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abstract. The current chapter presents an overview on the state
of the art of Dung’s abstract argumentation frameworks and their se-
mantics, covering both some of the most influential literature proposals
and some general issues concerning semantics definition and evaluation.
As to the former point the chapter reviews Dung’s original notions of
complete, grounded, preferred, and stable semantics, as well as a variety
of notions subsequently proposed in the literature namely, näıve, semi-
stable, ideal, eager, stage, CF2, and stage2 semantics, considering both
the extension-based and the labelling-based approaches with respect to
their definitions. As to the latter point the chapter analyzes the no-
tions of argument justification and skepticism comparison and discusses
semantics agreement.

1 Introduction

This chapter is devoted to the formalism of abstract argumentation frameworks
introduced by Dung [1995]. This formalism is based on the idea that arguments

are defeasible entities which may attack each other and whose acceptance is sub-

ject to evaluation. In presence of conflicts, an argument cannot be accepted just

because it exists: its acceptance depends on the existence of possible counter

arguments, that can then themselves be attacked by counter arguments, and so

on. Formally, an argumentation framework is represented as a directed graph

in which the arguments are represented as nodes and the attack relation is rep-

resented by the arrows. Given such a graph, one is naturally led to examine the

question of which set(s) of arguments can be accepted: answering this question

corresponds to defining an argumentation semantics. Various proposals have

been formulated in this respect, and in the current chapter we will describe

some of the mainstream approaches. Before entering the technical presenta-

tion, however, some important general considerations are worth introducing.

As sketched above, the formalism of argumentation frameworks is exclusively

centered on the notion of attack between arguments and on the evaluation of

argument acceptability, based on the intuition that the existence of attacks pre-

vents all arguments to be accepted together. In this formal context, arguments

are deprived of all their features apart their identity: their origin, structure

and any other characteristics differentiating them are abstracted away, leaving

room only to the property of attacking (or being attacked by) their homoge-

neous (from the abstract point of view) peers. This extreme simplification of
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an otherwise complex and articulated phenomenon like argumentation is a key

factor for understanding the huge interest that the study of this formalism has

attracted, as well as its boundaries. Theoretical cleanness and wide applica-

bility are among the formidable strengths following from the simplicity of the

formalism. Argumentation frameworks allow the investigation of notions and

properties (far from being trivially simple, by the way) which are purely re-

lated to the existence of attacks without being obfuscated or complicated by

the many accidental or complementary properties of the entities involved in the

attack themselves. In this sense Dung’s theory can be regarded as an attack (or

conflict) calculus, which has been initially formulated for the need of dealing

with attacks between arguments but then stands on its own feet, even inde-

pendently of the original interpretation in argumentative terms. This yields a

powerful generality: as shown in Dung’s original paper, several more specific

formal settings can be regarded (and better understood) as special cases of

argumentation frameworks, in areas ranging from nonmonotonic reasoning to

game theory. Remarkably, some of these settings are only loosely related to the

notion of argumentation. This has shown since the beginning that theoretical

investigations of Dung’s formalism enjoy a wide applicability across a variety

of domains. It must also be observed, however, that dealing with attacks, while

being crucial, is by no means sufficient to provide a formal counterpart of actual

argumentation processes. In this sense, the temptation of considering abstract

argumentation theory as a self-sufficient tool for formal argumentation should

be regarded as an oversimplification. To avoid this risk, it is important to keep

in mind that assessing argument acceptability in presence of attacks, which is

the essence of Dung’s theory, is only one specific (although important) aspect in

formalizing argument-based reasoning and needs to be integrated and bridged

with other formal components. As an example of how to apply Dung’s theory

within a broadened setting, consider the use of abstract argumentation theory

for the purpose of nonmonotonic inference from a knowledge base.

In this context, one can distinguish three steps (see Figure 1). First of all,

one would use an underlying knowledge base to generate a set of arguments and

determine in which ways these arguments attack each other (step 1). The result

is then an argumentation framework, to be represented as a directed graph in

which the internal structure of the arguments, as well as the nature of the attack

relation have been abstracted away. Based on this argumentation framework,

the next step is to determine the sets of arguments that can be accepted, using

a pre-defined criterion corresponding to an argumentation semantics (step 2).

After the set(s) of accepted arguments have been identified, one then has to

identify the set(s) of accepted conclusions (step 3), for which there exist various

approaches.

As an example of how things work, suppose one applies the argumentation

process in the context of logic programming. In particular, suppose the knowl-

edge base consists of a logic program P of the following form.
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knowledge base

framework
argumentation

argument based

(3) identifying acceptance status of conclusions

extensions (labellings)

extensions (labellings)

conclusion based

(1) construction of arguments and attacks

(2) identifying acceptance status of arguments
(applying argumentation semantics)

Figure 1. Argumentation for inference

b← c, not a a← not b
p← c, d, not p p← not a
c← d d←

In that case, following for instance the approach of [Wu et al., 2009] where
arguments consist of trees of rules and attack is based on weak negation, one

can construct the argumentation framework shown in Figure 2.
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Figure 2. The argumentation framework built from the logic program P
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This argumentation framework has exactly one stable extension1 of argu-

ments: {A1, A2, A5, A6}. This extension of arguments yields the following

extension of conclusions: {d, c, p, b}. It has been proved [Dung, 1995] that

when applying stable semantics at step 2, the overall result (extensions of

conclusions) is precisely the same as when applying stable model semantics
[Gelfond and Lifschitz, 1988; Gelfond and Lifschitz, 1991] to the original logic

program. In a similar way, the three-step argumentation process can also be ap-

plied to simulate other logic programming semantics. We refer to [Dung, 1995;

Wu et al., 2009; Caminada et al., 2015] for an overview.

As mentioned before, one of the strengths of the argumentation approach

is that it turns out to be powerful enough to model not just logic program-

ming but a whole range of formalisms, including Default Logic [Dung, 1995;

Caminada et al., 2012] and Nute’s Defeasible Logic [Governatori et al., 2004].
Other scholars have subsequently used the argumentation approach to specify

their own formalisms for non-monotonic entailment, like aspic+ [Modgil and

Prakken, 2014], aba [Toni, 2014] and logic-based argumentation [Gorogiannis

and Hunter, 2011].

Overall, the argumentation process described above leads to a number of

questions:

1. What is the content of the knowledge base with which arguments are con-
structed? Different argument-based formalisms start with different types

of knowledge bases. In the case of argument-based logic programming
[Dung, 1995; Wu et al., 2009; Caminada et al., 2015], like described above,

the knowledge base is simply a logic program. In the case of logic-based

argumentation [Gorogiannis and Hunter, 2011] the knowledge base con-

sists of propositions. In the case of aba [Toni, 2014], it contains rules

and assumptions. In the case of aspic+ [Modgil and Prakken, 2014], it

contains rules and formulas, as well as a preference ordering, to determine

argument strength. In spite of their differences, what unifies these for-

malisms is that each of them can be seen as applying the argumentation

process of Figure 1. The reader can find details in chapters 6, 7, 8 and 9

of this volume.

2. Given a knowledge base, how to precisely construct the associated argu-
mentation framework? Even for the same type of knowledge base, there

can be several ways of constructing the associated argumentation frame-

work, each with their own advantages and disadvantages. Details will be

provided in chapters 6, 7, and 9.

3. Once the argumentation framework has been constructed, how to deter-
mine which arguments to accept and reject? This is the key question to

be studied in the current chapter. Our aim is to provide an overview of

1
A stable extension attacks precisely those arguments that are not in it. We refer to

Section 3.6 for details.
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criteria for argument acceptance, as have been stated in the literature.

Hence, the current chapter focuses on step 2 of the argumentation process

in Figure 1.

4. How to make sure the overall outcome makes sense? Abstract argumen-

tation theory selects arguments purely on the basis of the topology of

the graph, without looking at their actual contents. In particular, these

contents can have a logical form (as is the case for instance in aba [Toni,

2014], aspic+ [Modgil and Prakken, 2014] and logic-based argumenta-

tion [Gorogiannis and Hunter, 2011]). The question is how to make sure

that the overall conclusions yielded by the formalism are consistent or

satisfy any other desirable property. This is a crucial research issue:

chapter 15 will present some key desirable properties as well as some of

the approaches for satisfying them.

To complete this introduction, it is worth mentioning again that while infer-

ence from a knowledge base is an important domain for abstract argumentation

theory, a wider range of applications can be found in the literature, ranging

from decision making [Amgoud, 2009] to topics like coalition formation and the

stable marriage problem [Dung, 1995]. It is also fair to mention that in the

literature there are also formalisms for argument-based reasoning, like DeLP
[Garćıa and Simari, 2004], which adopt alternative approaches with respect to

abstract argumentation theory for the assessment of argument acceptance.

The remaining part of this chapter is structured as follows. First, in Section

2 we formally describe the notion of an argumentation framework and present

some relevant basic concepts.

Then in Section 3 we present some relatively well-known and well-established

argumentation semantics, both in terms of argument extensions and in terms

of argument labellings. In Section 4 we provide a comprehensive treatment

of the notions of argument justification and skepticism, including skepticism

comparison between the reviewed semantics, while in Section 5 we discuss the

issue of semantics agreement. Finally Section 6 provides a brief summary and

concludes the chapter.

2 Basic concepts

Central to the theory of abstract argumentation is the notion of an argumenta-
tion framework, which, as mentioned in Section 1, is essentially a directed graph

in which the arguments are represented by the nodes and the attack relation

is represented by the arrows2. Given the tutorial nature of this chapter, we

keep the presentation simple by restricting ourselves to finite argumentation

frameworks, while briefly mentioning non-finite frameworks where appropri-

ate. The reader may refer to chapter 17 for a coverage of properties of infinite

argumentation frameworks.

2
In Dung’s theory, attack is a one-to-one relationship, which deviates from earlier work

of, for instance, [Vreeswijk, 1993] which is centered around the notion of collective attack,
meaning that a set of arguments is collectively attacking another argument.
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a b c

Figure 3. A simple argumentation framework

Definition 2.1 An argumentation framework is a pair ⟨Ar , att⟩ in which Ar
is a finite set of arguments and att ⊆ Ar ×Ar.

We say that argument a ∈ Ar attacks argument b ∈ Ar (or that a is an

attacker of b) iff (a, b) ∈ att . If Args ⊆ Ar and a ∈ Ar then we say that

a attacks Args iff there exists b ∈ Args such that a attacks b. Likewise, we

say that Args attacks a iff there exists b ∈ Args such that b attacks a. For

a ∈ Ar then we write a− for {b | (b, a) ∈ att} and a+ for {b | (a, b) ∈ att}.
Likewise, for Args ⊆ Ar we write Args− for {b | ∃a ∈ Args : (b, a) ∈ att}
and Args+ for {b | ∃a ∈ Args : (a, b) ∈ att}. All these notions refer to a given

argumentation framework, which is left implicit in the relevant notation for the

sake of simplicity and conciseness.

We will also need to consider the restriction of an argumentation framework

to a subset of its arguments.

Definition 2.2 Given an argumentation framework AF = ⟨Ar , att⟩ and a set
of arguments Args ⊆ Ar, the restriction of AF to Args, denoted as AF↓Args

is the argumentation framework ⟨Args, att ∩ (Args ×Args)⟩.
An argumentation framework encodes, through the attack relation, the ex-

isting conflicts within a set of arguments. It is then interesting to identify the

conflict outcomes, which, roughly speaking, means determining which argu-

ments should be accepted (let’s say, “survive the conflict”) and which argu-

ments should be rejected (let’s say, “are defeated in the conflict”), according

to some reasonable criterion.

Consider for instance the argumentation framework depicted in Figure 3.

Which arguments are able to survive the conflict? Is there only one possibility

or are there several solutions available? While the reader may resort to her/his

personal intuition to devise a specific answer in this simple case, it appears that

a well-defined systematic method is needed to deal with the case of arbitrarily

complex argumentation frameworks: such a formal method to identify conflict

outcomes for any argumentation framework is called argumentation semantics.

Two main approaches to the definition of argumentation semantics are avail-

able in the literature: the labelling-based approach and the extension-based
approach.

The idea underlying the labelling-based approach is to give each argument a

label. A sensible (though not the only possible) choice for the set of labels is: in,

out or undec, where the label in means the argument is accepted, the label out

means the argument is rejected and the label undec means one abstains from

an opinion on whether the argument is accepted or rejected. Each argument
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then gets exactly one label. In Figure 3, one might start assigning the label in

to argument a, as it does not receive attacks, then derive that the argument

b should be out. Then the attack from b to c can be considered ineffective

or, in other words, it can be said that a defends c against b and one can

assume that c should be in in turn. While this labeling may sound reasonable,

other choices are, at least in principle, available: e.g. one might assign all

arguments the label in, but this seems incompatible with the existence of

conflicts among them, or one might assign all arguments the label undec, but

this seems excessively cautious at least as far as the unattacked argument a is

concerned. Thus, a specific labelling-based argumentation semantics provides

a way to select “reasonable” labellings among all the possible ones, according

to some criterion embedded in its definition.

The idea underlying the extension-based approach is to identify sets of ar-

guments, called extensions, which can survive the conflict together and thus

represent collectively a reasonable position an autonomous reasoner might take.

To illustrate how one could use an incremental procedure for extension con-

struction, in Figure 3 one might start including the argument a, as it does not
receive attacks, then exclude the argument b, and then assume that c should be

included in turn, ending up with the extension {a, c}. Also in this case other

choices are available, at least in principle: e.g. one might consider the exten-

sion {a, b, c}, but (again) this seems incompatible with the existing conflicts

among arguments, or one might consider the empty set as extension, but this

seems excessively cautious since at least a seems to deserve inclusion in any

extension. Thus, a specific extension-based argumentation semantics provides

a way to select “reasonable” sets of arguments among all the possible ones,

according to some criterion embedded in its definition.

Let us now turn to the formal counterpart of the notions exemplified above.

A generic labelling assigns to each argument of an argumentation framework

a label taken from a predefined set.

Definition 2.3 Let AF = ⟨Ar , att⟩ be an argumentation framework and Λ a
set of labels. A Λ−labelling is a total function Lab : Ar −→ Λ. The set of all
Λ−labellings of AF is denoted as L(Λ, AF ).

A labelling-based semantics prescribes a set of labellings for any argumen-

tation framework.

Definition 2.4 Given an argumentation framework AF = ⟨Ar , att⟩ and a
set of labels Λ, a labelling-based semantics σ associates with AF a subset of
L(Λ, AF ), denoted as Lσ(AF ).

We will also need the notion of restriction of a labelling to a set of arguments.

Definition 2.5 Given an argumentation framework AF = ⟨Ar , att⟩, a set of
labels Λ, a Λ−labelling Lab, and a set of arguments Args ⊆ Ar, the restriction

of Lab to Args, denoted as Lab↓Args is defined as Lab ∩ (Args × Λ).
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In this chapter we focus on the case Λ = {in, out, undec}, a sensible choice

for Λ which has received considerable attention in the literature [Caminada,

2006a; Caminada, 2007a; Rahwan and Larson, 2008; Caminada and Gabbay,

2009; Caminada and Pigozzi, 2011; Rahwan and Tohmé, 2010]. An alternative

approach can be found in [Jakobovits and Vermeir, 1999], where a four-valued

labelling is considered. The idea of labelling can also be put in correspondence

with the notion of status assignment in inference graphs [Pollock, 1995]. A

first investigation of the connections between defeat status assignments and

extensions in Dung’s argumentation frameworks was provided in [Verheij, 1996].

We will implicitly assume the use of Λ = {in, out, undec}, when the refer-

ence to the label set is omitted. In particular, given a labelling Lab, we write

in(Lab) for {a | Lab(a) = in}, out(Lab) for {a | Lab(a) = out} and undec(Lab)
for {a | Lab(a) = undec}. A labelling can be represented as a set of pairs. For

instance, the first labelling exemplified above for Figure 3 can be described as

{(a, in), (b, out), (c, in)}. Sometimes we will also represent a labelling Lab as

the triple (in(Lab), out(Lab), undec(Lab)). The same labelling for Figure 3 can

thus be represented as ({a, c}, {b}, ∅).
Turning to the extension-based approach, since an extension is just a set of

arguments, the definition of extension-based semantics is quite simple and does

not require preliminary notions.

Definition 2.6 An extension-based semantics σ associates with any argumen-
tation framework AF = ⟨Ar , att⟩ a subset of 2Ar , denoted as Eσ(AF ).

Some observations about the relations between the labelling and extension-

based approaches are worth remarking. First, as set membership can be formu-

lated in terms of a simple binary labelling, e.g. with Λ = {∈, /∈}, the extension-
based approach can be regarded as a special case of the general labelling-based

approach. The latter is therefore more general, while the former, probably due

to its simplicity, has received by far more attention in previous literature.

Considering the three-valued labelling we focus on in this chapter, a corre-

spondence with the extension-based approach can be drawn, so that a semantics

based on this labelling can be turned into an extension-based one through a

simple mapping. In fact, given a labelling of an AF , the labels in can be under-

stood as identifying the members of an extension. This kind of correspondence

can be easily identified in the example concerning Figure 3 described above

and is formally expressed by the following definitions.

Definition 2.7 Given an argumentation framework AF = ⟨Ar , att⟩ and a
labelling Lab the corresponding set of arguments Lab2Ext(Lab) is defined as
Lab2Ext(Lab) = in(Lab).

Definition 2.8 Given an argumentation framework AF = ⟨Ar , att⟩ and a
labelling-based semantics σ, the set of extensions corresponding to Lσ(AF ) is
given by Eσ(AF ) = {Lab2Ext(Lab) | Lab ∈ Lσ(AF )}.
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a b

Figure 4. An argumentation framework with mutual attack

On the other hand, given a set of arguments E it is possible to define a

corresponding three-valued labelling by distinguishing the arguments belonging

to E, those attacked by some member of E, and those which neither belong

to E nor are attacked by E. As this correspondence is well-defined only if

E satisfies some basic conditions, we defer its formal definition to Section 3.1

(Definition 3.6).

We now introduce some notions which are common to both approaches.

First it can be noted that both approaches encompass (in general) the ex-

istence of a set of alternatives (either labellings or extensions) for a single

argumentation framework. It may be the case, however, that a semantics σ
is defined so that a univocal outcome is prescribed for each argumentation

framework (formally for any argumentation framework AF , |Lσ(AF )| = 1 or

|Eσ(AF )| = 1). In this case, the semantics is said to belong to the unique-status
(or single-status) approach, while in the general case it is said to belong to the

multiple-status approach.

Consider the argumentation framework of Figure 4 representing a mutual

attack. A unique-status approach may prescribe the {(a, undec), (b, undec)} la-
belling or analogously a single empty extension, corresponding to an explicit ab-

stention from decision. On the other hand, a multiple-status approach may en-

compass the two alternative labellings {(a, in), (b, out)} and {(a, out), (b, in)}
or analogously the extensions {a} and {b}, corresponding to two opposite ways

of solving the conflict.

As evident from the previous example, a semantics σ does not provide, in

general, the “last word” about the status of an argument a. In fact σ may

prescribe both a labelling where a is labelled in and another where a is labelled

out (or, analogously, an extension including a and another one not). In the view

of producing a synthetic evaluation for each argument, one has then to consider

questions like “Is being in in all labellings significantly different from being in

only in some of them?” or “If an argument is not in in all labellings should it

being labelled out or undec in the remaining labellings make some difference?”.

Analogous questions may arise for the extension-based approach. It emerges

that the assessment of a synthetic justification status for each argument of an

argumentation framework is a further distinct (and not trivial) step after the

identification of labellings or extensions. This will be dealt with in Section 4.
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3 An Overview of Argumentation Semantics

In this section we provide an overview of some well-known argumentation se-

mantics, starting from the very basic notion of “näıve semantics” and then dis-

cussing Dung’s original concepts of complete, stable, preferred and grounded

semantics [Dung, 1995], as well as the subsequently introduced ideal [Dung

et al., 2007], semi-stable [Verheij, 1996; Caminada, 2006b] and eager [Cami-

nada, 2007b] semantics.3 These semantics can be considered as mainstream,

since they share a basic property called admissibility and have been subject to

much study, including the specification of proof procedures and of properties

regarding computational complexity. We also treat three additional semantics,

namely stage [Verheij, 1996], CF2 [Baroni et al., 2005b] and stage2 [Dvořák and

Gaggl, 2012b; Dvořák and Gaggl, 2012a; Dvořák and Gaggl, 2016] semantics.

Unlike the other semantics considered in this chapter, stage, CF2 and stage2 se-

mantics are not admissibility-based, but they have quite unique characteristics

that make them worthwhile to examine.

The presentations of the various semantics roughly follow a common line.

First, the underlying intuitive idea is introduced, then the semantics formal

definition is given according to both the labelling and the extension-based ap-

proach, and finally the presentation is completed by discussing illustrative

examples and examining additional important formal properties and inter-

semantics relationships. We do not deal with algorithmic or implementation

issues in this chapter, as this matter is extensively treated in chapter 14. How-

ever, without any claim of providing an adequate coverage of the state of the

art, in some places we will mention some algorithms and the relevant literature

sources which, in our opinion, represent useful readings to get a further insight

on the nature and behaviour of the considered semantics. Each semantics is

denoted by a short abbreviation for easy reference. As for examples, the rela-

tively simple ones provided in Figures 5-7 will be used as a common reference

throughout this section, adding other more specific and/or complex ones where

necessary. We invite the reader to give a look to Figures 5-7 in order to set up

a “personal view” on how the conflict they encode might be resolved, and then

comparing this view with those emerging from the various semantics proposals

analyzed in the following. Before dealing directly with semantics we need how-

ever to examine (in the next subsection) two general properties, which underlie

most of them, namely admissibility4 and conflict-freeness.

3.1 Admissibility and conflict-freeness

To introduce the notion of admissibility let us start from a very simple principle:

for every argument a one accepts (or rejects) one should be able to explain why

3
Please notice that terms like “preferred semantics” or “ideal semantics” correspond to

existing terminology in the literature and do not imply any value judgements.
4
Admissibility has been introduced as a semantic property, not as a semantics in [Dung,

1995]. In the subsequent literature, however, the term admissible semantics has often been

used. We will also refer to admissible semantics later in the chapter where convenient for

presentation purposes.
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ba c d

Figure 5. An argumentation framework with unidirectional and mutual attacks

a

b
c d

Figure 6. The case of “floating” acceptance

b

a

c

Figure 7. Cycle of three attacking arguments
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it is accepted (or rejected), taking into account the acceptance or rejection of

other arguments connected to a through the attack relation. This concept lends

itself to slightly different, though converging, realisations in the labelling and

in the extension-based approach.

In the labelling-based approach, assigning the in label to an argument a
can be explained by having assigned the out label to all its attackers (or by a
being attacked by no argument) so that a is not affected by any attack, while

assigning the out label to a can be explained by having assigned the in label

to one of its attackers, which enables a to be rejected.

This is expressed by the following definitions.

Definition 3.1 Let Lab be a labelling of argumentation framework ⟨Ar , att⟩.

• An in-labelled argument is said to be legally in iff all its attackers are
labelled out.

• An out-labelled argument is said to be legally out iff it has at least one
attacker that is labelled in

Definition 3.2 Let AF = ⟨Ar , att⟩ be an argumentation framework. An ad-

missible labelling is a labelling Lab where each in-labelled argument is legally
in and each out-labelled argument is legally out.

Note that, according to this definition, for any argumentation framework a

labelling where all arguments are undec is admissible. Let us now examine

admissible labellings in the reference examples. Considering Figure 5, it is

evident that a, having no attackers, can only be labelled legally in or undec.

Considering the latter case, b can only be labelled undec, which implies that

c cannot be legally in. If c is labelled undec then d is undec too, otherwise

c is labelled out entailing that d is labelled in. This yields two admissible

labellings, the trivial one (∅, ∅, {a, b, c, d}) and ({d}, {c}, {a, b}). The case where
a is labelled in leaves two alternatives for b. If b is labelled undec we have

the same options as above for c and d yielding the two additional admissible

labellings ({a}, ∅, {b, c, d}) and ({a, d}, {c}, {b}). Finally if b is labelled out,

three alternatives are left open for c and d: they can be both labelled undec or

c can be legally labelled in if d is labelled out and vice versa, yielding other

three labellings: ({a}, {b}, {c, d}), ({a, c}, {b, d}, ∅), ({a, d}, {b, c}, ∅).
In Figure 6, with a similar reasoning as in the previous example it can be

noted that a and b can be both labelled undec or one in and the other out.

The first case yields only the trivial labelling (∅, ∅, {a, b, c, d}), in the other

cases c may be labelled undec, yielding d undec, or out leaving for d both the

options undec and in. Altogether there are seven admissible labellings whose

enumeration is left to the reader (see Table 2 later).

In Figure 7 no admissible labellings besides the trivial one (∅, ∅, {a, b, c})
are possible, since no argument defends itself and every argument attacks the
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b2

b3

b1
Args

a

c1

c2

c3

Figure 8. Args defends argument a

argument which would defend it: for instance a would need a defense against c
but attacks its potential defender b, and similarly for the other two arguments.

Turning now to the extension-based approach, the inclusion of an argument

a in an extension E can be supported by the fact that E rules out all the

attackers of a by in turn attacking them (if any). To put it in other words, E
“defends” a. This is formalized in the following definitions.

Definition 3.3 Let AF = ⟨Ar , att⟩ be an argumentation framework and Args ⊆
Ar. The set Args defends5 a ∈ Ar iff ∀b ∈ a−∃c ∈ Args : c attacks b. The
function FAF : 2Ar −→ 2Ar such that FAF (Args) = {a | Args defends a} is
called the characteristic function of AF .

An example of defense is given in Figure 8. Here we have an argument a
that has three attackers: b1, b2 and b3. Args defends a because it attacks all

these attackers.

Having introduced the notion of defense, a basic requirement for a set of

arguments is the capability to defend all its elements. It is however natural to

also require that the set of arguments features some sort of “internal coherence”:

no conflict should be allowed within a set of arguments which are considered

able to survive the conflict together. This leads to the definition of conflict-free

set.

Definition 3.4 Let AF = ⟨Ar , att⟩ be an argumentation framework and Args ⊆
Ar. The set Args is conflict-free iff ¬∃a, b ∈ Args : a attacks b.

Note that this definition also rules out sets containing self-attacking (also

called self-defeating) arguments (in the case a = b).

5
The original terminology in [Dung, 1995] was that an argument a is acceptable w.r.t.

a set of arguments Args. However, the more intuitive expression that an argument a is

defended by a set of arguments Args is commonly used in the literature and we prefer it.
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Admissible labellings Admissible sets

{(a, undec), (b, undec), (c, undec), (d, undec)} ∅
{(a, undec), (b, undec), (c, out), (d, in)} {d}
{(a, in), (b, undec), (c, undec), (d, undec)} {a}
{(a, in), (b, undec), (c, out), (d, in)} {a, d}
{(a, in), (b, out), (c, undec), (d, undec)} {a}
{(a, in), (b, out), (c, in), (d, out)} {a, c}
{(a, in), (b, out), (c, out), (d, in)} {a, d}

Table 1. Admissibile labellings and sets in the example of Figure 5

An admissible set [Dung, 1995] is required to be both internally coherent

and able to defend its elements.

Definition 3.5 Let AF = ⟨Ar , att⟩ be an argumentation framework. A set
Args ⊆ Ar is called an admissible set iff Args is conflict-free and Args ⊆
FAF (Args). The set of admissible sets of AF is denoted as AS(AF ).

As evident from this definition, the empty set is admissible for any argu-

mentation framework. Apart from this trivial case, let us examine conflict-free

and admissible sets in the reference examples. Considering Figure 5, one can

observe that the non empty conflict-free sets are {a}, {b}, {c}, {d}, {a, c},
{a, d}, {b, d}. Among them, {a}, having no attackers, is admissible (actually

FAF ({a}) = {a}). The sets {b} and {c} are not admissible (b does not defend
itself from a and c does not defend itself from b), while {d} is, as it defends

itself from c (in particular FAF ({d}) = {a, d}). Moreover the sets {a, c} and

{a, d} are admissible (in the former case c defends itself from the attack by d
and is defended by a against b, in the latter both a and d are able to defend

themselves), while {b, d} is not (a defense for b against a is lacking). Applying

analogous considerations in Figure 6, it can be seen that the non empty ad-

missible sets are {a}, {b}, {a, d} and {b, d}. On the other hand, in Figure 7

only the empty set is admissible since the non empty conflict-free sets are just

the singletons {a}, {b}, {c} but no argument defends itself from the attack it

receives.

As probably noticed by the reader, the above examples point out a corre-

spondence between admissible labellings and admissible sets (see an overview

in Tables 1 and 2 for the two more articulated examples).

Before stating this correspondence in the general case, we need to provide

the mapping from sets of arguments to labellings that was not introduced in

previous section since it is well-defined only for conflict-free sets of arguments6.

6
If a set Args of arguments is not conflict-free Args ∩ Args+ is not empty, i.e. some

argument would be labelled both in and out according to Ext2Lab(Args).
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Admissible labellings Admissible sets

{(a, undec), (b, undec), (c, undec), (d, undec)} ∅
{(a, in), (b, out), (c, undec), (d, undec)} {a}
{(a, in), (b, out), (c, out), (d, undec)} {a}
{(a, in), (b, out), (c, out), (d, in)} {a, d}
{(a, out), (b, in), (c, undec), (d, undec)} {b}
{(a, out), (b, in), (c, out), (d, undec)} {b}
{(a, out), (b, in), (c, out), (d, in)} {b, d}

Table 2. Admissibile labellings and sets in the example of Figure 6

The idea is that the members of the set are labelled in, the arguments attacked

by the set are labelled out and the remaining arguments are labelled undec.

Definition 3.6 Given an argumentation framework AF = ⟨Ar , att⟩ and a
conflict-free set Args ⊆ Ar the corresponding labelling Ext2Lab(Args) is de-
fined as Ext2Lab(Args) = (Args,Args+,Ar \ (Args ∪ Args+)).

Let us call an extension-based semantics conflict-free if each of its exten-

sions is a conflict-free set. We can then extend the above definition to sets of

extensions.

Definition 3.7 Given an argumentation framework AF = ⟨Ar , att⟩ and a
conflict-free extension-based semantics σ, the set of labellings corresponding
to Eσ(AF ) is given by Lσ(AF ) = {Ext2Lab(E) | E ∈ Eσ(AF )}.

The correspondence between admissible labellings and admissible sets stated

by Proposition 3.8 has been proved in [Caminada and Gabbay, 2009].

Proposition 3.8 For any argumentation framework AF = ⟨Ar , att⟩

• if Args is an admissible set then Ext2Lab(Args) is an admissible labelling;

• if Lab is an admissible labelling then Lab2Ext(Lab) is an admissible set.

It can be noted that the correspondence is not bijective, since different admis-

sible labellings may give rise to the same admissible set. For instance, in the ar-

gumentation framework of Figure 5 both ({a}, {b}, {c, d}) and ({a}, ∅, {b, c, d})
are admissible labellings, whose set of in-labelled arguments yields the same

admissible set {a}.
To complete the correspondence it is also possible to define a notion of a

conflict-free labelling which parallels the one of conflict-free set7.

7
We use the Definition of [Caminada, 2011]. Note that clause 2. is needed for defining

stage labellings (see Section 3.9).
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Definition 3.9 Let Lab be a labelling of an argumentation framework AF =

(Ar , att). Lab is conflict-free iff for each a ∈ Ar it holds that:

1. if a is labelled in then it does not have an attacker that is labelled in

2. if a is labelled out then it has at least one attacker that is labelled in

When comparing a conflict-free labelling to an admissible labelling it can

be noticed that the condition on out labelled arguments (second bullet) is

essentially the same. However, the condition for in-labelled arguments (first

bullet) is weaker for conflict-free labellings than for admissible labellings. It

then follows that every admissible labelling is also a conflict-free labelling (just

like every admissible set is also a conflict-free set by definition).

Finally, it is worth recalling that admissibility and defense are related by

a basic property. In terms of extensions, if an admissible sets defends an

argument, it is possible to add the argument to the set while preserving its

admissibility and its capability to defend any other argument. This was proved

in the so called Dung’s Fundamental Lemma [Dung, 1995] recalled below.

Lemma 3.10 For any argumentation framework AF = ⟨Ar , att⟩, let Args be
an admissible set and a, b be arguments defended by Args. Then

1. Args ′ = Args ∪ {a} is an admissible set;

2. b is defended by Args ′.

Apart from admissibility as commonly applied in the literature, there also

exists the related concept of strong admissibility [Baroni and Giacomin, 2007b;

Caminada, 2014]. In order to describe this, we first need to introduce the

concept of a min-max numbering. Basically, what a min-max numbering does

is to assign to each in or out-labelled argument a natural number (or ∞) such

that the min-max number of each in-labelled argument becomes the maximal

value of its out-labelled attackers, plus one, and the min-max value of each

out-labelled argument becomes the minimal value of its in-labelled attackers,

plus one.

Definition 3.11 Let Lab be an admissible labelling of argumentation frame-
work ⟨Ar , att⟩. A min-max numbering is a total functionMMLab : in(Lab) ∪
out(Lab)→ N ∪ {∞} such that for each a ∈ in(Lab) ∪ out(Lab) it holds that:

• if Lab(a) = in then MMLab(a) = max({MMLab(b) | b attacks a and
Lab(b) = out}) + 1 (with max(∅) defined as 0)

• if Lab(a) = out then MMLab(a) = min({MMLab(b) | b attacks a and
Lab(b) = in}) + 1 (with min(∅) defined as ∞)
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It can be proved that each admissible labelling Lab has a unique min-max

labellingMMLab [Caminada, 2014]. As an example of a min-max numbering,

take the argumentation framework of Figure 5 and admissible labelling Lab =

({a, c}, {b, d}, ∅). Argument a is labelled in and does not have any attackers.

Hence,MMLab(a) = 1 (as max(∅) = 0). Argument b is labelled out and has

only one attacker that is labelled in (a), whose min-max value we have just

determined to be 1. Hence, MMLab(b) = 2. For argument c the situation is

more complex, as it has two attackers (b and d) and we have determined the

min-max value of only one of these (MMLab(b) = 2). This means we first

need to “guess” the min-max number of d in order to determine the min-max

number of c. If we would for instance guess the min-max number of d as 2,

then c will be assigned the min-max number of 3, which then implies that d
should actually have been assigned a min-max number of 4 (contradiction). It

can be verified that whatever natural number we initially assign as a min-max

value to d, the number will later turn out to be too small. The only solution

is to assign both c and d not with a natural number but with ∞. In that case,

MMLab(c) = max({2,∞}) + 1 = ∞ andMMLab(d) = max({∞}) + 1 = ∞,

thus satisfying the constraints of a min-max numbering.

We are now ready to provide the definition of a strongly admissible labelling.

Definition 3.12 A strongly admissible labelling is an admissible labelling whose
min-max numbering yields natural numbers only (so no argument is numbered
∞).

From Definition 3.12 it directly follows that every strongly admissible la-

belling is also an admissible labelling. Apart from applying the labelling-based

approach, it is also possible to express strong admissibility using the extension-

based approach [Baroni and Giacomin, 2007b; Caminada, 2014].

Definition 3.13 Let ⟨Ar , att⟩ be an argumentation framework. Args ⊆ Ar is
strongly admissible iff every a ∈ Args is defended by some Args ′ ⊆ Args \ {a}
which is strongly admissible.

The basis of this recursive definition is given by the facts that the empty

set is strongly admissible and that unattacked arguments are defended by the

empty set. Intuitively, the defense of every argument in a strongly admissible

set is “rooted” in an unattacked argument (a notion called strong defense in
[Baroni and Giacomin, 2007b]). In case there are no unattacked arguments in

a framework, the empty set is its only strongly admissible set.

It can be proved that each strongly admissible set is conflict free and admis-

sible [Baroni and Giacomin, 2007b; Caminada, 2014]. As an example, consider

again the argumentation framework of Figure 5. The set {a} is strongly admis-

sible, because a is defended by ∅ (and ∅ ⊆ {a} \ {a}) which is trivially strongly

admissible since it has no elements. Also, the set {a, c}, although admissible,

is not strongly admissible. This is because no subset of {a, c} \ {c} can defend

c against d. Correspondence between strongly admissible sets and strongly
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admissible labellings can be established through the functions Ext2Lab and

Lab2Ext.

Proposition 3.14 For any argumentation framework AF = ⟨Ar , att⟩

• if Args is a strongly admissible set then Ext2Lab(Args) is a strongly
admissible labelling;

• if Lab is a strongly admissible labelling then Lab2Ext(Lab) is a strongly
admissible set.

It can be noted that the correspondence is not bijective, since different

strongly admissible labellings may give rise to the same strongly admissible set.

For instance, in the argumentation framework of Figure 5 both ({a}, {b}, {c, d})
and ({a}, ∅, {b, c, d}) are strongly admissible labellings, whose set of in-labelled

arguments yields the same strongly admissible set {a}.
Finally, an equivalent non-recursive characterisation for finite strongly ad-

missible sets has been provided in [Baumann et al., 2016] and is recalled in the

Proposition 3.15.

Proposition 3.15 Let ⟨Ar , att⟩ be an argumentation framework and Args ⊆
Ar a finite set of arguments. Args is strongly admissible iff there are finitely
many and pairwise disjoint sets Args1, . . .Argsn such that Args =

∪
1≤i≤nArgsi,

Args1 ⊆ FAF (∅) and for every 1 ≤ j ≤ n− 1 Argsj+1 ⊆ FAF (
∪

1≤i≤j Argsi).
In words, a strongly admissible set can be constructed starting from a set

of unattacked arguments Args1 and then adding iteratively further arguments

which are defended by those already included in the set.

3.2 Näıve semantics

Näıve semantics (denoted as NA) corresponds to selecting as many arguments

as possible, provided that there are no attacks among them. It is a sort of

greedy strategy, driven by the only criterion of avoiding conflicts. Formally it

corresponds to requiring conflict-freeness together with a maximality property

and can be easily expressed in both the labelling-based and extension-based

approach.

Definition 3.16 Let Lab be a labelling of an argumentation framework ⟨Ar , att⟩.
Lab is a näıve labelling iff it is a conflict-free labelling whose set of in-labelled
arguments is maximal (w.r.t. set inclusion) with respect to all conflict-free
labellings.

Definition 3.17 Let ⟨Ar , att⟩ be an argumentation framework. A set Args ⊆
Ar is called a näıve extension iff Args is a maximal conflict-free set.

It can immediately be observed from the definitions above that näıve se-

mantics ignores the direction of attacks, which makes it very simple but at the
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same time rather poor, since it overlooks an essential information carried by

the formalism.

Let us illustrate näıve semantics with an example8.

In Figure 5, there are nineteen conflict-free labellings, including for instance

(∅, ∅, {a, b, c, d}), ({a}, ∅, {b, c, d}), ({d}, {c}, {a, b}) and many others. Among

them, there are four näıve labellings with set of in-labelled arguments {a, c},
namely ({a, c}, ∅, {b, d}), ({a, c}, {b}, {d}), ({a, c}, {d}, {b}), ({a, c}, {b, d}, ∅),
four näıve labellings where the set of in-labelled arguments is {a, d}, namely

({a, d}, ∅, {b, c}), ({a, d}, {b}, {c}), ({a, d}, {c}, {b}), ({a, d}, {b, c}, ∅), and two

näıve labellings with set of in-labelled arguments {b, d}, namely ({b, d}, ∅, {a, c})
and ({b, d}, {c}, {a}).

In the same example, there are eight conflict-free sets of arguments, namely

∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}. Clearly only {a, c}, {a, d}, {b, d} are
maximal, i.e. näıve extensions.

From the example it emerges clearly that the relationships between näıve la-

bellings and näıve extensions is in general many-to-one: many näıve labellings

may correspond to the same näıve extension and each näıve extension corre-

sponds to at least one, and in general many, näıve labellings.

Proposition 3.18 For any argumentation framework ⟨Ar , att⟩, if Lab is a
näıve labelling there is a näıve extension Args such that Args = Lab2Ext(Lab).
If Args is a näıve extension then Ext2Lab(Args) is a näıve labelling.

3.3 Complete Semantics

Complete semantics (CO) can be regarded as a strengthening of the basic re-

quirements enforced by the idea of admissibility. Intuitively, while admissibility

requires one to be able to give reasons for accepted and rejected arguments but

leaves one free to abstain on any argument, complete semantics requires one to

abstain only if there are no good reasons to do otherwise. That is, if one ab-

stains from having an opinion on whether the argument is accepted or rejected,

then one should have insufficient grounds to accept the argument (meaning that

not all its attackers are rejected) and insufficient grounds to reject the argu-

ment (meaning that it does not have an attacker that is accepted). Note in

particular that, while the trivial solution of leaving anything undecided is al-

ways admissible, it is not always complete since there can be arguments one

has good reasons not to abstain about.

In the labelling-based approach, the intuition described above corresponds

to extending Definition 3.1 in order to encompass a notion of an argument

being legally undecided.

8
A summary of the outcomes produced by all the semantics considered in this chapter on

all the examples presented in this section is given in Tables 5 and 6 at the end of the section.

For the sake of compactness, the summary is given in terms of extensions, the corresponding

labellings being derivable with the Ext2Lab function.
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Definition 3.19 Let Lab be a labelling of an argumentation framework ⟨Ar , att⟩.

• An undec-labelled argument is said to be legally undec iff not all its
attackers are labelled out and it doesn’t have an attacker that is labelled
in.

Definition 3.20 A complete labelling is a labelling where every in-labelled
argument is legally in, every out-labelled argument is legally out and every
undec labelled argument is legally undec.

It is clear from Definitions 3.20 and 3.2 that every complete labelling is an

admissible labelling (but the reverse does not hold in general).

An alternative characterisation of a complete labelling can be provided (a

formal proof can be found in [Caminada and Gabbay, 2009]).

Proposition 3.21 A labelling Lab of an argumentation framework (Ar , att) is
a complete labelling iff for each argument a ∈ Ar it holds that:

1. a is labelled in iff all its attackers are labelled out, and

2. a is labelled out iff it has at least one attacker that is labelled in.

Although Proposition 3.21 does not explicitly mention undec, it follows that

each argument that is labelled undec does not have all its attackers out (oth-

erwise it would have to be labelled in by point 1) and it does not have an

attacker that is labelled in (otherwise it would have to be labelled out by

point 2). Therefore, each undec-labelled argument is legally undec. Com-

paring Proposition 3.21 with Definition 3.5 one can appreciate the difference

between admissible and complete labellings from another perspective: in an

admissible labelling an argument can be labelled in only if all its attackers

are labelled out, but need not to be labelled in if this condition holds. In a

complete labelling an argument is labelled in if and only if all its attackers

are labelled out: thus complete labellings are more constrained and this corre-

sponds to the lesser freedom of abstaining mentioned at the beginning of this

section.

Turning to the extension-based approach, a complete extension is a conflict-

free set which includes precisely those arguments it defends. That is, if an

argument is defended by the set it should be in the set, and if an argument is

not defended by the set, it should not be in the set. Technically this means that

a complete extension is a conflict-free fixed point of the characteristic function,

as stated in the following definition [Dung, 1995].

Definition 3.22 Let AF = ⟨Ar , att⟩ be an argumentation framework. A set
Args ⊆ Ar is called a complete extension iff Args is conflict-free and Args =

FAF (Args).
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Fig. # Members of LCO(AF ) Members of ECO(AF )

Fig. 5
{(a, in), (b, out), (c, undec), (d, undec)}
{(a, in), (b, out), (c, in), (d, out)}
{(a, in), (b, out), (c, out), (d, in)}

{a}
{a, c}
{a, d}

Fig. 6
{(a, undec), (b, undec), (c, undec), (d, undec)}
{(a, in), (b, out), (c, out), (d, in)}
{(a, out), (b, in), (c, out), (d, in)}

∅
{a, d}
{b, d}

Fig. 7 {(a, undec), (b, undec), (c, undec)} {∅}

Table 3. Complete labellings and extensions in the examples of Figures 5- 7

It is clear from Definitions 3.22 and 3.5 that every complete extension is an

admissible set (but the reverse does not hold in general).

Let us now provide some examples to illustrate the notion of complete seman-

tics. In Figure 5, one can observe that, among the seven admissible labellings,

only ({a}, {b}, {c, d}), ({a, c}, {b, d}, ∅), and ({a, d}, {b, c}, ∅) are complete. In

particular, note that a is legally in in all labellings because all its attackers

are out (trivially, because it has no attackers). b is legally out in all labellings

because it has an attacker (a) that is in. On the other hand, c and d can be

both legally undec, or one legally in and the other legally out. Analogously,

in the same figure it can be noted that {a} is a complete extension (a has no

attackers and is therefore trivially defended by any set, a defends c from b but
not from d), and {a, c} and {a, d} are complete extensions too.

In Figure 6, the trivial labelling (∅, ∅, {a, b, c, d}) is complete, as well as

({a, d}, {b, c}, ∅) and ({b, d}, {a, c}, ∅). Analogously, ∅ is a complete extension

(no unattacked arguments exist, which would be the only arguments defended

by the empty set) as well as {a, d} and {b, d}, while {a} and {b} are not

complete extensions since they both defend also argument d.

In Figure 7 the only complete labelling is the trivial one (∅, ∅, {a, b, c}) and
analogously the only complete extension is ∅ (as it was the case for admissible

labellings/sets).

As the above examples also show, there is a direct mapping between com-

plete labellings and complete extensions: it has been proved in [Caminada and

Gabbay, 2009] that this correspondence is bijective, as stated in the following

proposition.

Proposition 3.23 For any argumentation framework AF = ⟨Ar , att⟩, Lab is
a complete labelling iff there is a complete extension Args such that Lab =

Ext2Lab(Args).

Table 3 shows this correspondence on the examples discussed above.
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3.4 Grounded Semantics

If one regards each complete labelling (or complete extension) as a reasonable

position one can take in the presence of the conflicting information expressed

in the argumentation framework, then a possible question is to examine what is

the most “grounded” position one can take, namely the position which is least

questionable. The idea is then to accept only the arguments that one cannot

avoid to accept, to reject only the arguments that one cannot avoid to reject,

and abstaining as much as possible. This gives rise to the most skeptical (or

least committed) semantics among those based on complete extensions, namely

the grounded semantics (GR).
This idea has a straightforward formal counterpart in terms of a minimality

requirement9.

Definition 3.24 Let AF = ⟨Ar , att⟩ be an argumentation framework. The
grounded labelling of AF is a complete labelling Lab where in(Lab) is mini-
mal (w.r.t. set inclusion), i.e. there is no complete labelling Lab′ such that
in(Lab′) ( in(Lab).

Definition 3.25 Let AF = ⟨Ar , att⟩ be an argumentation framework. The
grounded extension of AF is a minimal (w.r.t. set inclusion) complete exten-
sion of AF (i.e. a minimal conflict-free fixed point of the characteristic function
FAF ).

As we have already seen complete labellings and extensions in the exam-

ples of Figures 5-7, one can easily identify those featuring the minimality

property required by the above definitions. In the example of Figure 5, the

grounded labelling is ({a}, {b}, {c, d}) while the grounded extension is {a}. In
both Figures 6 and 7 the grounded labelling is the trivial one ((∅, ∅, {a, b, c, d})
and (∅, ∅, {a, b, c}) respectively), and analogously the grounded extension is the

empty set in both cases.

The uniqueness of the grounded labelling and extension in these examples is

not accidental. Considering the grounded extension, since FAF is monotonic it

follows from the Knaster-Tarski theorem that FAF has a unique smallest fixed

point. It can then be proved that this fixed point is also conflict-free [Dung,

1995].

Proposition 3.26 For any argumentation framework AF = ⟨Ar , att⟩, the fol-
lowing statements are equivalent:

1. Args is a minimal conflict-free fixed point of FAF

2. Args is the smallest fixed point of FAF

9
Definition 3.25 is not literally the same as the one originally given by [Dung, 1995]. We

provide this equivalent version as it is more coherent with our presentation line.
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It follows that:

• the grounded extension is unique (i.e. grounded semantics belongs to the

unique-status approach);

• the grounded extension is the least complete extension, in particular it is

included in any complete extension.

The grounded extension of an argumentation framework AF will be denoted

as GE(AF ).
In virtue of the one-to-one correspondence between complete extensions

and complete labellings established in Section 3.3, it can be proved that the

grounded labelling is unique and coincides with Ext2Lab(Args) where Args
is the grounded extension. Similarly, if Lab is the grounded labelling, then

Lab2Ext(Lab) is the grounded extension.

As a confirmation of the intuitive meaning stated at the beginning of the

section, it turns out that the grounded semantics can be described not only in

terms of minimizing acceptance. In fact, the complete labelling where in(Lab)
is minimal is also the complete labelling Lab where out(Lab) is minimal, and

the complete labelling Lab where undec(Lab) is maximal. This is stated in

Proposition 3.28, whose proof is based on Lemma 3.27 (see [Caminada, 2006a;

Caminada and Gabbay, 2009] for details).

Lemma 3.27 Given two complete labellings Lab1 and Lab2 of an argumenta-
tion framework ⟨Ar , att⟩, it holds that in(Lab1) ⊆ in(Lab2) iff out(Lab1) ⊆
out(Lab2).

Proposition 3.28 Let Lab be a complete labelling of an argumentation frame-
work ⟨Ar , att⟩. The following statements are equivalent.

1. Lab is the complete labelling where in(Lab) is minimal (w.r.t. set inclu-
sion)

2. Lab is the complete labelling where out(Lab) is minimal (w.r.t. set inclu-
sion)

3. Lab is the complete labelling where undec(Lab) is maximal (w.r.t. set
inclusion)

Given the bijective correspondence between complete labellings and com-

plete extensions, the above proposition can be equivalently formulated for the

extension-based approach.

Proposition 3.29 Let E be a complete extension of an argumentation frame-
work ⟨Ar , att⟩. The following statements are equivalent.

1. E is the least (w.r.t. set inclusion) complete extension
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2. E is the complete extension such that E+ is minimal (w.r.t. set inclusion)

3. E is the complete extension such that Ar \ (E ∪ E+) is maximal (w.r.t.
set inclusion)

There also exists a connection between grounded semantics and the concept

of strong admissibility [Baroni and Giacomin, 2007b; Caminada, 2014].

Theorem 3.30 Let AF = ⟨Ar , att⟩ be an argumentation framework. The
grounded extension of AF is the unique maximal (w.r.t set inclusion) strongly
admissible set of AF .

Finally, an interesting property proved in [Dung, 1995] provides a useful

“constructive” characterisation of grounded semantics10 for finite (and more

generally finitary11) argumentation frameworks.

Proposition 3.31 The grounded extension of any finitary argumentation frame-
work AF is equal to

∪
i=1,...,∞ Fi

AF (∅), where F1
AF (∅) = FAF (∅) and for i > 1

Fi
AF (∅) = FAF (F

i−1
AF (∅)).

On the basis of Proposition 3.31 the grounded labelling (or equivalently ex-

tension) can be obtained incrementally by first labelling in those arguments

which do not receive attacks. Then the arguments attacked by those labelled in

are labelled out. The same steps are iterated considering only those arguments

which have not been labelled yet, namely repeating the procedure on an argu-

mentation framework obtained by suppressing the already labelled arguments.

In particular, this corresponds to labelling in those unlabelled arguments which

only receive attacks from arguments labelled out, and then labelling out those

attacked by the newly labelled in arguments. The procedure is then iterated

until an iteration does not produce any newly in or out labelled argument.

Then, any still unlabelled arguments are labelled undec.

It can be noted that the first iteration corresponds to labelling in the ar-

guments in F1
AF (∅) and out the arguments attacked by F1

AF (∅), the second

iteration to labelling in the arguments in F2
AF (∅) and out the arguments at-

tacked by F2
AF (∅), and so on. This procedure can be applied to the examples

and provides another way to see that the grounded extension includes those

and only those arguments whose defense is “rooted” in unattacked arguments

and is the maximal strongly admissible set.

If the aim is not so much to compute the entire grounded extension (la-

belling) but merely to examine whether or not an argument is in the grounded

extension (labelled in by the grounded labelling) then one could also use the

proof procedures described in [Modgil and Caminada, 2009; Caminada, 2015].

10
Note that the characterisation of strongly admissible sets in Proposition 3.15 can be

seen as a generalisation of the intuition underlying this traditional result in the case of finite

frameworks.
11

An argumentation framework is finitary if every argument receives a finite number of

attacks.



Abstract Argumentation Frameworks and Their Semantics 183

3.5 Preferred Semantics

While grounded semantics takes a skeptical, or least-commitment, standpoint,

one can also consider the alternative view oriented at accepting as many argu-

ments as reasonably possible. This may give rise to mutually exclusive alterna-

tives for acceptance: for instance a mutual attack can be reasonably resolved

by accepting either of the conflicting arguments, but clearly not both (these

alternatives are called non-skeptical solutions in the examples below).

The idea of maximizing accepted arguments is expressed by preferred se-

mantics (PR) whose description in the labelling-based and extension-based

approaches is given in the following definitions.

Definition 3.32 Let AF = ⟨Ar , att⟩ be an argumentation framework. A pre-

ferred labelling of AF is a complete labelling Lab where in(Lab) is maximal
(w.r.t. set-inclusion) among all complete labellings, i.e. there is no complete
labelling Lab′ such that in(Lab′) ) in(Lab).

Definition 3.33 Let AF = ⟨Ar , att⟩ be an argumentation framework. A pre-

ferred extension is a maximal (w.r.t. set-inclusion) admissible set of AF .

Considering the examples of Figures 5-7, the existence of multiple preferred

labellings (or extensions) immediately emerges. For instance, in Figure 5 two

non-skeptical solutions exist for the mutual attack between c and d, giving rise

to the preferred labellings ({a, c}, {b, d}, ∅) and ({a, d}, {b, c}, ∅). Similarly, two

preferred extensions exist, namely {a, c} and {a, d}.
In Figure 6 again two alternative non-skeptical solutions exist for the mu-

tual attack between a and b. In both cases, c is then rejected and d ac-

cepted. This intuitive description corresponds to the two preferred labellings

({a, d}, {b, c}, ∅) and ({b, d}, {a, c}, ∅) and, analogously, to the preferred exten-

sions {a, d} and {b, d}.
In Figure 7 instead, no non-trivial solutions to the conflict are available

under the constraint of admissibility, as the reader may remember from previous

subsections. It then follows that the unique preferred labelling in this case is

(∅, ∅, {a, b, c}) and, similarly, the only preferred extension is ∅.
As usual, the correspondences in the above examples are not accidental: it

can be proved that an analogous version of Proposition 3.23 holds for preferred

semantics, i.e. there is a bijective correspondence between preferred labellings

and preferred extensions through the Ext2Lab (and Lab2Ext) functions.

It turns out that the complete labellings with maximal in are the same as

the complete labellings with maximal out, as stated in Proposition 3.34 whose

proof is based on Lemma 3.27.

Proposition 3.34 Given an argumentation framework AF = (Ar , att) the
following statements are equivalent.

1. Lab is a complete labelling where in(Lab) is maximal (w.r.t. set inclusion)
among all complete labellings.
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2. Lab is a complete labelling where out(Lab) is maximal (w.r.t. set inclu-
sion) among all complete labellings.

An analogous formulation of Proposition 3.34 for the extension-based ap-

proach could be provided in a straightforward way.

Relationships of preferred extensions with other semantics notions have been

analyzed in [Dung, 1995]. Preferred extensions can for instance equivalently be

characterized as maximal complete extensions.

Proposition 3.35 Let AF = ⟨Ar , att⟩ be an argumentation framework and
let Args ⊆ Ar. The following statements are equivalent.

1. Args is a maximal (w.r.t. set inclusion) admissible set of AF

2. Args is a maximal (w.r.t. set inclusion) complete extension of AF

This in particular implies that the grounded extension is included in any

preferred extension, as it is in any complete extension. By definition, the

grounded extension coincides with the intersection of all complete extensions:

one may then wonder whether this holds also for preferred extensions. The

answer is negative, as shown for instance by the example of Figure 6 where

the grounded extension is ∅ while the intersection of the preferred extensions is

{d}. Again, this fact can be easily translated to the labelling-based approach

referring to the in-labelled arguments.

An algorithm that produces all preferred labellings (and therefore also pro-

duces all preferred extensions) is described in [Caminada, 2007a; Modgil and

Caminada, 2009; Nofal et al., 2014]. If the aim is merely to determine whether

an argument is in at least one preferred extension (labelled in by at least one

preferred labelling) then one could also use the proof procedures described in
[Vreeswijk and Prakken, 2000; Vreeswijk, 2006; Verheij, 2007; Modgil and Cam-

inada, 2009; Caminada et al., 2016]. Proof procedures for determining whether

an argument is in every preferred extension (labelled in by every preferred

labelling) are provided in [Cayrol et al., 2003; Modgil and Caminada, 2009].

3.6 Stable Semantics

So far we have discussed semantics according to the intuitive idea that an

argument can be accepted, rejected or left undecided. One can however prefer

more committed evaluations, in which there is no room for neutrality or shades

of gray and everything is just black or white. This means that undecided

arguments are simply “forbidden” as in statements like “you’re either with us

or against us.”

This clear-and-strong view corresponds to stable semantics (ST ) and has a

direct formulation in both the labelling-based and extension-based approach.

Definition 3.36 Let Lab be a labelling of argumentation framework AF =

(Ar , att). Lab is a stable labelling of AF iff it is a complete labelling with
undec(Lab) = ∅.
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a b
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d

Figure 9. An argumentation framework where preferred and stable semantics

differ

Definition 3.37 Let AF = ⟨Ar , att⟩ be an argumentation framework. A sta-

ble extension of AF is a conflict-free set Args such that Args ∪ Args+ = Ar.

In the example shown in Figure 5 there are two stable labellings, namely

({a, c}, {b, d}, ∅) and ({a, d}, {b, c}, ∅). Similarly, two stable extensions ex-

ist, namely {a, c} and {a, d}. In Figure 6 the labellings ({a, d}, {b, c}, ∅) and

({b, d}, {a, c}, ∅) are stable and, analogously, there are two stable extensions,

namely {a, d} and {b, d}.
Figure 7 shows that the strong view underlying stable semantics cannot be

universally applied. In fact, no labelling nor extension complying with the

definition can be identified (the requirements of conflict-freeness and ability to

attack all other arguments are incompatible in this case). This can be regarded

as a limitation of stable semantics as “stable extensions do not capture the

intuitive semantics of every meaningful argumentation system” [Dung, 1995].

Looking at this fact from another perspective, differently from other semantics

reviewed so far, in the case of stable semantics the trivial labelling (or extension)

does not represent the “default” conflict resolution one can resort to when

nothing else is reasonable. It follows that, using a terminology from [Baroni and

Giacomin, 2009a], stable semantics is not universally defined, since there are

argumentation frameworks where it is intrinsically impossible to apply its “in-

or-out” view. No other argumentation semantics considered in the literature

has this limitation.

Apart from this critical case, the reader may have noticed that the stable

labellings (extensions) coincide with the preferred ones in the other two cases.

One may then wonder whether stable semantics (leaving apart critical cases)

coincides with preferred semantics in general. The answer is negative, as shown

by the argumentation framework of Figure 9. Here one can verify that there are

three complete labellings, namely (∅, ∅, {a, b, c, d, e}), ({a}, {b}, {c, d, e}) and

({b, d}, {a, c, e}, ∅), and, correspondingly, three complete extensions. Two of

the three labellings (extensions) are preferred, namely ({a}, {b}, {c, d, e}) and

({b, d}, {a, c, e}, ∅), but clearly only the last one is stable.

Let us now generalize this and possibly related observations, examining prop-

erties of stable semantics in general.

First it is possible to characterize the concept of a stable labelling in other
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terms. In particular note that the difference between a complete labelling and

an admissible labelling is that a complete labelling has the additional require-

ment that every undec-labelled argument is legally undec. However, if, as in

Definition 3.36, there are no undec-labelled arguments in the first place, then

this extra requirement becomes superfluous. Moreover, the fact that anything

that is not labelled in is labelled out ensures that every stable labelling is also

preferred (but not viceversa, as we have already seen). These considerations

are summarized in Proposition 3.38 (notice that point 3 of Proposition 3.38

coincides with Definition 3.36).

Proposition 3.38 Let Lab be a labelling of an argumentation framework AF =

(Ar , att). The following statements are equivalent:

1. Lab is a conflict-free labelling with undec(Lab) = ∅

2. Lab is an admissible labelling with undec(Lab) = ∅

3. Lab is a complete labelling with undec(Lab) = ∅

4. Lab is a preferred labelling with undec(Lab) = ∅

On the other hand, it is immediate to see that a stable extension is an

admissible set, hence the equivalent characterisations given in Proposition 3.39

(again, note that point 1 of Proposition 3.39 coincides with Definition 3.37).

Proposition 3.39 Let AF = ⟨Ar , att⟩ be an argumentation framework and
Args ⊆ Ar a set of arguments. The following statements are equivalent:

1. Args is a conflict-free set with Args ∪ Args+ = Ar

2. Args is an admissible set such that Args ∪ Args+ = Ar

3. Args is a complete extension such that Args ∪ Args+ = Ar

4. Args is a preferred extension such that Args ∪ Args+ = Ar

5. Args+ = Ar\Args

As probably evident from above, the bijective labellings-extensions corre-

spondence through Ext2Lab (and Lab2Ext) holds for stable semantics too as

proved in [Caminada and Gabbay, 2009].

An algorithm that produces all stable labellings (and therefore also all stable

extensions) is described in [Caminada, 2007a; Modgil and Caminada, 2009]. If

the aim is merely to determine whether an argument is in at least one stable

extension (labelled in by at least one stable labelling) then one could also use

the proof procedures described in [Caminada and Wu, 2009]. Proof procedures

for determining whether an argument is in every stable extension (labelled in

by every stable labelling) are also provided in [Caminada and Wu, 2009].
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3.7 Semi-Stable Semantics

As illustrated in the previous section, the requirement of “forbidding” unde-

cided arguments turns out to yield no results in some cases. A more sophisti-

cated idea consists in expressing a definite opinion on the largest possible set of

arguments, while restricting as much as possible (but not necessarily avoiding)

those which are left undecided. This intuition lies at the basis of semi-stable
semantics (SST ), which can be defined as follows.

Definition 3.40 Let Lab be a labelling of an argumentation framework AF =

(Ar , att). Lab is a semi-stable labelling of AF iff Lab is a complete labelling
where undec(Lab) is minimal (w.r.t. set inclusion) among all complete la-
bellings, i.e. there is no complete labelling Lab′ such that undec(Lab′) (
undec(Lab).

Definition 3.41 Let AF = ⟨Ar , att⟩ be an argumentation framework. A semi-

stable extension of AF is a complete extension Args where Args ∪ Args+ is
maximal (w.r.t. set inclusion) among all complete extensions, i.e there is no
complete extension Args ′ such that (Args ′ ∪ Args ′+) ) (Args ∪ Args+).

It follows directly that each stable labelling is also a semi-stable labelling

and that semi-stable labellings coincide with stable labellings when the latter

exist. This is because a stable labelling is a complete labelling with an empty

set of undec-labelled arguments. Hence, it is a complete labelling where the set

of undec-labelled arguments is minimal (so a semi-stable labelling). Further-

more, if there exists at least one stable labelling then the set of undec-labelled

arguments has to be empty in any complete labelling with a minimal set of

undec-labelled arguments (semi-stable labelling) and hence any such a labelling

has to be stable. The same relationship holds between stable and semi-stable

extensions: each stable extension is a semi-stable extension, and semi-stable

extensions coincide with stable extensions when the latter exist. Accordingly,

we already know, from previous section, the behaviour of semi-stable semantics

in the examples of Figures 5 and 6.

Even in situations where stable extensions/labellings do not exist, the exis-

tence of semi-stable labellings (or extensions) is anyway guaranteed, since they

are selected among the (always existing) complete ones. In particular, in the

example of Figure 7 the only semi-stable labelling (extension) is (again) the

trivial one.

The maximization requirement imposed by semi-stable semantics is intu-

itively similar, but clearly different, from the maximization requirement in

the definition of preferred semantics. One may wonder whether these differ-

ent maximizations actually lead to the same results. The answer is negative,

see also [Verheij, 2003], as shown by the example of Figure 9, where there

are two preferred labellings (and then two corresponding extensions) namely

({a}, {b}, {c, d, e}) and ({b, d}, {a, c, e}, ∅), but only the latter is semi-stable (as

well as stable).
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Equivalent characterisations of semi-stable semantics in terms of admissi-

ble labellings/sets and of preferred labellings/extensions are available, see e.g.
[Caminada and Gabbay, 2009], as summarized in the following propositions.

Proposition 3.42 Let Lab be a labelling of an argumentation framework AF =

(Ar , att). The following statements are equivalent.

1. Lab is a complete labelling where undec(Lab) is minimal (w.r.t. set in-
clusion) among all complete labellings

2. Lab is an admissible labelling where undec(Lab) is minimal (w.r.t. set
inclusion) among all admissible labellings

3. Lab is a preferred labelling where undec(Lab) is minimal (w.r.t. set in-
clusion) among all preferred labellings

Proposition 3.43 Let AF = ⟨Ar , att⟩ be an argumentation framework, and
let Args ⊆ Ar. The following statements are equivalent.

1. Args is a complete extension where Args ∪Args+ is maximal (w.r.t. set
inclusion) among all complete extensions

2. Args is an admissible set where Args ∪ Args+ is maximal (w.r.t. set
inclusion) among all admissible sets

3. Args is a preferred extension where Args ∪Args+ is maximal (w.r.t. set
inclusion) among all preferred extensions

Finally, the usual bijective labellings-extension correspondence holds for

semi-stable semantics too, see [Caminada, 2007a; Caminada and Gabbay, 2009].

An algorithm that produces all semi-stable labellings (and therefore also all

semi-stable extensions) is described in [Caminada, 2007a; Modgil and Cami-

nada, 2009].

The concept of semi-stable semantics can be traced back to the notion of

admissible stage extensions (see Section 3.9) introduced by [Verheij, 1996].

Although there are differences in the basic formalisation (Verheij for instance

does not use the standard extension-based approach) it can be proved that

Verheij’s approach is equivalent to that of Caminada, who, independently from

Verheij, rediscovered the same concept under the name of semi-stable semantics
[Caminada, 2006b].

3.8 Ideal and Eager Semantics

The notion of ideal semantics (ID) can perhaps be best explained using a de-

scription concerning a judgment aggregation context [Caminada and Pigozzi,

2011], where different people have different opinions on a set of arguments, each

opinion being expressed as a labelling, and an aggregated opinion, namely an

aggregated labelling, has to be produced. In particular the ideal labelling/ex-
tension results from the following assumption on the aggregation procedure:
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• each participant tries to accept as many arguments as possible, that is,

the opinions to be aggregated correspond to the set of the preferred la-

bellings/extensions;

• each argument is (tentatively) accepted or rejected only if there is una-

nimity on it by all participants, otherwise it is regarded as undecided;

• the resulting labelling/extension may or may not correspond to a defen-

sible position, namely may or may not be admissible: if it is not, water

it down (by abstaining about some tentatively accepted or rejected argu-

ments in the aggregated judgment) until it becomes defensible

In order to formally define the concept of the ideal labelling, according to

the intuition outlined above, we first need to treat some preliminaries (see
[Caminada and Pigozzi, 2011]).

Definition 3.44 Let Lab1 and Lab2 be labellings of an argumentation frame-
work AF = ⟨Ar , att⟩. We say that Lab2 is more or equally committed than
Lab1 (Lab1 ⊑ Lab2) iff in(Lab1) ⊆ in(Lab2) and out(Lab1) ⊆ out(Lab2). We
say that Lab2 is compatible with Lab1 (Lab1 ≈ Lab2) iff in(Lab1)∩out(Lab2) =
∅ and out(Lab1) ∩ in(Lab2) = ∅.

It holds that “⊑” defines a partial order (reflexive, anti-symmetric, transi-

tive) on the labellings of an argumentation framework. We can therefore talk

about a labelling being “bigger” or “smaller” than another labelling with re-

spect to “⊑”. The relation “≈”, although reflexive and symmetric, is not an

equivalence relation, since it does not satisfy transitivity.12 It holds that “⊑”
is at least as strong as “≈”; that is, if Lab1 ⊑ Lab2 then Lab1 ≈ Lab2.13

The idea of “⊑” is to define what it means for a labelling to be more com-

mitted than another labelling (this is a special case of skepticism comparison,

an issue which will be dealt with systematically in Section 4). For instance,

the grounded labelling is the least committed labelling among all complete la-

bellings. The idea of “≈” is to define when a labelling of one person might still

be acceptable to another person. To see this, first consider that by requiring

that in(Lab1)∩ out(Lab2) = ∅ and out(Lab1)∩ in(Lab2) = ∅, the relation “≈”
does not allow for conflicts between in and out. That is, if there is an argument

that is accepted by agent Ag1 but rejected by agent Ag2 (or vice versa) then

their labellings are not compatible. However, it is less problematic to have con-

flicts between in and undec, or between out and undec. Thus, compatibility

provides an indication of how easy or difficult it is to share a position that is

not one’s own. It is easier to do this for a labelling that is compatible than for a

labelling that is not compatible. In the former case the worst that can happen

12
As a counterexample, consider AF = ({a, b}, {(a, b), (b, a)}). Let Lab1 = ({a}, {b}, ∅),

Lab2 = (∅, ∅, {a, b}) and Lab3 = ({b}, {a}, ∅). It holds that Lab1 ≈ Lab2 and Lab2 ≈ Lab3
but Lab1 ̸≈ Lab3.

13
This is because Lab1 ≈ Lab2 iff in(Lab1) ⊆ in(Lab2) ∪ undec(Lab2) and out(Lab1) ⊆

out(Lab2) ∪ undec(Lab2).
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is that one has to abstain from something one accepts or rejects (or have to

accept or reject something where one did not have an explicit opinion about).

In the latter case, however, one has to make statements that go directly against

one’s private position.

To come back to the informal description of ideal semantics, we assume a

meeting in which every preferred labelling is represented. The meeting then

discusses each argument, one by one, with the aim to define an initial labelling.
If everybody agrees that the argument is labelled in (that is, the argument is

labelled in in every preferred labelling) then the argument is also labelled in in

the initial tentative labelling. If everybody agrees that the argument is labelled

out (that is, the argument is labelled out in every preferred labelling) then the

argument is labelled out in the tentative labelling. In all other cases, the

argument is labelled undec in the tentative labelling. After this process is over,

and the tentative labelling has been finished, the meeting goes to the second

phase, in which the initial labelling is “watered down” in order to become an

admissible labelling. This is done by iteratively relabelling each argument that

is illegally in or illegally out to undec. When there are no more arguments

left that are illegally in or illegally out, the result is the ideal labelling. It was
proved in [Caminada and Pigozzi, 2011] that this process results in constructing

the most committed (“biggest”) admissible labelling that is less or equally

committed than each preferred labelling. This leads to the following definition

of ideal semantics.

Definition 3.45 Let AF = ⟨Ar , att⟩ be an argumentation framework. The
ideal labelling of AF is the biggest admissible labelling that is smaller or equal
to each preferred labelling.

The uniqueness of the ideal labelling and the fact that the ideal labelling is

a complete labelling have been proved in [Caminada and Pigozzi, 2011]. Since

the grounded labelling is the smallest complete labelling (w.r.t. “⊑”) it directly
follows that the ideal labelling is bigger or equal to the grounded labelling.

Proposition 3.46 Let AF = ⟨Ar , att⟩ be an argumentation framework, let
Labgrounded be its grounded labelling and Labideal be its ideal labelling. It holds
that Labgrounded ⊑ Labideal.

There are several ways of describing the ideal labelling [Caminada, 2011].

Proposition 3.47 Let Lab be a labelling of an argumentation framework AF =

⟨Ar , att⟩. The following statements are equivalent.

1. Lab is the biggest admissible labelling that is smaller or equal to each
preferred labelling

2. Lab is the biggest admissible labelling that is compatible with each admis-
sible labelling
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3. Lab is the biggest admissible labelling that is compatible with each complete
labelling

4. Lab is the biggest admissible labelling that is compatible with each pre-
ferred labelling

The concept of ideal semantics was originally introduced in terms of exten-

sions in [Dung et al., 2007], drawing inspiration from the analogous concept of

ideal sceptical semantics in extended logic programs [Alferes et al., 1993].

Definition 3.48 Let AF = ⟨Ar , att⟩ be an argumentation framework. An
admissible set Args is called ideal iff it is a subset of each preferred extension.
The ideal extension of AF is a maximal (w.r.t. set-inclusion) ideal set.

It turns out that the ideal extension of any argumentation framework AF ,
denoted in the following as ID(AF ), is unique (which implies that it is also the

biggest ideal set) and that it is also a complete extension [Dung et al., 2007].
It then follows directly that the ideal extension is a superset of the grounded

extension.

Proposition 3.49 Let AF = ⟨Ar , att⟩ be an argumentation framework. It
holds that GE(AF ) ⊆ ID(AF ).

There are several ways of describing the ideal extension.

Proposition 3.50 Let AF = ⟨Ar , att⟩ be an argumentation framework, and
let Args ⊆ Ar. The following statements are equivalent.

1. Args is the biggest admissible set that is a subset of each preferred exten-
sion

2. Args is the biggest admissible set that is not attacked by any admissible
set

3. Args is the biggest admissible set that is not attacked by any complete
extension

4. Args is the biggest admissible set that is not attacked by any preferred
extension

In Proposition 3.50 the equivalence between points 1 and 2 follows from
[Dung et al., 2007, Theorem 3.3]. The equivalence between points 2, 3 and 4

follows from the fact that an argument (or set) is attacked by an admissible

set iff it is attacked by a complete extension iff it is attacked by a preferred

extension.

The bijective labellings-extensions correspondence through Ext2Lab (and

Lab2Ext) also holds for ideal semantics [Caminada, 2011].
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a b

Figure 10. The ideal labelling can be less skeptical than the grounded labelling

Ideal semantics is similar to grounded semantics in the sense that it always

yields a unique labelling (extension). Actually it can be seen that the ideal

labelling (extension) coincides with the grounded labelling (extension) in the

examples of Figures 5, 6 and 7. In particular, referring to extensions, in Fig-

ure 5 the intersection of preferred extensions {a} coincides with the grounded

extension; in Figure 6 the intersection of preferred extensions {d} is not ad-

missible and its only admissible subset is the empty set (coinciding with the

grounded extension); in Figure 7 there is only one (empty) preferred extension,

which coincides with the grounded and ideal extension.

However, as shown in Propositions 3.46 and 3.49, in general ideal semantics

tends to be less skeptical than grounded semantics. As an example, in the

argumentation framework of Figure 10 the grounded labelling is (∅, ∅, {a, b})
(the grounded extension is ∅) whereas the ideal labeling is ({a}, {b}, ∅) (the

ideal extension is {a}).
To determine whether an argument is an element of the ideal extension,

point 2 of Proposition 3.50 implies that it is sufficient to determine whether it

is an element of an admissible set that is not attacked by any admissible set.

Proof procedures for this are straightforward and have been described in [Dung

et al., 2007].
An alternative approach that is very close to ideal semantics is that of eager

semantics (EAG) [Caminada, 2007b]. Where the ideal extension is the (unique)

biggest admissible (and complete) subset of each preferred extension, the eager

extension is the (unique14) biggest admissible (and complete) subset of each

semi-stable extension. This of course admits an equivalent formulation in terms

of labellings.

Definition 3.51 Let AF = ⟨Ar , att⟩ be an argumentation framework. The
eager extension of AF is the maximal (w.r.t. set-inclusion) admissible set
which is included in every semi-stable extension.

Definition 3.52 Let AF = ⟨Ar , att⟩ be an argumentation framework. The
eager labelling of AF is the biggest admissible labelling that is smaller or equal
to each semi-stable labelling.

The eager extension is a superset of the ideal extension, making eager seman-

tics (to the best of our knowledge) the most credulous unique status semantics

14
Uniqueness of the eager extension is guaranteed for finite and finitary frameworks, while

it may not hold in general for infinite frameworks.
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that has been proposed in the literature. The eager extension and the as-

sociated eager labelling can be computed by first calculating all semi-stable

labellings (using for instance the algorithm of [Caminada, 2007a]) and subse-

quently applying the judgement aggregation operators specified in [Caminada

and Pigozzi, 2011].

3.9 Stage Semantics

The concept of stage semantics (ST G) has been introduced in [Verheij, 1996]

and further developed in [Verheij, 2003] in different formal settings with respect

to the ones considered in this chapter. Precise (and rather straightforward) cor-

respondences can nevertheless be drawn so that we can describe stage semantics

in terms of labellings and extensions, as was done for all other semantics in this

chapter. In essence, a stage labelling is a conflict-free labelling where undec is

minimal, while a stage extension is a conflict-free set of arguments Args, where
Args ∪ Args+ is maximal.

Definition 3.53 Let AF = ⟨Ar , att⟩ be an argumentation framework. A la-
belling Lab is called a stage labelling of AF iff it is a conflict-free labelling where
undec(Lab) is minimal (w.r.t. set-inclusion) among all conflict-free labellings,
i.e. there is no conflict-free labelling Lab′ such that undec(Lab′) ( undec(Lab).

Definition 3.54 Let AF = ⟨Ar , att⟩ be an argumentation framework. A stage

extension of AF is a conflict-free set Args ⊆ Ar where Args∪Args+ is maximal
(w.r.t. set inclusion) among all conflict-free sets, i.e there is no conflict-free
set Args ′ such that (Args ′ ∪ Args ′+) ) (Args ∪ Args+).

It holds that every stable labelling (extension) is also a stage labelling (ex-

tension).

Theorem 3.55 Let Lab be a labelling of an argumentation framework AF =

(Ar , att). If Lab is a stable labelling of AF then Lab is also a stage labelling of
AF .

Theorem 3.56 Let AF = ⟨Ar , att⟩ be an argumentation framework and Args ⊆
Ar. If Args is a stable extension of AF then Args is also a stage extension of
AF .

If there exists at least one stable labelling (extension), then each stage la-

belling (extension) is also a stable labelling (extension).

Theorem 3.57 Let AF = ⟨Ar , att⟩ be an argumentation framework. If there
exists at least one stable labelling of AF then every stage labelling is also a
stable labelling.

Theorem 3.58 Let AF = ⟨Ar , att⟩ be an argumentation framework. If there
exists at least one stable extension of AF then every stage extension is also a
stable extension.
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There also exists an alternative way to describe the concept of stage seman-

tics. In essence, a stage labelling is a stable labelling of a maximal subgraph of

the argumentation framework that has at least one stable labelling, augmented

with undec labels for the arguments that did not make their way into the sub-

graph. Similarly, what a stage extension does is taking a maximal subgraph of

the argumentation framework that has at least one stable extension. A stage

extension is then a stable extension of such a maximal subgraph.

Theorem 3.59 Let Lab be a labelling of an argumentation framework AF =

⟨Ar , att⟩. The following two statements are equivalent.

1. Lab is a conflict-free labelling where undec(Lab) is minimal (w.r.t. set
inclusion) among all conflict-free labellings

2. Args = in(Lab)∪out(Lab) is a maximal subset of Ar such that AF↓Args

has a stable labelling, and Lab↓Args is a stable labelling of AF↓Args .

Theorem 3.60 Let AF = ⟨Ar , att⟩ be an argumentation framework and Args ⊆
Ar. The following two statements are equivalent.

1. Args is a conflict-free set where Args ∪ Args+ is maximal (w.r.t. set
inclusion) among all conflict-free sets.

2. Args ∪Args+ is a maximal subset of Ar such that AF↓Args∪Args+ has a
stable extension, and Args is a stable extension of AF↓Args∪Args+ .

The bijective labellings-extensions correspondence through Ext2Lab (and

Lab2Ext) also holds for stage semantics, as proved in [Caminada, 2011]. An

algorithm that produces all stage labellings (and therefore also all stage exten-

sions) is described in [Caminada, 2010].

To exemplify stage labellings (extensions) let us refer as usual to the exam-

ples of Figures 5-7. Stage labellings (extensions) coincide with stable labellings

(extensions), when the latter exist, as in the case of Figures 5 and 6. On the

other hand, in the case of Figure 7, differently from all other semantics ex-

amined so far, stage semantics prescribes three non-trivial labellings, namely

({a}, {b}, {c}), ({b}, {c}, {a}), ({c}, {a}, {b}) (and of course the corresponding

three non-empty extensions, {a}, {b}, and {c}).
Using the technical properties and the examples described above, we are

now ready to describe the intuition behind stage semantics. In essence, stage

semantics shares with stable semantics some sort of preference for strongly

committed evaluations with respect to the undecided ones. As already seen,

such an attitude is not universally applicable: the solution of stage semantics

is to consider the maximal restrictions where this attitude is still applicable. In

other terms, stage semantics can be interpreted as the attempt to identify and

then ignore the minimal amounts of information that prevent the application

of a black-and-white view of the world. Note that different information can
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ba

Figure 11. Stage semantics differs from semi-stable semantics

be ignored in different labellings (extensions), for instance in the example of

Figure 7 arguments a, b, and c are alternatively ignored.

The idea of minimizing the set of undec-labelled arguments or, alternatively,

of maximizing the range (Args ∪Args+) of extensions is common to stage and

semi-stable semantics. However, where semi-stable semantics aims to maxi-

mize the range under the condition of admissibility, stage semantics tries to

maximize the range under the weaker condition of conflict-freeness. As shown

above, this amounts to taking the stable labellings (extensions) of the biggest

subframework that has at least one stable labelling (extension). Hence, the

approach of stage semantics is comparable with the approach of handling in-

consistent knowledge bases, where one can select maximal consistent subsets

of the knowledge base, and then examine what holds in all of them (in the in-

tersection of all their models). That is, it is as if stage semantics interprets the

absence of stable labellings/extensions as some form of “inconsistency”, which

needs to be handled taking the “maximal consistent subframeworks”. On the

other hand, in semi-stable semantics as well as in most other semantics all ar-

guments play a role in all extensions/labellings. In particular, an undecided

argument keeps the capability to cause other arguments to be undecided, while

this is not the case in stage semantics. An example is shown in Figure 11. Here,

the other semantics considered up to now in the current chapter (with the ex-

ception of näıve semantics) yield a single labelling (∅, ∅, {a, b}) corresponding

to the extension ∅, whereas stage semantics yields a single labelling ({b}, ∅, {a})
corresponding to the extension {b}. In essence, what stage semantics does is to

ignore argument a, since this argument causes the framework not to have any

stable labelling/extension. CF2 and stage2 semantics, examined in the next

section, show the same behaviour in this example.

Another example to illustrate the difference between stage semantics and

semi-stable semantics is given in Figure 12. Here, semi-stable semantics yields

a single extension {a}, corresponding to a labelling ({a}, {b}, {c}). Stage se-

mantics yields two extensions, the first one being equivalent to the one yielded

by semi-stable semantics, the second one being {b}, corresponding to a labelling
({b}, {c}, {a}). The first stage extension (labelling) is the result of ignoring

argument c, the second stage extension (labelling) is the result of ignoring ar-

gument a. For both possibilities, the remaining argumentation framework is a

maximal one that has at least one stable extension (labelling). It can there-

fore be observed that under stage semantics, even an argument without any

attackers (like argument a in Figure 12) is not always labelled in. With any
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ba c

Figure 12. A peculiar case for stage semantics

other semantics considered in this chapter15, however, an argument without

any attackers is always labelled in.

3.10 CF2 and stage2 semantics

With the exception of näıve and stage semantics, all semantics reviewed so

far are admissibility-based, i.e. the labellings (extensions) they prescribe are

admissible. Moreover they are compatible with the basic skeptical view rep-

resented by grounded semantics, in the sense that in any of their labellings

(extensions) the accepted arguments are a superset of those accepted by the

grounded semantics. Focusing now on those of these semantics which are

multiple-status (namely complete, preferred, stable and semi-stable), one can

notice that odd-length unidirectional attack cycles cause a sort of singularity

in their behaviour. For instance, considering the example of Figure 7 only the

trivial labelling (extension) is prescribed and, in the case of stable semantics, no

labelling (extension) at all exists. This gives rise to a sort of unbalanced treat-

ment of even-length and odd-length unidirectional attack cycles: non-trivial

labellings (extensions) exist for the former ones, while they do not exist for the

latter. This has been regarded as problematic by [Pollock, 2001], since in some

contexts an “equal” treatment of cycles, independently of their length, can be

more appropriate16. It is evident that this requires giving up the property of

admissibility, as no non-trivial admissible labellings (extensions) exist for the

example of Figure 7. In fact, the behaviour of stage semantics goes in that

direction, since in the example of Figure 7 it prescribes three non-trivial la-

bellings, namely ({a}, {b}, {c}), ({b}, {c}, {a}), ({c}, {a}, {b}), or, analogously,
three non-empty extensions, namely {a}, {b}, {c}. Stage semantics however

shows a peculiar behaviour and strongly departs from grounded semantics in

some cases. As already commented in Section 3.9 a stage labelling (or ex-

tension) may even exclude from acceptance an unattacked argument (a in the

example of Figure 12) while including an argument attacked by it (b in the

same example). This kind of behaviour has no parallel in all other semantics

considered in this chapter and, as such, appears rather hard to justify. Then the

question arises as to whether it is possible to define a multiple-status semantics

which is not admissibility-based, treats in an “equal” way odd and even-length

15
With the exception of näıve semantics, which ignores the direction of attacks.

16[Pollock, 2001] discusses odd-length attack cycles in the context of a set of “reference”

inference graphs for testing the intuitive validity of justification status assignments. Actually,

the paper where the problem is raised [Pollock, 2001] is mainly focused on an approach to

reasoning with variable degrees of justification and does not provide an explicit “solution”

to this problematic example.
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unidirectional attack cycles, while preserving compatibility with the grounded

semantics in any case.

CF2 [Baroni and Giacomin, 2003; Baroni et al., 2005b] and stage2 (ST G2)
[Dvořák and Gaggl, 2012b; Dvořák and Gaggl, 2012a; Dvořák and Gaggl, 2016]

semantics satisfy the above requirements. In fact, to achieve this objective a

relatively sophisticated semantics definition scheme has been devised called

SCC-recursiveness. The SCC-recursive scheme is based on the graph theoret-

ical notion of a strongly connected component (SCC). In short, strongly con-

nected components provide a unique partition of a directed graph into disjoint

parts where all nodes are mutually reachable (it is assumed that reachability is

a reflexive relation). Formally, strongly connected components are the equiva-

lence classes induced by the path equivalence (i.e. mutual reachability) relation

between nodes. To illustrate this notion, in the example of Figure 5 there are

three SCCs, namely {a}, {b}, and {c, d}, in Figure 6 there are three SCCs too,

namely {a, b}, {c}, and {d}, while the argumentation framework of Figure 7

consists of a unique SCC, namely {a, b, c}. As another example, in Figure 9

there are two SCCs, namely {a, b} and {c, d, e}.
An important property of the SCC decomposition is that the graph obtained

considering SCCs as single nodes is acyclic, i.e. the attack relation induces a

partial order between the SCCs. The SCC-recursive scheme exploits this prop-

erty and can be intuitively regarded as a constructive procedure to incremen-

tally build extensions (or labellings) following the partial order of SCCs. In a

nutshell, one “locally” applies some extension selection criterion to the initial
SCCs, i.e. those not receiving attacks from other ones. Then, for each possible

choice identified in the initial SCCs, one accordingly suppresses some arguments

from the initial argumentation framework and the procedure is recursively ap-

plied to the new argumentation framework resulting from this modification,

until no remaining arguments are left to process. In the case of CF2 semantics,

the “local” selection criterion17 applied to SCCs is quite simple and corre-

sponds to the intuition underlying näıve semantics: all maximal conflict free

sets are selected. In the case of stage2 semantics the criterion corresponds to

stage semantics, namely the conflict free sets with maximal range are selected.

However embedding these criteria within the SCC recursive scheme gives rise

to different results with respect to the original näıve and stage semantics.

We now provide a formal definition of CF2 and stage2 semantics in terms

of extensions (as this is their original and easier to follow formulation), exem-

plify their behaviour and review their properties. For further details and more

extensive explanations of the SCC-recursive scheme the reader may refer to

the original source [Baroni et al., 2005b] and to chapter 18 in this volume. A

labelling-based formulation of CF2 and stage2 semantics will be examined at

the end of the section.

17
It can be remarked that all Dung’s original semantics can be equivalently characterized

using SCC-recursive definitions similar to Definition 3.61, as proved in [Baroni et al., 2005b].
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Definition 3.61 Given an argumentation framework AF = ⟨Ar , att⟩, a set
Args ⊆ Ar is an extension of CF2 semantics if and only if

• Args is a näıve extension of AF if |SCCSAF | = 1

• ∀S ∈ SCCSAF (Args ∩ S) ∈ ECF2(AF↓UPAF (S,Args)) otherwise

where

• SCCSAF denotes the set of strongly connected components of AF

• for any Args, S ⊆ Ar, UPAF (S,Args) = {a ∈ S | @b ∈ Args \ S : (b, a) ∈
att}.

Definition 3.62 Given an argumentation framework AF = ⟨Ar , att⟩, a set
Args ⊆ Ar is an extension of stage2 semantics if and only if

• Args is a stage extension of AF if |SCCSAF | = 1

• ∀S ∈ SCCSAF (Args ∩ S) ∈ EST G2(AF↓UPAF (S,Args)) otherwise

Definitions 3.61 and 3.62 are quite complicated and their detailed illustration

is beyond the scope of the chapter. We remark only that the recursion is well-

founded since, in their second branch, the semantics itself is applied to a set of

restricted (and disjoint) argumentation frameworks, each including a strictly

lesser number of arguments with respect to the original one. This ensures

that the base case, namely the application of CF2 or stage2 semantics to an

argumentation framework consisting of a single SCC (first branch of Definitions

3.61 and 3.62) is reached in a finite number of steps. Note in particular that

an argumentation framework including 0 or 1 arguments necessarily consists of

a single SCC.

In spite of technical complications, the idea underlying CF2 and stage2 se-

mantics is relatively simple and can be illustrated with reference to our exam-

ples (since in these examples their extensions coincide, we refer to CF2 only in

the following description). In Figure 5 there is one initial SCC, namely {a},
and of course it contains only one maximal conflict-free set, namely {a} itself,
which is selected for extension building. The subsequent (according to the par-

tial order induced by the attack relation) SCC, namely {b}, is suppressed as

its only element is attacked by the already selected argument a. The last SCC,
namely {c, d}, then remains unaffected by previously selected elements and we

can select its maximal conflict-free subsets {c} and {d} to be combined with

the previous selection, leading to the CF2 extensions {a, c} and {a, d}.
In Figure 6 there is one initial SCC, namely {a, b}, whose maximal conflict-

free sets are {a} and {b}, each representing a starting point for further extension

construction. As a matter of fact, in both cases the subsequent SCC, namely

{c} is suppressed, leaving the remaining SCC, {d}, unaffected and providing
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{d} itself as maximal conflict-free subset. It turns out that there are two CF2
extensions, namely {a, d} and {b, d}.

The argumentation framework of Figure 7 consists of only one SCC and

therefore its CF2 extensions coincide with its maximal conflict-free subsets

{a}, {b} and {c}.
In the example of Figure 9, the application of CF2 semantics definition

is more articulated. The (again unique) initial SCC is {a, b}, which, as in

the previous case, yields {a} and {b} as starting points for further extension

construction. Considering {a}, we have that b is attacked by the extension

and the subsequent SCC {c, d, e} is left unaffected. As a consequence, all its

maximal conflict-free subsets {c}, {d} and {e} are available, yielding the three

CF2 extensions {a, c}, {a, d} and {a, e}. Considering {b}, both a and c are

attacked by the extension and therefore suppressed. The restriction of the

argumentation framework to the set {d, e} then remains to be evaluated. As

{d} is the initial SCC of this restricted argumentation framework, it is selected

and then the subsequent SCC {e} is entirely suppressed, yielding a further CF2
extension {b, d}.

Finally, in the example of Figure 12 a unique CF2 extension is identified,

namely {a}, yielding agreement with grounded semantics.

While in the examples above the extensions of CF2 and stage2 semantics

coincide, they can be different in some cases. A simple example is an argu-

mentation framework consisting of six arguments a1, . . . , a6 arranged into an

attack cycle, i.e. such that ai attacks ai+1 for i = 1, . . . , 5 and a6 attacks a1. In
this case, consisting of a unique SCC, there are five näıve and CF2 extensions,

namely {a1, a3, a5}, {a2, a4, a6}, {a1, a4}, {a2, a5}, {a3, a6}, while only two of

them (clearly the first ones) are also stage and stage2 extensions.

Having exemplified the behaviour of CF2 and stage2 semantics, we summa-

rize in Proposition 3.63 some of their known properties in relation to other

semantics notions (in particular näıve, grounded, stable and preferred).

Proposition 3.63 For any argumentation framework AF = ⟨Ar , att⟩

• EST G2(AF ) ⊆ ECF2(AF ) ⊆ ENA(AF );

• the grounded extension is included in any CF2 and stage2 extension;

• any stable extension is also a CF2 and stage2 extension;

• for any preferred extension E there is a CF2 extension E′ such that E ⊆
E′ (note that this property does not hold for stage2 semantics)

As mentioned above, CF2 and stage2 semantics have been conceived and

defined in the extension-based setting. The same semantic notion can however

be expressed using the SCC-recursive scheme in the labelling context.

Definition 3.64 Given an argumentation framework AF = ⟨Ar , att⟩, a la-
belling Lab is a CF2 labelling if and only if
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• if |SCCSAF | = 1, Lab is a conflict-free labelling with maximal in(Lab)
among conflict-free labellings and such that a ∈ in(Lab)⇒ a+ ⊆ out(Lab);

• otherwise, ∀S ∈ SCCSAF Lab↓UPAF (S,Args) is a CF2 labelling of
AF↓UPAF (S,Args) and all arguments in S \ UPAF (S,Args) are labelled
out.

where all notations are as in Definition 3.61.

Definition 3.65 Given an argumentation framework AF = ⟨Ar , att⟩, a la-
belling Lab is a stage2 labelling if and only if

• if |SCCSAF | = 1, Lab is a stage labelling;

• otherwise, ∀S ∈ SCCSAF Lab↓UPAF (S,Args) is a stage2 labelling of
AF↓UPAF (S,Args) and all arguments in S \ UPAF (S,Args) are labelled
out.

where all notations are as in Definition 3.61.

By inspection of Definitions 3.61 vs. 3.64 and 3.62 vs. 3.65, it can be seen

that the bijective labellings-extensions correspondence through Ext2Lab (and

Lab2Ext) holds for CF2 and stage2 semantics.

3.11 Roundup

We now provide an overview of how the semantics that have been treated until

now are related. In Figure 13 we graphically depict what can be seen as an

ontology of argumentation semantics. The figure shows for instance that every

stable labelling is also a stage labelling, a semi-stable labelling and a CF2
labelling, that every semi-stable labelling is also a preferred labelling, etc.

The same relations of Figure 13 also hold for the extension-based approach.

In Table 4 we provide an overview of how the admissibility-based semantics

can be expressed in terms of complete labellings.

As explicitly stated in Section 2, this chapter is focused on finite argumen-

tation frameworks and the analysis of semantics properties we have carried

out relies on this assumption. One may wonder what is the impact of this re-

striction and what would be the implications of considering also infinite frame-

works. While providing a full answer to this question is beyond the scope of

this chapter, we observe in particular that in infinite frameworks the notion of

maximality w.r.t set inclusion is less immediate than in finite frameworks and

the existence of maximal sets of arguments respecting some criterion, which is

guaranteed in finite frameworks, may fail to be achieved in infinite ones. As

an example of the consequences of this fact, a semantics which is universally

defined or unique status in the context of finite frameworks may not be so when

considering also infinite ones, implying (among other consequences) that the

skepticism comparison of Section 4 does not extend directly to the infinite case.

The reader may refer to chapter 17 for a treatment of these issues.
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Figure 13. Relations among alternative labelling and extension notions

Table 4. Describing admissibility based semantics in terms of complete la-

bellings

restriction on complete labelling resulting semantics

no restrictions complete semantics
empty undec stable semantics
maximal in preferred semantics
maximal out preferred semantics
maximal undec grounded semantics
minimal in grounded semantics
minimal out grounded semantics
minimal undec semi-stable semantics
maximal w.r.t. ⊑ while compatible with ideal semantics
each complete labelling
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4 Argument Justification and Skepticism

4.1 The notion of justification status

Argumentation semantics can allow for the presence of more than one extension

(or labelling) of arguments, following a tradition in nonmonotonic reasoning
[Reiter, 1980; Pollock, 1995]. Hence, when one is interested in the overall status

of a particular argument, one needs to have a way of taking the multiplicity

of extensions (or labellings) into account. At a basic level, two very simple

(and, in a sense, extreme) alternatives for the notion of justification status

can be considered: skeptical justification requires that an argument is accepted

in all labellings (or extensions), while credulous justification requires that an

argument is accepted in at least one labelling (or extension). This is formalized

in Definitions 4.2 and 4.3. Note that we assume, as in previous literature
[Baroni and Giacomin, 2007b; Baroni and Giacomin, 2009b], that using these

simple notions is meaningful only when the set of labellings or extensions is

not empty, otherwise the basis for evaluation is lacking. To express this in a

concise way, we introduce a specific notation in Definition 4.1.

Definition 4.1 Given a labelling-based semantics σ, DLσ = {AF : Lσ(AF ) ̸=
∅}. Given an extension-based semantics σ, DEσ = {AF : Eσ(AF ) ̸= ∅}.

Definition 4.2 (course-grained justification status, labelling-based)
Given a labelling-based semantics σ and an argumentation framework AF ∈
DLσ, an argument a is skeptically justified (or skeptically accepted) if ∀Lab ∈
Lσ(AF ) Lab(a) = in; an argument a is credulously justified (or credulously

accepted) if ∃Lab ∈ Lσ(AF ) : Lab(a) = in.

Definition 4.3 (course-grained justification status, extension-based)
Given an extension-based semantics σ and an argumentation framework AF ∈
DEσ, an argument a is skeptically justified (or skeptically accepted) if ∀E ∈
Eσ(AF ) a ∈ E; an argument a is credulously justified (or credulously ac-

cepted) if ∃E ∈ Eσ(AF ) : a ∈ E.

Skeptical justification implies credulous justification, as long as the set of

extensions (or labellings) is not empty. Also, a third justification status can be

derived: an argument is not justified (or rejected) if it is not credulously justified

(and hence also not skeptically justified, assuming that the set of extensions

(or labellings) is not empty).

It can be noted that in any unique-status semantics skeptical and credulous

acceptance coincide, so that an argument can only be accepted or rejected.

In this context it is possible, however, to consider two levels of rejection, in

fact a rejected argument can be attacked or not by the unique extension (or,

analogously, can be labelled out or undec in the unique labelling). The former

case corresponds to a stronger form of rejection (these arguments have been

sometimes called defeated outright in the literature [Pollock, 1992]) while in the
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latter case rejection is clearly weaker (these arguments being called provision-
ally defeated according to the same terminology).

While the brief remarks above correspond to the prevailing approaches to

the notion of justification status in the literature, one may observe that a more

systematic treatment is possible, by combining the ideas concerning the status

of an argument with respect to a single labelling (or extension) and those

referring to a plurality of them. In fact, an argument can be in one of three

possible states with respect to a single labelling (namely, in, out or undec) and

correspondingly can be accepted, defeated outright or provisionally defeated

with respect to a single extension. If a plurality of labellings (or extensions) is

considered, we can ask ourselves the following three questions: is the argument

accepted (labelled in) by at least one extension (labelling), is the argument

rejected outright (labelled out) by at least one extension (labelling), and is

the argument provisionally rejected (labelled undec) by at least one extension

(labelling)? The answer to these three questions gives rise to a concept we

will sometimes refer to as the fine-grained justification status, to distinguish

it from the earlier introduced concepts of sceptical justification and credulous

justification, which we will sometimes refer to as the course-grained justification
status.

Fine-grained justification is also able to properly treat with a distinct sta-

tus the case where no labellings or extensions at all exist. For the labellings

approach, fine-grained justification status can be defined as follows.

Definition 4.4 (fine-grained justification status, labelling-based)
Given a labelling-based semantics σ and an argumentation framework AF =

⟨Ar , att⟩, the possible justification states of an argument a are defined by a
function JSAF

σ : Ar → 2{in,out,undec} such that JSAF
σ (a) = {Lab(a) | Lab ∈

Lσ(AF )}.
If we assume a labelling-based semantics to specify the reasonable positions

(labellings) one can take in the presence of the conflicting information specified

in the argumentation framework, then one can give an intuitive interpretation

of the concept of a justification status. For instance, the justification status of

{in} means the argument has to be accepted (labelled in) in every reasonable

position. Similarly, the justification status {in, undec} means that in every

reasonable position the argument is either accepted (labelled in) or abstained

from having an explicit opinion on (labelled undec), but the argument cannot

be rejected (labelled out). Such an interpretation of the notion of justification

status is for instance used in [Wu and Caminada, 2010; Dvořák, 2012].

It is also possible to define the notion of fine-grained justification status in

terms of the extensions approach, as is done below.

Definition 4.5 (fine-grained justification status, extension-based)
Given an extension-based semantics σ and an argumentation framework AF =

⟨Ar , att⟩, the possible justification states of an argument a are defined by the
following mutually exclusive conditions:
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Argument JSAF
CO JSAF

GR JSAF
PR JSAF

NA

a {in, out, undec} {undec} {in, out} {in, out, undec}
b {in, out, undec} {undec} {in, out} {in, out, undec}
c {out, undec} {undec} {out} {in, out, undec}
d {in, undec} {undec} {in} {in, out, undec}

Table 7. Argument justification statuses in the example of Figure 6

• Eσ(AF ) = ∅

• Eσ(AF ) ̸= ∅ and ∀E ∈ Eσ(AF ) a ∈ E;

• Eσ(AF ) ̸= ∅ and ∀E ∈ Eσ(AF ) a ∈ E+;

• Eσ(AF ) ̸= ∅ and ∀E ∈ Eσ(AF ) a /∈ (E ∪ E+);

• ∃E ∈ Eσ(AF ) : a ∈ E+, ∃E ∈ Eσ(AF ) : a /∈ (E∪E+), and @E ∈ Eσ(AF )
: a ∈ E;

• ∃E ∈ Eσ(AF ) : a ∈ E, ∃E ∈ Eσ(AF ) : a /∈ (E ∪E+), and @E ∈ Eσ(AF )
: a ∈ E+;

• ∃E ∈ Eσ(AF ) : a ∈ E, ∃E ∈ Eσ(AF ) : a ∈ E+, and @E ∈ Eσ(AF ) :
a /∈ (E ∪ E+);

• ∃E ∈ Eσ(AF ) : a ∈ E, ∃E ∈ Eσ(AF ) : a ∈ E+, and ∃E ∈ Eσ(AF ) :
a /∈ (E ∪ E+).

Intuitively, for an argument a, each item of Definition 4.5 corresponds to a

possible value JSAF
σ (a) in Definition 4.4, i.e. to a subset of {in, out, undec}.

For instance the first item corresponds to ∅, the following three items cor-

respond to {in}, {out}, {undec} respectively, the fifth item corresponds to

{out, undec} and so on.

As an example of how labelling-based justification status works, consider

again the argumentation framework of Figure 6. If one applies complete seman-

tics, three complete labellings are yielded: ({a, d}, {b, c}, ∅), ({b, d}, {a, c}, ∅),
(∅, ∅, {a, b, c, d}). This implies that JSAF

CO (a) = {in, out, undec}, JSAF
CO (b) =

{in, out, undec}, JSAF
CO (c) = {out, undec} and JSAF

CO (d) = {in, undec}.
Clearly, the justification status depends on the adopted semantics, for in-

stance with grounded semantics only the third labelling is considered, yield-

ing the status {undec} for all arguments, while with preferred semantics only

the first two labellings are considered so that, for each argument, the label

undec is “removed” from the statuses listed above for complete semantics.

Table 7 summarizes the justification statuses of arguments for the various
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{in}YesNo

No {out}Yes

YesNo

YesNo No Yes

{undec} {out, undec}{in, undec}{in, out, undec}

in strongly admissible set?

attacked by strongly admissible set?

in admissible set?

attacked by admissible set? attacked by admissible set?

Figure 14. The justification status under complete semantics can be determined

using admissibility and strong admissibility.

labelling-based18 semantics in the example of Figure 6 (note that in this ex-

ample JSAF
GR = JSAF

ID = JSAF
EAG and JSAF

PR = JSAF
ST = JSAF

SST = JSAF
ST G =

JSAF
CF2 = JSAF

ST G2).

In general, complete semantics gives rise to the following justification sta-

tuses [Caminada and Wu, 2010]:

• {in}, called strong accept

• {out}, called strong reject

• {in, undec}, called weak accept

• {out, undec}, called weak reject

• {undec}, called determined borderline

• {in, out, undec}, called undetermined borderline

For complete semantics, the justification status of an argument can also be

determined using the concepts of admissible and strongly admissible sets, as is

indicated in Figure 14.

The reader may have noticed that complete semantics yields only six dif-

ferent justification statuses, although theoretically it seems like eight (23) are

possible. This is because some combinations of labels cannot occur under com-

plete semantics. For instance, there cannot be an argumentation framework

AF = ⟨Ar , att⟩ and argument a ∈ Ar such that JSAF
CO (a) = {in, out}. This

is because if a is labelled in by a complete labelling and out by another, then

18
These justification statuses have a direct correspondence in the extension-based approach,

with the exception of näıve semantics, since in this case different labellings may correspond

to the same extension.
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there exists a third complete labelling (the grounded one) where a is labelled

undec [Caminada and Wu, 2010] so the justification status should have been

{in, out, undec} instead. Similarly, JSAF
CO (a) cannot be ∅ because there always

exists at least one complete labelling.

It can be observed that different semantics yield a different range of justifi-

cation statuses [Dvořák, 2012].

Proposition 4.6 Let AF = ⟨Ar , att⟩ be an argumentation framework and let
a ∈ Ar.

1. JSAF
GR(a) ∈ {{in}, {out}, {undec}}

2. JSAF
AD(a) ∈ {{undec}, {in, undec}, {out, undec}, {in, out, undec}}

3. JSAF
CO (a) ∈ 2{in,out,undec} \ {{in, out}, ∅}

4. JSAF
ST (a) ∈ {{in}, {out}, {in, out}, ∅}

5. JSAF
PR(a) ∈ 2{in,out,undec} \ {∅}

6. JSAF
SST (a) ∈ 2{in,out,undec} \ {∅}

7. JSAF
ST G(a) ∈ 2{in,out,undec} \ {∅}

8. JSAF
ID (a) ∈ {{in}, {out}, {undec}}

9. JSAF
EAG(a) ∈ {{in}, {out}, {undec}}

As observed in [Dvořák, 2012], the justification status w.r.t. admissible,

complete and preferred semantics only differs on the undec labels.

Proposition 4.7 Let AF = ⟨Ar , att⟩ be an argumentation framework and let
a ∈ Ar.

1. JSAF
AD(a) = JS

AF
CO (a) ∪ {undec}

2. JSAF
AD(a) = JS

AF
PR(a) ∪ {undec}

3. JSAF
CO (a) =

{
JSAF

GR(a) if a ∈ GE(AF ) ∪GE(AF )+

JSAF
AD(a) otherwise

4. JSAF
CO (a) =

{
JSAF

GR(a) if a ∈ GE(AF ) ∪GE(AF )+

JSAF
PR(a) ∪ {undec} otherwise

Fine-grained justification status, as described above, offers a number of ad-

vantages compared to the more traditional course-grained justification status

that is based on sceptical and credulous acceptance. For instance, the compu-

tational complexity of weak acceptance under preferred semantics is lower than
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that of traditional sceptical preferred [Dvořák, 2012]. Furthermore, labelling-

based justification status offers a subtle way of dealing with the notion of float-
ing conclusions [Caminada and Wu, 2010]. Briefly, a conclusion is “floating”

when it is supported by different arguments which are labelled in in different

labellings, so that, even if there is no individual argument for the conclusion

which is labelled in in all labellings, there is at least an argument labelled in

supporting the conclusion in every labelling. In other words, the conclusion has

different supports in different labellings, but has at least one in every labelling.

Still, labelling-based justification status has not yet received the same level

of attention as the more traditional extension-based justification status, and

some research questions are still open.19

4.2 Skepticism and skepticism relations

The term skepticism has been used in the literature (often in an informal way)

to discuss argumentation semantics behaviour, e.g. by observing that a se-

mantics is “more skeptical” than another one. Intuitively, a skeptical attitude

tends to make less committed choices about the justification of the arguments,

as well exemplified by the traditional notions of skeptical and credulous ac-

ceptance recalled in Section 4.1. In other words, a skeptical attitude tends to

leave arguments in an “undecided” justification state and to accept (or reject)

as least arguments as possible, while a less skeptical (or more credulous) at-

titude corresponds to more extensive acceptance (or rejection) of arguments.

Note, in particular, that the notion of commitment (or decidedness) of a justi-

fication state must be clearly distinguished from the notion of acceptance: two

justification states corresponding to definite acceptance and definite rejection,

though reflecting antithetical choices about the state of an argument, have both

the same highest level of commitment.

Which are the formal counterparts of these basic intuitions?

Starting from basic elements, we first need to define a criterion to compare

extensions and labellings with respect to skepticism. As to extensions, this is

quite simple: an extension E1 is “more skeptical” than (to be precise, at least as

skeptical as) an extension E2 if E1 ⊆ E2, since then E1 supports the acceptance

of no more arguments than E2. As to labellings, we have to consider both the

in and out labels as being both more committed choices than undec. We

can then state that a labelling Lab1 is at least as skeptical as a labelling Lab2
according to the inclusion of both the sets of in and out labelled arguments.

These intuitions are formalized in Definition 4.8.

Definition 4.8 Given two extensions E1 and E2 of an argumentation frame-
work AF , E1 is at least as skeptical as E2, denoted as E1 ≼ E2 if and only if
E1 ⊆ E2. Given two labellings Lab1 and Lab2 of an argumentation framework
AF , Lab1 is at least as skeptical as Lab2, denoted as Lab1 ≼ Lab2, if and only
if Lab1 ⊑ Lab2 (see Definition 3.44).

19
For instance, how to find efficient proof procedures for determining the fine-grained

justification status with respect to preferred, semi-stable and stage semantics.
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While the above relations are sufficient to compare unique-status semantics,

the next step is to introduce skepticism relations between non-empty20 sets of

extensions or labellings in order to compare multiple-status semantics. As more

extensively discussed in [Baroni and Giacomin, 2009b], several alternatives can

be considered for this issue.

As a first basic step, one can consider a comparison method based on inclu-

sion of the sets of accepted arguments, either according to skeptical or credulous

acceptance. This gives rise to the skepticism relations stated in the following

definitions.

Definition 4.9 Given two non-empty sets of extensions E1 and E2 of an argu-
mentation framework AF , E1 ≼E

∩ E2 if and only if
∩

E1∈E1
E1 ⊆

∩
E2∈E2

E2.

Definition 4.10 Given two non-empty sets of extensions E1 and E2 of an ar-
gumentation framework AF , E1 ≼E

∪ E2 if and only if
∪

E1∈E1
E1 ⊆

∪
E2∈E2

E2.

Definition 4.11 Given two non-empty sets of labellings L1 and L2 of an ar-
gumentation framework AF , L1 ≼L

∩ L2 if and only if
∩

Lab1∈L1
in(Lab1) ⊆∩

Lab2∈L2
in(Lab2).

Definition 4.12 Given two non-empty sets of labellings L1 and L2 of an ar-
gumentation framework AF , L1 ≼L

∪ L2 if and only if
∪

Lab1∈L1
in(Lab1) ⊆∪

Lab2∈L2
in(Lab2).

To exemplify the above notions, consider first the example of Figure 4. In

the extension-based approach, the grounded and ideal semantics prescribe the

set of extensions E1 = {∅} while all other semantics prescribe E2 = {{a}, {b}}.
Clearly, E1 ≼E

∩ E2, E2 ≼E
∩ E1, E1 ≼E

∪ E2, while it is not the case that E2 ≼E
∪ E1

(denoted as E2 �E
∪ E1). For the same example in the labelling-based approach

grounded and ideal semantics prescribe the set of labellings L1 = {(∅, ∅, {a, b})}
while all other semantics prescribe L2 = {({a}, {b}, ∅), ({b}, {a}, ∅)}. Again, it

can be seen that L1 ≼L
∩ L2, L2 ≼L

∩ L1, L1 ≼L
∪ L2, while L2 �L

∪ L1.

Considering the example of Figure 6, in the extension-based approach the

grounded and ideal semantics prescribe the set of extensions E1 = {∅} while all
other semantics prescribe E2 = {{a, d}, {b, d}}. It turns out that E1 ≼E

∩ E2 and

E1 ≼E
∪ E2, while E2 �E

∩ E1 and E2 �E
∪ E1. The case of labellings is perfectly

analogous with L1 = {(∅, ∅, {a, b, c, d})} for grounded and ideal semantics and

L2 = {({a, d}, {b, c}, ∅), ({b, d}, {a, c}, ∅)} for other semantics yielding L1 ≼L
∩

L2 and L1 ≼L
∪ L2, while L2 �L

∩ L1 and L2 �L
∪ L1.

Figure 9 provides a more articulated case for comparison.

In the extension-based approach grounded and ideal semantics prescribe

E1 = {∅}, preferred semantics prescribes E2 = {{a}, {b, d}}, CF2 seman-

tics prescribes E3 = {{a, c}, {a, d}, {a, e}, {b, d}}, while stable, semi-stable and

20
We assume that an empty set of extensions/labellings corresponds to a peculiar case and

cannot be involved in skepticism comparison.
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stage semantics prescribe E4 = {{b, d}}. It follows that for any i, j ∈ {1, 2, 3}
Ei ≼E

∩ Ej , while for any i ∈ {1, 2, 3} Ei ≼E
∩ E4 and E4 �E

∩ Ei. On the other hand,

these sets are completely ordered according to ≼E
∪ since E1 ≼E

∪ E4 ≼E
∪ E2 ≼E

∪ E3.
Again, the case of labellings is perfectly analogous.

As a further step in the analysis of skepticism relations, one may observe

that also explicitly rejected arguments should be taken into account in a similar

way as accepted arguments: this gives rise to the following definitions.

Definition 4.13 Given two non-empty sets of extensions E1 and E2 of an argu-
mentation framework AF , E1 ≼E

∩→ E2 if and only if E1 ≼E
∩ E2 and

∩
E1∈E1

E+
1 ⊆∩

E2∈E2
E+

2 .

Definition 4.14 Given two non-empty sets of extensions E1 and E2 of an argu-
mentation framework AF , E1 ≼E

∪→ E2 if and only if E1 ≼E
∪ E2 and

∪
E1∈E1

E+
1 ⊆∪

E2∈E2
E+

2 .

Definition 4.15 Given two non-empty sets of labellings L1 and L2 of an
argumentation framework AF , L1 ≼L

∩→ L2 if and only if L1 ≼L
∩ L2 and∩

Lab1∈L1
out(Lab1) ⊆

∩
Lab2∈L2

out(Lab2).

Definition 4.16 Given two non-empty sets of labellings L1 and L2 of an
argumentation framework AF , L1 ≼L

∪→ L2 if and only if L1 ≼L
∪ L2 and∪

Lab1∈L1
out(Lab1) ⊆

∪
Lab2∈L2

out(Lab2).
Consider again the example of Figure 4, and for a set of extensions E let us

denote in the following E+ = {E+ | E ∈ E}. Then, referring to the already

mentioned sets of extensions E1 = {∅} and E2 = {{a}, {b}} we have E+1 = {∅}
and E+2 = {{b}, {a}}. Clearly, E1 ≼E

∩→ E2, E2 ≼E
∩→ E1, E1 ≼E

∪→ E2 while

E2 �E
∪→ E1. For the same example in the labelling-based approach, it can

analogously be seen that L1 ≼L
∩→ L2, L2 ≼L

∩→ L1, L1 ≼L
∪→ L2 and L2 �L

∪→ L1.

In the example of Figure 6, we refer again to E1 = {∅} and E2 = {{a, d}, {b, d}},
yielding E+1 = {∅} and E+2 = {{b, c}, {a, c}}. Then E1 ≼E

∩→ E2 and E1 ≼E
∪→ E2,

while E2 �E
∩→ E1 and E2 �E

∪→ E1. The case of labellings is perfectly analogous

with L1 ≼L
∩→ L2 and L1 ≼L

∪→ L2, while L2 �L
∩→ L1 and L2 �L

∪→ L1.

Figure 9 provides again a more articulated case.

Considering the sets of extensions E1 = {∅}, E2 = {{a}, {b, d}}, E3 =

{{a, c}, {a, d}, {a, e}, {b, d}}, and E4 = {{b, d}} we have E+1 = {∅}, E+2 =

{{b}, {a, c, e}}, E+3 = {{b, d}, {b, e}, {b, c}, {a, c, e}}, E+4 = {{a, c, e}}. It follows
that for any i, j ∈ {1, 2, 3} Ei ≼E

∩→ Ej , while for any i ∈ {1, 2, 3} Ei ≼E
∩→ E4

and E4 �E
∩→ Ei. On the other hand, E1 ≼E

∪→ E4 ≼E
∪→ E2 ≼E

∪→ E3. Again, the

case of labellings is perfectly analogous.

To have an example where the relations of the≼∩ kind differ from those of the

≼∩→ kind consider the example of Figure 15. In the extension-based approach

all semantics but stable21, stage, CF2, and stage2 semantics prescribe the set

21
The set of stable extensions is empty in this case.
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a

b

c

d

Figure 15. Cycle of three attacking arguments in turn attacking another argu-

ment

of extensions E1 = {∅} with E+1 = {∅}, while stage, CF2, and stage2 semantics

prescribe E2 = {{a}, {b}, {c}} with E+2 = {{d}}. It follows that E1 ≼E
∩ E2 and

E2 ≼E
∩ E1, while E1 ≼E

∩→ E2 but E2 �E
∩→ E1. Similar considerations apply in

the labelling-based approach.

Definitions 4.9-4.16 treat sets of extensions or labellings “as a whole” by

simply considering their intersection or union: for instance, very different sets

of extensions are treated in the same way if they have an empty intersection.

In order to take account of how single extensions or labellings are defined,

a different kind of definition is needed: the skepticism relation between two

sets (let say X1 and X2) of extensions or labellings should be based on some

comparison between their individual elements. In particular, according to a

skeptical approach to argument justification, in order to state that X1 is at

least as skeptical as X2, one may require that every element in X2 has a more

skeptical counterpart in X1, while, according to a credulous approach, one may

require dually that every element in X1 has a less skeptical counterpart in

X2. This general idea is formalized by the following definitions, which resort

to the basic comparisons between single extensions and labellings identified in

Definition 4.8.

Definition 4.17 Given two non-empty sets of extensions E1 and E2 of an ar-
gumentation framework AF , E1 ≼E

∩+ E2 if and only if ∀E2 ∈ E2 ∃E1 ∈ E1 :

E1 ≼ E2.

Definition 4.18 Given two non-empty sets of extensions E1 and E2 of an ar-
gumentation framework AF , E1 ≼E

∪+ E2 if and only if ∀E1 ∈ E1 ∃E2 ∈ E2 :

E1 ≼ E2.

Definition 4.19 Given two non-empty sets of labellings L1 and L2 of an ar-
gumentation framework AF , L1 ≼L

∩+ L2 if and only if ∀Lab2 ∈ L2 ∃Lab1 ∈
L1 : Lab1 ≼ Lab2.
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Definition 4.20 Given two non-empty sets of labellings L1 and L2 of an ar-
gumentation framework AF , L1 ≼L

∪+ L2 if and only if ∀Lab1 ∈ L1 ∃Lab2 ∈
L2 : Lab1 ≼ Lab2.

Let us exemplify these relations.

In the example of Figure 4, referring to the already mentioned sets of exten-

sions E1 = {∅} and E2 = {{a}, {b}} we have E1 ≼E
∩+ E2 but, differently from the

previously considered relations, E2 �E
∩+ E1. On the other hand, E1 ≼E

∪+ E2 and

E2 �E
∪+ E1. As usual, analogous relations hold for the labelling-based approach.

Similarly, in the example of Figure 6, with E1 = {∅} and E2 = {{a, d}, {b, d}}
it holds E1 ≼E

∩+ E2 and E1 ≼E
∪+ E2, while E2 �E

∩+ E1 and E2 �E
∪+ E1. It goes

without saying that the same holds in the labelling-based approach.

Finally consider the case of Figure 9 with sets of extensions E1 = {∅}, E2 =

{{a}, {b, d}}, E3 = {{a, c}, {a, d}, {a, e}, {b, d}}, and E4 = {{b, d}}. We can

first observe that for i ∈ {2, 3, 4} E1 ≼E
∩+ Ei and (differently from previous

relations) Ei �E
∩+ E1. Then we can note that E2 ≼E

∩+ E4 and E3 ≼E
∩+ E4 since

the only element of E4 (namely {b, d}) is a superset of (actually coincides with)

an element of either E2 or E3. Also E2 ≼E
∩+ E3 since the elements {a, c}, {a, d},

and {a, e} of E3 are supersets of {a} in E2 and {b, d} is present both in E3 and

E2. With similar observations it can be seen that E3 �E
∩+ E2, E4 �E

∩+ E2, and
E4 �E

∩+ E3. Turning to the relation corresponding to the credulous perspective,

it can immediately be observed that for i ∈ {2, 3, 4} E1 ≼E
∪+ Ei and Ei �E

∪+ E1.
Also, E2 ≼E

∪+ E3 since {a} is included in some elements of E3 and {b, d} is

present both in E2 and E3. On the other hand, E3 �E
∪+ E2. Differently from the

skeptical perspective, E4 ≼E
∪+ E2 and E4 ≼E

∪+ E3 (the only element of E4, namely

{b, d} is present both in E2 and E3) while it can be easily seen that E2 �E
∪+ E4

({a} is not included in any element of E4) and E3 �E
∪+ E4 (as above for sets

{a, c}, {a, d}, {a, e}). Again, the case of labellings is perfectly analogous.

A stronger skepticism relation, unifying the skeptical and credulous perspec-

tives, can be obtained by combining together the relations ≼∩+ and ≼∪+ .

Definition 4.21 Given two non-empty sets of extensions E1 and E2 of an ar-
gumentation framework AF , E1 ≼E

⊕ E2 if and only if E1 ≼E
∩+ E2 and E1 ≼E

∪+ E2.

Definition 4.22 Given two non-empty sets of labellings L1 and L2 of an argu-
mentation framework AF , L1 ≼L

⊕ L2 if and only if L1 ≼L
∩+ L2 and L1 ≼L

∪+ L2.

As also evident from their definitions, the various skepticism relations intro-

duced above are related each other by implication. In particular, two implica-

tions chains can be identified in correspondence with the skeptical or credulous

perspective. In fact, given two sets of extensions E1 and E2 of an argumentation

framework AF , it holds that:

(1) E1 ≼E
⊕ E2 ⇒ E1 ≼E

∩+ E2 ⇒ E1 ≼E
∩→ E2 ⇒ E1 ≼E

∩ E2

(2) E1 ≼E
⊕ E2 ⇒ E1 ≼E

∪+ E2 ⇒ E1 ≼E
∪→ E2 ⇒ E1 ≼E

∪ E2
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The only nontrivial implications in (1) and (2) concern the fact that ≼E
∩+

implies ≼E
∩→ , and, similarly, ≼E

∪+ implies ≼E
∪→ : they have been proved in

[Baroni and Giacomin, 2009b].

Using Definitions 4.11, 4.12, 4.15, 4.16, 4.19, 4.20, 4.22, and the same kind

of reasoning it is possible to prove that the analogous relations hold in the

labelling based approach. In fact, given two sets of labellings L1 and L2 of an

argumentation framework AF , it holds that:

(3) L1 ≼L
⊕ L2 ⇒ L1 ≼L

∩+ L2 ⇒ L1 ≼L
∩→ L2 ⇒ L1 ≼L

∩ L2

(4) L1 ≼L
⊕ L2 ⇒ L1 ≼L

∪+ L2 ⇒ L1 ≼L
∪→ L2 ⇒ L1 ≼L

∪ L2

Turning to the comparison between semantics, for a given generic relation

≼ concerning either extensions or labellings it is quite natural to define an

induced relation of skepticism between two semantics σ1 and σ2, by requiring

that ≼ holds for their sets of extensions or labellings. As it may happen that

either σ1 or σ2 prescribes an empty set of extensions (or labellings) in some

cases, the induced relation has to refer to a set of argumentation frameworks

where both σ1 and σ2 prescribe non-empty sets of extensions (or labellings),

namely to DEσ1 ∩DEσ2 (or DLσ1 ∩DLσ2) using the notation of Definition 4.1.

Definition 4.23 Let ≼E be a skepticism relation between sets of extensions,
σ1 and σ2 be extension-based argumentation semantics, and A be a set of argu-
mentation frameworks with A ⊆ (DEσ1 ∩ DEσ2). The skepticism relation ≼SE

induced by ≼E between σ1 and σ2 with reference to A is defined as follows:
σ1 ≼SE σ2 if and only if ∀AF ∈ A Eσ1(AF ) ≼E Eσ2(AF ).

Definition 4.24 Let ≼L be a skepticism relation between sets of labellings, σ1
and σ2 be labelling-based argumentation semantics, and A be a set of argu-
mentation frameworks with A ⊆ (DLσ1 ∩DLσ2). The skepticism relation ≼SL

induced by ≼L between σ1 and σ2 with reference to A is defined as follows:
σ1 ≼SL σ2 if and only if ∀AF ∈ A Lσ1(AF ) ≼L Lσ2(AF ).

Focusing on the extension-based approach, while Definition 4.23 considers

a generic set of argumentation frameworks A ⊆ (DEσ1 ∩ DEσ2) to define a

skepticism relation, clearly the most interesting skepticism relation is the one

corresponding to the case A = (DEσ1 ∩ DEσ2). Then, when considering a

skepticism comparison concerning more than two semantics σ1, σ2, . . . , σN it is

reasonable to consider a common reference A =
∩

i=1...N DEσi . As to the se-

mantics discussed in this chapter, only stable semantics may prescribe an empty

set of extensions/labellings. Therefore two reference sets can be considered: the

universe of all argumentation frameworks if stable semantics is not involved in

the comparison, or DEST otherwise. Clearly the same considerations hold in

the labelling-based approach by replacing DE with DL.
It is worth noting that, in general, two semantics σ1 and σ2 may not be

comparable with respect to skepticism. For instance, it may be the case that
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EAG STG2

STG GR = CO

CF2ID

PR

SST

Figure 16. ≼SE
∩+ , ≼SE

∩→ and ≼SE
∩ relations for any argumentation framework

there are two argumentation frameworks AF1 and AF2 such that σ1 behaves

more skeptically than σ2 in the case of AF1 but σ2 behaves more skeptically

than σ1 in the case of AF2, or that the two semantics yield incomparable sets

of extensions for some given argumentation framework. Furthermore, the order

between two semantics may be different according to the credulous or skeptical

perspective.

A detailed analysis of skepticism relations between most extension-based

semantics has been carried out in [Baroni and Giacomin, 2009b] to which the

reader may refer for details: we report here only the resulting partial orders,

graphically presented as Hasse diagrams (with the addition of eager, stage,

and stage2 semantics22 with respect to [Baroni and Giacomin, 2009b]). As

mentioned above, distinct Hasse diagrams are presented for the case where

stable extensions exist and for the general one.

The partial orders23 induced by all the relations corresponding to the skep-

tical perspective, namely ≼SE
∩+ , ≼SE

∩→ and ≼SE
∩ coincide.

The Hasse diagram corresponding to the general case is shown in Figure 16:

grounded semantics is the most skeptical one and since the grounded extension

is the least complete extension it turns out that GR ≼SE
∩+ CO and CO ≼SE

∩+ GR.
Ideal, preferred, and semi-stable semantics are all comparable among them and

orderly less skeptical, with eager semantics in between ideal and semi-stable,

while not comparable with preferred. Stage2 semantics is less skeptical than

CF2, which in turn is comparable with GR and CO, while no other relation

holds with the other semantics. Stage semantics is not comparable with any

other, also due to its peculiar behaviour in some cases, exemplified in the

22
The authors are grateful to Wolfgang Dvořák for suggesting the extension of these results

to eager and stage2 semantics.
23

The skepticism relations described in the following have been analyzed in [Baroni and

Giacomin, 2009b] for the extension-based approach. Due to the one-to-one correspondence

between extensions and labellings holding for all the semantics involved in the comparison,

it is possible to prove that the skepticism relations hold also in the labelling-based approach.
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ST = SST = STG

ID CF2
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EAG STG2

Figure 17. ≼SE
∩+ , ≼SE

∩→ and ≼SE
∩ relations for argumentation frameworks in

DEST (DLST )

PR = CO

CF2

STG2

EAG

SST

STG

GR

ID

Figure 18. ≼SE
∪+ , ≼SE

∪→ and ≼SE
∪ relations for any argumentation framework
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ST = SST = STG

CF2

PR = COSTG2

GR

ID

EAG

Figure 19. ≼SE
∪+ , ≼SE

∪→ and ≼SE
∪ relations for argumentation frameworks in

DEST (DLST )

argumentation framework of Figure 12.

The Hasse diagram for ≼SE
∩+ , ≼SE

∩→ and ≼SE
∩ considering only the argumen-

tation frameworks where stable extensions exist (and then coincide with semi-

stable and stage extensions) is shown in Figure 17. It can be noted that in this

context stage2 semantics is comparable with (and more skeptical than) stable

semantics.

Turning to skepticism relations based on the credulous perspective, namely

≼SE
∪+ , ≼SE

∪→ and ≼SE
∪ , the Hasse diagram corresponding to the general case is

shown in Figure 18. An almost complete ordering is achieved due to the change

of perspective. In particular, complete semantics is in mutual relation with

preferred semantics: PR ≼SE
∪+ CO and CO ≼SE

∪+ PR since preferred extensions

are maximal complete extensions. Moreover one can note that CF2 is now

comparable with any other one (and is actually the least skeptical semantics)

and that the orderings between PR and SST and between CF2 and stage2 are

inverted with respect to Figure 16.

The Hasse diagram for ≼SE
∪+ , ≼SE

∪→ and ≼SE
∪ considering only the argumen-

tation frameworks where stable extensions exist is shown in Figure 19: here an

almost total order is achieved, which obeys the same relations as the general

case but where stable, semi-stable and stage semantics coincide and stage2 is

between stable and CF2 semantics.

Finally, the Hasse diagrams for the relations arising from the conjunction of
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Figure 20. ≼SE
⊕ relation for any argumentation framework.

EAG

STG2

ST = SST = STG

ID CO

CF2PR

GR 

Figure 21. ≼SE
⊕ relation for argumentation frameworks in DEST (DLST )

the skeptical and credulous perspective are shown in Figures 20 and 21, for the

general case and for argumentation frameworks where stable extensions exist

respectively. As obvious, stronger relations entail lesser comparability between

semantics, but one can note in particular that the role of GR as “bottom”

skeptical reference with respect to all other semantics (but ST G) is confirmed.

5 Semantics agreement

The study of many different argumentation semantics in the literature indicates

the richness and inherent complexity of the problem of “solving conflicts among

arguments”. In general terms, the introduction of a new semantics can be

motivated by the need to achieve a particular desired outcome in some specific

example considered particularly relevant and/or by the objective of satisfying

some properties, at an intuitive or formal level.

While semantics differences obviously attract attention in analyses and com-

parisons, and have been discussed in Section 3, it is also important to charac-

terize situations where argumentation semantics agree, i.e. exhibit the same

behaviour. This is useful from several viewpoints. On one hand, situations

where “most” (or even all) existing semantics agree can be regarded as pro-

viding a sort of reference behaviour against which further proposals should be

confronted. On the other hand, it may be the case that in a specific applica-
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tion domain there are some restrictions on the structure of the argumentation

frameworks that need to be considered. It is then surely interesting to know

whether these restrictions lead to semantics agreement, since in this case the

choice of the semantics to be adopted turns out to have no influence and, in a

sense, the outcomes are universally supported in a semantics-independent way.

In this section we review the existing results about semantics agreement

covering two distinct, though related, issues.

The first issue concerns the identification of the classes of argumentation

frameworks where a given set of semantics agree. As will be shown in Section

5.1, using general properties of argumentation semantics only, it is possible to

prove that there is a limited number of distinct agreement classes and identify

them regardless of the topological properties of the argumentation frameworks

belonging to them.

The second issue, dealt with in Section 5.2, concerns, in a complementary

way, the analysis of argumentation frameworks where semantics agree from a

topological viewpoint.

Before we enter the matter, some basic definitions and properties on seman-

tics agreement need to be introduced.

Semantics agreement concerns comparing the set of extensions or, equiva-

lently, of labellings prescribed by different semantics for the same framework.

The analysis will be developed focusing on the extension-based approach, as

this allows a more compact presentation. Furthermore, to avoid to deal with

spurious situations, whenever we will discuss the properties of agreement of a

given semantics σ we will implicitly refer, if not differently specified, only to ar-

gumentation frameworks belonging to DEσ, i.e. such that the set of extensions

prescribed by σ is not empty.

The notion of agreement for a set of semantics on an argumentation frame-

work is defined in the obvious way.

Definition 5.1 Let S be a set of argumentation semantics and AF an ar-
gumentation framework such that AF ∈

∩
σ∈SDEσ. We say that AF is an

agreement framework for S (or, equivalently, that the semantics in S agree on
AF ) iff ∀σ1, σ2 ∈ S it holds that Eσ1(AF ) = Eσ2(AF ). The set of the agreement
frameworks for S is denoted as AGR(S) and called the agreement class of S.

In general, it may be the case that AGR(S1) = AGR(S2) for different sets of
semantics S1 and S2: this in fact motivates the analysis carried out in Section

5.1. Moreover it is immediate to note that S1 ⊆ S2 ⇒ AGR(S2) ⊆ AGR(S1).

5.1 Agreement classes

Systematic results on the identification of agreement classes have been obtained

up to now for the semantics in the set Ω = {GR, ID, CO,PR,ST , CF2,SST }.
It can be noted that AGR(S) ̸= ∅ for any set of semantics S ⊆ Ω since all

semantics belonging to Ω are obviously in agreement on the empty argumenta-

tion framework AF∅ = (∅, ∅). Moreover, all semantics in Ω (and probably every
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Figure 22. Venn diagram of unique-status agreement classes.

other reasonable argumentation semantics one can conceive) are in agreement

also on attack-free argumentation frameworks. Namely, for an argumentation

framework AF = (Args, ∅) for every σ ∈ Ω it holds that Eσ(AF ) = {Args}.
As for the semantics not included in Ω, the following comments can be made.

First, näıve semantics differs substantially from other semantics since, basically,

it ignores the direction of attacks. Thus agreement with some other semantics

can be achieved only in peculiar situations where the direction of attacks is not

relevant (this is the case for instance of symmetric argumentation frameworks,

mentioned in Section 5.2). As to stage semantics it must be recalled, first

of all, that when stable extensions exist, they coincide with stage extensions.

Thus agreement classes including stable semantics also implicitly include stage

semantics. When stable extensions do not exist the peculiar behaviour of stage

semantics in some cases (in particular the possibility that unattacked arguments

are not included in an extension) implies that stage semantics may disagree with

any other set of semantics. The identification and study of agreement classes

involving eager or stage2 semantics appears to be potentially more interesting,

but has not been developed in the literature yet.

Considering all subsets S of Ω such that |S| ≥ 2 gives rise, in principle, to

120 classes AGR(S) to be evaluated. Hovewer it has been proved in [Baroni

and Giacomin, 2008] that the distinct agreement classes are only 14.

We will start by analyzing in subsection 5.1.1 unique-status agreement,

namely the classes AGR(S) where S includes GR or ID, and we will then

examine agreement between multiple-status semantics in subsection 5.1.2.

5.1.1 Unique-status Agreement

The Venn diagram concerning unique-status agreement classes is shown in Fig-

ure 22 where rectangular boxes represent classes of agreement and small ellipses

represent single argumentation frameworks to be used as specific examples.



Abstract Argumentation Frameworks and Their Semantics 221

The diagram will be illustrated in two main steps: first, we show that the set-

theoretical relationships between the agreement classes Σ1, . . . ,Σ8 depicted in

Figure 22 actually hold, then we explain why the classes Σ1, . . . ,Σ8 are the

only meaningful ones in the context of unique-status agreement.

As to the first step, we proceed by following the partial order induced by

inclusion (namely if Σi ( Σj then j > i). While introducing each class Σi it

will be necessary:

1. to identify which classes Σk, k < i, are included in Σi;

2. for each of these classes Σk to show that Σi \ Σk ̸= ∅;

3. for any Σh such that h < i and Σh * Σi to examine Σi ∩ Σh.

Point 1 will not be stressed since inclusion relationships can be directly derived

from the inclusion of the relevant sets of semantics (S1 ⊆ S2 ⇒ AGR(S2) ⊆
AGR(S1)). As to point 2, examples of argumentation frameworks belonging

to non-empty set differences will be given to prove that inclusion relationships

are strict, while point 3 will be dealt with case by case.

Let us start from AGR({GR, ID, CO,PR,ST , CF2,SST }), denoted as Σ1.

This is the class of argumentation frameworks where all semantics show a uni-

form single status behaviour in agreement with grounded semantics. Σ1 in-

cludes, for instance, attack-free argumentation frameworks like the very simple

AF1 = ⟨{a}, ∅⟩.
AGR({GR, ID, CO,PR, CF2,SST }), denoted as Σ2, corresponds to a uni-

form single status behaviour in agreement with grounded semantics by all but

stable semantics. As shown in Figure 22, Σ2 strictly includes Σ1 since (Σ2 \Σ1)

includes in particular AF2 = ⟨{a, b}, {(b, b)}⟩.
Σ3 , AGR({GR, ID, CO,PR,SST }) is the last class in Figure 22 concern-

ing agreement with grounded semantics. (Σ3 \ Σ2) ̸= ∅ since it includes for

instance AF3 = ⟨{a, b, c}, {(a, b), (b, c), (c, a)}⟩. It is now worth noting that

Σ3 ∩ DEST = Σ2 ∩ DEST = Σ1. In fact, since semi-stable extensions coincide

with stable extensions when the latter exist, whenever AF ∈ DEST it must be

the case that AF ∈ AGR(S) where S includes both ST and SST .
On the left of Σ1, Σ2 and Σ3 the diagram of Figure 22 shows four classes

where several multiple-status semantics exhibit a unique-status behaviour in

agreement with ideal semantics, but not necessarily also with grounded seman-

tics. The smallest of these classes is Σ4 , AGR({ID, CF2,ST ,PR,SST }).
(Σ4 \ Σ1) ̸= ∅ since it includes AF4 = ⟨{a, b}, {(a, b), (b, a), (b, b)}⟩. Moreover,

since Σ4 ⊂ DEST , it is the case that Σ4∩(Σ3\Σ1) = ∅. Not requiring agreement

with stable semantics leads to Σ5 , AGR({ID, CF2,PR,SST }). (Σ5 \ (Σ4 ∪
Σ2)) ̸= ∅, since it includes AF5 = ⟨{a, b, c}, {(a, b), (b, a), (b, b), (c, c)}⟩. Notice

also that Σ5 ∩ (Σ3 \Σ2) = ∅ since if AF ∈ Σ5 ∩Σ3 then, by definition of these

classes, it also holds AF ∈ Σ2. It is also clear that Σ5∩DEST = Σ4. Not requir-

ing agreement with CF2 semantics leads to Σ6 , AGR({ID,ST ,PR,SST }).
(Σ6 \ Σ4) ̸= ∅ since it includes AF6 = ⟨{a, b, c}, {(a, b), (a, c), (b, c), (c, a)}⟩.
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Again, since Σ6 ⊂ DEST it holds Σ6 ∩ (Σ3 \ Σ1) = ∅ and Σ6 ∩ (Σ5 \ Σ4) = ∅.
Finally, excluding both stable and CF2 semantics from the required agreement

corresponds to Σ7 , AGR({ID,PR,SST }). (Σ7 \ (Σ6 ∪ Σ5 ∪ Σ3)) ̸= ∅, since
it includes AF7 = ⟨{a, b, c, d, e}, {(a, b), (b, a), (b, b), (c, d), (d, e), (e, c)}⟩.

The last class concerning unique-status agreement is Σ8 , AGR({ID,GR}).
By definition of the relevant sets of semantics (and since no other distinct

agreement classes exist, as recalled below) it holds that Σ8∩Σ7 = Σ3, moreover

it is easy to see that Σ8\Σ3 ̸= ∅, since it includes AF8 = ⟨{a, b}, {(a, b), (b, a)}⟩.
In [Baroni and Giacomin, 2008] it is shown that no other classes than

Σ1, . . . ,Σ8 are meaningful in the context of unique-status agreement. The

proofs are based on a set of basic properties and relationships, which we recall

together in Proposition 5.2 (see Lemmata 2-10 in [Baroni and Giacomin, 2008])

as they are of general interest in the analysis and understanding of argumen-

tation semantics.

Proposition 5.2 Given an argumentation framework AF the following state-
ments hold:

1. if |EPR(AF )| = 1, then

• EPR(AF ) = EID(AF );
• EPR(AF ) = ESST (AF );

• if AF ∈ DEST , EPR(AF ) = EST (AF ).

2. if |ECO(AF )| = 1, then ECO(AF ) = EGR(AF ) = EPR(AF );

3. let σ ∈ {PR,ST ,SST , CF2}, if GE(AF ) ∈ Eσ(AF ) then Eσ(AF ) =

{GE(AF )};

4. if EPR(AF ) = {GE(AF )} then ECO(AF ) = {GE(AF )};

5. if EST (AF ) = {GE(AF )} then ECF2(AF ) = {GE(AF )};

6. if ECF2(AF ) = {GE(AF )} then ECF2(AF ) = EPR(AF );

7. if ECF2(AF ) = {ID(AF )} then ECF2(AF ) = EPR(AF );

8. if ESST (AF ) = {ID(AF )} then ESST (AF ) = EPR(AF );

9. if ECF2(AF ) ⊆ AS(AF ) then ECF2(AF ) = EPR(AF ).

These results can be briefly expressed in words as follows. Item 1 states that

when there is a unique preferred extension, it is also the unique ideal, semi-

stable, and (possibly) stable extension, while item 2 states that when there is

a unique complete extension it is also the unique preferred extension and the

grounded extension. Item 3 says that the set of preferred extensions can include

the grounded extension only if it contains only the grounded extension (and

the same holds for stable, semi-stable and CF2 extensions). If the grounded
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extension is the only preferred extension it is also the only complete extension

(item 4), while if it is the only stable extension it is also the only CF2 extension

(item 5) and the only preferred extension (item 6). Finally, if the set of CF2
extensions or of semi-stable extensions contains only the ideal extension this is

also the unique preferred extension (items 7 and 8) and if all CF2 extensions

are admissible they coincide with the preferred extensions (item 9).

On the basis of these results, it is shown in [Baroni and Giacomin, 2008] that

any agreement class AGR(S) where S includes either GR or ID coincides with

one of the classes Σ1, . . . ,Σ8. Note in particular that Σ1, Σ2 and Σ3 are the

only classes where CO appears: this is due to the fact that GE(AF ) ∈ ECO(AF )
which implies that agreement between complete semantics and other semantics

can only occur when the set of extensions consists of the grounded extension

only. For this reason CO will not need to be considered any more in next

subsection concerning multiple-status agreement.

5.1.2 Multiple-status Agreement

The complete Venn diagram concerning all agreement classes is shown in Figure

23, where the rectangle with bold lines including all the others represents the

universe of all finite argumentation frameworks and again rectangular boxes

represent classes of agreement and small ellipses represent single argumentation

frameworks to be used as specific examples. As in the previous subsection, the

diagram will be illustrated by examining first the set-theoretical relationships

between the agreement classes depicted in Figure 23 and then stating that no

other meaningful classes exist.

The first step will encompass the same three points as in the previous sub-

section. In particular, as to point 3, it can be noticed from Figure 23 that

most intersections between classes correspond to unions of previously identi-

fied classes and/or differences between classes and can be easily determined by

considering the sets of semantics involved. For this reason, only intersections

requiring specific explanations (in particular all those concerning Σ8) will be

explicitly discussed. Our analysis will now concern agreement classes involving

only multiple-status semantics except CO.
The smallest one includes all of them: Σ9 , AGR({PR, CF2,ST ,SST }).

(Σ9\Σ4) ̸= ∅ as it includes AF9 = ⟨{a, b, c, d}, {(a, b), (b, a), (a, c), (b, c), (c, d)}⟩.
Note that AF9 ∈ ((Σ9 \Σ4)∩Σ8). Also Σ9 \ (Σ4 ∪Σ8) is not empty since it in-

cludes, for example, AF9′ = ⟨{a, b, c, d}, {(a, b), (b, a), (a, c), (b, c), (c, d), (d, c)}⟩.
Σ10 , AGR({PR, CF2,SST }) covers the case where stable extensions do

not exist, while all other multiple-status semantics agree. Σ10 \ (Σ9 ∪ Σ5) ̸= ∅
since it includes, for instance, AF10 = ⟨{a, b, c}, {(a, b), (b, a), (c, c)}⟩. Note that

AF10 ∈ ((Σ10 \ (Σ9 ∪Σ5))∩Σ8). Also (Σ10 \ (Σ9 ∪Σ5 ∪Σ8)) is not empty since

it includes, for example, AF10′ = AF10 ⊎AF4, where, given two argumentation

frameworks AF1 = (Ar1, att1), AF2 = (Ar2, att2) such that Ar1 ∩Ar2 = ∅, we
define24 AF1 ⊎AF2 , (Ar1 ∪Ar2, att1 ∪ att2).

24
While we have used the same labels a, b, . . . to denote arguments of our sample argu-

mentation frameworks, we implicitly assume that arguments with the same label in different
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Figure 23. Venn diagram of agreement classes.

Σ11 , AGR({PR,ST ,SST }) coincides with the class of coherent argumen-

tation frameworks considered in [Dung, 1995]. (Σ11 \ (Σ6 ∪ Σ9)) ̸= ∅ since it

includes AF11 = ⟨{a, b, c, d, e}, {(a, b), (a, c), (b, c), (c, a), (d, e), (e, d)}⟩. It can

be noted that AF11 /∈ Σ8. Also (Σ11 \ (Σ6 ∪ Σ9)) ∩ Σ8 ̸= ∅ since it includes

AF11′ = ⟨{a, b, c, d}, {(a, b), (a, c), (a, d), (b, c), (b, d), (c, a), (d, a), (d, b), (d, c)}⟩.
We are now left with three classes where only a pair of multiple-status se-

mantics are in agreement.

Let us start by considering Σ12 , AGR(PR,SST ). Σ12\(Σ7∪Σ10∪Σ11) ̸= ∅
as it includes AF12 = ⟨{a, b, c, d, e}, {(a, b), (b, a), (c, d), (d, e), (e, c)}⟩. It can be

noted that AF12 ∈ Σ8. For an example of argumentation framework included

in Σ12 \ (Σ7 ∪ Σ8 ∪ Σ10 ∪ Σ11) consider AF12′ = AF12 ⊎AF4.

Finally, as already remarked, Σ13 , AGR(ST ,SST ) coincides with the class

DEST of argumentation frameworks where stable extensions exist, while the

last pair to be considered corresponds to Σ14 , AGR(PR, CF2). The part of

the diagram still to be illustrated involves argumentation frameworks outside

Σ12 and requires an articulated treatment, since the intersections Σ13 ∩ Σ14,

Σ13 ∩ Σ8, and Σ14 ∩ Σ8 do not allow a simple characterisation in terms of the

other identified classes. First the set difference Σ13 \ Σ12 can be partitioned

argumentation frameworks are actually distinct. This assumption allows us to apply the

combination operator ⊎ to any pair of sample argumentation frameworks while keeping a

simple notation. To make the distinction explicit, argument a of AF4 should be actually

labeled a4, argument a of AF10 should be labeled a10, and so on, but we regard this as an

unnecessary notational burden.
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Figure 24. Inclusion relations between agreement classes.

into four non-empty subsets:

• ((Σ13 \ Σ12) ∩ Σ14 ∩ Σ8) ∋ AF13 = ⟨{a, b, c}, {(a, b), (b, a), (a, c), (c, c)}⟩;

• ((Σ13 \ Σ12) ∩ (Σ8 \ Σ14)) ∋ AF13′ = AF13 ⊎AF11′ ;

• ((Σ13 \ Σ12) ∩ (Σ14 \ Σ8)) ∋ AF13′′ = AF13 ⊎AF4;

• (Σ13 \ (Σ12 ∪ Σ14 ∪ Σ8)) ∋ AF13′′′ = AF13 ⊎AF4 ⊎AF11′ .

Then, Σ14 \ (Σ12 ∪ Σ13) can be partitioned into two non-empty subsets:

• (Σ14 \ (Σ12 ∪ Σ13 ∪ Σ8)) ∋ AF14 = AF13 ⊎AF4 ⊎AF2;

• ((Σ14 \ (Σ12 ∪ Σ13)) ∩ Σ8) ∋ AF14′ = AF13 ⊎AF2.

Only the characterisation of Σ8 remains to be completed, in fact Σ8 \ (Σ12 ∪
Σ13 ∪Σ14) is not empty since it includes AF8′ = AF13 ⊎AF2 ⊎AF11′ . Finally,

argumentation frameworks where all semantics are in mutual disagreement also

exist, like AF15 = AF13⊎AF2⊎AF4⊎AF11′ . The fact that no other agreement

classes involving CF2, ST , SST and PR are meaningful is proved in [Baroni

and Giacomin, 2008] on the basis of item 9 of Proposition 5.2.

The Hasse diagram corresponding to inclusion relationships between the

agreement classes described above is shown in Figure 24 (where arrows point

from subsets to supersets).



226 Pietro Baroni, Martin Caminada, Massimiliano Giacomin

5.2 Topological properties and semantics agreement

Section 5.1 identifies the distinct agreement classes concerning a significant

set of semantics and provides examples of argumentation frameworks belong-

ing to them. It does not give any indication on how, given an argumentation

framework, to answer the question of which agreement class(es) it belongs to

(apart the obvious method of computing the sets of extensions prescribed by

the various semantics considered). As a matter of fact, there are some signifi-

cant relationships between agreement classes and some topological properties of

argumentation frameworks: presenting them is the subject of this subsection.

5.2.1 Well-founded frameworks

The issue of single-status agreement has been considered as early as in the

seminal paper by [Dung, 1995] where it is shown that a sufficient condition for

agreement among grounded, preferred and stable semantics is that the argu-

mentation framework is well-founded.

Definition 5.3 (Definition 29 of [Dung, 1995]) An argumentation frame-
work is well-founded iff there exists no infinite sequence a0, a1, . . . , an, . . . of
(not necessarily distinct) arguments such that for each i, ai+1 attacks ai.

In the case of a finite argumentation framework, well-foundedness coincides

with acyclicity of the attack relation. In the light of the results presented in

Section 5.1 acyclicity turns out to be a sufficient condition for membership in

the agreement class Σ1.

5.2.2 Determined argumentation frameworks

We consider now a more general conditions for agreement with grounded se-

mantics. To this purpose we introduce the notion of determined argumentation

framework.

Definition 5.4 An argumentation framework AF = ⟨Ar , att⟩ is determined

if and only if @a ∈ Ar : a /∈ GE(AF ) ∧GE(AF ) ∩ a− = ∅.
In words, an argumentation framework AF is determined if and only the

grounded extension is also a stable extension. On the basis of the results of

Section 5.1 the set of determined argumentation frameworks, denoted as DET ,
coincides with the agreement class Σ1.

Well-founded argumentation frameworks are a special case of determined

argumentation frameworks: for finite frameworks, the absence of cycles is a

sufficient but not necessary topological condition for AF ∈ DET . A simple

example of argumentation framework which is determined without being acyclic

is the following: ⟨{a, b, c}, {(a, b), (b, c), (c, b)}⟩.
Actually, as shown in [Baroni and Giacomin, 2007a] the absence of cycles

is necessary only in the initial SCCs, and then recursively in the initial SCCs

of the restricted argumentation frameworks obtained by taking into account

that the nodes corresponding to the initial SCCs are necessarily included in
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any extension. This observation gives rise to a full topological characterisation

of determined argumentation frameworks, i.e. of Σ1.

Definition 5.5 An argumentation framework AF = ⟨Ar , att⟩ is initial-acyclic
if AF = ⟨∅, ∅⟩ or the following condition holds: ∀S ∈ IS(AF ) S is monadic
and AF↓UPAF ((Ar\IN(AF )),IN(AF )) is initial-acyclic, where

• IS(AF ) is the set of strongly connected components of AF which are not
attacked by any other strongly connected component;

• IN(AF ) ,
∪

S∈IS(AF ) S;

• an argumentation framework is monadic iff it consists of a single non-
self-defeating argument;

• for any Args, S ⊆ Ar, UPAF (S,Args) = {a ∈ S | @b ∈ Args \ S : (b, a) ∈
att} (as in Definition 3.61).

The base of this recursive definition is represented by the empty argumenta-

tion framework. The recursion is well-founded as the set IN(AF ) is non-empty

for a non-empty argumentation framework, which means that at each recur-

sive step an argumentation framework with a strictly lesser number of nodes is

considered. The set of initial-acyclic argumentation frameworks is denoted by

IAA and it is proved in [Baroni and Giacomin, 2007a] that IAA = DET .

Proposition 5.6 For any argumentation framework AF = ⟨Ar , att⟩, AF ∈
IAA if and only if AF ∈ DET .
5.2.3 Almost determined argumentation frameworks

While determined argumentation frameworks ensure agreement among all the

semantics belonging to the set Ω, it can be observed that there is a larger class of

argumentation frameworks where an almost total agreement is reached. Con-

sider for instance the case of an argumentation framework consisting just of

a self-defeating argument, namely AF = ⟨{a}, {(a, a)}⟩. In this case we have

that EGR(AF ) = {∅} and, in virtue of the conflict-free property, for any seman-

tics σ which admits extensions on AF it must also hold that Eσ(AF ) = {∅}.
However, since stable semantics is unable to prescribe extensions in this case,

EST (AF ) = ∅ ̸= {∅}. In this case, disagreement arises from the non-existence

of stable extensions rather than from the existence of extensions different from

GE(AF ) and clearly AF belongs to Σ2.

On the basis of this observation, it is useful to consider a further class of

argumentation frameworks, called almost determined.

Definition 5.7 An argumentation framework AF = ⟨Ar , att⟩ is almost deter-

mined if and only if for any a ∈ Ar, (a /∈ GE(AF ) ∧ GE(AF ) ∩ a− = ∅) ⇒
(a, a) ∈ att.



228 Pietro Baroni, Martin Caminada, Massimiliano Giacomin

In words, an argumentation framework is almost determined if all the nodes

which are not attacked nor included in the grounded extension are self-defeating.

The set of almost determined argumentation frameworks is denoted as AD. It
is proved in [Baroni and Giacomin, 2007a] that frameworks in AD ensure agree-

ment for all multiple status semantics in Ω but stable semantics (and actually

for every SCC-recursive semantics satisfying some basic properties) and that

outside AD there cannot be agreement with CF2 semantics.

Proposition 5.8 For any argumentation framework AF = ⟨Ar , att⟩ ∈ AD it
holds that Eσ(AF ) = {GE(AF )} for σ ∈ {CO,PR,SST , CF2}.

Proposition 5.9 For any argumentation framework AF = ⟨Ar , att⟩ /∈ AD
ECF2(AF ) ̸= {GE(AF )}.

The propositions above shows that AD = Σ2.

5.2.4 Limited controversial frameworks

Sections 5.2.1 - 5.2.3 deal with cases of single status agreement, turning now to

multiple status agreement, a first basic result, concerning preferred and stable

semantics, was introduced, again, in Dung’s seminal paper with reference to the

notion of limited controversial frameworks, based on the one of controversial
arguments.

Definition 5.10 Given an argumentation framework AF = ⟨Ar , att⟩ an ar-
gument a indirectly attacks an argument b iff there exists a finite sequence
a0, . . . a2n+1 such that a = a0, b = a2n+1, and ∀i ∈ {0, . . . , 2n} ai ∈ a−i+1. An
argument a indirectly defends an argument b iff there exists a finite sequence
a0, . . . a2n such that a = a0, b = a2n, and ∀i ∈ {0, . . . , 2n − 1} ai ∈ a−i+1. An
argument a is controversial with respect to an argument b if a indirectly attacks
and indirectly defends b. An argument a is controversial if it is controversial
with respect to an argument b.

Definition 5.11 An argumentation framework AF = ⟨Ar , att⟩ is limited con-

troversial if and only if there is no infinite sequence of arguments a0, . . . , an, . . .
such that ai+1 is controversial with respect to ai.

In the finite case, an argumentation framework is limited controversial if

it does not include any odd-length cycle. In [Dung, 1995] it is shown that

being limited controversial is a sufficient condition for being coherent, i.e. for

membership in the agreement class Σ11.

5.2.5 Agreement with stable semantics

The basic result on multiple status agreement recalled in Section 5.2.4 has

been extended by [Baroni and Giacomin, 2007a] by characterizing a family of

argumentation frameworks, called SCC-symmetric, where agreement is ensured

for a class of multiple-status semantics including stable, preferred and CF2
semantics.
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First we need to introduce the notion of symmetric argumentation frame-

works, noting also that symmetry is preserved in all the restrictions of a sym-

metric framework.

Definition 5.12 An argumentation framework AF = ⟨Ar , att⟩ is symmetric

if for any a, b ∈ Ar, a ∈ b− ⇔ b ∈ a−.

Lemma 5.13 Given a symmetric argumentation framework AF = ⟨Ar , att⟩
and a set S ⊆ Ar, AF↓S is symmetric.

As it will be more evident from Proposition 5.15, it is quite natural that

extensions of a symmetric argumentation framework free of self-defeating ar-

guments coincide with its maximal conflict free sets, if the multiple-status ap-

proach is adopted. Argumentation semantics satisfying this requirement will

be called *-symmetric.

Definition 5.14 An argumentation semantics σ is *-symmetric if for any ar-
gumentation framework AF which is symmetric and free of self-defeating ar-
guments Eσ(AF ) = ENA(AF ).

Several significant multiple-status semantics, though their definition is based

on quite different principles, share the property of being *-symmetric.

Proposition 5.15 Stable semantics, preferred semantics, semi-stable seman-
tics, and CF2 semantics are *-symmetric.

In symmetric argumentation frameworks non-mutual attacks cannot exist:

this seriously limits their applicability for modeling practical situations. Their

properties however provide the basis for analyzing a more interesting family of

argumentation frameworks called SCC-symmetric.

Definition 5.16 An argumentation framework AF is SCC-symmetric if ∀S ∈
SCCSAF AF↓S is symmetric.

Definition 5.16 is equivalent to impose that all attacks participating in an

attack cycle are mutual, while non-mutual attacks are allowed outside cycles.

Proposition 5.17 An argumentation framework AF is SCC-symmetric if and
only if for every attack cycle, i.e. for every sequence a0, a1, . . . , an such that
a0 = an and ∀i ∈ {0, . . . , n − 1} ai ∈ a−i+1, it holds that ∀i ∈ {1, . . . , n} ai ∈
a−i−1.

Theorem 5.18 provides the main result about agreement in SCC-symmetric

argumentation frameworks.

Theorem 5.18 In any argumentation framework which is SCC-symmetric and
free of self-defeating arguments all SCC-recursive *-symmetric semantics are
in agreement, i.e. they prescribe the same set of extensions.
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The following result immediately follows from the previous theorem and

Proposition 5.15.

Corollary 5.19 If an argumentation framework AF is SCC-symmetric and
free of self-defeating arguments then EPR(AF ) = ECF2(AF ) = EST (AF ) =

ESST (AF ), thus in particular AF is coherent.

Summing up, being SCC-symmetric is a sufficient condition for membership

in the agreement class Σ9.

It may be noted that the classes of SCC-symmetric and limited controver-

sial argumentation frameworks are non-disjoint but distinct. In fact, an SCC-

symmetric argumentation framework may contain cycles of any length, while

a limited controversial argumentation framework may consist, for instance, of

an even-length cycle which is not symmetric.

It is interesting to note that the property of SCC-symmetry may be recovered

from assumptions on the underlying method of argument and attack construc-

tion, which have been considered in the literature on structured argumentation

and are not directly related to decomposition into SCCs. For instance in [Ba-

roni et al., 2005a] the case is considered where conflicts among arguments arise

only from contradicting conclusions, namely only the rebutting kind of defeat is

allowed while undercutting defeat is not (we follow here the terminology of [Pol-

lock, 1992]). Briefly, rebutting defeats concern arguments with contradictory

conclusions, while undercutting defeats concern questioning the applicability of

the rule used to build an argument rather than its conclusion (see for instance
[Modgil and Prakken, 2014]). This distinction is relevant because undercutting

defeats can give rise to arbitrary attack cycles, while rebutting defeats cannot,

since they are non mutual only if some preference ordering between arguments

is in place and this ordering prevents the existence of attack cycles which are

not symmetric. Formally, it is shown in Proposition 26 of [Baroni et al., 2005a]

that if only rebutting defeats are allowed, the corresponding argumentation

framework is SCC-symmetric (such a framework is called r-type in [Baroni

et al., 2005a]). From another perspective, in [Kaci et al., 2006] it is shown

that when the attack relation results from a symmetric conflict relation and

a transitive preference relation between arguments the argumentation frame-

work satisfies a property called strict acyclicity, which is actually equivalent to

SCC-symmetry through the characterisation given in Proposition 5.17.

6 Conclusions

Starting from Dung’s seminal paper [Dung, 1995] abstract argumentation has

received a growing interest by the research community, witnessed by a large

corpus of scientific literature where an increasing variety of alternative seman-

tics proposals is complemented by studies on general principles and properties

for their assessment and comparison. The current book chapter, which re-

vises and updates a previous tutorial paper [Baroni et al., 2011a] is meant to

provide a reasonably complete and up-to-date introductory survey on these as-



Abstract Argumentation Frameworks and Their Semantics 231

pects. In particular it provides a side-by-side treatment of the extension-based

and labelling-based approaches and a coverage of skepticism-based semantics

comparison and semantics agreement. While this can be sufficient to get a first

impression of the subject, there are many other core aspects that are relevant

for obtaining a comprehensive view, ranging from postulates and principles for

argumentation semantics to notions of equivalence and locality and modularity

issues: these additional aspects are covered in Part E of this volume.

Furthermore, some of the relevant aspects have only been briefly mentioned

in the current chapter, for instance the procedures for computing labellings

and extensions or for checking other semantics-related properties. The relevant

theoretical and implementation issues are extensively treated in part D of this

volume.

Many lines of further development have sprung up from Dung’s core theory

and are the subject of active investigation.

First, the basic model can be enriched considering other kinds of relation-

ships between arguments in addition to attacks, like, for instance, support con-

sidered in bipolar argumentation frameworks [Cayrol and Lagasquie-Schiex,

2013; Cohen et al., 2014]. Abstract Dialectical Frameworks, presented in chap-

ter 5, are a generalized graph-based abstract formalism able to capture different

kinds of interactions between the graph nodes. Other extensions of the model

include considering attacks to attacks [Modgil, 2009; Baroni et al., 2011b] and
taking into account values and audiences in argument evaluation as in value-

based argumentation frameworks [Bench-Capon, 2003].

The survey we presented in this chapter does not exhaustively treat the

whole range of argumentation semantics in the literature. In particular, it is

worth mentioning the notion of parametric semantics, namely semantics defini-

tion schemes which are generic with respect to the choice of an argumentation

semantics, playing the role of a parameter in the context of a scheme.

Resolution-based semantics [Baroni et al., 2011c] is an example of parametric

semantics. Here the idea is that, given an argumentation framework AF , a set

of argumentation frameworks RES(AF ) is generated, where each member of

RES(AF ) corresponds to a resolution of all the mutual attacks in AF . Then

the semantics σ adopted as parameter is applied to the elements of RES(AF )
and among the resulting extensions those which are minimal with respect to

set inclusion are selected as extensions of the resolution-based semantics for σ.
The reader is referred to [Baroni et al., 2011c] for all details, we only recall here

that the instance of the resolution-based definition scheme based on grounded

semantics shows unparalleled features in terms of principle-based evaluation,

while also enjoying good computational complexity properties among multiple-

status semantics [Baroni et al., 2009].

Another example of parametric semantics concerns the generalisation of the

notion of ideal extension [Dunne et al., 2013]: basically this amounts to make

Definitions 3.45 and 3.48 parametric by replacing the reference to preferred

semantics with the reference to a generic semantics. This generalisation turns
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out to be suitably applicable to value-based argumentation frameworks.

While traditional abstract argumentation semantics produces qualitative as-

sessments, a variety of quantitative approaches have been considered. Their

study is quickly evolving, ranging from weighted argumentation frameworks
[Dunne et al., 2011] to various flavors of probabilistic argumentation frame-

works [Hunter, 2013; Hunter, 2014] to the equational approach to argumenta-

tion semantics [Gabbay, 2012], just to mention a few. The coverage of this kind

of extensions is planned for the second volume of this handbook.

To conclude, we note that while the ongoing developments listed above

promise to overcome some of the restrictive assumptions embedded in the

original theory of abstract argumentation frameworks, they also witness the

extraordinary interest and fertility of this formalism and ensure that it will

continue to represent an active research subject for many years to come.
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