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Abstract. We introduce an argument-based discussion game where ithe &bwin the game for a
particular argument coincides with the argument being éndtounded extension. Our game differs
from previous work in that (i) the number of movediigear (instead of exponential) w.r.t. the strongly
admissible set that the game is constructing, (ii) winnimg game does not rely on cooperation from
the other player (that is, the game is winning strategy Dag&jla singlegame won by the proponent
is sufficient to show grounded membership, and (iv) the gaaseamumber of properties that make it
more in line with natural discussion.

1 Introduction

In informal, human style argumentation, discussions playaminent role. Yet the aspect of discussion
has received relatively little attention in formal argurtagion theory, especially within the research line of
Dung-style argumentation [13]. Whereas other aspectsfoffiital argumentation, like argument schemes
[21], claims and conclusions [21, 15], assumptions [2, 1] preferences [18, 20] have successfully been
modelled in the context of (instantiated) Dung-style arguatation, dialectical aspects are often regarded
as being part of a research field separate from inferencedb@Ergumentation [22, 24]. The scarce work
that does consider dialectical aspects in the context afraegt-based entailment tends to do so for the
purpose of defining proof procedures [12, 25] that, althousgful for software implementations [23] are
not meant to actually resemble informal discussion.

One exception to this is the Grounded Persuasion Game ofr2aaiand Podlaszewski [10], which
provides a labelling-based discussion game for groundexdisics. The game is defined in such a way
that an argument is in the grounded extension iff there &xisteast one game for it that is won by the
proponent [10]. However, the Grounded Persuasion Game hasber of shortcomings. For instance, it
can be that an argumentis in the grounded extension buttippent does not have a winning strategy for
it. That is, although it is possible to win the game, this detsepartly on the cooperation of the opponent.
Furthermore, in the Grounded Persuasion Game it is the peyavho first introduces the arguments
that he later needs to defend against, a phenomenon thigt@aceirs in natural discussions other than by
mistake.

In the current paper, we present a modified and slightly sfiregldiscussion game for grounded se-
mantics, called the Grounded Discussion Game, that addred®ve mentioned shortcomings. Overall,
our aim is to provide a discussion game that can be used irotitext of human-computer interaction, for
the purpose of explaining argument-based inference. Emse helpful to allow users to understand why
a particular advice was given by a knowledge-based systedtoaexamine whether particular objections
the user might have can properly be addressed. In this wagewiénteractive discussion as an alternative
for argument visualisation [26, 27]. Our current work, whis focussed on grounded semantics, fits in a
line of research where similar discussion games have begedsalso for preferred [8] and stable [11].
With respect to the previously stated games for grounde@stes [25, 4, 19, 10] our aim is to satisfy the
following properties:

1. Correctness and completeness for grounded semantitstier presence of a winning strategy. It
should be the case that an argument is in the grounded exteifisthe proponent has a winning
strategy for it (unlike is the case in for instance [10]).

2. Similarity to natural discussion. No party should be isgfito introduce arguments that he subse-
guently has to argue against (unlike for instance in [10]s0Athere should be moves in which a
player can indicate agreement (“fair enough”) at specifiosaof the discussion (unlike is the case in
for instance the Standard Grounded Game [25, 4, 19], whetersoves are absent).



3. Efficiency. The number of moves should livesar in relation to the sizeof the strongly admissible
labelling [7] the game is constructing. This is for instamdated in the Standard Grounded Game [25,
4,19], where the number of moves candxponentialn relation to the size of the strictly admissible
labelling the game is constructing (see [7, Section 5.3&dails). A similar observation can be made
for other tree-based proof procedures [12].

The remaining part of this paper is structured as followsstFin Section 2 we provide some prelim-
inaries of argumentation theory. Then, in Section 3 we prieser new Grounded Discussion Game, and
show that it satisfies the above mentioned properties. Wedroff in Section 4 with a discussion of the
obtained results how these relate to previous research.

2 Formal Preliminaries

Abstract argumentation theory [13] is in essence about leosetect nodes from a graph (called an argu-
mentation framework). In the current paper, we restricselves to finite graphs.

Definition 1 ([13]). An argumentation frameworis a pair (Ar, att) where Ar is a finite set of entities,
called arguments, whose internal structure can be left eodjed, andatt is a binary relation onAr. We
say thatA attacksB iff (A, B) € att.

For current purposes, we apply the labelling-based vedfiargumentation semantics [5, 9], instead of
the original extension-based version of [13]. It should bdaged, however, that an extension is essentially
thein labelled part of a labelling [5, 9].

Definition 2 ([9]). Let(Ar, ait) be an argumentation framework. Angument labellings a total function
Lab : Ar — {in, out, undec}. An argumentlabelling is called aadmissible labellingff foreachA € Ar
it holds that:

— if Lab(A) = in then for eachB that attacksA it holds thatLab(B) = out
— if Lab(A) = out then there exists & that attacksA such thatCab(B) = in

Lab is called acomplete labellingff it is an admissible labelling and for eachh € Ar it also holds that:

— if Lab(A) = undec then not for eaclB that attacksA it holds thatLab(B) = out, and there exists
no B that attacksA such thatCab(B) = in

As a labelling is essentially a function, we sometimes witites a set of pairs. Also, i£ab is a labelling,

we write in(Lab) for {A € Ar | Lab(A) = in}, out(Lab) for {A € Ar | Lab(A) = out} and
undec(Lab) for {A € Ar | Lab(A) = undec}. As a labelling is also a partition of the arguments into sets
of in-labelled argumentsut-labelled arguments antghdec-labelled arguments, we sometimes write it
as atripletin(Lab), out(Lab), undec(Lab)).

Definition 3 ([9]). Let Lab be a complete labelling of argumentation framewdrk = (Ar, att). Lab is
said to be

— agrounded labelling ifin(Lab) is minimal (w.r.t. set inclusion) among all complete labejs of AF'.
— a preferred labelling iffin(Lab) is @ maximal (w.r.t. set inclusion) among all complete lébgk of
AF.

The discussion game to be presented in Section 3 of this [pased on the concept of strong admissi-
bility [1, 7]. Hence, we will briefly recall some of its basiefihitions.

Definition 4 ([7]). Let Lab be an admissible labelling of argumentation framew@rk-, att). A min-
max numberings a total function MM . : in(Lab) U out(Lab) — N U {co} such that for each
A € in(Lab) U out(Lab) it holds that:

! with the size of a labelling_ab we meanjin(Lab) U out(Lab)|.



— if Lab(A) = inthenMM 4 (A) = max({MMq,(B) | B attacksA and Lab(B) = out}) + 1
(with maz(0) defined ag)

— if Lab(A) = out then MM, (A) = min({MMq,(B) | B attacksA and Lab(B) = in}) + 1
(with min(() defined aso)

If A € Aris labelledin, we sometimes refer taz({ MM . (B) | B attacksA andLab(B) =
out}) + 1 as the MAX+1 value of theut labelled attackers ofl. Also, if A € Ar is labelledout, we
sometimes refer tonin({ MM . (B) | B attacksA andLab(B) = in}) + 1 as the MIN+1 value of
the in labelled attackers aofl. Also, we sometimes writd1 M instead ofM M ., when it is clear what
labelling the min-max numbers relate to.

Theorem 1 ([7]).Every admissible labelling has a unique min-max numbering.

Definition 5 ([7]). A strongly admissible labellingg an admissible labelling whose min-max numbering
yields natural numbers only (so no argument is numbetgd

Theorem 2 ([7]).An argument is labelledn by at least one strongly admissible labelling iff it is lalieel
in by the grounded labelling.

As an example, consider the argumentation framework sh@owhwhich we referto ad F'.,.. Here
Laby = ({A,C, E,G},{B, D, H},{F})is an admissible (though not complete) labelling with agded
min-max numbering\M q, = {(A:1),(B:2),(C:3),(D:4),(E:5),(G: ), (H: c0)}, which
implies thatCab, is not strongly admissible. Furthermo&b, = ({A,C, E}, {B, D, F},{G,H})is an
admissible (and complete) labelling with associated maxmumbering\IM zq,, = {(4:1), (B:2), (C:
3),(D:4), (E:5), (F:2)}, which implies that ab is indeed a strongly admissible labelling.

N

From Theorem 2, together with the fact that the groundedhsite consists of thén-labelled argu-
ments of the grounded labelling [9], it follows that to shdwatan argumentis in the grounded extension,
it is sufficient to construct a strongly admissible labejlimhere the argument is labelled.

The following two lemmas about strongly admissible lalmgj will be used further on in the paper.

Lemma 1. Let Lab be a strongly admissible labelling of argumentation fraroekw( Ar, att), and let
A € Ar such thatLab(A) = undec and for eachB € Ar that attacksA it holds thatLab(B) = out.
Let Lab" = (in(Lab) U {A}, out(Lab),undec(Lab) \ {A}). It holds thatLab’ is a strongly admissible
labelling.

Proof. We first observe thafab’ is a well-defined labelling in the sense that it defines a foamtof Ar.
We proceed to show thatab’ is an admissible labelling. L&t € in(Lab"). Then eithelC' € in(Lab) or
C = A. In the former case, the fact thdub is a (strongly) admissible labelling implies that all akers
of C are labellecbut by Lab, and therefore also labelledit by Lab’ (sinceout(Lab’) = out(Lab)).
In the latter case, the fact that all attackersdoére labellecbut by Lab implies that all attackers of’
(= A) are labellecbut by Lab’. Alternatively, letC' € out(Lab’). Then (sinceout(Lab’) = out(Lab))
C € out(Lab), so from the fact thafab is an admissible labelling, it follows that there is an at&xoof
C that is labelledin by Lab. Sincein(Lab’) 2 in(Lab), it follows that this attacker is also labelled
by Lab’.

The next thing to show is tha&tab’ is also astronglyadmissible labelling. Suppose, towards a contradiction,
that this is not the case. Then there exists at leastianer out labelled (byLab’) argument that is
numbered withso. It follows that this argument is either labelled or out by Lab or it is actually A
itself. However, even in the latter case, it follows thatréhexists at least onén or out labelled (by



Lab) argument that is numbered witk (since from the fact thatl is labelledin and numbered with
o0, it follows that all itsout labelled attackers must be numbered with and A must have at least one
out labelled attacker, for otherwisé would be numbered with). Let C' € in(Lab) U out(Lab) be an
argument that is numbered with (w.r.t. Lab") and whose min-max number (w.iab) is minimal among
all arguments numbered witho w.r.t. Lab’. We distinguish two cases.

— Lab(C) = in. Then, fromLab’ being an admissible labelling, it follows that all attackef C are
labelledout by Lab’. However, since all these attackers have lower min-max rusnfw.r.t.Cab),
it follows that none of these is numbered with (w.r.t. Lab’). After all, C has aminimal min-max
number (w.r.t£ab) among all arguments numbered with (w.r.t. Lab’). This means that the MAX+1
value of the attackers of cannot bexo (w.r.t. Lab’). But thenA cannot be numbered withko (W.r.t.
Lab). Contradiction.

— Lab(C) = out. As C is numbered with a natural number (w.Ltabd) it follows that the MIN+1 value
of all its in labelled attackers (w.r.Lab) is also a natural number. L& be anin labelled attacker of
C' with minimal min-max number (w.r.tCab). It follows that the min-max number dp (w.r.t. Lab)
is smaller than that af’. Hence,D cannot be numbered witko w.r.t. Lab’ (recall thatC' is the lowest
numbered argument (w.r£ab that is numbered witho w.r.t. Lab’). Hence,D has to have a natural
min-max number w.r.tCab’. But the the MIN+1 value (w.r.tCab’) of the attackers of is a natural
number, saD has to be numbered with a natural number (wddb’). Contradiction.

Lemma 2. Let Lab be a strongly admissible labelling of argumentation framekw(Ar, att), and let
A € Ar such thatCab(A) = undec and there exists 8 € Ar that attacksA such thatCab(B) = in.
LetLab" = (in(Lab),out(Lab) U {A},undec(Lab) \ {A}). It holds thatLab’ is a strongly admissible
labelling.

Proof. We first observe thafab’ is a well-defined labelling in the sense that it defines a foamtof Ar.
We proceed to show thatab’ is an admissible labelling. Lef’ € in(Lab’). ThenC € in(Lab), SO
from Lab being a (strongly) admissible labelling, it follows that attackers ofC' are labelledout by
Lab. Fromout(Lab’) 2 out(Lab) it then follows that all attackers af are also labelledut by Lab’.
Alternatively, letC' € out(Lab’). Then eithelC' € out(Lab) or C = A. In the former case, from the fact
that Lab is a (strongly) admissible labelling, it follows th&t has an attacker that is labelled by Lab,
whch then implies (sinceén(Lab’) = in(Lab)) that the same attacker is also labeliedby Lab’. In the
latter case@ = A) there exists &8 € Ar that attacksA (= C) such thatZab(B) = in. From the fact that
in(Lab") = in(Lab) it then follows thatCab’(B) = in.

The next thing to show is tha&tab’ is also astronglyadmissible labelling. Suppose, towards a contradiction,
that this is not the case. Then there exists at leastianer out labelled argument (by ab’) that is
numbered withso. It follows that this argument is either labelled or out by Lab or it is actually A
itself. However, even in the latter case, it follows thatréhexists at least onin or out labelled (byLab)
argument that is numbered witko (since from the fact thatl is labelledout and numbered witho,

it follows that all of itsin labelled attackers are numbered with, including B). Let C € in(Lab) U
out(Lab) be an argument that is numbered with(w.r.t. Lab") and whose min-max number (w.rkab)

is minimal among all arguments numbered withw.r.t. Lab’. We distinguish two cases.

— Lab(C) = in. Then, using similar reasoning as in the proof of Lemma 1t(Etdlet) we obtain a
contradiction.

— Lab(C) = out. Then, using similar reasoning as in the proof of Lemma 1t(firdlet) we obtain a
contradiction.

3 The Grounded Discussion Game

The Grounded Discussion Game that we will define in the ctigection has two players (proponent and
opponent) and is based on four different moves, each of wiashan argument as a parameter.

HTB(A) (A hasto be the case”)
With this move, the proponent claims that arguméihias to be labelletin by every complete labelling
(and hence also has to be labelliedby the grounded labelling).



CB(B) (“B can be the case, or at least cannot be ruled out”)
With this move, the opponent claims that arguméntioes not have to be labelledit by every
complete labelling. That is, the opponent claims theretgexisleast one complete labelling whese
is labelledin or undec, and thatB is therefore not labelledut by the grounded labelling.

CONCEDE(A) (“Fair enough, | agree that has to be the case”)
With this move, the opponent indicates that he now agreds thé proponent (who previously did
a HTB(A) move) thatA has to be the case (labelled by every complete labelling, including the
grounded labelling).

RETRACT(B) (“Fair enough, | give up thaB can be the case”)
With this move, the opponent indicates that he no longeefgethat argumenB can bein or undec.
That is, the opponent acknowledges thalhas to be labelledut by every complete labelling, includ-
ing the grounded labelling.

One of the key ideas of the discussion game is that the propdras burden of proof. He has to
establish the acceptance of the main argument. The opporegaty has to cast sufficient doubts. Also, the
proponent has to make sure that the discussion does not godairocircles.

The game starts with the proponent utterind/&'B statement. After eaclifTB statement (either
the first one or a subsequent one) the opponent utters a seokone or morel’B, CONCEDE and
RETRACT statements, after which the proponent again utterd 4 statement, etc. Il F',, the dis-
cussion could go as follows.

(1) P:HTB(C) (4) O: CONCEDE(A)
(2) O: CB(B) (5) O: RETRACT(B)
(3) P: HTB(A) (6) O: CONCEDE(C)

In the above discussion; is calledthe main argumenithe argument the discussion starts with). The
discussion ends with the main argument being conceded bygppenent, so we say that the proponent
wins the discussion.

As an example of a discussion that is lost by the opponertnibe illustrative to examine what happens
if, still in AF'.., the proponent claims thd@ has to be the case.

(1) P:HTB(B) (2) O: CB(A)

After the second move, the discussion is terminated, asrbgopent cannot move anymore, sinée
does not have any attackers. This brings us to the preciseimi#ions of the discussion moves.

HTB(A) This is either the first move, or the previous move waB(B), where A attacksB, and no
CONCEDE or RETRACT move is applicable.

CB(A) A'is an attacker of the ladfTB(B) statement that is not yet conceded, the directly preceed-
ing move was not aCB statement, argument has not yet been retracted, and @ONCEDE or
RETRACT move is applicable.

CONCEDE(A) There has been HTB(A) statement in the past, of which every attacker has been re-
tracted, andC’ONCEDE(A) has not yet been moved.

RETRACT(A) There has been @B(A) statement in the past, of which there exists an attackehtsat
been conceded, amETRACT (A) has not yet been moved.

Apart from the preconditions mentioned above, all fourestagnts also have the additional precondition
that no HT'B-CB repeats have occurred. That is, there should be no argurewhich H7B has been
uttered more than oncé;B has been uttered more than once, or W@thB and CB have been uttered. In
the first and second case, the discussion is going arountiag{which the proponent has to prevent, since
he has burden of proof). In the third case, the proponent &as bontradicting himself, as his statements
are not conflict-free. In each of these three cases, the dismucomes to an end with no move being
applicable anymore.

The above conditions are made formal in the following definit

Definition 6. Let AF = (Ar, att) be an argumentation framework.gkounded discussiois a sequence
of discussion moves constructed by applying the followiingiples.



BASIS (HTB) If A € Arthen[HTB(A)] is a grounded discussion.

STEP (HTB) If [My,...,M,] (n > 1) is a grounded discussion withodt7B-CB repeats’> and no
CONCEDE or RETRACT move is applicablé,and M,, = CB(A) and B is an attacker of4 then
[My,...,M,, HTB(B)] is also a grounded discussion.

STEP (CB) If [M;, ..., M,] (n > 1)is agrounded discussion withoHtI'B- CB repeats, and n@ONCEDE
or RETRACT move is applicable, and/,, is not aCB move, and there is a movd; = HTB(A)
(¢ € {1...n}) such that the discussion does not conteBi@ NCEDE (A), and for each mové/; =
HTB(A’) (j > i) the discussion contains a mo@&® NCEDE (A’), and B is an attacker ofd such that
the discussion does not contain a mavBTRACT (B), then[M;, ..., M,, CB(B)] is a grounded
discussion.

STEP (CONCEDE) If [My,...,M,] (n > 1) is a grounded discussion witho#itT'B- CB repeats, and
CONCEDE(B) is applicable theriM, . .., M,,, CONCEDE(B)] is a grounded discussion.

STEP (RETRACT) If [My,...,M,] (n > 1) is a grounded discussion witholitT'B-CB repeats, and
RETRACT(B) is applicable then;, ..., M,, RETRACT(B)] is a grounded discussion.

It can be observed that the preconditions of the moves aite that a proponent moved(I'B) can
never be applicable at the same moment as an opponent @@ e({ONCEDE or RETRACT). That
is, proponent and opponent essentially take turns in whach @roponent turn consists of a singld'B
statement, and every opponent turn consists of a seque@@®tUEDE, RETRACT and CB moves.

Definition 7. A grounded discussidid/;, Mo, ..., M,] is calledterminatedff there exists no mov&/,, , ;
such thafMy, Mo, ..., M,, M, 1] is a grounded discussion. A terminated grounded discuggiith 1/,
being HTB(A) for someA € Ar) is won by the proponent iff the discussion contalftGNCEDE (A),
otherwise it is won by the opponent.

To illustrate why the discussion has to be terminated dfteotcurrence of #7B- CB repeat, consider
the following discussion il F'..

(1) P: HTB(G) (3) P: HTB(G)
(2) O: CB(H)

After the third move, anHTB-CB repeat occurs and the discussion is terminated (oppon@s).wi
Hence, termination after H7'B-CB repeat is necessary to prevent the discussion from going@qrefu-
ally.

Theorem 3. Every discussion will terminate after a finite number of step

Proof. CONCEDE and RETRACT by definition cannot be repeated for the same argunféfi3 and
CB can be repeated at most once for the same argument (becagisehidhhappens the game will termi-
nate). This, together with the fact that the set of argumisfitsite (as we only consider finite argumentation
frameworks) implies that the number of moves will be finitel #imerefore the game will terminate.

From the fact that a discussion terminates afteam3- CB repeat, the following result follows im-
mediately.

Lemma 3. No discussion can contain@ONCEDE and RETRACT move for the same argument.

2 We say that there is #TB-CB repeat iff3i,j € {1,...,n}3A € Ar : (M; = HTB(A) vV M; = CB(A)) A
(M; = HTB(A)V M; = CB(A)) Ni # j.

¥ Amove CONCEDE(B) is applicable iff the discussion contains a ma¥&B(A) and for every attacked of B the
discussion contains a moveE TRACT (B), and the discussion does not already contain a W& CEDE(B).
A move RETRACT (B) is applicable iff the discussion contains a ma¥®(B) and there is an attacket of
B such that the discussion contains a me¥@ NCEDE(A), and the discussion does not already contain a move
RETRACT(B).



Proof. Suppose, towards a contradiction that there exi§tssaAr such that both a mov€ ONCEDE (C')

and a moveRETRACT(C) occurs in the discussion. From the precondition of @ NCEDE move, it
follows that the discussion contains the ma¥&B(C'). From the precondition of th@ ETRACT move,
it follows that the discussion contains the ma¥8(C). But after both the7TB(C') and CB(C) moves
have been made, the discussion is terminated, so there isssibpity to do theCONCEDE(C') move
(if the RETRACT(C) move was first) or to perform thBETRACT (C) move (if the CONCEDE(C')

move was first). Contradiction.

A particular property of the game that is worthwhile emphiagj is that eachC’B move has to be a
reply to thelast HT'B move that is not yet conceded. To illustrate why this is usefnsider the following
argumentation framework, which we refer to A8, .»

(B—®D)
@ >)<—@<—@<—@
—®

Here, the discussion could go as follows.

(01) P:HTB(A) (10) O: CONCEDE(G)
(02) O: CB(B) (11) O: RETRACT(F)
(03) P:HTB(D) (12) O: CONCEDE(D)
(04) O: CB(F) (13) O: RETRACT(B)
(05) P:HTB(G) (14) 0: CB(C)

(06) O: CB(H) (15) P:HTB(E)

(07) P:HTB(I) (16) O: CONCEDE(E)

(08) O: CONCEDE(I) (17)O:RETRACT(C)
(09) O:RETRACT(H) (18)O:CONCEDE(A)

Letus consider what would happen whe@'8 statement is allowed to reply to anbitrary unconceded
HTB statement (instead of to ti@st unconceded/ TB statement). In that case, at ¢ move, instead
of doing CB(H ), the opponent could also have do6&(C). In that case, the discussion would have
continued as follows.

(06") O: CB(C)

(07") P: HTB(E)

(08") O: CB(F)

Now, there is & TB-CB repeat CB(F') at both move (04) and move (08’)) so the discussion is terratha
As the main claim is not conceded, the proponent has lostnarstrategy of the proponent could have
prevented this. This shows that without the requiremertdhah CB statement has to reply to thast
unconcedediTB statement, the proponent could be prevented from winniaggdme, even though the
main argument is in the grounded extension.

3.1 Soundness

Now that the workings of the game have been outlined, and sufrite design decisions have been ex-
plained, the next step will be to formally proof its correzss and completeness w.r.t. grounded seman-
tics. We start with correctness: if a discussion is won bypt@onent, then the main argument is in the
grounded extension. In order to prove this, we first havettodtuce the notions of the proponent’s labelling
and the opponent’s labelling.

Definition 8. Let[M; ... M, ] be a grounded discussion (in argumentation framewtk, att)) without
any HTB-CB repeats.
The proponent labelling ab p is defined as



in(Labp) ={A|Ji e {l...n}: M; = HTB(A)}
out(Labp) ={A|Fie{l...n}: M; = CB(A)}
undec(Labp) = Ar \ (in(Labp) Uout(Labp))

The opponent labelling abo is defined as
in(Labo)={A|Ji € {1...n}: M; = CONCEDE(A)}
out(Labo) = {A|Ji € {1...n}: M; = RETRACT(A)}
undec(Labp) = Ar \ (in(Labo) U out(Labo))

Notice that the well-definedness 66, in Definition 8 does not depend on the absenc#&B-CB
repeats (this is due to Lemma 3) whereas the well-definedfeSsb » does. When applying abo, we
will therefore often do so without having ruled out alyi'B- CB repeats, as for instance in the following
theorem.

Theorem 4. LetLabo be the opponent’s labelling related to discussjdfil, . .., M,,]. Itholds thatCabo
is strongly admissible.

Proof. By induction over the number dfONCEDE and RETRACT statements. Let; be the index of
the firstCONCEDE or RETRACT statement;, be the index of the secomdONCEDE or RETRACT
statement, etc.

BASIS Suppose the number 6fONCEDE andRETRACT statements is zero. In that cagbo is the
all-undec labelling, which by definition is strongly admissible.

STEP Suppose that for every discussion with upjt@ONCEDE and RETRACT statements, the as-
sociatedCabo, is strongly admissible. We now prove that also for everywiston with up toj + 1
CONCEDE and RETRACT statements, the associatédbo,,, is strongly admissible. We distin-
guish two possibilities:

— ThelastCONCEDE or RETRACT statementwas @ONCEDE statement, saf; ONCEDE(B)
(B € Ar). Let Labo, be the opponent labelling of the sub-discus§ibf, ..., M;,, —1]. This
discussion containg CONCEDE and RETRACT statements, so the induction hypothesis says
that the associated opponent labelliigbo, is strongly admissible. From the preconditions of
CONCEDE(B) it follows that for each attacket € Ar of B, the discussion contains the move
RETRACT(A). Hence, for eacd € Ar that attacksB, it holds thatA € out(Labo, ). Also,
notice thatCabo,,, = (in(Labo,) U {B}, out(Labo, ), undec(Labo,) \ {B}). Lemma 1 then
implies thatCabo, , , is strongly admissible.

— ThelastCONCEDE or RETRACT statementwas RETRACT statement, say ETRACT (B)
(B € Ar). Let Labo, be the opponent labelling of the sub-discusgibf, . .., M;, ,1]. This
discussion containg CONCEDE and RETRACT statements, so the induction hypothesis says
that the associated opponent labelliigbo, is strongly admissible. From the preconditions of
the RETRACT (B) move, it follows that there is an attackdre Ar of B such that the discus-
sion contains the mov€ ONCEDE(A). Hence,A € in(Labo,). Also, notice thatlabo,,, =
(in(Labo, ), out(Labo,) U{B},undec(Labo,) \ {B}). Lemma 2 then implies thalabo,,, is
strongly admissible.

Theorem 5. Let[M;, ..., M,] be a terminated grounded discussion that is won by the prepipand let
M, = HTB(A) for somed € Ar. It holds thatA is in the grounded extension.

Proof. The fact that the discussion is won by the proponent implfiQition 7) that there has been a
move CONCEDE(A). Hence,A € in(Labo) (with Labo being the opponent’s labelling). Singa:b o

is strongly admissible (Theorem 4) it follows thatis labelledin by the grounded labelling (Theorem 2).
Hence,A is in the grounded extension.

As an aside, although it is possible to infer that an argurieeint the grounded extension when the
proponentwins a discussion (Theorem 5) we cannot infeahargument igotin the grounded extension
when the proponent loses a discussion. This is because iagsgame could be due to the proponent
following a flawed strategy. For instance, 4., one could have the following discussion:



(1) P:HTB(E) (4) O: CB(H)
(2) O: CB(D) (5) P: HTB(G)
(3) P:HTB(G)

The discussion is terminated at step (5) due #88B-CB repeat {TB(G)). The main argument is not
conceded, so the proponent loses. Still the proponent dwadd won by movingdTB(C) instead of
HTB(G) at step (3).

3.2 Completeness

Now that the soundness of the game has been proved, we shéfttention to completeness. The obvious
thing to prove regarding completeness would be the conedrEreorem 5: ifA is in the grounded exten-
sion, then there exists a discussion won by the proponehtAvits the main argumeftdowever, our aim
is to prove a slightly stronger property. Instead of theliagp@ust a single discussion won by the proponent,
which might be due to the opponent actually providing coapen during the game, we require the pro-
ponent to have a winning strategy. That is, when an argurséntthe grounded extension, the proponent
will be able to win the game, irrespective of how the oppormhiises to play it.

The idea is that the grounded labelling with its associatedmmax numbering can serve as a roadmap
for winning the discussion. The proponent will be able to wjrwhenever he has to do HT'B move,
he prefers to use atn argument with the lowest min-max number that attacks thectlyy precedingCB
move. We will refer to this as lwest number strategy

We start by pointing out that using this strategy, the gamgssivithin the bounderies of the grounded
labelling (that is, within itsin andout labelled part).

Lemma 4. If the proponent uses a lowest number strategy, then foryeld&B(A) move @A € Ar) it
holds thatA € in(Laby,) and for everyCB(B) move B € Ar) it holds thatB € out(Lab,).

Proof. This can be proved by induction over th&'’B and CB moves in the discussion.

BASIS Let HTB(A) be the first move in the discussion. This means thé in the grounded extension,
S0A € in(Laby,).

STEP (CB) Suppose that at a certain stage of the discussion for Hd&B(A) move it holds thatd €
in(Lab,,-) and for eachCB(B) move it holds thaB € out(Lab,,). If the next move isCB(C') then
from the definition of theC’B move, it follows that there is a previodsT'B(A) move where” attacks
A. Our induction hypothesis says thate in(Labg, ). FromLab,, being an admissible labelling, it
follows that each attacker of (includingC) is in out(Lab,).

STEP (HTB) Suppose that at a certain stage of the discussion for Ed@B(A) move it holds thatd €
in(Lab,-) and for eachCB(B) move it holds thatB € out(Laby, ). If the next move isHTB(C)
then from the definition of thé7T'B move, it follows that there is a previousB(B) move where
C attacksB. Our induction hypothesis says thate out(Labg,). FromLab,, being an admissible
labelling, it follows that there is at least one attackeBathat is inin(Labg,). This means it has been
possible for the proponent to follow his strategy of selegtanin labelled argument for thé/T'B
move. Hence(' € in(Labg,).

The next thing to be proved is that when the proponent applilesvest number strategy, the game
will not terminate due to anyi T'B- CB repeats. For this, we first need to prove two lemmas regattiang
numbers of the argument moved afteld'B or CB move.

Lemma 5. If the proponent uses a lowest number strategy, then afteH@m (A) (A € Ar) move is
played, all subsequen®B and HT'B moves will be related to arguments with lower min-max number
than A, until a moveCONCEDE(A) is played.

4 A similar strategy is used in [10].

® We write “a lowest number strategy” instead ahe lowest number strategy”, as a lowest number strategy might
not be unique due to different lowest numbetedlabelled arguments being applicable at a specific pointha
case, it suffices to pick an arbitrary one.



Proof. We prove this by induction over the subsequétit and HT'B moves, played in the absence of a
CONCEDE(A) move.

BASIS If there are not yet any subsequer®B and HTB moves, then the property trivially holds.

STEP (CB) Suppose that at a certain point of the discussion each suésedB and HT'B move is re-
lated to an argument with a lower min-max number tHaand that there has not been &l NCEDE (A)
move. Let the next move b€B(C) (C' € Ar). From the preconditions of th€B move, it follows
that CB(C) responds to the ladi 7B move that is not yet conceded (s&§/7'B(B)). From the fact
that HT'B(A) is not yet conceded, it follows th&fT'B(B) cannot come befor& TB(A) (otherwise
CB(C") would needto respond tHTB(A) instead of taH TB(B)). This leaves just two options: either
HTB(B) comes aftelHTB(A) or HTB(B) = HTB(A). In the former case, the induction hypothesis
tells us thatMiM(A) > MM(B). In the latter case, it trivially holds thatiM(A) = MM(B).

So overall, we obtain thaMM(A) > MM(B). As B € in(Labgy.) (Lemma 4) it follows that
MM(B) is the MAX+1 value of the qut labelled) attackers aB. This implies thatB’s attackerC
has a lower min-max number thah That is, MM(B) > MM(C). This, together with the ear-
lier observed fact thatmM(A) > MM(B) implies that MM (A) > MM(B) > MM(C) so
MM(A) > MM(C), which is precisely what we need to prove.

STEP (HTB) Suppose that at a certain point of the discussion each subseqB and HTB move
is related to an argument with a lower min-max number tharand that there has not been any
CONCEDE(A) move. Let the next move bBTB(C) C € Ar. From the preconditions of thETB
move, it follows thatdTB(C) comes directly after &B move (say,CB(B)). From the induction
hypothesis, it follows thatMM(A4) > MM(B). Also, it holds thatB € out(Labg,.) (Lemma
4), so MM(B) is the MIN+1 value of all itsin labelled attackers. Since the proponent’s strategy
is always to playHTB moves forin labelled attackers with a minimal min-max number, it follow
that MM(B) > MM(C). This, together with the earlier observed fact thdtM(A) > MM(B)
implies thatMM(A) > MM(B) > MM(C) soMM(A) > MM(C), which is precisely what
we need to prove.

Lemma 6. If the proponent uses a lowest number strategy, then aftéBaA) move @ € Ar) is played,
all subsequent{TB and CB moves will be related to arguments with lower min-max nusitesn A,
untila moveRETRACT(A) is played.

Proof. We prove this by induction over the subsequéiftB and CB moves, played in the absence of a
RETRACT(A) move.

BASIS If there are not yet any subsequéff’B and CB moves, then the property trivially holds.

STEP (HTB) Suppose that at a certain point of the discussion each subseHTB and CB move
is related to an argument with a lower min-max number tlarand that there has not been any
RETRACT(A) move. Let the next move bBTB(C) (C € Ar). From the preconditions of thETB
move, it follows thatHTB(C') comes directly after &B move (say,CB(B)). It follows that this
CB(B) move cannot come before tii&B(A) move (otherwise? TB(C') would have to come before
CB(A) aswell). This leaves just two options: eithi@B (B) comes aftelCB(A) or CB(B) = CB(A).

In the former case, the induction hypothesis tells us tht1(A4) > MM(B). In the latter case, it
trivially holds that MM (A) = MM(B). So overall, we obtain that{ M (A) > MM(B). As B €
out(Labgy.) (Lemma 4) it follows thatM M (B) is the MIN+1 value of thein labelled attackers aB.
Since the proponent’s strategy is always to ptA&¥B moves forin labelled attackers with a minimal
min-max number, it follows thatmM(B) > MM(C). This, together with the earlier observed
fact that MM(A) > MM(B) implies that MM(A) > MM(B) > MM(C) so MM(A) >
MM(C), which is precisely what we need to prove.

STEP (CB) Suppose that at a certain point of the discussion each suésed 7B and CB move is re-
lated to an argument with a lower min-max number tHaand that there has notbeen @ TRACT (A)
move. Let the next move b€B(C) C € Ar). From the preconditions of th€B move, it follows that
CB(C) responds to the lasiTB move that is not yet conceded (sdy7'B(B)). From Lemma 5
it then follows thatMM(B) > MM(C). As for the position ofHTB(B) in the discussion, we
distinguish two possibilities:



— HTB(B) comes befor€®B(A). Let HTB(Z) be the move that’B(A) replies to.HTB(B) can-
not come beford?TB(Z) because otherwis®TB(Z) (and notHTB(B)) would be the last
unconceded!TB move at the time’B(C') was played, which is in contraction withiB (C') be-
ing a reaction taHT'B(B). This leaves just two options: eithéfTB(B) comes aftetHTB(Z)
or HTB(B) = HTB(Z). In the former casel/TB(B) (and notHTB(Z)) would be the last un-
conceded?TB move at the time”B(A) was played (recall tha/ TB(B) comes befor&B(A)),
which is in contradiction withCB(A) being a reaction t&/TB(Z). In the latter casel = Z) it
follows that all HTB moves aftetHTB(Z) have been conceded, to makg'B(Z) the last un-
concededd TB move at the timeCB(C') is played. AsCB(A) comes aftetHTB(Z), it follows
that also allHTB moves afterCB(A) have been conceded (and this includes HHEB move
that immediately followed”B(A)). But this would mean tha®'’B(A) has to have been retracted.
Contradiction. So in both cases, we obtain a contradici@mdd, the option of/TB(B) coming
beforeCB(A) is not actually possible.

— HTB(B) comes afterCB(A). In caseHTB(B) comesdirectly after CB(A), it follows that
MM(A) > MM(B). This, together with the earlier observed fact thdtM (B) > MM(C),
impliesMM(A) > MM(B) > MM(C), soMM(A) > MM(C). In caseHTB(B) comes
not directly after CB(A), let HTB(B') be the move directly following®B(A) (the fact that
CB(A) is unretracted means thaiREzTRACT move cannot be the next move, so the next move
has to be afTB move). The fact thaUB(A) is unretracted implies thaf TB(B’) is uncon-
ceded. Hence, we can apply the finding of Lemma 5 and obtatrath&@'B and HT'B moves
after HTB(B’) are related to arguments with lower min-max numbers tBanThis implies
MM(B') > MM(C). SinceMM(A) > MM(B') (asMM(A) is the MIN+1 value of thein
labelled attackers ofl, and B’ has a minimal min-max number among thelabelled attackers of
A, as this conforms with the strategy of the proponent) it that MM (A) > MM(B') >
MM(C), soMM(A) > MM(C). So in both cases, we obtain thed M(4) > MM(C),
which is precisely what we need the prove.

Lemma 7. If the proponent uses a lowest number strategy, theH @ - CB repeats occur.
Proof. We prove this using three observations.

— The discussion does not contain does not contaiff @R (A) move and aCB(B) move withA = B.
This follows from the fact that (Lemma 4) for evelyTB(A) move it holds thatd € in(Labg,)
and for everyCB(B) move it holds thatB € out(Lab,,), together with the fact thain(Lab,.) N
out(Labgy,) = 0.

— The discussion does not contain any repe&&WB(A) moves (for the same argume#}.

Suppose, towards a contradiction, that the discussa@scontain a repeatef TB(A) move. It can
be observed (Lemma 5) that after the filfsf'B(A) is played, all subsequedfTB moves will be
related to arguments with lower min-max numbers tHamntil a moveCONCEDE(A) is played. A
direct consequence of this is that the sec@HfB (A) move has to be playeafter CONCEDE(A)
(asA doesn't have a lower min-max number than itself). From tleepnditions of thed T'B move, it
follows that the second TB(A) move has to be a reaction taC83 move (say,CB(B) with B € Ar)
that directly precedes it. But that means that at the monten8(B) move is played, there has
already been #ONCEDE(A) move, so the mov& ETRACT(B) would be applicable immediately
afterwards, which is in contradiction with the precondismf theHTB(A) move.

— The discussion does not contain any repedi®A) moves (for the same argumedy.

Suppose, towards a contradiction, that the discussi@scontain a repeatedB(A) move. It can be
observed that after the fir§tB(A) move has been played, all subsequéBtmoves will be related to
arguments with lower min-max numbers thanuntil a moveRETRACT (A) is played (Lemma 6).
A direct consequence of this is that the seca@i8(A) move has to be playeafter RETRACT(A)
(asA doesn’t have a lower min-max number than itself). But thaansethat at the moment the second
CB(A) move is played, there is alreadyRETRACT (A) move, which is in contradiction with the
preconditions of the&®B move.

From the above three observations, it directly follows thatdiscussion does not contain ali{’'B-CB
repeats.



We are now ready to present the main result regarding coansss of the discussion game.

Theorem 6. Let A be an argument in the grounded extension of argumentatamework(Ar, att). If
the proponent uses a lowest number strategy, he will win igeudsion for main argument.

Proof. As we have observed before (Theorem 3) every game has tani&enin a finite number of steps.
This, by definition, means that at some point, one of the dad for termination has to hold. Lemma 7
tells us that this cannot be due to ali{’B-CB repeats.

We proceed to show that termination also cannot be due torthpopent not being able to react on
a CB move. LetCB(C) (C € Ar) be the last move in a particular (possibly unterminatedgussion,
and assume that no subsequétNCEDE or RETRACT move is applicable immediately after it. From
Lemma 4 it follows that” € out(Laby,), SO fromLab,, being an admissible labelling, there will be
at least one argument that attagksand is labelledin by Labg,. This, together with the fact that no
CONCEDE or RETRACT moves are applicable, and the earlier observed fact thed treve been no
HTB-CB repeats (Lemma 7) implies that the preconditions for theené¥B (D) are satisfied, wher®
is anin labelled argument with minimal min-max number. Hence, #st inove of a terminated discussion
cannot be a®B move.

From the thus observed fact that the last move of a termirdissmission cannot be @B move, it
directly follows that the last move has to b€ @ NCEDE, RETRACT or HTB move. Of these moves,
HTB is not actually possible, because it can always be followgld & CB or CONCEDE statement
(this is due to the fact that aHTB statement cannot be repeated for the same argument). Thissme
the last move has to bEONCEDE or RETRACT. The fact that noCB statement is applicable (has
its precondition satisfied) then by definition means thatefeery previousHTB(C) move, either there
has been & ONCEDE(C) move, or for every attackeB of C there has been RETRACT(B) move.
Suppose, towards a contradiction that there has bdéfia(C') move C € Ar) without any subsequent
CONCEDE(C) move. It then follows that for every attack& of C there has been RETRACT (B)
move. But then there exists a next mov@(JNCEDE(C)) so the discussion would not be terminated.
Contradiction. Hence, for every moVéT'B(C) (C € Ar) that has been played in the discussion, an asso-
ciated CONCEDE(C') move has also been played. Since this includes the main anmfui) it follows
that the game is won by the proponent.

As the presence of a winning strategy trivially implies thhegence of at least one discussion that is
won by the proponent, we immediately obtain the followinguié

Corollary 1. Let A be an argument in the grounded extension of argumentatemdwork(Ar, att).
There exists at least one terminated grounded discussiom by the proponent, for main argume#t

3.3 Efficiency (Communication)

Now that soundness and completeness of the game have beem sfoproceed to examine its efficiency.
Theorem 3 states that every discussion will terminate, anedne interested in how many steps are required
for this. For this, we need the following lemma.

Lemma 8. Let A be an argument in the grounded extension of argumentationdwork( Ar, att). When
the proponent uses a lowest number strategy for the dismusdid, then once the game is terminated it
holds thatlabp = Labp.

Proof. We prove this by showing the following points:

in(Labo) C in(Lab(P) LetA € in(Labo). This means the discussion contains a mG@VCEDE (A).
From the preconditions of th€ ONCEDE move it follows that the discussion also contains a move
HTB(A). Thatis,A € in(Labp).

out(Labo) C out(Labp) LetA € out(Labp). This means the discussion contains a mB¥¥I'RACT (A).
From the preconditions of thB ETRACT move it follows that the discussion also contains a move
CB(A). Thatis,A € out(Labp).



in(Labp) C in(Labp) Let A € in(Labp). This means the discussion contains a méVEB(A). In
the proof of Theorem 6 (last paragraph) it was shown that¥eryeHT'B in the discussion has been
conceded. Hence, the dicussion contaif¥&aVCEDE (A) move. ThatisA € in(Labo).

out(Labp) C out(Labp) Let A € out(Labp). This means the discussion contains a maig(A).
Let HTB(B) be the move thaC'B(A) reacted to. From the previous point, it follows that thesoal
has been &£ ONCEDE(B) move. But the preconditions of th€ONCEDE move require that all
attackers (includingl) have been retracted. Hence, there has beREERACT (A) statement. That
is, A € out(Labo).

From the first and third point, it follows than(Labo) = in(Labp). From the second and fourth point, it
follows thatout(Labp) = out(Labp). It then follows that alsandec(Labo) = undec(Labp) (since a
labelling essentially defines a partition 4f). Hence Labo = Labp.

The following theorem states that the discussion game regjairelatively low number of moves.

Theorem 7. Let A be an argument in the grounded extension of argumentagondworkAF' = (Ar, att).
When the proponent uses a lowest number strategyl fahe resulting terminated disussion will have a
number of moves that is linear w.r.t. the size of the strorglgnissible labelling that is has been con-
structed.

Proof. Let Labp andLabo be the proponent and opponent labelling when the discussierminated. For
everyB € in(Labp) there exists precisely oiféTB(B) statement in the discussion (becauséiitB(B)
statement can be repeated, Lemma 7) and for effery out(Labp) there exists precisely on€B(B)
statement (because n@B(B) statement can be repeated, Lemma 7). Also, for everg in(Labo)
there exists precisely oneONCEDE (B) statement in the discussion (because@NCEDE(B) can
be repeated), and for evel¥ € out(Labp) there exists precisely onBETRACT (B) statement in
the discussion (because RFTRACT (B) statement can be repeated). This means the total number of
moves in the discussion igsn(Labp)| + |out(Labp)| + |in(Labo)| + |out(Labeo)|. From the facts
thatin(Labp) Nout(Labp) = B andin(Labo) N out(Labo) = 0, it follows that the total number
of moves is|in(Labp) U out(Labp)| + |in(Labo) U out(Labo)|. From the fact thalabp = Labo
(Lemma 8) it then follows that the total number of moveg idin(Labp) U out(Labp)|, or equivalently
2 |in(Labp) Uout(Labo)].

As an aside, it can be observed that following a lowest nurstoategy does not always yield a shortest
discussion. As an example, consider the following arguatent framework, which we refer to akF'.3

/@\.



Here, following a lowest number strategy (based on the gtedabelling) can produce the following
discussion for main argument

() P:HTB(A) (9) O: RETRACT(E»)
(2) O: CB(B) (10) O: CB(FE3)
(3) P:HTB(C) (11) O:RETRACT(Es)
(4) O: CB(Ey) (12) O: CB(E,)
(5) P: HTB(G) (13) O: RETRACT(E,)
(6) O: CONCEDE(G) (14) O:CONCEDE(C)
(7) O: RETRACT(E1) (15) O:RETRACT(B)
(8) O: CB(E») (16) O: CONCEDE(A)
However, a shorter discussion that is still won by the premmvould be as follows.
() P:HTB(A) (8) O: CONCEDE(Q)
(2) O: CB(B) (9) O: RETRACT(I)
(3) P:HTB(D) (10) O: CONCEDE(H)
(4) O: CB(F) (11) O:RETRACT(F)
(5) P:HTB(H) (12) O: CONCEDE(D)
(6) O: CB(I) (13) O:RETRACT(B)
(7)P:HTB(G) (14) O: CONCEDE(A)

The former discussion yields a strongly admissible labgllab, = ({G, C, A}, {E1, Es, E3, E4, B},

{I, H, F, D}) whereas the latter discussion yields a strongly admiskblelling Lab, = ({G, H, D, A},
{I,F,B},{FE1,..., En,C}), with the size ofCab; being bigger than the size dfab..

This example illustrates that in order to have a relativélgrsdiscussion we have to carefully chose
the strongly admissible labelling that is the basis of theest number strategy, a3abs will yield a
shorter discussion than chosidgb; or the grounded labelling. We conjecture that an “optim&idisgly
admissible labelling is one where the main argument is labeh and where the size is minimal.

Conjecture 1.Let AF = (Ar, att) be an argumentation framework adde Ar. Let Lab be a strongly
admissible labelling that label$ in and that has a minimal size among all strongly admissiblellialys
that labelA in. When following a smallest number strategy basedCan, the resulting discussion for
main argument will have minimal length among all discussions fétthat are won by the proponent.

3.4 Efficiency (Computation)

As was observed in Section 3.3, the Grounded Discussion Galimear in the number of moves needed
to show grounded membership. As each move consists of eesamgument, it is also linear in the total
number of arguments moved, hence the “communication codqtyl€total amount of information that
needs to be communicated) is also linear.

Apart from the burden of communication, there is also thelbarof computation. After all, each move
has preconditions, and verifying these is not a trivial thskhe current section, we will therefore examine
the computational costs of each step in the discussion. Bodwe assume the presence of a number of
datastructures.

The first datastructure, called ti#d~ datastructurerepresents the argumentation framewdrk =
(Ar, att). Itis essentially an array, with an index position for eafuanent (so argument, gets position
0, argumentA; gets positionl, etc). Each array positiohis the start of two linked lists: one for the
arguments ind;” and one for the arguments ii”. For argumentation framewotkF .. of Section 2 the
associated AF datastructure is depicted in Figure 1.

Given a particular strongly admissible labelling, we assubhat the AF datastructure is such that for
eachout-labelled argumend, the first element of its1~ linked list will be anin labelled attacker with
minimal min-max number (among alh labelled attackers ofl).

Apart from the AF datastructure, there is a second arraychwvee will refer to as thélags and counters
datastructurewhich for each argumemt contains:

— a flagHTB[A], which indicates whether the argument has been playedHdTB move. Initially, this
flag isfalse
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Fig. 1. The AF datastructure of argumentation framewdrk...

— a flagCB[A], which indicates whether the argument has been played]f anove. Initially, this flag
is false

— a flagconc[A], which indicates whether the argument has been concedagetpin aCONCEDE
move). Initially, this flag idalse

— a flagRETR[A], which indicates whether the argument has been retractage@in aRETRACT
move). Initially, this flag idalse

— a flag ATT_CONC[A], which indicates whether an attacker has been concededllinithis flag is
false

— anon-negative integ®R_ATT[A], which indicates the total number of attackers. Itis ifigied at| A~ |
and never changes.

— a non-negative integeVR_ATT _RETR[A], which indicates the number of attackers that have been
retracted. Initially, this is set t0.

For keeping track of the last unconcedé@B statement, we use a stack of arguments, callediths
stack. The idea is that each time#d'B statement is moved, we push its argument on this stack, atd th
each time we need the last unconced&fiB statement, we keep on popping the stack until we find an
argument that has not been conceded.

The last two datastructures are sets:tthée conceded seaind the to be retracted set. These, respec-
tively, keep track of the arguments that need to be concdukh(ise all its attackers have been retracted,
and the argument itself has been used iH'BB move but not yet in & ONCEDE move) or retracted
(because it has an attacker that has been conceded, anduheeat itself has been used ilC& move but
notyetin aRETRACT move).

Each time a discussion move is made, the datastructurepdagad (except for the AF datastructure,
which is never updated). We distinguish four cases:

— The move isHTB(A). In that case, we first check whetheHd&'B-CB repeat has occurred. That is,
do we haveiTB[A] or CB[A] in the flags and counters datastructure? If so, the disquisterminated.
If not, set theHTB[A] flag in the flags and counters datastructure, and pusimto the HTB stack.
Finally, we need to check whethet@) NCEDE move is due: ifNR_ATT_RETR[A] = NR_ATT[A] then
addA to the to be conceded set.

— The move isCB(A). In that case, we first check whetheHfd'B-CB repeat has occurred. That is, do
we haveHTB[A] or CB[A] in the flags and counters datastructure? If so, the disqussiterminated.
If not, set theCB[A4] flag in the flags and counters datastructure. Finally, we neetieck whether a
RETRACT is due: if ATT_CONC[A] then addA to the to be retracted set.



— The move isSCONCEDE(A). In that case, first set th@NC[A] flag in the flags and counters datas-
tructure. Then, for each argumeitin A™ (accessed by traversing tie™ linked list in the AF datas-
tructure):

e SettheATT_CONC|B] flag
e Check if theCB[B] flag is set. If so, add to the to be retracted set.

— The move isSRETRACT (A). In that case, first set trRETR[A] flag in the flags and counters datas-
tructure. Then, for each argumeBtin AT (accessed by traversing tie™ linked list in the AF datas-
tructure):

e Increase th&R_ATT RETR[B] by 1.
e Check ifNR_.ATT_RETR[B] = NR_ATT[B]. If so, addB to the to be conceded set.

Overall, it can be observed that the task of keeping the ttatdares up-to-date after a particular move
is at mostO(|Ar|).

Using the up-to-date datastructures, the proponent andnm can then select their moves. We dis-
tinguish three possibilities:

1. The to be conceded or to be contracted set is not emptyatrctse, the opponent has two possible
choices:

(a) bo aCONCEDE(A) move (whered is in the to be conceded set) and subsequently rerdove
from the to be conceded set.

(b) Do aRETRACT(A) move (whereA is in the to be retracted set) and subsequently rembve
from the to be retracted set.

2. The to be conceded set and the to be retracted set are bpty, @md the last move waSB(A).
In that case, it is the proponent’s turn. He has to respond i/ TB(B) move, whereB attacks
A. Preferrably, in order to win the discussion, tliisshould be anin-labelled argument with a min-
imal min-max number among alln-labelled attackers ofi. The proponent finds this argument by
examining the AF datastructure. It is the first argument fthenA~ linked list.

3. The to be conceded and to be retracted sets are both emgtthelast move is not &B move. In
that case, it is the opponent’s turn. Since there is notirgptwede or retract, the next move has to be
a CB statement. This means the opponent needs to find the lasherabed{ 7B statement. For this,
keep popping thé/ T'B stack until either:

(a) We obtain an argumemit whoseCONC[B] flag isfalse. In that case, traverse thg~ linked list
in the AF datastructure and select the fitstvhoseRETR[C] flag isfalse. Move CB(C).

(b) The stack is empty. In that case, there is no unconcéteéd move, so the discussion is termi-
nated.

Overall, the task of using the datastructures for selec¢tiagiext move is at mo§}(| Ar|?). So the total
cost per move i®)(|Ar|) + O(|Ar|?) = O(]Ar|?). Since the number of moves in the game is linear w.r.t.
the size of the strongly admissible labelling, so at mogtdinto| Ar|, the overall algorithmic complexity
is O(|Ar|?), so polynomial. This is in contrast with for instance therstard Grounded Game, where even
if the complexity of playing an individual argumentd}(1), the exponential number of arguments makes
the overall complexity exponential.

4 Discussion and Related Work

As was shown in Section 3, the Grounded Discussion Game é&llmasthe concept of strong admissibility.
In essence, it constructs a strongly admissible labellihngre the main argument is labelled (Theo-
rem 4). Moreover, the presence of a strongly admissibldliagegrovides the proponent with a winning
strategy for the game (Theorem 6). These observations mpkssible to compare the Grounded Discus-
sion Game with two previously defined games that are alsodbasestrong admissibility: the Standard
Grounded Game [25, 4, 19] and the Grounded Persuasion Gé&he [1



4.1 The Standard Grounded Game

The Standard Grounded Game (SGG) [25, 4, 19] is one of théestdialectical proof procedures for
grounded semantics. Each gdneensists of a sequendd, ..., A,] (n > 1) of arguments, moved by
the proponent and opponent taking turns, with the propostanting. That is, a move; (i € {1...n})

is a proponent move iffis odd, and an opponent move iffs even. Each move, except the first one, is an
attacker of the previous move. In order to ensure terminai@n in the presence of cycles, the proponent
is not allowed to repeat any of his moves. A game is termingteth next move is possible; the player
making the last move wins.

As an example, iMF., [C, B, A] is terminated and won by the proponent ¢aas no attackers,
the opponent cannot move anymore) whelgas{| is terminated and won by the opponent (as the only
attacker ofH is GG, which the proponentis not allowed to repeat). It is somesipossible for the proponent
to win a game even if the main argument is not in the groundeghsion. An example would &, B, A].
This illustrates that in order to show that an argument i©iéngrounded extension, a single game won by
the proponent is not sufficient. Instead, what is neededafmaing strategy This is essentially a tree in
which each node is associated with an argument such thaa¢h)math from the root to a leaf constitutes a
terminated discussion won by the proponent, (2) the childfeach proponent node (a node corresponding
with a proponent move) coincide with all attackers of theoaeged argument, and (3) each opponent
node (a node corresponding with an opponent move) has phgoise child, whose argument attacks the
argument of the opponent node.

It has been proved that an argumentis in the grounded egteifidshe proponent has a winning strategy
foritin the SGG [25, 3]. Moreover, it has also been shown #m$GG winning strategy defines a strongly
admissible labelling, when labelling each argument of pn@nt nodein, each argument of an opponent
nodeout and all remaining argumentsidec [7].

As an example, il F., the winning strategy for argumefit would be the tree consisting of the two
branches” — B — AandFE — D — C — B — A, thus proving its membership of the grounded extension
by yielding the strongly admissible labellifg A, C, E},{B, D}, {F,G, H}). As can be observed from
this example, a winning strategy of the SGG can contain s@derndancy when it comes to multiple oc-
currences of the same arguments in different brancheselauirent example, the redundancy is relatively
mild (consisting of just the two arguments and B) but other cases have been found where the SGG
requires a number of moves in the winning strategy thakmonentiaiv.r.t. the size of the strongly admis-
sible labelling the winning strategy is defining [7, Figuije’ Hence, one of the advantages of our newly
defined GDG compared to the SGG is that we go from an expohghtligure 2] to a linear (Theorem 7)
number of move$.

4.2 The Grounded Persuasion Game

One of the main aims of the Grounded Persuasion Game (GPGWEHLDto bring the proof procedures
of grounded semantics more in line with Mackenzie-styldadjae theory [16,17] The game has two
participants (P and O) and four types of movesain (the first move in the discussion, with which P
utters the main claim that a particular argument has to bellEdbin), why (with which O asks why
a particular argument has to be labelled in a particular weggause (with which P explains why a
particular argument has to be labelled a particular way)amtede (with which O indicates agreement
with a particular statement of P). During the game, both P@hkdepcommitment storepartial labellings
(which we will refer to asP and O) which keep track of which arguments they think ateand out
during the course of the discussion. For P, a commitmentdeddvery time he utterscd aim or because

& What we call an SGG game is called a “line of dispute” in [19].

7 A similar remark can be made for other tree-based proof phres, like [12].

8 As each move contains a single argument, this means the “coiination complexity” (the total number of argu-
ments that needs to be communicated) is also linear. Thisasis with the computational complexity of playing
the game, which is polynomiaO{(n®), wheren is the number of arguments) due to the fact that selectingeke
move can haved(n?) complexity, as was explained in Section 3.4. This is stilkl¢han when applying Standard
Grounded Game, whose overall complexity would be expoakfaven if each move could be selected in just one
step) due to the requirement of a winning strategy, which@bawe seen can be exponential in size.



statement. For O, a commitment is added every time he uttesa@de statement. Aropen issués an
argument where only one player has a commitment. Some ofaheutes of the Grounded Persuasion
Game are as follows (full details in [10]).

— If O utters awhy in(A) statement (resp.why out(A) statement) then P has to reply withcause out(By, . . .

whereBy, ..., B, are all attackers ofl (resp. withbecause in(B) whereB is an attacker ofd).

— Any why statement of O has to be related to the most recently cregedissue in the discussion.

— A because statement is not allowed to use an argument that is alreadpamissue.

— Once O has enough evidence to agree with P that a particglament has to be labelled (because
for each of its attackers, O is already committed that theck#r is labelledut) or has to be labelled
out (because it has an attacker of which O is already committedttis labelledin), O has to utter
the relevantoncede statement immediately.

Unlike the SGG, in the GPG it is not necessary to constructraing strategy to show grounded
membership. Instead, an argumehts in the grounded extension iff there existisleast one gam#hat
starts with P uttering¢laim in(A)” and is won by P [10P

As a general property of the Grounded Persuasion Game, bheabserved that at every stage of the
discussion, O’s commitment stozis an admissible labelling [16f

As an example, for argumeitin AF'., the discussion could go as follows.

in(P) out(P) in(O) out(O)

(1) P: claimin(E) E
(2) O: whyin(FE) E
(3) P: becauseut(B,D) FE B,D
(4) O: whyout(B) E B,D
(5) P: becausén(A) E,A  B,D

(6) O: conceden(A) EA  BD
(7) O: concedeut(B) E,A  B,D
(8) O: whyout(D) E,A  B,D
(9) P: becausen(C') EAC B,D
(10)O: conceden(C) E,AC B,D AC
(11)0: concedeut(D) FE,AC B,D AC B,D
(12)0: conceden(F) E,AC B,D AC,E B,D

In the above game, the main claim(E) is conceded so the proponent wins. As was mentioned above,
a “because” statement is not allowed to use an argumentstaitgady an open issue. This is to ensure
termination even in the presence of cycles. However, thiglition has an undesirable side effect. Consider
what happens when, at move (4) of the above discussion, fhenept would have decided to utter “why
out(D)” instead of “whyout(B)".

S S S N S
oW

(4') O: why out (D) E B.,D
(5') P: becausen(C) EC B,D
(6") O: why in(C) E.C B,D

After move (8) the proponent cannot reply with “becauset(B)” as out(B) is an open issue, so
the game is terminated (according to the rules of [10]) withtbe main claim being conceded, meaning
the proponent loses. Moreover, there is nothing the praptoceuld have done different in order to win
the game, in spite off being in the grounded extension. One of the advantages afuytently defined
Grounded Discussion Game is that such anomalies cannot (dzeiorem 6). Once the proponent utters
HTB(E) he can win the game, regardless of whether the opponentréspoth CB(B) or with CB(D).

Another difference between the GPG and our currently def@iB6 is related to the player who intro-
duces the counterarguments in the discussion. In the GRGsthiways the proponent, who for instance
explicitly has to list all the attackers against an arguntenis actually trying to defend (like “P: because
out(B, A)” in the above discussion). However, in natural discussiamould be rare for any participant

® A discussion is won by P iff at the end of the game O is commitihed the argument the discussion started with is
labelledin.
% That is, if one regards all arguments where O does not haveamynitments to be labellaghdec.



to provide counterarguments against his own position,rdtifen by mistake. The GDG, however, is such
that in a game won by the proponent, each of the counterangisrattered against proponent’s position is
uttered by the opponent.

4.3 Summary and Analysis

Overall, the differences between our approach and the gimaes are summarised in the following table.

SGG GPG| GDG
number of moves needed | exp |linear| linear
to show strong admissibility | [7] | [7] |(Th.7)
supports RETRACT and/or | no | yes| yes

CONCEDE moves
both propopent and opponentyes| no | yes
introduce arguments

single succesful game no | yes| yes
implies grounded membership
grounded membership yes| no | yes

implies3 winning strategy

Apart from the technical considerations mentioned abdwergsearch agenda of developing argument-
based discussion games is also relevant because it towshe®$the foundations of argumentation theory.
Whereas for instance classical logic entailment is basgti@notion oftruth, this notion simply does not
exist in abstract argumentation and would be problemata @v instantiated argumentatiéhBut if not
truth, then what actually is it that is actually yielded byrfal argumentation theory? Our view is that ar-
gumentation theory yields what can be defended in ratiosabgsion. As our Grounded Discussion Game
is essentially a form of persuasion dialogue [28] we havevshiinat grounded semantics can be seen as
a form of persuasion dialogue. Furthermore, Caminada étaak for instance showed that (credulous)
preferred semantics can be seen as a particular form of t8Bodi@ogue [6, 8]. Hence, different argumen-
tation semantics correspond to different types of discunsl], an observation that is not just relevant for
philosophical reasons, but also opens up opportunitieafgument-based human computer interaction.
In further research we hope to report on whether engagingar@rounded Discussion Game increases
people’s trust in particular forms of argument-based mfiee. An implementation, that can serve as the
basis for this, is currently under development.
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