling
NONE Complete

MAX In Regular
MAX Out Regular

MAX Undec Well-founded
MIN In Well-founded

MIN Out Well-founded
MIN Undec L-stable
NO Undec Concstable

Table 2: Kinds of conclusion labellings derived from programs

6. Maximizing and Minimizing Argument Labellings vs. Maximiz-
ing and Minimizing Conclusion Labellings

So far, we have described two ways of selecting particular subsets of the
complete conclusion labellings:

1. Perform minimization (resp. maximization) of a particular label at the
level of complete argument labellings, then determine the associated
conclusion labellings. This is the approach sketched in Section 4.

2. Take all complete conclusion labellings (these are the associated la-
bellings of all complete argument labellings) and then perform the
minimization (resp. maximization) of a particular label at the level
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of complete conclusion labellings. This is the approach sketched in
Section 5.

An interesting question is whether the outcome of the two procedures is
actually the same. That is, does minimizing (resp. maximizing) a particular
label at the level of complete argument-labellings yield the same result as
minimizing (resp. maximizing) the label at the level of complete conclusion
labellings? We will see that, in general, the answer is “yes”, with one notable
exception.

We first formally define two functions between argument labellings and
conclusion labellings.

Definition 18. Let P be a logic program and AFP be its associated argu-
mentation framework. Let ArgLabs be the set of all argument labellings of
AFP and let ConcLabs be the set of all conclusion labellings of P and AFP .

• We define a function ArgLab2ConcLab: ArgLabs → ConcLabs such that
for each ArgLab ∈ ArgLabs, it holds that ArgLab2ConcLab(ArgLab) is
the associated conclusion labelling of ArgLab.

• We define a function ConcLab2ArgLab : ConcLabs → ArgLabs such
that for each ConcLab ∈ ConcLabs and each A ∈ ArP it holds that:

– ConcLab2ArgLab(ConcLab)(A) = in iff for each v ∈ Vul(A) it
holds that ConcLab(v) = out

– ConcLab2ArgLab(ConcLab)(A) = out iff there exists a v ∈Vul(A)
such that ConcLab(v) = in

– ConcLab2ArgLab(ConcLab)(A) = undec iff not for all v ∈ Vul(A)
it holds that ConcLab(v) = out and there is no v ∈ Vul(A) such
that ConcLab(v) = in

Theorem 19. When restricted to complete argument labellings and complete
conclusion labellings, the functions ArgLab2ConcLab and ConcLab2ArgLab

are bijections and each other’s inverse.

We are now ready to provide some of the key results of the current paper.

Theorem 20. Let ConcLab be a conclusion labelling of logic program P and
associated argumentation framework AFP = (Ar , att). It holds that ConcLab
is a preferred conclusion labelling iff it is a regular conclusion labelling.
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Theorem 21. Let ConcLab be a conclusion labelling of logic program P and
associated argumentation framework AFP = (Ar , att). It holds that ConcLab
is the grounded conclusion labelling iff it is the well-founded conclusion la-
belling.

Theorem 22. Let ConcLab be a conclusion labelling of logic program P and
associated argumentation framework AFP = (Ar , att). It holds that ConcLab
is an argstable conclusion labelling iff it is a concstable conclusion labelling.

Theorems 20 and 21 rely on lemmas 5 and 6 in the appendix. These
state that increasing the occurrences of the in-label (resp. out-label) on the
argument level coincides with increasing the occurrences of the in-label (resp.
the out-label) on the conclusion level. Theorem 22 is proved by observing
that the absence of the undec-label on the argument level coincides with the
absence of the undec-label on the conclusion level. We refer to the appendix
for details.

Now that the correspondances between preferred and regular, between
grounded and well-founded and between argstable and concstable have been
observed, we ask ourselves whether a similar correspondance also exists be-
tween semi-stable and L-stable. That is, are semi-stable conclusion labellings
the same as L-stable conclusion labellings? The answer turns out to be neg-
ative. As a counter example, consider the following program.

Example 4. Consider the following logic program P :

r0 : x← not x r1 : c← not c, not x
r2 : a← not b r3 : b← not a
r4 : c← not c, not a r5 : g ← not g, not b

When building the arguments from P we have that each rule ri corresponds
to an argument. That is we have the following arguments, A0 = r0, A1 =
r1, A2 = r2, A3 = r3, A4 = r4, and A5 = r5. In the table below we give the
conclusions and vulnerabilities of the arguments.

A0 A1 A2 A3 A4 A5

Conc(.) x c a b c g

Vul(.) {x} {c, x} {b} {a} {c, a} {g, b}

The associated argumentation framework AFP of P is shown in Figure 4.
The complete argument labellings and the associated complete conclusion

labellings of AFP are given side by side in the following table.
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A2A1

A3

A4

A5A0

Figure 4: The argumentation framework AFP associated with P .

complete argument labellings complete conclusion labellings

ArgLab1 : (∅, ∅, {A1, A2, A3, A4, A5}) ConcLab1 : (∅, ∅, {a, b, c, g})
ArgLab2 : ({A2}, {A3, A4}, {A1, A5}) ConcLab2 : ({a}, {b}, {c, g})
ArgLab3 : ({A3}, {A2, A5}, {A1, A4}) ConcLab3 : ({b}, {a, g}, {c})

ArgLab2 and ArgLab3 are semi-stable argument labellings. Hence, the as-
sociated conclusion labellings ConcLab2 and ConcLab3 are semi-stable con-
clusion labellings. However, because undec(ConcLab2) is not minimal (be-
cause undec(ConcLab3) ( undec(ConcLab2)), we find that ConcLab2 is not
L-stable. So here we have an example of a logic program where the semi-stable
and L-stable conclusion labellings do not coincide.

An attentive reader can blame the literal not a in the body of r4 ∈ P for
disrupting the equivalence between these two semantics. Indeed, considering
L-stable semantics, one can argue that this not a is superfluous as it can
be eliminated from r4 without changing any L-stable conclusion labelling of
P . Moreover, in the resulting program, semi-stable and L-stable conclusion
labellings coincide with each other. The question is if we can always obtain
such an equivalence after eliminating these superfluous literals. The answer
is negative, as we show with an example:

Example 5. Consider the following logic program P2:

r1 : c← not c, not d r2 : a← not b
r3 : b← not a r4 : c← not c, not a
r5 : g ← not g, not b r6 : d← not e
r7 : e← not d
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Note that from the L-stable semantics point of view, there is no superflu-
ous literal in P2 as the elimination of any literal from any body of any rule
in P2 will change at least one of its L-stable conclusion labellings.

As before, one can then build the arguments A1, . . . , A7 corresponding to
the rules in P2. Below we give the conclusions and vulnerabilities.

A1 A2 A3 A4 A5 A6 A7

Conc(.) c a b c g d e

Vul(.) {c, d} {b} {a} {a, c} {b, g} {e} {d}

The associated argumentation framework AFP2 of P2 is shown in Figure 5.

A4A1

A2 A3

A5

A6A7

Figure 5: The argumentation framework AFP2 associated with P2.

One can check that the complete argument labellings and the associated
complete conclusion labellings of AFP2 are:

complete argument labellings complete conclusion labellings

ArgLab1 : (∅, ∅, {A1, A2, A3, A4, A5, A6, A7}) ConcLab1 : (∅, ∅, {a, b, c, d, e, g})
ArgLab2 : ({A2}, {A3, A4}, {A1, A5, A6, A7}) ConcLab2 : ({a}, {b}, {c, d, e, g})
ArgLab3 : ({A3}, {A2, A5}, {A1, A4, A6, A7}) ConcLab3 : ({b}, {a, g}, {c, d, e})
ArgLab4 : ({A6}, {A1, A7}, {A2, A3, A4, A5}) ConcLab4 : ({d}, {e}, {a, b, c, g})
ArgLab5 : ({A7}, {A6}, {A1, A2, A3, A4, A5}) ConcLab5 : ({e}, {d}, {a, b, c, g})
ArgLab6 : ({A2, A6}, {A1, A3, A4, A7}, {A5}) ConcLab6 : ({a, d}, {b, c, e}, {g})
ArgLab7 : ({A2, A7}, {A3, A4, A6}, {A1, A5}) ConcLab7 : ({a, e}, {b, d}, {c, g})
ArgLab8 : ({A3, A6}, {A1, A2, A5, A7}, {A4}) ConcLab8 : ({b, d}, {a, e, g}, {c})
ArgLab9 : ({A3, A7}, {A2, A5, A6}, {A1, A4}) ConcLab9 : ({b, e}, {a, d, g}, {c})

ArgLab6 and ArgLab8 are semi-stable argument labellings. Also, the as-
sociated conclusion labellings ConcLab6 and ConcLab8 are semi-stable con-

22



clusion labellings. In addition, ConcLab9 is also L-stable, but it is not semi-
stable as undec(ArgLab9) is not minimal. Consequently, the absence of su-
perfluous literals in a logic program is not a sufficient condition to guarantee
the equivalence between semi-stable and L-stable conclusion labellings.

We summarize our results concerning the comparison of argument-based
conclusion labellings and logic programming-based conclusion labellings in
Table 3.

Argument-Based Relation Logic Programming-Based
Conclusion Labelling Conclusion Labelling

Preferred ≡ Regular
Grounded ≡ Well-Founded

Semi-stable 6≡ L-stable
Argstable ≡ Concstable

Table 3: Comparison of argument-based and LP-based conclusion labellings of a program

7. On the Connection between Argument Extensions and Logic
Programming Models

So far, we have examined the general question of how argument labellings
are related to conclusion labellings. We found that:

• maximizing in at the argument level yields the same result as maxi-
mizing in at the conclusion level

• minimizing in at the argument level yields the same result as minimiz-
ing in at the conclusion level

• maximizing out at the argument level yields the same result as maxi-
mizing out at the conclusion level

• minimizing out at the argument level yields the same result as mini-
mizing out at the conclusion level

• maximizing undec at the argument level yields the same result as max-
imizing undec at the conclusion level

• minimizing undec at the argument level does not yield the same result
as minimizing undec at the conclusion level
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Cond. on Comp. Name of Ass. Result Name of Cond. on Comp.
Arg. Lab. Conc. Lab. Conc. Lab. Conc. Lab.
None Complete [4] Complete None
Max. IN Preferred (Th12) Th20 Regular (Th15) Max. IN
Max. OUT Preferred (Th12) Th20 Regular (Th15) Max. OUT
Max. UNDEC Grd. (Ths 12,14) Th21 WF (Ths 15,17) Max. UNDEC
Min. IN Grd. (Ths 12,14) Th21 WF (Ths 15,17) Min. IN
Min. OUT Grd. (Ths 12,14) Th21 WF (Ths 15,17) Min. OUT
Min. UNDEC Semi-stable Ex4 L-stable Min. UNDEC
Empty UNDEC Argstable Th22 Concstable Empty UNDEC

Table 4: Equivalence and Non-equivalence results on logic programming semantics and
argumentation semantics

These results are summarized in Table 4, that should be read as fol-
lows. The left-hand side of the table is related to the process of maximiz-
ing/minimizing a particular labelling at the argument-level, and then gen-
erating the associated labellings at the conclusion level (as was outlined in
Section 4). Here, we have that selecting the complete argument labellings
with maximal in is the same as selecting the complete argument labellings
with maximal out (Th12). These selected argument labellings are called the
preferred argument labellings, just like their associated conclusion labellings
are called the preferred conclusion labellings. We also have that selecting the
complete argument labellings with maximal undec is the same as selecting
the complete argument labellings with minimal in, and the same as select-
ing the complete argument labellings with minimal out (Ths 12, 14). This
unique (Th13) selected argument labelling is called the grounded argument
labelling, just like its associated conclusion labelling is called the grounded
conclusion labelling (abbreviated “Grd.” in the table).

The right-hand side of the table is related to the process of first gener-
ating all complete argument labellings and associated complete conclusion
labellings, and then to maximize/minimize a particular label at the conclu-
sion level (as was outlined in Section 5). Here, we have that selecting the
complete conclusion labellings with maximal in is the same as selecting the
complete conclusion labellings with maximal out (Th20). These selected con-
clusion labellings are called the regular conclusion labellings. We also have
that selecting the complete conclusion labellings with maximal undec is the
same as selecting the complete conclusion labellings with minimal in, and
the same as selecting the complete conclusion labellings with minimal out.
This unique (Th16) selected labelling is called the well-founded conclusion
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labelling (abbreviated as “WF” in the table).
In the middle column of the table, the connection between these two

approaches is indicated. From Th20 it follows that the preferred conclu-
sion labellings are precisely the same as the regular conclusion labellings.
From Th21 it follows that the grounded conclusion labelling is precisely the
same as the well-founded conclusion labelling. From Th22 it follows that
the argstable conclusion labellings are precisely the same as the concstable
conclusion labellings. Example 4, however, makes clear that in general, the
semi-stable conclusion labellings are not the same as the L-stable conclusion
labellings. Minimizing undec at the argument-level yields fundamentally dif-
ferent results as minimizing undec at the conclusion level.

In the current paper, we have proved these results for an instantiation
based on logic programs. However, similar results can be obtained also for
other forms of instantiated argumentation. In order to apply the proofs that
were specified in sections 4, 5 and 6, all that matters is that attack is defined
on the conclusion of the attacking argument and the set of vulnerabilities
(Vul) of the attacked argument. This makes our results directly applicable
also to formalisms such as ABA [9] and ASPIC [8, 22].7

7.1. Relating Conclusion Labellings to Models of Programs

In the current paper, we have chosen an instantiation based on logic
programming partly because of its relative simplicity, but also because it
allows us to study an additional research question: how are (traditional)
approaches to argumentation semantics related to (traditional) approaches
to logic programming semantics?

Caminada and Gabbay [6] specify two functions to convert an argument
extension to an argument labelling and vice versa. The function Lab2Ext

converts an argument labelling to an argument extension (in essence, a set of
arguments) and is defined as Lab2Ext(ArgLab) = in(ArgLab). The function
Ext2Lab converts a conflict-free set of arguments (for instance, an argu-
ment extension) to an argument labelling and is defined as Ext2Lab(Args) =
(Args ,Args+,Ar \ (Args ∪ Args+)).8 When Ext2Lab and Lab2Ext are re-
stricted to operate on complete extensions and complete labellings, they be-
come bijective functions that are each other’s inverse [6]. This means that

7In ASPIC, the set of vulnerabilities of an argument consists of the statements on which
it can be rebutted or undercut.

8We recall that (Definition 2) Args+ = {A|A is attacked by an argument in Args}.
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complete extensions and complete labellings are one-to-one related, just like
preferred extensions and preferred labellings, the grounded extension and
the grounded labelling, semi-stable extensions and semi-stable labellings, and
stable extensions and stable labellings.

Now that we have observed that the traditional approaches to argumenta-
tion semantics (argument extensions) coincide with the approach of argument
labellings, the next step is to show that the traditional approaches to logic
programming semantics (models based on fixpoints of a reduced program)
coincide with the approach of conclusion labellings.

We now introduce two functions ConcLab2Mod and Mod2ConcLab to con-
vert a conclusion labelling to a model and vice versa. The first function
ConcLab2Mod converts a conclusion labelling to a model and is defined as
ConcLab2Mod(ConcLab) = (in(ConcLab), out(ConcLab)). The second func-
tion Mod2ConcLab converts a model to a conclusion labelling and is defined
as Mod2ConcLab((T, F )) = (T, F,HBP \(T ∪F )). It is not difficult to see that
ConcLab2Mod and Mod2ConcLab are bijective functions that are each other’s
inverse, making conclusion labellings and models one-to-one related.

The next step is to show that P-stable models coincide with complete
conclusion labellings. This actually follows from the foundational work of
Wu et al. [4]. Here it is proved that if one applies complete semantics at
step 2 of the argumentation process, one obtains the P-stable models of the
original logic program. From this, together with the results in the current
paper, it directly follows that complete conclusion labellings are one-to-one
related to P-stable models.

From the correspondence between complete conclusion labellings and P-
stable models, the other correspondences between conclusion labellings and
models follow. Since a regular model is a P-stable model with maximal T , and
a regular conclusion labelling is a complete conclusion labelling with maxi-
mal in, it follows that they correspond to each other (through the functions
ConcLab2Mod and Mod2ConcLab). Similar correspondences can be observed
between the well-founded model and the well-founded conclusion labelling,
between L-stable models and the L-stable conclusion labellings and between
stable models and concstable conclusion labellings. That is, the various types
of logic programming models are actually different types of conclusion la-
bellings.
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7.2. Abstract Argumentation & Logic Programming Semantics Equivalences

We have now arrived at the main point of the current paper: the con-
nection between (traditional) approaches to argumentation semantics and
(traditional) approaches to logic programming semantics. Let us again look
at the 3-step process of Section 3. Assume that step 1 (AF construction) and
step 3 (converting argument labellings to conclusion labellings) are fixed, and
that the only degree of freedom is which semantics to apply at step 2. From
the results in the current paper, it follows that

• if one applies complete semantics at step 2, the overall outcome is equiv-
alent to calculating the P-stable models of the original logic program
(See [4])

• if one applies preferred semantics at step 2, the overall outcome is
equivalent to applying regular semantics to the original logic program
(Theorem 20)

• if one applies grounded semantics at step 2, the overall outcome is
equivalent to applying well-founded semantics to the original logic pro-
gram (Theorem 21)

• if one applies stable semantics at step 2, the overall outcome is equiv-
alent to applying stable model semantics to the original logic program
(Theorem 22)

That is, differences in logic programming semantics can be reduced purely
to differences in what happens at the abstract argumentation level (step 2).
In essence, partial stable model semantics coincides with complete semantics,
preferred semantics coincides with regular semantics, grounded semantics
coincides with well-founded semantics and stable semantics coincides with
stable model semantics.

Moreover, we are also able to explain why these semantics coincide. Recall
that the various argumentation semantics that are studied in the current
paper are based on minimization or maximization (of a particular label) at
the argument level, whereas the various logic programming semantics turn
out to be based on minimization and maximization (of a particular label) at
the conclusion level. The fact that argumentation semantics coincide with
logic programming semantics is due to the fact that what happens at the
argument level tends to coincide with what happens at the conclusion level.
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The fact that preferred semantics coincides with regular semantics is because
maximizing in at the argument level is the same as maximizing in at the
conclusion level. Similarly, the fact that grounded semantics coincides with
well-founded semantics is because minimizing in at the argument level is the
same as minimizing in at the conclusion level. Also, the fact that stable
semantics coincides with stable model semantics is because ruling out undec
at the argument level is the same as ruling out undec at the conclusion
level. Finally, the fact that semi-stable semantics does not coincide with
L-stable model semantics is because minimizing undec at the argument level
is something really different from minimizing undec at the conclusion level.

8. Semi-Stable Semantics versus L-Stable Semantics Revisited

As we have seen, since minimizing undec at the argument-level does not
yield the same result as minimizing undec at the conclusion level, semi-stable
semantics does not coincide with L-stable semantics. The underlying reason
is that although an increased occurrence of the in-label on the argument level
coincides with an increased occurrence of the in-label on the conclusion level
(Lemma 5 in the appendix) and an increased occurrence of the out-label on
the argument level coincides with an increased occurrence of the out-label on
the conclusion level (Lemma 6 in the appendix), a similar result does not hold
for the undec-label. That is, it is not the case that an increased occurrence of
the undec-label on the argument level coincides with an increased occurrence
of the undec-label on the conclusion level (as illustrated by Example 4 and
Example 5).

In the current section, we study the discrepancy between semi-stable and
L-stable in more detail. In particular, we are interested in the following two
questions:

1. is there any abstract argumentation semantics at all that can generate
results that are equivalent to L-stable conclusion labellings?

2. is there a class of restricted logic programs for which minimizing undec

at the argument level yields the same result as minimizing undec at
the conclusion level?

As for the first question, what we are looking for is an abstract argumen-
tation semantics that can be applied at step 2 of the argumentation process.
We assume steps 1 and 3 to remain the same. That is, we need an abstract
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argumentation semantics that is able to generate the L-stable conclusion la-
bellings, just like preferred semantics is able to generate the regular conclu-
sion labellings and grounded semantics is able to generate the well-founded
conclusion labelling. Therefore, the selection of the arguments in such a se-
mantics should be based purely on the structure of the graph, and not on the
particular contents of the arguments. This can be warranted by requiring
that the semantics satisfies the language independence principle [23].

Definition 23. We say that an abstract argumentation semantics X is L-
stable generating iff it is a function such that

1. For any logic program P , X takes as input AFP and yields as output a
set of argument labellings ArgLabs

2. X satisfies language independence, that is, if for any pair of argumenta-
tion frameworks AF1, AF2, if AF1 is isomorphic to AF2 by a mapping
M of their arguments (the nodes in the graphs), then each labelling
of AF1 can be mapped to a (different) labelling of AF2 by that same
mapping M .

3. It holds that {ArgLab2ConcLab(ArgLab) | ArgLab ∈ ArgLabs} is pre-
cisely the same as the set of all L-stable conclusion labellings of AFP .

Theorem 24. There exists no abstract argumentation semantics that is L-
stable generating.

Proof. Consider the following two logic programs P with rules r0, ..., r4 and
P ′ with rules r′0, ..., r

′
4:

r0 : x← not x r′0 : x← not x
r1 : c← not x r′1 : d← not x
r2 : a← not b r′2 : a← not b
r3 : b← not a r′3 : b← not a
r4 : c← not a, not c r′4 : c← not a, not c, not d

For the above programs, please observe that:

• P has three P-stable models: S1 = 〈{ }, { }〉, S2 = 〈{a}, {b}〉, S3 =
〈{b}, {a}〉, where S2, S3 are L-stable models.

• P ′ has three P-stable models: S1 = 〈{ }, { }〉, S2 = 〈{a}, {b, c}〉,
S3 = 〈{b}, {a}〉, where S2 is the single L-stable model.
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The arguments A1, ..., A4 built from P and A′1, ..., A
′
4 built from P ′ are

listed below.

A0 : x← not x A0′ : x← not x
A1 : c← not x A1′ : d← not x
A2 : a← not b A2′ : a← not b
A3 : b← not a A3′ : b← not a
A4 : c← not a, not c A4′ : c← not a, not c, not d

The argumentation frameworks of P and P ′ are depicted in Figure 6.

A2A1

A3

A4

A0

A′1 A′2

A′3

A′4

A′0

Figure 6: The argumentation frameworks associated with P and P ′.

Since P has two L-stable models while P ′ has only one, the L-stable se-
mantics is sensitive to the difference between them. However, given that
these programs have isomorphic associated graphs, they are indiscernible
in the perspective of abstract argumentation semantics: By the language
independence principle, both argumentation frameworks have the same ex-
tensions under the L-stable generating semantics. But this is incompatible
with the requirement that the argumentation frameworks should yield differ-
ent L-stable models. Contradiction. As a consequence, we conclude that no
semantics of abstract argumentation can coincide with the L-stable semantics
for every program.

Now that we have observed that in general no abstract argumentation
semantics is able to coincide with L-stable model semantics, the next question
is whether one can define a restricted class of logic programs for which semi-
stable semantics does coincide with L-stable semantics.

Definition 25. Let P be a logic program. We say that P is semi-stable-L-
stable compatible iff it holds that {ArgLab2ConcLab(ArgLab) | ArgLab is a
semi-stable argument labelling of AFP} = {ConcLab | ConcLab is a L-stable
conclusion labelling of P and AFP}.
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We proceed to provide three classes of logic programs that are semi-
stable-L-stable compatible: Stable programs, AF-programs, and stratified
programs.

Definition 26. (Stable program) A logic program P is a stable program if it
has at least one stable model.

Theorem 27. Every stable program is semi-stable-L-stable compatible.

Definition 28. (AF-program)
A logic program P is an AF-program if there is at most one rule with

head(r) = c, for each c ∈ HBP .

Theorem 29. Every AF-program is semi-stable-L-stable compatible.

Definition 30. (stratified program) A logic program P is stratified if it is
possible to attribute a positive integer l(p) to each atom p ∈ HBP in a way
that, for each rule r in P with head(r) = p, it holds: (i) for each q ∈
body−(r), l(q) < l(p); and (ii) for each q ∈ body+(r), l(q) ≤ l(p).

Theorem 31. Every stratified program is semi-stable-L-stable compatible.

9. Translating Argumentation Frameworks to Logic Programs

So far, when making the connection between argumentation semantics
and logic programming semantics, we have used a translation from logic pro-
grams to argumentation frameworks. In the current section, we go the other
way around. That is, we still examine the connection between argumentation
semantics and logic programming semantics, but this time using a translation
from argumentation frameworks to logic programs.

In essence, each argument generates an associated logic programming
rule, with the name of the argument in its head, and the name of its attackers
in the weak part of the body.

Definition 32 ([4]). Let AF = (Ar , att) be an argumentation framework.
Then PAF = {A ← not B1, . . . , not Bm | A,B1, . . . , Bm ∈ Ar(m ≥ 0) and
{Bi | (Bi, A) ∈ att} = {B1, . . . , Bm}} is the logic program associated to AF .

Example 6. Consider AF , the argumentation framework below:
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A2A1

A3

A4

This is the argumentation framework on the left hand side of Figure 6,
copied here for easier reference. Its associated logic program PAF is:9

r1 : A1 ← not A1, not A4 r2 : A2 ← not A3

r3 : A3 ← not A2 r4 : A4 ← not A4, not A1, not A2

The first thing to be observed is that for any argumentation framework
AF , the associated logic program PAF is an AF-program (Definition 28).

Now let us examine what happens if we translate PAF back to argumen-
tation theory. That is, what does AFPAF

look like? Since each rule in PAF

has only a weak part (no strong atoms in the body), each argument of AFPAF

consists of precisely one rule (Definition 7) and the attack relation of AFPAF

coincides with the original attack relation of AF .

Example 7. (Example 6 continued) The argumentation framework AFPAF

associated with PAF from Example 6 is:

Arg2Arg1

Arg3

Arg4

9Please notice that we use the names of the arguments as atoms in the associated
logic program. Doing so brings no prejudice to our original definitions on logic programs.
Instead of using the names of arguments, we could use atoms such as a1, a2, ..., a4 or
a, b, c, d in order to build an alike program. In that setting, each atom would be represent
one of the arguments.
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Here, each argument Argi consists of only the rule ri from PAF .

Theorem 33. Let AF be an argumentation framework, PAF be the associated
logic program (Definition 32), and AFPAF

be the argumentation framework
that is associated with this logic program (Definition 9). It holds that AF
and AFPAF

are isomorphic.

It has been observed that complete semantics, as well as the preferred
semantics, grounded semantics, semi-stable semantics and stable semantics
all satisfy the language independence principle [23]. This implies that the
complete, preferred, grounded, semi-stable and stable labellings of AFPAF

are essentially the same (modulo isomorphism) as the complete, preferred,
grounded, semi-stable and stable labellings of AF .

What does this mean for the connection between argumentation seman-
tics and logic programming semantics, from the perspective of translating
argumentation frameworks to logic programs? First of all, we observe that
for the translation of PAF to AFPAF

the earlier observed results hold. That
is, applying complete semantics to AFPAF

yields the same results as applying
partial stable model semantics to PAF , applying preferred semantics to AFPAF

yields the same results as applying regular semantics PAF , applying grounded
semantics to AFPAF

yields the same results as applying well-founded seman-
tics to PAF , applying stable semantics to AFPAF

yields the same results as
applying stable model semantics to PAF , and (due to the fact that PAF is
an AF-program) applying semi-stable semantics to AFPAF

yields the same
results as applying L-stable semantics to PAF .

From the facts that all of the above mentioned argumentation semantics
satisfy the language independence principle, and that AF is isomorphic with
AFPAF

, it then follows that applying complete semantics to AF yields the
same results as applying the P-stable models of PAF , applying preferred
semantics to AF yields the same results as applying regular semantics to
PAF , applying grounded semantics to AF yields the same results as applying
well-founded semantics to PAF , applying semi-stable semantics to AF yields
the same results as applying L-stable model semantics to PAF and applying
stable semantics to AF yields the same results as applying stable model
semantics to PAF . These results have been summarized in Table 5.

Hence, we see that, when translating argumentation frameworks to logic
programs, the connection between argumentation semantics and logic pro-
gramming semantics is stronger than when translating (unrestricted) logic
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Abstract argumentation Relation Logic Programming
semantics on AF semantics on PAF

Complete ≡ P-stable
Preferred ≡ Regular
Grounded ≡ Well-Founded

Semi-stable ≡ L-stable
Stable ≡ Stable

Table 5: The relations between semantics over AF-programs.

programs to argumentation frameworks. Whereas for the latter translation,
semi-stable and L-stable do not coincide, for the former translation they do.

Osorio et al. [24] exploit the connection between argumentation semantics
and logic programming semantics by resorting to an alternative translation
from argumentation frameworks to logic programs. Indeed, they have char-
acterized the complete extensions of an AF in terms of Clark’s completion
models [25] of the corresponding logic program. They also argue that their
translation only requires classical logic where very efficient software exists.
When compared to the proposal presented in this section, we would say that
our translation is simpler and fairly standard in the literature and that has
for instance been applied by Wu et al. [4]. Overall, both translations can be
employed to establish the connections displayed in Table 5.

10. Discussion

In this paper we studied various connections amongst abstract argumen-
tation semantics and logic programming semantics. We started by providing
definitions of these in a way that already suggests their connections. After
these definitions, we then started to look deeper into the reasons why the
semantics coincidence. We re-examined how the standard three-step process
of instantiated argumentation can be applied in the context of logic pro-
gramming. We observed that the various abstract argumentation semantics
(grounded, preferred, stable and semi-stable) are based on complete seman-
tics, and essentially select among the complete labellings those where the
set of arguments with a particular label (in, out or undec) is maximal or
minimal. We also observed that the various logic programming semantics
(well-founded, regular, stable and L-stable) are based on partial stable model
semantics, and essentially select among the partial stable models those where
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a particular truth value (T , F or U) is maximal or minimal.
Using the already established connection between complete semantics in

argumentation and partial stable model semantics in logic programming [4],
we were then able to explain one of the essential differences between argumen-
tation and logic programming: where the various argumentation semantics
essentially maximize and minimize a particular label at the argument level,
the various logic programming semantics essentially maximize and minimize
a particular label at the conclusion level.

In order to establish correspondences between the various argumentation
semantics and logic programming semantics, we then needed to examine
whether maximizing or minimizing a particular label on the argument level
has the same effect as maximizing or minimizing the label on the conclusion
level. We found that, with one notable exception, this indeed turns out to be
the case, thus obtaining correspondence between grounded and well-founded
semantics, between preferred and regular semantics and between argstable
and concstable semantics.

We also found that in the general case, the semi-stable semantics for
argumentation does not coincide with L-stable semantics for logic program-
ming (although three special classes of logic programs were identified for
which correspondence does hold). This is caused by the fact that, in general,
minimizing undec on the argument level does not yield the same results as
minimizing undec on the conclusion level. We also observed that there ex-
ists no abstract argumentation semantics that is able to yield L-stable model
semantics.10

We observed that when going the other way around (translating argu-
mentation frameworks to logic programs) the correspondence between logic
programming and argumentation is even stronger. This is because the trans-
lation from argumentation to logic programming yields a special class of logic
programs (AF-programs) for which correspondence between semi-stable and
L-stable does hold, in addition to the other argumentation and LP corre-
spondences.

The obtained correspondences between logic programming and argumen-
tation open up opportunities for using techniques from one field to the other

10At least when applying the standard way of using a logic program to construct an
argumentation framework (step 1) and applying the standard way of mapping an argument
labelling to a conclusion labelling (step 3).
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field. For instance, it becomes possible to apply the dialectical proof proce-
dures for formal argumentation (like the Standard Grounded Game [26], the
Grounded Persuasion Game [27, 28] and the Admissibility Game [29]) in the
context of logic programming, to determine the status of a single atom with-
out having to construct an entire logic programming model. Similarly, one
could use recent developments for computing the preferred labellings of an
argumentation framework [30] to determine the regular models of a normal
logic program. Notice that we can do so because we are able to translate (un-
restricted) normal logic programs to instantiated argumentation. In this way,
we go beyond the work of for instance Osorio et al. [24], whose translation
only goes the other way around (from argumentation to logic programming)
whereas our approach is able to go both ways.

Logic programming has long served as an inspiration for argumentation
theory. The approach of Prakken and Sartor [1] for instance, applies ex-
tended logic programming clauses to construct arguments, which are then
evaluated using grounded semantics. Defeasible Logic Programming (DeLP)
[31] is also based on logic programming clauses, but unlike the approach of
Prakken and Sartor, it does not come with a declarative semantics. Instead,
entailment is defined in terms of dialectical proof procedures. Moreover,
DeLP does not seem to support the notion of abstraction when it comes
to determining the accepted arguments. Whereas formalisms like ASPIC
[7, 8, 22], ABA [9] and logic-based argumentation [18] are able to construct
a graph and subsequently select the set(s) of accepted arguments (that is,
to apply argumentation semantics) without needing to look at the internal
structure of the arguments, DeLP does need to have access to the internal
structure of the arguments when applying the dialectical proof procedures
that determine which arguments to accept. This makes it difficult to com-
pare DeLP with Dung-style abstract argumentation, because in DeLP there
is no such thing as a purely abstract level.

Although the current paper studied the connection between existing logic
programming semantics and existing argumentation semantics, the results
are also relevant for other formalisms. Using the recently observed connection
between logic programming and Assumption-Based Argumentation (ABA)
[32] one can directly apply our results to ABA.11 It then directly follows

11Although the work of Schulz and Toni [32] translates logic programs to ABA theories, it
is fairly straightforward also to go the other way around, that is, to translate ABA theories
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that the original assumption-based ABA semantics [35] are in fact based on
maximizing and minimizing particular labels on the conclusion level, whereas
the ABA-AA interpretation (ABA as an instantiation of Dung-style abstract
argumentation, [9]) is based on maximizing and minimizing particular labels
on the argument level. As we have seen, these are not always the same.
Thus, our theory helps to explain the previously observed difference between
ABA assumption-based semi-stable semantics and ABA-AA semi-stable se-
mantics [33, 34], as the former is equivalent to L-stable semantics through
the translation between ABA and logic programming.

Apart from ABA, our findings are also relevant for the ASPIC formal-
ism [8, 22], as it is possible to translate an ASPIC theory to a logic pro-
gram. ASPIC-style undercutting could be modelled by including rule-specific
weakly negated “ab” atoms (similarly to what one often observes in Cir-
cumscription). Strong negation and ASPIC-style rebutting could be mod-
elled by introducing additional atoms and generating “semi-normal” logic
programming rules (similar to semi-normal defaults [36]) where the head of
the rule also occurs strongly negated in the weak part of the body. As an
example of how such a translation would work, consider the following AS-
PIC theory: Rs = {→ a; → b; → c} and Rd = {r1 : a ⇒ d; r2 : b ⇒
¬d; r3 : c ⇒ ¬r1} (with ¬r1 expressing that the rule r1 is undercut). This
would generate the following logic program: P = {a ←; b ←; c ←; a ←
a, not ab1, not nd; nd ← b, not ab2, not d; ab1 ← c, not ab3} (notice that
nd stands for the negation of d). Hence, we see that although ASPIC is
conceptually richer than logic programming, it is still perfectly possible to
model concepts like strong negation, rebutting and undercutting by means
of logic programming, and hence to translate an ASPIC theory to a logic
program. Moreover, the translation is such that the arguments that can be
constructed using the original ASPIC theory coincide with the arguments
that can be constructed using the resulting logic program, regarding both
their structure and attack relation. Hence, our results on the equivalence
between minimization and maximization on the argument level and mini-
mization and maximization on the conclusion level are also relevant in the

to logic programs. This does require, however, that the ABA theory one starts with is
“assumption complete” in the sense that every non-assumption atom is the contrary of at
least one assumption. This is needed to preserve equivalence between the ABA semantics
and the logic programming semantics, in particular between ABA semi-stable [33, 34] and
logic programming L-stable.
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context of formalisms like ASPIC.
More generally, although the current paper focuses mainly on instantiated

argumentation based on logic programming, its main findings are in fact
relevant for a wide range of instantiated argumentation formalisms (like [8,
37, 18, 38, 9]) as it specifies the possibilities and impossibilities of using the
argumentation approach to specify nonmonotonic entailment, or to model
existing nonmonotonic formalisms. If the aim is, for instance, to model a
formalism that maximizes in or out at the conclusion level (like for instance
is the case in Pollock’s 1995 oscar system [39]) the argumentation approach
will do fine (as evidenced by Jakobovits and Vermeir [40]). However, if the
aim is to model a formalism that minimizes undec at the conclusion level,
the argumentation approach will be of limited help (Theorem 24). Hence,
the current paper has shed some light on the strengths and limitations of
using the argumentation approach for specifying nonmonotonic entailment.
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A. Proofs of Theorems

A.1. Theorems and Proofs from Section 4:

Proposition 1. Let AF = (Ar , att) be an argumentation framework. An
argument labelling ArgLab is a complete argument labelling iff for each A ∈
Ar it holds that:

• if for every B ∈ Ar that attacks A it holds that ArgLab(B) = out, then
ArgLab(A) = in

• if there exists a B ∈ Ar that attacks A such that ArgLab(B) = in, then
ArgLab(A) = out

• if not for every B ∈ Ar that attacks A it holds that ArgLab(B) = out

and there does not exist a B ∈ Ar that attacks A such that ArgLab(B) =
in, then ArgLab(A) = undec
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Lemma 1 ([5, 6]). Let ArgLab1 and ArgLab2 be complete argument labellings
of argumentation framework AF = (Ar , att). It holds that

1. in(ArgLab1) ⊆ in(ArgLab2) iff out(ArgLab1) ⊆ out(ArgLab2)

2. in(ArgLab1) ( in(ArgLab2) iff out(ArgLab1) ( out(ArgLab2)

3. in(ArgLab1) = in(ArgLab2) iff out(ArgLab1) = out(ArgLab2)

From Lemma 1 it immediately follows that in(ArgLab1) = in(ArgLab2)
iff ArgLab1 = ArgLab2, and that out(ArgLab1) = out(ArgLab2) iff ArgLab1

= ArgLab2. Moreover, from Lemma 1, one can then obtain the following
result.

Theorem 12 ([5, 6]). Let ArgLab be a complete argument labelling of argu-
mentation framework AF = (Ar , att). It holds that

• in(ArgLab) is maximal (w.r.t. set-inclusion) among all complete argu-
ment labellings of AF iff out(ArgLab) is maximal (w.r.t. set-inclusion)
among all complete argument labellings of AF .

• in(ArgLab) is minimal (w.r.t. set-inclusion) among all complete argu-
ment labellings of AF iff out(ArgLab) is minimal (w.r.t. set-inclusion)
among all complete argument labellings of AF .

Lemma 2 ([5, 6]). Let ArgLab and ArgLab ′ be complete argument labellings
of argumentation framework AF = (Ar , att). It holds that

1. if in(ArgLab) ⊆ in(ArgLab ′) then undec(ArgLab) ⊇ undec(ArgLab ′)

2. if in(ArgLab) ( in(ArgLab ′) then undec(ArgLab) ) undec(ArgLab ′)

3. if out(ArgLab) ⊆ out(ArgLab ′) then undec(ArgLab) ⊇ undec(ArgLab ′)

4. if out(ArgLab) ( out(ArgLab ′) then undec(ArgLab) ) undec(ArgLab ′)

From Lemma 2, the following result follows.

Theorem 34. Let ArgLab be a complete argument labelling of argumentation
framework AF = (Ar , att). It holds that

1. if undec(ArgLab) is minimal (w.r.t. set-inclusion) among all complete
argument labellings of AF then in(ArgLab) and out(ArgLab) are max-
imal (w.r.t. set-inclusion) among all complete argument labellings of
AF , and
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2. if undec(ArgLab) is maximal (w.r.t. set-inclusion) among all complete
argument labellings of AF then in(ArgLab) and out(ArgLab) are min-
imal (w.r.t. set-inclusion) among all complete argument labellings of
AF .

Proof. We only state the proof of statement (1), the proof of (2) is very
similar. Let ArgLab be a complete argument labelling and suppose that
undec(ArgLab) is minimal. That is, for each complete argument labelling
ArgLab ′ of AF , it holds that if undec(ArgLab ′) ⊆ undec(ArgLab) then also
undec(ArgLab) ⊆ undec(ArgLab ′). To show that in(ArgLab) is maximal,
we need to prove that for each complete argument labelling ArgLab ′, if
in(ArgLab) ⊆ in(ArgLab ′) then in(ArgLab ′) ⊆ in(ArgLab). Let ArgLab ′ be
a complete argument labelling such that in(ArgLab) ⊆ in(ArgLab ′). From
Lemma 2 it then follows that undec(ArgLab) ⊇ undec(ArgLab ′). This, to-
gether with the assumption that undec(ArgLab) is minimal, gives us that
undec(ArgLab) = undec(ArgLab ′). Therefore, it cannot be the case that
in(ArgLab) ( in(ArgLab ′) (otherwise undec(ArgLab) ) undec(ArgLab ′)
would follow from Lemma 2, which would contradict that undec(ArgLab) =
undec(ArgLab ′)). As we assumed in(ArgLab) ⊆ in(ArgLab ′) we can con-
clude that in(ArgLab) = in(ArgLab ′) and thus in(ArgLab ′) ⊆ in(ArgLab).
The case of maximality of out(ArgLab) now follows from Theorem 12.

Although strictly spoken, theorems 13 and 14 (but not Theorem 34) have
been proven by Caminada et al. [5, 6], this was done by making the connce-
tion with extension-based argumentation semantics. Our alternative proofs
show that the labelling theory is able to “stand on its own feet”, in the sense
that fundamental properties (like the uniqueness of the grounded labelling)
can be proved without applying any results from extension-based argumen-
tation theory.

Theorem 13. Let AF = (Ar , att) be an argumentation framework. The
complete argument labelling ArgLab where in(ArgLab) is minimal (w.r.t. set
inclusion) among all complete argument labellings is unique.

Proof. Let ArgLab1 and ArgLab2 be two complete argument labellings where
both in(ArgLab1) and in(ArgLab2) are minimal. We will now prove that
ArgLab1 = ArgLab2. First we observe that from Theorem 12, it follows
that also out(ArgLab1) and out(ArgLab2) are minimal. Let us now de-
fine ArgLab to be the outcome of the skeptical judgment aggregation op-
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erator of [41, Def. 18]. It holds that ArgLab is a complete argument la-
belling [41, Th. 8] such that in(ArgLab) ⊆ in(ArgLab1), out(ArgLab) ⊆
out(ArgLab1), in(ArgLab) ⊆ in(ArgLab2) and out(ArgLab) ⊆ out(ArgLab2)
([41, Th. 7]). The fact that ArgLab1 and ArgLab2 are complete argument
labellings with minimal in and minimal out then implies that in(ArgLab) =
in(ArgLab1), out(ArgLab) = out(ArgLab1), in(ArgLab) = in(ArgLab2) and
out(ArgLab) = out(ArgLab2), so ArgLab = ArgLab1 and ArgLab = ArgLab2,
so ArgLab1 = ArgLab2.

Theorem 14. Let AF = (Ar , att) be an argumentation framework and
ArgLab be one of its complete argument labellings. Then undec(ArgLab)
is maximal (w.r.t. set-inclusion) among all complete argument labellings iff
in(ArgLab) is minimal (w.r.t. set-inclusion) among all complete argument
labellings.

Proof. “⇒”: This follows from Theorem 34.
“⇐”: Let ArgLab be the unique (Theorem 13) complete argument labelling
where in(ArgLab) is minimal. That is, for any complete argument labelling
ArgLab ′ it holds that in(ArgLab) ⊆ in(ArgLab ′), so we also have (Lemma 2)
undec(ArgLab) ⊇ undec(ArgLab ′). Therefore, ArgLab is also a complete
argument labelling where undec(ArgLab) is maximal.

A.2. Theorems and Proofs from Section 5:

Lemma 3. Let ConcLab1 and ConcLab2 be complete conclusion labellings
of logic program P and AFP = (ArP , attP ) be the associated argumentation
framework, then it holds that

1. in(ConcLab1) ⊆ in(ConcLab2) iff out(ConcLab1) ⊆ out(ConcLab2)

2. in(ConcLab1) = in(ConcLab2) iff out(ConcLab1) = out(ConcLab2)

3. in(ConcLab1) ( in(ConcLab2) iff out(ConcLab1) ( out(ConcLab2)

Proof. Let ArgLab1 be a complete argument labelling of which ConcLab1 is
the associated conclusion labelling, and let ArgLab2 be a complete argument
labelling of which ConcLab2 is the associated conclusion labelling.

1. “⇒”: Suppose in(ConcLab1)⊆in(ConcLab2). Let c∈out(ConcLab1).
We will now prove that c ∈ out(ConcLab2). First, we observe that
the fact that c ∈ out(ConcLab1) implies (Definition 11) that for each
argument A such that Conc(A) = c it holds that ArgLab1(A) = out.
This implies (Definition 10) that each such A has an attacker (say
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B) such that ArgLab1(B) = in, which implies that (Definition 11) that
ConcLab1(Conc(B)) = in. Given the assumption that in(ConcLab1) ⊆
in(ConcLab2), it then follows that ConcLab2(Conc(B)) = in, which
(Definition 11) implies that there exists an argument C ∈ ArP with
Conc(C) = Conc(B) and ArgLab2(C) = in. Since the notion of attack
is based on the conclusion of the attacking argument (Definition 8), it
follows that C attacks A. Since C is labelled in by ArgLab2, it follows
(Definition 10) that A is labelled out by ArgLab2. Since this holds
for any argument A with conclusion c, it follows (Definition 11) that
ConcLab2(c) = out. That is, c ∈ out(ConcLab2).

“⇐”: Suppose out(ConcLab1) ⊆ out(ConcLab2). Further, assume c ∈
in(ConcLab1). First, we observe that the fact that c ∈ in(ConcLab1)
implies (Definition 11) that there is an argument (say A) such that
Conc(A) = c and ArgLab1(A) = in. This implies (Definition 10) that
for each attacker B of A it holds that ArgLab1(B) = out. This means
that (Definition 8) for each argument B with Conc(B) ∈ Vul(A) it
holds that ArgLab1(B) = out, which then implies (Definition 11) that
for each b ∈ Vul(A) it holds that ConcLab1(b) = out. From our initial
assumption that out(ConcLab1) ⊆ out(ConcLab2), it then follows that
ConcLab2(b) = out. So for every B ∈ ArP with Conc(B) = b, it holds
that ArgLab2(B) = out (Definition 11), which implies that all attackers
of A are labelled out by ArgLab2 (Definition 8). Hence, it follows that
A is labelled in by ArgLab2 (Definition 1). Since Conc(A) = c, it follows
(Definition 11) that ConcLab2(c) = in. That is, c ∈ in(ConcLab2).

2. This follows from point 1.
3. This follows from point 1 and point 2.

From Lemma 3 it immediately follows that in(ConcLab1)=in(ConcLab2)
iff ConcLab1 = ConcLab2, and that out(ConcLab1) = out(ConcLab2) iff
ConcLab1 = ConcLab2.

Theorem 15. Let ConcLab be a complete conclusion labelling of logic pro-
gram P and the associated argumentation framework AFP = (ArP , attP ). It
holds that

• in(ConcLab) is maximal (w.r.t. set-inclusion) among all complete con-
clusion labellings of AF iff out(ConcLab) is maximal (w.r.t. set-
inclusion) among all complete conclusion labellings of AF .
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• in(ConcLab) is minimal (w.r.t. set-inclusion) among all complete con-
clusion labellings of AF iff out(ConcLab) is also minimal (w.r.t. set-
inclusion) among all complete conclusion labellings of AF .

Proof. This follows directly from Lemma 3.

Lemma 4. Let ConcLab1 and ConcLab2 be complete conclusion labellings
of logic program P and the associated argumentation framework AFP =
(ArP , attP ). It holds that

1. if in(ConcLab1) ⊆ in(ConcLab2) then undec(ConcLab1) ⊇ undec(ConcLab2)
2. if out(ConcLab1)⊆out(ConcLab2) then undec(ConcLab1)⊇undec(ConcLab2)
3. if in(ConcLab1) ( in(ConcLab2) then undec(ConcLab1) ) undec(ConcLab2)
4. if out(ConcLab1)(out(ConcLab2) then undec(ConcLab1))undec(ConcLab2)

Proof. We prove the four statements separately.

1. Suppose that in(ConcLab1) ⊆ in(ConcLab2). Then, by Lemma 3,
it follows that out(ConcLab1) ⊆ out(ConcLab2). By definition, we
have that (in(ConcLab1), out(ConcLab1), undec(ConcLab1)) as well
as (in(ConcLab2), out(ConcLab2), undec(ConcLab2)) are partitions.
Then, given that in(ConcLab1) ⊆ in(ConcLab2) and out(ConcLab1) ⊆
out(ConcLab2), we conclude undec(ConcLab1) ⊇ undec(ConcLab2).

2. Similar to the first point.

3. Suppose that in(ConcLab1) ( in(ConcLab2), by Lemma 3 it follows
that also out(ConcLab1) ( out(ConcLab2). Consider (in(ConcLab1),
out(ConcLab1), undec(ConcLab1)) and(in(ConcLab2), out(ConcLab2),
undec(ConcLab2)) are partitions. Combining this with the facts that
in(ConcLab1) ( in(ConcLab2) and out(ConcLab1) ( out(ConcLab2),
we get undec(ConcLab1) ) undec(ConcLab2).

4. Similar to the third point.

Theorem 35. Let ConcLab be a complete conclusion labelling of logic pro-
gram P and associated argumentation framework AFP = (ArP , attP ). It
holds that

1. if undec(ConcLab) is minimal (w.r.t. set-inclusion) among all complete
conclusion labellings of AF then in(ConcLab) and out(ConcLab) are
maximal (w.r.t. set-inclusion) among all complete conclusion labellings
of AF , and
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2. if undec(ConcLab) is maximal (w.r.t. set-inclusion) among all complete
conclusion labellings of AF then in(ConcLab) and out(ConcLab) are
minimal (w.r.t. set-inclusion) among all complete conclusion labellings
of AF .

Proof. We only present the proof for statement (1), statement (2) can be
shown similarly.

Suppose ConcLab is a complete conclusion labelling such that the set
undec(ConcLab) is minimal. Then, for each complete conclusion labelling
ConcLab ′, if undec(ConcLab ′) ⊆ undec(ConcLab) then undec(ConcLab) ⊆
undec(ConcLab ′). In order to prove that in(ConcLab) is maximal, we need to
prove that for each complete conclusion labelling ConcLab ′, if in(ConcLab) ⊆
in(ConcLab ′) then in(ConcLab ′) ⊆ in(ConcLab). Assume in(ConcLab) ⊆
in(ConcLab ′) for some complete conclusion labelling ConcLab ′. It follows
(Lemma 4) that undec(ConcLab) ⊇ undec(ConcLab ′). From our initial as-
sumption, one can conclude that undec(ConcLab) ⊆ undec(ConcLab ′). As
a consequence we have undec(ConcLab) = undec(ConcLab ′). This means it
cannot be the case that in(ConcLab) ( in(ConcLab ′) (otherwise Lemma 4
would imply that undec(ConcLab) ) undec(ConcLab ′)) so in(ConcLab) =
in(ConcLab ′), so in(ConcLab ′) ⊆ in(ConcLab). From the thus obtained
fact that ConcLab has maximal in, it follows (Theorem 15) that ConcLab
also has maximal out.

Theorem 16. Let P be a logic program and AFP = (ArP , attP ) be its asso-
ciated argumentation framework. The complete conclusion labelling ConcLab
of AFP where in(ConcLab) is minimal (w.r.t. set inclusion) among all com-
plete conclusion labellings of AFP is unique.

Proof. It suffices to show that the associated conclusion labelling of the
grounded argument labelling has a set of in-labelled conclusions that is a
subset of the set of in-labelled conclusions of any arbitrary complete con-
clusion labelling. Let ArgLabgr be the grounded argument labelling of AFP

and ConcLabgr be its associated conclusion labelling (that is, ConcLabgr is
the grounded conclusion labelling). We need to prove that for any complete
conclusion labelling ConcLab it holds that in(ConcLabgr) ⊆ in(ConcLab).
Let ConcLab be an arbitrary complete conclusion labelling of P and AFP .
Assume it is the associated conclusion labelling of complete argument la-
belling ArgLab. From the fact that ArgLabgr is the grounded argument
labelling, it follows (Theorem 13) that in(ArgLabgr) ⊆ in(ArgLab). Let
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c ∈ in(ConcLabgr). Then (Definition 11) there exists an argument A ∈ ArP

with Conc(A) = c and ArgLabgr(A) = in. From the fact that in(ArgLabgr) ⊆
in(ArgLab) it follows that ArgLab(A) = in, so (Definition 11) ConcLab(c) =
in. That is, c ∈ in(ConcLab). So in(ConcLabgr) ⊆ in(ConcLab).

Theorem 17. Let P be a logic program, AFP = (ArP , attP ) be the associated
argumentation framework of P and ConcLab be one of the complete conclu-
sion labellings of AFP . It holds that undec(ConcLab) is maximal (w.r.t. set-
inclusion) among all complete conclusion labellings of AFP iff in(ConcLab)
is minimal (w.r.t. set-inclusion) among all complete conclusion labellings of
AFP .

Proof. “⇒”: This follows from Theorem 35.
“⇐”: Let ConcLab be the unique (Theorem 16) complete conclusion labelling
with minimal in(ConcLab). That is, for any complete conclusion labelling
ConcLab ′ it holds that in(ConcLab) ⊆ in(ConcLab ′), so (by Lemma 4)
undec(ConcLab) ⊇ undec(ConcLab ′). Therefore, ConcLab is also a complete
conclusion labelling where undec(ConcLab) is maximal.

A.3. Theorems and Proofs from Section 6:

Theorem 19. When restricted to complete argument labellings and complete
conclusion labellings, the functions ArgLab2ConcLab and ConcLab2ArgLab

are bijections and each other’s inverse.

Proof. It suffices to prove two things:

“ConcLab2ArgLab(ArgLab2ConcLab(ArgLab)) = ArgLab”
Let ArgLab be a complete argument labelling, and let A be an argu-
ment. We distinguish three cases.

1. ArgLab(A) = in. From the fact that ArgLab is a complete ar-
gument labelling, it follows that ArgLab(B) = out for every at-
tacker B of A. From the definition of attack (Definition 8) it
follows that for each b ∈ Vul(A), for each argument B with
Conc(B) = b, ArgLab(B) = out. This then implies that for
each b ∈ Vul(A) it holds that ArgLab2ConcLab(ArgLab)(b) =
out. By the definition of ConcLab2ArgLab, we finally obtain that
ConcLab2ArgLab(ArgLab2ConcLab(ArgLab))(A) = in.
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2. ArgLab(A) = out. From the fact that ArgLab is a complete ar-
gument labelling, it follows that there exists an attacker B of A
such that ArgLab(B) = in. Let b = Conc(B). From the definition
of attack, it then follows that b ∈ Vul(A). From the definition of
ArgLab2ConcLab, it follows that ArgLab2ConcLab(ArgLab)(b) =
in. From the definition of ConcLab2ArgLab, it then follows that
ConcLab2ArgLab(ArgLab2ConcLab(ArgLab))(A) = out.

3. ArgLab(A) = undec. From the fact that ArgLab is a complete
argument labelling, it follows that not each attacker C of A has
ArgLab(C) = out (i), and there is no attacker D if A that has
ArgLab(D) = in (ii). From (i) together with (ii), it follows that
there exists an attacker B of A with ArgLab(B) = undec. Let
b = Conc(B). From (ii) together with the definition of attack,
it follows that there is no argument B′ with Conc(B′) = b such
that ArgLab(B′) = in. Hence, ArgLab2ConcLab(ArgLab)(b) =
undec (iii). Furthermore, from (ii) together with the definition
of attack, it follows that for each argument D with Conc(D) ∈
Vul(A) it holds that ArgLab(D) 6= in. Hence, for each d ∈
Vul(A), ArgLab2ConcLab(ArgLab)(d) 6= in (iv). From (iii) and
(iv), together with the definition of ConcLab2ArgLab, it follows
that ConcLab2ArgLab(ArgLab2ConcLab(ArgLab))(A) = undec.

“ArgLab2ConcLab(ConcLab2ArgLab(ConcLab)) = ConcLab”
Let ConcLab be a complete conclusion labelling. This by definition
implies that there exists a complete argument labelling ArgLab with
ArgLab2ConcLab(ArgLab) = ConcLab. As we have observed in the
previously it holds that ConcLab2ArgLab(ArgLab2ConcLab(ArgLab)) =
ArgLab. It then follows that ConcLab2ArgLab(ConcLab) = ArgLab.
This then implies that ArgLab2ConcLab(ConcLab2ArgLab(ConcLab))=
ArgLab2ConcLab(ArgLab). Combing these observations we finally ob-
tain ArgLab2ConcLab(ConcLab2ArgLab(ConcLab) = ConcLab.

Lemma 5. Let P be a logic program, AFP = (ArP , attP ) be its associated
argumentation framework. Let ArgLab1 and ArgLab2 be complete argument
labellings of AFP , and ConcLab1 and ConcLab2 be their respective associated
conclusion labellings. It holds that

1. in(ArgLab1) ⊆ in(ArgLab2) iff in(ConcLab1) ⊆ in(ConcLab2),
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2. in(ArgLab1) = in(ArgLab2) iff in(ConcLab1) = in(ConcLab2), and

3. in(ArgLab1) ( in(ArgLab2) iff in(ConcLab1) ( in(ConcLab2).

Proof.

1. “⇒”: Suppose in(ArgLab1) ⊆ in(ArgLab2). Further, assume that
c ∈ in(ConcLab1). Then, by definition of ArgLab2ConcLab, there ex-
ists an argument A ∈ ArP with Conc(A) = c and ArgLab1(A) = in.
From our initial assumption, it follows that ArgLab2(A) = in. So, by
definition of ArgLab2ConcLab, c ∈ in(ConcLab2).
“⇐”: Suppose in(ConcLab1) ⊆ in(ConcLab2). Let A ∈ in(ArgLab1).
Then it follows (Definition 10) that each attacker B of A is labelled out

by ArgLab1. That is (Definition 8) for each B ∈ ArP with Conc(B) ∈
Vul(A) it holds that ArgLab1(B) = out. According to the defini-
tion of ArgLab2ConcLab it then follows that for each v ∈ Vul(A) it
holds that ConcLab1(v) = out. From our initial assumption it fol-
lows (Lemma 3) that out(ConcLab1) ⊆ out(ConcLab2). Therefore,
ConcLab2(v) = out. This (by definition of ArgLab2ConcLab) implies
that each argument (say C) with Conc(C) ∈ Vul(A) is labelled out

by ArgLab2. Therefore (Definition 8) each attacker of A is labelled
out by ArgLab2, so (Lemma 1) A is labelled in by ArgLab2. That is,
A ∈ in(ArgLab2).

2. This follows directly from point 1.

3. This follows directly from points 1 and 2.

Lemma 6. Let P be a logic program, AFP = (ArP , attP ) be its associated
argumentation framework. Let ArgLab1 and ArgLab2 be complete argument
labellings of AFP , and ConcLab1 and ConcLab2 be their respective associated
conclusion labellings. It holds that

1. out(ArgLab1) ⊆ out(ArgLab2) iff out(ConcLab1) ⊆ out(ConcLab2),

2. out(ArgLab1) = out(ArgLab2) iff out(ConcLab1) = out(ConcLab2),

3. out(ArgLab1) ( out(ArgLab2) iff out(ConcLab1) ( out(ConcLab2).

Proof. This follows from Lemma 5, with Lemma 1 and Lemma 3.

Theorem 20. Let ConcLab be a conclusion labelling of logic program P and
associated argumentation framework AFP = (Ar , att). It holds that ConcLab
is a preferred conclusion labelling iff it is a regular conclusion labelling.

47



Proof. “⇒”: Suppose ConcLab is a preferred conclusion labelling. By def-
inition, there must exists a preferred argument labelling ArgLab such that
ArgLab2ConcLab(ArgLab) = ConcLab. The fact that ArgLab is a preferred
argument labelling means that in(ArgLab) is maximal (w.r.t. set-inclusion)
among all complete argument labellings. This implies (Lemma 5) that
in(ConcLab) is maximal (w.r.t. set-inclusion) among all complete conclu-
sion labellings. That is, ConcLab is a regular conclusion labelling.
“⇐”: Let ConcLab be a regular conclusion labelling and take an argu-
ment labeling ArgLab such that ArgLab2ConcLab(ArgLab) = ConcLab. The
fact that ConcLab is a regular conclusion labelling means that in(ConcLab)
is maximal (w.r.t. set-inclusion) among all complete conclusion labellings.
This implies (by Lemma 5) that in(ArgLab) is maximal (w.r.t. set-inclusion)
among all complete argument labellings. That is, ConcLab is a preferred
conclusion labelling.

Theorem 21. Let ConcLab be a conclusion labelling of logic program P and
associated argumentation framework AFP = (Ar , att). It holds that ConcLab
is the grounded conclusion labelling iff it is the well-founded conclusion la-
belling.

Proof. “⇒”: Suppose ConcLab is the grounded conclusion labelling. Then,
by definition, ConcLab must have been generated by the grounded argument
labelling. That is, ConcLab =ArgLab2ConcLab(ArgLab) where ArgLab is the
grounded argument labelling. The fact that ArgLab is the grounded argument
labelling means that in(ArgLab) is minimal (w.r.t. set inclusion) among all
complete argument labellings. This implies (Lemma 5) that in(ConcLab) is
minimal (w.r.t. set inclusion) among all complete conclusion labellings. That
is, ConcLab is the well-founded conclusion labelling.
“⇐”: Let ConcLab be the well-founded conclusion labelling. As the well-
founded conclusion labelling is a complete conclusion labelling, it must have
been generated by a complete argument labelling. That is, ConcLab =
ArgLab2ConcLab(ArgLab) for some complete argument labelling ArgLab.
The fact that ConcLab is the well-founded conclusion labelling means that
in(ConcLab) is minimal among all complete conclusion labellings. This im-
plies (Lemma 5) that in(ArgLab) is minimal (w.r.t. set inclusion) among all
complete argument labellings. That is, ArgLab is the grounded argument
labelling, so by definition ConcLab is the grounded conclusion labelling.
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Theorem 22. Let ConcLab be a conclusion labelling of logic program P and
associated argumentation framework AFP = (Ar , att). It holds that ConcLab
is an argstable conclusion labelling iff it is a concstable conclusion labelling.

Proof. “⇒”: Let ConcLab be an argstable conclusion labelling. So there is
a stable argument labelling ArgLab such that ArgLab2ConcLab(ArgLab) =
ConcLab. The fact that ArgLab is a stable argument labelling means that no
argument is labelled undec. But then, by Definition 11, also no conclusion
in ConcLab is labelled undec. Hence, ConcLab is a concstable conclusion
labelling.
“⇐”: Let ConcLab be a concstable conclusion labelling and take an argu-
ment labeling ArgLab such that ConcLab2ArgLab(ConcLab). The fact that
ConcLab is a concstable labelling means that no conclusion is labelled undec

by ConcLab. This, by definition of ConcLab2ArgLab implies that also no
argument in ArgLab is labelled undec. That is, ArgLab is a stable argument
labelling, which implies that ConcLab is a argstable conclusion labelling.

A.4. Theorems and Proofs from Section 8:

Theorem 27. Every stable program is semi-stable-L-stable compatible.

Proof. Recall from Section 2.1 that semi-stable semantics will coincide with
stable semantics whenever the framework has at least one stable extension.
Furthermore, recall from Section 2.2 that L-stable semantics coincides with
stable semantics whenever the program has one or more stable models. Be-
cause the argumentation stable semantics and program stable semantics are
equivalent, our result holds for stable programs.

Theorem 29. Every AF-program is semi-stable-L-stable compatible.

Proof. Let P be an AF-program and AFP its associated argumentation
framework. First we have to show that for each c ∈ HBP there is a most one
argument having conclusion c. We do this by induction on the number n of
rules in the program P . For n = 1 with just one rule r it is easy to see that
we have one argument if body+(r) = ∅ and no argument otherwise. Now let
us assume the claim holds for programs with at most n − 1 rules. Towards
a contradiction assume there is a c with two different arguments A′0,A′′0. As
there is just one rule rule with head(r) = c both arguments are based on the
same rule. As both arguments are different it must hold that (i) body+(r) 6= ∅
and (ii) for at least one ai ∈ body+(r) there must exist two arguments A1,A2
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with Conc(A1) = Conc(A2) = ai and r 6∈ Rules(A1), r 6∈ Rules(A2). But
this implies that we can construct two arguments for ai from the program
P \ {r} and thus contradicts our induction hypothesis. We obtain that for
each c ∈ HBP there is a most one argument having conclusion c. As a
consequence, minimizing undecided arguments is the same as minimizing
undecided conclusions and P is semi-stable-L-stable compatible.

Theorem 31. Every stratified program is semi-stable-L-stable compatible.

Proof. A stratified program P has a single P-stable model S, so AFP has a
single complete conclusion labelling that coincides with S [4]. Therefore, the
only L-stable extension of P coincides with the sole semi-stable conclusion
labelling of AFP .

A.5. Theorems and Proofs from Section 9:

Theorem 33. Let AF be an argumentation framework, PAF be the associated
logic program (Definition 32), and AFPAF

be the argumentation framework
that is associated with this logic program (Definition 9). It holds that AF
and AFPAF

are isomorphic.

Proof. Let AF = (Ar , att) with Ar = {A1, A2, . . . , An}. Further, let PAF =
{r1, r2, . . . , rn} with each ri being the rule corresponding to argument Ai, and
AFPAF

= (ArPAF
, attPAF

) with ArPAF
= {Arg1, Arg2, . . . , Argn} with each

Argi consisting of the single rule ri. It is easy to see that AF is isomorphic
with AFPAF

through the bijective function f such that f(Ai) = Argi. To
this end, first consider two arguments Ai, Aj such that (Ai, Aj) ∈ att . Then
Ai is the head of ri and not Ai is in the body of rule rj. Thus also Argi
attacks Argj, i.e., (Argi, Argj) ∈ attPAF

. Finally consider Ai, Aj such that
(Ai, Aj) /∈ att . Then Ai is the head of ri but not Ai is not contained in the
body of rule rj. Thus Argi does not attack Argj, i.e., (Argi, Argj) /∈ attPAF

.
Hence f is a isomorphism between AF and PAF .
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