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Abstract. We introduce an argument-based discussion game where the ability to win the game for a
particular argument coincides with the argument being in the grounded extension. Our game differs
from previous work in that (i) the number of moves islinear (instead of exponential) w.r.t. the strongly
admissible set that the game is constructing, (ii) winning the game does not rely on cooperation from
the other player (that is, the game is winning strategy based), (iii) a singlegame won by the proponent
is sufficient to show grounded membership, and (iv) the game has a number of properties that make it
more in line with natural discussion.

1 Introduction

In informal, human style argumentation, discussions play aprominent role. Yet the aspect of discussion
has received relatively little attention in formal argumentation theory, especially within the research line of
Dung-style argumentation [13]. Whereas other aspects of informal argumentation, like argument schemes
[21], claims and conclusions [21, 15], assumptions [2, 14] and preferences [18, 20] have successfully been
modelled in the context of (instantiated) Dung-style argumentation, dialectical aspects are often regarded
as being part of a research field separate from inference-based argumentation [22, 24]. The scarce work
that does consider dialectical aspects in the context of argument-based entailment tends to do so for the
purpose of defining proof procedures [12, 25] that, althoughuseful for software implementations [23] are
not meant to actually resemble informal discussion.

One exception to this is the Grounded Persuasion Game of Caminada and Podlaszewski [10], which
provides a labelling-based discussion game for grounded semantics. The game is defined in such a way
that an argument is in the grounded extension iff there exists at least one game for it that is won by the
proponent [10]. However, the Grounded Persuasion Game has anumber of shortcomings. For instance, it
can be that an argument is in the grounded extension but the proponent does not have a winning strategy for
it. That is, although it is possible to win the game, this depends partly on the cooperation of the opponent.
Furthermore, in the Grounded Persuasion Game it is the proponent who first introduces the arguments
that he later needs to defend against, a phenomenon that rarely occurs in natural discussions other than by
mistake.

In the current paper, we present a modified and slightly simplified discussion game for grounded se-
mantics, called the Grounded Discussion Game, that addresses above mentioned shortcomings. Overall,
our aim is to provide a discussion game that can be used in the context of human-computer interaction, for
the purpose of explaining argument-based inference. This can be helpful to allow users to understand why
a particular advice was given by a knowledge-based system, and to examine whether particular objections
the user might have can properly be addressed. In this way, wesee interactive discussion as an alternative
for argument visualisation [26, 27]. Our current work, which is focussed on grounded semantics, fits in a
line of research where similar discussion games have been stated also for preferred [8] and stable [11].
With respect to the previously stated games for grounded semantics [25, 4, 19, 10] our aim is to satisfy the
following properties:

1. Correctness and completeness for grounded semantics w.r.t. the presence of a winning strategy. It
should be the case that an argument is in the grounded extension iff the proponent has a winning
strategy for it (unlike is the case in for instance [10]).

2. Similarity to natural discussion. No party should be required to introduce arguments that he subse-
quently has to argue against (unlike for instance in [10]). Also, there should be moves in which a
player can indicate agreement (“fair enough”) at specific points of the discussion (unlike is the case in
for instance the Standard Grounded Game [25, 4, 19], where such moves are absent).



3. Efficiency. The number of moves should belinear in relation to the size1 of the strongly admissible
labelling [7] the game is constructing. This is for instanceviolated in the Standard Grounded Game [25,
4, 19], where the number of moves can beexponentialin relation to the size of the strictly admissible
labelling the game is constructing (see [7, Section 5.3] fordetails). A similar observation can be made
for other tree-based proof procedures [12].

The remaining part of this paper is structured as follows. First, in Section 2 we provide some prelim-
inaries of argumentation theory. Then, in Section 3 we present our new Grounded Discussion Game, and
show that it satisfies the above mentioned properties. We round off in Section 4 with a discussion of the
obtained results how these relate to previous research.

2 Formal Preliminaries

Abstract argumentation theory [13] is in essence about how to select nodes from a graph (called an argu-
mentation framework). In the current paper, we restrict ourselves to finite graphs.

Definition 1 ([13]). An argumentation frameworkis a pair (Ar , att) whereAr is a finite set of entities,
called arguments, whose internal structure can be left unspecified, andatt is a binary relation onAr . We
say thatA attacksB iff (A,B) ∈ att .

For current purposes, we apply the labelling-based versionof argumentation semantics [5, 9], instead of
the original extension-based version of [13]. It should be noticed, however, that an extension is essentially
thein labelled part of a labelling [5, 9].

Definition 2 ([9]). Let(Ar , att) be an argumentation framework. Anargument labellingis a total function
Lab : Ar → {in, out, undec}. An argument labelling is called anadmissible labellingiff for eachA ∈ Ar

it holds that:

– if Lab(A) = in then for eachB that attacksA it holds thatLab(B) = out

– if Lab(A) = out then there exists aB that attacksA such thatLab(B) = in

Lab is called acomplete labellingiff it is an admissible labelling and for eachA ∈ Ar it also holds that:

– if Lab(A) = undec then not for eachB that attacksA it holds thatLab(B) = out, and there exists
noB that attacksA such thatLab(B) = in

As a labelling is essentially a function, we sometimes writeit as a set of pairs. Also, ifLab is a labelling,
we write in(Lab) for {A ∈ Ar | Lab(A) = in}, out(Lab) for {A ∈ Ar | Lab(A) = out} and
undec(Lab) for {A ∈ Ar | Lab(A) = undec}. As a labelling is also a partition of the arguments into sets
of in-labelled arguments,out-labelled arguments andundec-labelled arguments, we sometimes write it
as a triplet(in(Lab), out(Lab), undec(Lab)).

Definition 3 ([9]). LetLab be a complete labelling of argumentation frameworkAF = (Ar , att). Lab is
said to be

– a grounded labelling iffin(Lab) is minimal (w.r.t. set inclusion) among all complete labellings ofAF .
– a preferred labelling iffin(Lab) is a maximal (w.r.t. set inclusion) among all complete labellings of
AF .

The discussion game to be presented in Section 3 of this paperis based on the concept of strong admissi-
bility [1, 7]. Hence, we will briefly recall some of its basic definitions.

Definition 4 ([7]). Let Lab be an admissible labelling of argumentation framework(Ar , att). A min-
max numberingis a total functionMMLab : in(Lab) ∪ out(Lab) → N ∪ {∞} such that for each
A ∈ in(Lab) ∪ out(Lab) it holds that:

1 With the size of a labellingLab we mean|in(Lab) ∪ out(Lab)|.



– if Lab(A) = in thenMMLab(A) = max({MMLab(B) | B attacksA andLab(B) = out}) + 1
(with max(∅) defined as0)

– if Lab(A) = out thenMMLab(A) = min({MMLab(B) | B attacksA andLab(B) = in}) + 1
(with min(∅) defined as∞)

If A ∈ Ar is labelledin, we sometimes refer tomax({MMLab(B) | B attacksA andLab(B) =
out}) + 1 as the MAX+1 value of theout labelled attackers ofA. Also, if A ∈ Ar is labelledout, we
sometimes refer tomin({MMLab(B) | B attacksA andLab(B) = in}) + 1 as the MIN+1 value of
thein labelled attackers ofA. Also, we sometimes writeMM instead ofMMLab when it is clear what
labelling the min-max numbers relate to.

Theorem 1 ([7]).Every admissible labelling has a unique min-max numbering.

Definition 5 ([7]). A strongly admissible labellingis an admissible labelling whose min-max numbering
yields natural numbers only (so no argument is numbered∞).

Theorem 2 ([7]).An argument is labelledin by at least one strongly admissible labelling iff it is labelled
in by the grounded labelling.

As an example, consider the argumentation framework shown below, which we refer to asAF ex. Here
Lab1 = ({A,C,E,G}, {B,D,H}, {F}) is an admissible (though not complete) labelling with associated
min-max numberingMMLab1

= {(A : 1), (B : 2), (C : 3), (D : 4), (E : 5), (G : ∞), (H : ∞)}, which
implies thatLab1 is not strongly admissible. Furthermore,Lab2 = ({A,C,E}, {B,D, F}, {G,H}) is an
admissible (and complete) labelling with associated min-max numberingMMLab2

= {(A:1), (B:2), (C:
3), (D:4), (E:5), (F:2)}, which implies thatLab2 is indeed a strongly admissible labelling.
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From Theorem 2, together with the fact that the grounded extension consists of thein-labelled argu-
ments of the grounded labelling [9], it follows that to show that an argument is in the grounded extension,
it is sufficient to construct a strongly admissible labelling where the argument is labelledin.

The following two lemmas about strongly admissible labellings will be used further on in the paper.

Lemma 1. Let Lab be a strongly admissible labelling of argumentation framework (Ar , att), and let
A ∈ Ar such thatLab(A) = undec and for eachB ∈ Ar that attacksA it holds thatLab(B) = out.
LetLab ′ = (in(Lab) ∪ {A}, out(Lab), undec(Lab) \ {A}). It holds thatLab ′ is a strongly admissible
labelling.

Proof. We first observe thatLab ′ is a well-defined labelling in the sense that it defines a partition of Ar .
We proceed to show thatLab ′ is an admissible labelling. LetC ∈ in(Lab ′). Then eitherC ∈ in(Lab) or
C = A. In the former case, the fact thatLab is a (strongly) admissible labelling implies that all attackers
of C are labelledout by Lab, and therefore also labelledout by Lab ′ (sinceout(Lab ′) = out(Lab)).
In the latter case, the fact that all attackers ofA are labelledout by Lab implies that all attackers ofC
(= A) are labelledout by Lab ′. Alternatively, letC ∈ out(Lab ′). Then (sinceout(Lab ′) = out(Lab))
C ∈ out(Lab), so from the fact thatLab is an admissible labelling, it follows that there is an attacker of
C that is labelledin by Lab. Sincein(Lab ′) ⊇ in(Lab), it follows that this attacker is also labelledin
byLab ′.
The next thing to show is thatLab ′ is also astronglyadmissible labelling. Suppose, towards a contradiction,
that this is not the case. Then there exists at least onein or out labelled (byLab ′) argument that is
numbered with∞. It follows that this argument is either labelledin or out by Lab or it is actuallyA
itself. However, even in the latter case, it follows that there exists at least onein or out labelled (by



Lab) argument that is numbered with∞ (since from the fact thatA is labelledin and numbered with
∞, it follows that all itsout labelled attackers must be numbered with∞, andA must have at least one
out labelled attacker, for otherwiseA would be numbered with1). Let C ∈ in(Lab) ∪ out(Lab) be an
argument that is numbered with∞ (w.r.t.Lab ′) and whose min-max number (w.r.t.Lab) is minimal among
all arguments numbered with∞ w.r.t.Lab ′. We distinguish two cases.

– Lab(C) = in. Then, fromLab ′ being an admissible labelling, it follows that all attackers ofC are
labelledout by Lab ′. However, since all these attackers have lower min-max numbers (w.r.t.Lab),
it follows that none of these is numbered with∞ (w.r.t. Lab ′). After all, C has aminimal min-max
number (w.r.t.Lab) among all arguments numbered with∞ (w.r.t.Lab ′). This means that the MAX+1
value of the attackers ofA cannot be∞ (w.r.t.Lab ′). But thenA cannot be numbered with∞ (w.r.t.
Lab ′). Contradiction.

– Lab(C) = out. AsC is numbered with a natural number (w.r.t.Lab) it follows that the MIN+1 value
of all its in labelled attackers (w.r.t.Lab) is also a natural number. LetD be anin labelled attacker of
C with minimal min-max number (w.r.t.Lab). It follows that the min-max number ofD (w.r.t.Lab)
is smaller than that ofC. Hence,D cannot be numbered with∞ w.r.t.Lab ′ (recall thatC is the lowest
numbered argument (w.r.t.Lab that is numbered with∞ w.r.t.Lab ′). Hence,D has to have a natural
min-max number w.r.t.Lab ′. But the the MIN+1 value (w.r.t.Lab ′) of the attackers ofC is a natural
number, soD has to be numbered with a natural number (w.r.t.Lab ′). Contradiction.

Lemma 2. Let Lab be a strongly admissible labelling of argumentation framework (Ar , att), and let
A ∈ Ar such thatLab(A) = undec and there exists aB ∈ Ar that attacksA such thatLab(B) = in.
LetLab ′ = (in(Lab), out(Lab) ∪ {A}, undec(Lab) \ {A}). It holds thatLab ′ is a strongly admissible
labelling.

Proof. We first observe thatLab ′ is a well-defined labelling in the sense that it defines a partition of Ar .
We proceed to show thatLab ′ is an admissible labelling. LetC ∈ in(Lab ′). ThenC ∈ in(Lab), so
from Lab being a (strongly) admissible labelling, it follows that all attackers ofC are labelledout by
Lab. Fromout(Lab ′) ⊇ out(Lab) it then follows that all attackers ofC are also labelledout by Lab ′.
Alternatively, letC ∈ out(Lab ′). Then eitherC ∈ out(Lab) or C = A. In the former case, from the fact
thatLab is a (strongly) admissible labelling, it follows thatC has an attacker that is labelledin by Lab,
whch then implies (sincein(Lab ′) = in(Lab)) that the same attacker is also labelledin by Lab ′. In the
latter case (C = A) there exists aB ∈ Ar that attacksA (= C) such thatLab(B) = in. From the fact that
in(Lab ′) = in(Lab) it then follows thatLab ′(B) = in.
The next thing to show is thatLab ′ is also astronglyadmissible labelling. Suppose, towards a contradiction,
that this is not the case. Then there exists at least onein or out labelled argument (byLab ′) that is
numbered with∞. It follows that this argument is either labelledin or out by Lab or it is actuallyA
itself. However, even in the latter case, it follows that there exists at least onein or out labelled (byLab)
argument that is numbered with∞ (since from the fact thatA is labelledout and numbered with∞,
it follows that all of itsin labelled attackers are numbered with∞, includingB). Let C ∈ in(Lab) ∪
out(Lab) be an argument that is numbered with∞ (w.r.t.Lab ′) and whose min-max number (w.r.t.Lab)
is minimal among all arguments numbered with∞ w.r.t.Lab ′. We distinguish two cases.

– Lab(C) = in. Then, using similar reasoning as in the proof of Lemma 1 (first bullet) we obtain a
contradiction.

– Lab(C) = out. Then, using similar reasoning as in the proof of Lemma 1 (first bullet) we obtain a
contradiction.

3 The Grounded Discussion Game

The Grounded Discussion Game that we will define in the current section has two players (proponent and
opponent) and is based on four different moves, each of whichhas an argument as a parameter.

HTB(A) (“A has to be the case”)
With this move, the proponent claims that argumentA has to be labelledin by every complete labelling
(and hence also has to be labelledin by the grounded labelling).



CB(B) (“B can be the case, or at least cannot be ruled out”)
With this move, the opponent claims that argumentB does not have to be labelledout by every
complete labelling. That is, the opponent claims there exists at least one complete labelling whereB

is labelledin or undec, and thatB is therefore not labelledout by the grounded labelling.
CONCEDE (A) (“Fair enough, I agree thatA has to be the case”)

With this move, the opponent indicates that he now agrees with the proponent (who previously did
a HTB(A) move) thatA has to be the case (labelledin by every complete labelling, including the
grounded labelling).

RETRACT (B) (“Fair enough, I give up thatB can be the case”)
With this move, the opponent indicates that he no longer beliefs that argumentB can bein or undec.
That is, the opponent acknowledges thatB has to be labelledout by every complete labelling, includ-
ing the grounded labelling.

One of the key ideas of the discussion game is that the proponent has burden of proof. He has to
establish the acceptance of the main argument. The opponentmerely has to cast sufficient doubts. Also, the
proponent has to make sure that the discussion does not go around in circles.

The game starts with the proponent uttering aHTB statement. After eachHTB statement (either
the first one or a subsequent one) the opponent utters a sequence of one or moreCB , CONCEDE and
RETRACT statements, after which the proponent again utters anHTB statement, etc. InAF ex the dis-
cussion could go as follows.

(1) P:HTB(C) (4) O:CONCEDE (A)
(2) O:CB(B) (5) O:RETRACT (B)
(3) P:HTB(A) (6) O:CONCEDE (C)

In the above discussion,C is calledthe main argument(the argument the discussion starts with). The
discussion ends with the main argument being conceded by theopponent, so we say that the proponent
wins the discussion.

As an example of a discussion that is lost by the opponent, it can be illustrative to examine what happens
if, still in AF ex, the proponent claims thatB has to be the case.

(1) P:HTB(B) (2) O:CB(A)

After the second move, the discussion is terminated, as the proponent cannot move anymore, sinceA

does not have any attackers. This brings us to the precise preconditions of the discussion moves.

HTB(A) This is either the first move, or the previous move wasCB(B), whereA attacksB, and no
CONCEDE orRETRACT move is applicable.

CB(A) A is an attacker of the lastHTB(B) statement that is not yet conceded, the directly preceed-
ing move was not aCB statement, argumentA has not yet been retracted, and noCONCEDE or
RETRACT move is applicable.

CONCEDE (A) There has been aHTB(A) statement in the past, of which every attacker has been re-
tracted, andCONCEDE (A) has not yet been moved.

RETRACT (A) There has been aCB(A) statement in the past, of which there exists an attacker thathas
been conceded, andRETRACT (A) has not yet been moved.

Apart from the preconditions mentioned above, all four statements also have the additional precondition
that noHTB -CB repeats have occurred. That is, there should be no argument for whichHTB has been
uttered more than once,CB has been uttered more than once, or bothHTB andCB have been uttered. In
the first and second case, the discussion is going around in circles (which the proponent has to prevent, since
he has burden of proof). In the third case, the proponent has been contradicting himself, as his statements
are not conflict-free. In each of these three cases, the discussion comes to an end with no move being
applicable anymore.

The above conditions are made formal in the following definition.

Definition 6. LetAF = (Ar , att) be an argumentation framework. Agrounded discussionis a sequence
of discussion moves constructed by applying the following principles.



BASIS (HTB ) If A ∈ Ar then[HTB(A)] is a grounded discussion.
STEP (HTB ) If [M1, . . . ,Mn] (n ≥ 1) is a grounded discussion withoutHTB -CB repeats,2 and no

CONCEDE or RETRACT move is applicable,3 andMn = CB(A) andB is an attacker ofA then
[M1, . . . ,Mn,HTB(B)] is also a grounded discussion.

STEP (CB ) If [M1, . . . ,Mn] (n ≥ 1) is a grounded discussion withoutHTB -CB repeats, and noCONCEDE

or RETRACT move is applicable, andMn is not aCB move, and there is a moveMi = HTB(A)
(i ∈ {1 . . . n}) such that the discussion does not containCONCEDE (A), and for each moveMj =
HTB(A′) (j > i) the discussion contains a moveCONCEDE (A′), andB is an attacker ofA such that
the discussion does not contain a moveRETRACT (B), then[M1, . . . ,Mn,CB(B)] is a grounded
discussion.

STEP (CONCEDE ) If [M1, . . . ,Mn] (n ≥ 1) is a grounded discussion withoutHTB -CB repeats, and
CONCEDE (B) is applicable then[M1, . . . ,Mn,CONCEDE (B)] is a grounded discussion.

STEP (RETRACT ) If [M1, . . . ,Mn] (n ≥ 1) is a grounded discussion withoutHTB -CB repeats, and
RETRACT (B) is applicable then[M1, . . . ,Mn,RETRACT (B)] is a grounded discussion.

It can be observed that the preconditions of the moves are such that a proponent move (HTB ) can
never be applicable at the same moment as an opponent move (CB , CONCEDE or RETRACT ). That
is, proponent and opponent essentially take turns in which each proponent turn consists of a singleHTB

statement, and every opponent turn consists of a sequence ofCONCEDE , RETRACT andCB moves.

Definition 7. A grounded discussion[M1,M2, . . . ,Mn] is calledterminatediff there exists no moveMn+1

such that[M1,M2, . . . ,Mn,Mn+1] is a grounded discussion. A terminated grounded discussion(withM1

beingHTB(A) for someA ∈ Ar) is won by the proponent iff the discussion containsCONCEDE (A),
otherwise it is won by the opponent.

To illustrate why the discussion has to be terminated after the occurrence of aHTB -CB repeat, consider
the following discussion inAF ex.

(1) P:HTB(G) (3) P:HTB(G)
(2) O:CB(H)

After the third move, anHTB -CB repeat occurs and the discussion is terminated (opponent wins).
Hence, termination after aHTB -CB repeat is necessary to prevent the discussion from going on perpetu-
ally.

Theorem 3. Every discussion will terminate after a finite number of steps.

Proof. CONCEDE andRETRACT by definition cannot be repeated for the same argument.HTB and
CB can be repeated at most once for the same argument (because when this happens the game will termi-
nate). This, together with the fact that the set of argumentsis finite (as we only consider finite argumentation
frameworks) implies that the number of moves will be finite and therefore the game will terminate.

From the fact that a discussion terminates after anHTB -CB repeat, the following result follows im-
mediately.

Lemma 3. No discussion can contain aCONCEDE andRETRACT move for the same argument.

2 We say that there is aHTB -CB repeat iff∃i, j ∈ {1, . . . , n}∃A ∈ Ar : (Mi = HTB(A) ∨ Mi = CB(A)) ∧
(Mj = HTB(A) ∨Mj = CB(A)) ∧ i 6= j.

3 A moveCONCEDE(B) is applicable iff the discussion contains a moveHTB(A) and for every attackerA ofB the
discussion contains a moveRETRACT (B), and the discussion does not already contain a moveCONCEDE (B).
A moveRETRACT (B) is applicable iff the discussion contains a moveCB(B) and there is an attackerA of
B such that the discussion contains a moveCONCEDE(A), and the discussion does not already contain a move
RETRACT (B).



Proof. Suppose, towards a contradiction that there exists aC ∈ Ar such that both a moveCONCEDE (C)
and a moveRETRACT (C) occurs in the discussion. From the precondition of theCONCEDE move, it
follows that the discussion contains the moveHTB(C). From the precondition of theRETRACT move,
it follows that the discussion contains the moveCB(C). But after both theHTB(C) andCB(C) moves
have been made, the discussion is terminated, so there is no possibility to do theCONCEDE (C) move
(if the RETRACT (C) move was first) or to perform theRETRACT (C) move (if theCONCEDE (C)
move was first). Contradiction.

A particular property of the game that is worthwhile emphasizing is that eachCB move has to be a
reply to thelastHTB move that is not yet conceded. To illustrate why this is useful, consider the following
argumentation framework, which we refer to asAF ex2
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Here, the discussion could go as follows.
(01) P:HTB(A) (10) O:CONCEDE (G)
(02) O:CB(B) (11) O:RETRACT (F )
(03) P:HTB(D) (12) O:CONCEDE (D)
(04) O:CB(F ) (13) O:RETRACT (B)
(05) P:HTB(G) (14) O:CB(C)
(06) O:CB(H) (15) P:HTB(E)
(07) P:HTB(I) (16) O:CONCEDE (E)
(08) O:CONCEDE (I) (17) O:RETRACT (C)
(09) O:RETRACT (H) (18) O:CONCEDE (A)

Let us consider what would happen when aCB statement is allowed to reply to anarbitrary unconceded
HTB statement (instead of to thelast unconcededHTB statement). In that case, at the6th move, instead
of doingCB(H), the opponent could also have doneCB(C). In that case, the discussion would have
continued as follows.
(06’) O:CB(C)
(07’) P:HTB(E)
(08’) O:CB(F )
Now, there is aHTB -CB repeat (CB(F ) at both move (04) and move (08’)) so the discussion is terminated.
As the main claim is not conceded, the proponent has lost, andno strategy of the proponent could have
prevented this. This shows that without the requirement that eachCB statement has to reply to thelast
unconcededHTB statement, the proponent could be prevented from winning the game, even though the
main argument is in the grounded extension.

3.1 Soundness

Now that the workings of the game have been outlined, and someof its design decisions have been ex-
plained, the next step will be to formally proof its correctness and completeness w.r.t. grounded seman-
tics. We start with correctness: if a discussion is won by theproponent, then the main argument is in the
grounded extension. In order to prove this, we first have to introduce the notions of the proponent’s labelling
and the opponent’s labelling.

Definition 8. Let [M1 . . .Mn] be a grounded discussion (in argumentation framework(Ar , att)) without
anyHTB -CB repeats.
The proponent labellingLabP is defined as



in(LabP ) = {A | ∃i ∈ {1 . . . n}: Mi = HTB(A)}
out(LabP ) = {A | ∃i ∈ {1 . . . n}: Mi = CB(A)}
undec(LabP ) = Ar \ (in(LabP ) ∪ out(LabP ))
The opponent labellingLabO is defined as
in(LabO) = {A | ∃i ∈ {1 . . . n}: Mi = CONCEDE (A)}
out(LabO) = {A | ∃i ∈ {1 . . . n}: Mi = RETRACT (A)}
undec(LabO) = Ar \ (in(LabO) ∪ out(LabO))

Notice that the well-definedness ofLabO in Definition 8 does not depend on the absence ofHTB -CB
repeats (this is due to Lemma 3) whereas the well-definednessof LabP does. When applyingLabO, we
will therefore often do so without having ruled out anyHTB -CB repeats, as for instance in the following
theorem.

Theorem 4. LetLabO be the opponent’s labelling related to discussion[M1, . . . ,Mn]. It holds thatLabO
is strongly admissible.

Proof. By induction over the number ofCONCEDE andRETRACT statements. Leti1 be the index of
the firstCONCEDE orRETRACT statement,i2 be the index of the secondCONCEDE orRETRACT
statement, etc.

BASIS Suppose the number ofCONCEDE andRETRACT statements is zero. In that case,LabO is the
all-undec labelling, which by definition is strongly admissible.

STEP Suppose that for every discussion with up toj CONCEDE andRETRACT statements, the as-
sociatedLabOj

is strongly admissible. We now prove that also for every discussion with up toj + 1
CONCEDE andRETRACT statements, the associatedLabOj+1

is strongly admissible. We distin-
guish two possibilities:

– The lastCONCEDE orRETRACT statement was aCONCEDE statement, say,CONCEDE (B)
(B ∈ Ar). Let LabOj

be the opponent labelling of the sub-discussion[M1, . . . ,Mij+1−1]. This
discussion containsj CONCEDE andRETRACT statements, so the induction hypothesis says
that the associated opponent labellingLabOj

is strongly admissible. From the preconditions of
CONCEDE (B) it follows that for each attackerA ∈ Ar of B, the discussion contains the move
RETRACT (A). Hence, for eachA ∈ Ar that attacksB, it holds thatA ∈ out(LabOj

). Also,
notice thatLabOj+1

= (in(LabOj
) ∪ {B}, out(LabOj

), undec(LabOj
) \ {B}). Lemma 1 then

implies thatLabOj+1
is strongly admissible.

– The lastCONCEDE orRETRACT statement was aRETRACT statement, say,RETRACT (B)
(B ∈ Ar). Let LabOj

be the opponent labelling of the sub-discussion[M1, . . . ,Mij+1−1]. This
discussion containsj CONCEDE andRETRACT statements, so the induction hypothesis says
that the associated opponent labellingLabOj

is strongly admissible. From the preconditions of
theRETRACT (B) move, it follows that there is an attackerA ∈ Ar of B such that the discus-
sion contains the moveCONCEDE (A). Hence,A ∈ in(LabOj

). Also, notice thatLabOj+1
=

(in(LabOj
), out(LabOj

) ∪ {B}, undec(LabOj
) \ {B}). Lemma 2 then implies thatLabOj+1

is
strongly admissible.

Theorem 5. Let [M1, . . . ,Mn] be a terminated grounded discussion that is won by the proponent, and let
M1 = HTB(A) for someA ∈ Ar . It holds thatA is in the grounded extension.

Proof. The fact that the discussion is won by the proponent implies (Definition 7) that there has been a
moveCONCEDE (A). Hence,A ∈ in(LabO) (with LabO being the opponent’s labelling). SinceLabO
is strongly admissible (Theorem 4) it follows thatA is labelledin by the grounded labelling (Theorem 2).
Hence,A is in the grounded extension.

As an aside, although it is possible to infer that an argumentis in the grounded extension when the
proponent wins a discussion (Theorem 5) we cannot infer thatan argument isnot in the grounded extension
when the proponent loses a discussion. This is because loss of a game could be due to the proponent
following a flawed strategy. For instance, inAF ex one could have the following discussion:



(1) P:HTB(E) (4) O:CB(H)
(2) O:CB(D) (5) P:HTB(G)
(3) P:HTB(G)

The discussion is terminated at step (5) due to aHTB -CB repeat (HTB(G)). The main argument is not
conceded, so the proponent loses. Still the proponent couldhave won by movingHTB(C) instead of
HTB(G) at step (3).

3.2 Completeness

Now that the soundness of the game has been proved, we shift our attention to completeness. The obvious
thing to prove regarding completeness would be the converseof Theorem 5: ifA is in the grounded exten-
sion, then there exists a discussion won by the proponent withA as the main argument.4 However, our aim
is to prove a slightly stronger property. Instead of there being just a single discussion won by the proponent,
which might be due to the opponent actually providing cooperation during the game, we require the pro-
ponent to have a winning strategy. That is, when an argument is in the grounded extension, the proponent
will be able to win the game, irrespective of how the opponentchoses to play it.

The idea is that the grounded labelling with its associated min-max numbering can serve as a roadmap
for winning the discussion. The proponent will be able to winif, whenever he has to do aHTB move,
he prefers to use anin argument with the lowest min-max number that attacks the directly precedingCB
move. We will refer to this as alowest number strategy.5

We start by pointing out that using this strategy, the game stays within the bounderies of the grounded
labelling (that is, within itsin andout labelled part).

Lemma 4. If the proponent uses a lowest number strategy, then for every HTB(A) move (A ∈ Ar) it
holds thatA ∈ in(Labgr) and for everyCB(B) move (B ∈ Ar) it holds thatB ∈ out(Labgr).

Proof. This can be proved by induction over theHTB andCB moves in the discussion.

BASIS Let HTB(A) be the first move in the discussion. This means thatA is in the grounded extension,
soA ∈ in(Labgr).

STEP (CB ) Suppose that at a certain stage of the discussion for eachHTB(A) move it holds thatA ∈
in(Labgr) and for eachCB(B) move it holds thatB ∈ out(Labgr). If the next move isCB(C) then
from the definition of theCB move, it follows that there is a previousHTB(A) move whereC attacks
A. Our induction hypothesis says thatA ∈ in(Labgr). FromLabgr being an admissible labelling, it
follows that each attacker ofA (includingC) is in out(Labgr).

STEP (HTB ) Suppose that at a certain stage of the discussion for eachHTB(A) move it holds thatA ∈
in(Labgr) and for eachCB(B) move it holds thatB ∈ out(Labgr). If the next move isHTB(C)
then from the definition of theHTB move, it follows that there is a previousCB(B) move where
C attacksB. Our induction hypothesis says thatB ∈ out(Labgr). FromLabgr being an admissible
labelling, it follows that there is at least one attacker ofB that is inin(Labgr). This means it has been
possible for the proponent to follow his strategy of selecting anin labelled argument for theHTB
move. Hence,C ∈ in(Labgr).

The next thing to be proved is that when the proponent appliesa lowest number strategy, the game
will not terminate due to anyHTB -CB repeats. For this, we first need to prove two lemmas regardingthe
numbers of the argument moved after aHTB orCB move.

Lemma 5. If the proponent uses a lowest number strategy, then after anHTB(A) (A ∈ Ar) move is
played, all subsequentCB andHTB moves will be related to arguments with lower min-max numbers
thanA, until a moveCONCEDE (A) is played.

4 A similar strategy is used in [10].
5 We write “a lowest number strategy” instead of “the lowest number strategy”, as a lowest number strategy might

not be unique due to different lowest numberedin-labelled arguments being applicable at a specific point. Inthat
case, it suffices to pick an arbitrary one.



Proof. We prove this by induction over the subsequentCB andHTB moves, played in the absence of a
CONCEDE (A) move.

BASIS If there are not yet any subsequentCB andHTB moves, then the property trivially holds.
STEP (CB ) Suppose that at a certain point of the discussion each subsequentCB andHTB move is re-

lated to an argument with a lower min-max number thanA, and that there has not been anyCONCEDE (A)
move. Let the next move beCB(C) (C ∈ Ar). From the preconditions of theCB move, it follows
thatCB(C) responds to the lastHTB move that is not yet conceded (say,HTB(B)). From the fact
thatHTB(A) is not yet conceded, it follows thatHTB(B) cannot come beforeHTB(A) (otherwise
CB(C) would need to respond toHTB(A) instead of toHTB(B)). This leaves just two options: either
HTB(B) comes afterHTB(A) orHTB(B) = HTB(A). In the former case, the induction hypothesis
tells us thatMM(A) > MM(B). In the latter case, it trivially holds thatMM(A) = MM(B).
So overall, we obtain thatMM(A) ≥ MM(B). As B ∈ in(Labgr) (Lemma 4) it follows that
MM(B) is the MAX+1 value of the (out labelled) attackers ofB. This implies thatB’s attackerC
has a lower min-max number thanB. That is,MM(B) > MM(C). This, together with the ear-
lier observed fact thatMM(A) ≥ MM(B) implies thatMM(A) ≥ MM(B) > MM(C) so
MM(A) > MM(C), which is precisely what we need to prove.

STEP (HTB ) Suppose that at a certain point of the discussion each subsequentCB andHTB move
is related to an argument with a lower min-max number thanA, and that there has not been any
CONCEDE (A) move. Let the next move beHTB(C) C ∈ Ar . From the preconditions of theHTB
move, it follows thatHTB(C) comes directly after aCB move (say,CB(B)). From the induction
hypothesis, it follows thatMM(A) > MM(B). Also, it holds thatB ∈ out(Labgr) (Lemma
4), soMM(B) is the MIN+1 value of all itsin labelled attackers. Since the proponent’s strategy
is always to playHTB moves forin labelled attackers with a minimal min-max number, it follows
thatMM(B) > MM(C). This, together with the earlier observed fact thatMM(A) > MM(B)
implies thatMM(A) > MM(B) > MM(C) soMM(A) > MM(C), which is precisely what
we need to prove.

Lemma 6. If the proponent uses a lowest number strategy, then after aCB(A) move (A ∈ Ar) is played,
all subsequentHTB andCB moves will be related to arguments with lower min-max numbers thanA,
until a moveRETRACT (A) is played.

Proof. We prove this by induction over the subsequentHTB andCB moves, played in the absence of a
RETRACT (A) move.

BASIS If there are not yet any subsequentHTB andCB moves, then the property trivially holds.
STEP (HTB ) Suppose that at a certain point of the discussion each subsequentHTB andCB move

is related to an argument with a lower min-max number thanA, and that there has not been any
RETRACT (A) move. Let the next move beHTB(C) (C ∈ Ar). From the preconditions of theHTB
move, it follows thatHTB(C) comes directly after aCB move (say,CB(B)). It follows that this
CB(B) move cannot come before theCB(A) move (otherwiseHTB(C) would have to come before
CB(A) as well). This leaves just two options: eitherCB(B) comes afterCB(A) orCB(B) = CB(A).
In the former case, the induction hypothesis tells us thatMM(A) > MM(B). In the latter case, it
trivially holds thatMM(A) = MM(B). So overall, we obtain thatMM(A) ≥ MM(B). AsB ∈
out(Labgr) (Lemma 4) it follows thatMM(B) is the MIN+1 value of thein labelled attackers ofB.
Since the proponent’s strategy is always to playHTB moves forin labelled attackers with a minimal
min-max number, it follows thatMM(B) > MM(C). This, together with the earlier observed
fact thatMM(A) ≥ MM(B) implies thatMM(A) ≥ MM(B) > MM(C) soMM(A) >

MM(C), which is precisely what we need to prove.
STEP (CB ) Suppose that at a certain point of the discussion each subsequentHTB andCB move is re-

lated to an argument with a lower min-max number thanA, and that there has not been anyRETRACT (A)
move. Let the next move beCB(C) C ∈ Ar). From the preconditions of theCB move, it follows that
CB(C) responds to the lastHTB move that is not yet conceded (say,HTB(B)). From Lemma 5
it then follows thatMM(B) > MM(C). As for the position ofHTB(B) in the discussion, we
distinguish two possibilities:



– HTB(B) comes beforeCB(A). LetHTB(Z) be the move thatCB(A) replies to.HTB(B) can-
not come beforeHTB(Z) because otherwiseHTB(Z) (and notHTB(B)) would be the last
unconcededHTB move at the timeCB(C) was played, which is in contraction withCB(C) be-
ing a reaction toHTB(B). This leaves just two options: eitherHTB(B) comes afterHTB(Z)
or HTB(B) = HTB(Z). In the former case,HTB(B) (and notHTB(Z)) would be the last un-
concededHTB move at the timeCB(A) was played (recall thatHTB(B) comes beforeCB(A)),
which is in contradiction withCB(A) being a reaction toHTB(Z). In the latter case (B = Z) it
follows that allHTB moves afterHTB(Z) have been conceded, to makeHTB(Z) the last un-
concededHTB move at the timeCB(C) is played. AsCB(A) comes afterHTB(Z), it follows
that also allHTB moves afterCB(A) have been conceded (and this includes theHTB move
that immediately followedCB(A)). But this would mean thatCB(A) has to have been retracted.
Contradiction. So in both cases, we obtain a contradicion. Hence, the option ofHTB(B) coming
beforeCB(A) is not actually possible.

– HTB(B) comes afterCB(A). In caseHTB(B) comesdirectly after CB(A), it follows that
MM(A) > MM(B). This, together with the earlier observed fact thatMM(B) > MM(C),
impliesMM(A) > MM(B) > MM(C), soMM(A) > MM(C). In caseHTB(B) comes
not directly afterCB(A), let HTB(B′) be the move directly followingCB(A) (the fact that
CB(A) is unretracted means that aRETRACT move cannot be the next move, so the next move
has to be aHTB move). The fact thatCB(A) is unretracted implies thatHTB(B′) is uncon-
ceded. Hence, we can apply the finding of Lemma 5 and obtain that all CB andHTB moves
after HTB(B′) are related to arguments with lower min-max numbers thanB′. This implies
MM(B′) > MM(C). SinceMM(A) > MM(B′) (asMM(A) is the MIN+1 value of thein
labelled attackers ofA, andB′ has a minimal min-max number among thein labelled attackers of
A, as this conforms with the strategy of the proponent) it follows thatMM(A) > MM(B′) >
MM(C), soMM(A) > MM(C). So in both cases, we obtain thatMM(A) > MM(C),
which is precisely what we need the prove.

Lemma 7. If the proponent uses a lowest number strategy, then noHTB -CB repeats occur.

Proof. We prove this using three observations.

– The discussion does not contain does not contain anHTB(A) move and aCB(B) move withA = B.
This follows from the fact that (Lemma 4) for everyHTB(A) move it holds thatA ∈ in(Labgr)
and for everyCB(B) move it holds thatB ∈ out(Labgr), together with the fact thatin(Labgr) ∩
out(Labgr) = ∅.

– The discussion does not contain any repeatedHTB(A) moves (for the same argumentA).
Suppose, towards a contradiction, that the discussiondoescontain a repeatedHTB(A) move. It can
be observed (Lemma 5) that after the firstHTB(A) is played, all subsequentHTB moves will be
related to arguments with lower min-max numbers thanA, until a moveCONCEDE (A) is played. A
direct consequence of this is that the secondHTB(A) move has to be playedafter CONCEDE (A)
(asA doesn’t have a lower min-max number than itself). From the preconditions of theHTB move, it
follows that the secondHTB(A) move has to be a reaction to aCB move (say,CB(B) with B ∈ Ar)
that directly precedes it. But that means that at the moment theCB(B) move is played, there has
already been aCONCEDE (A) move, so the moveRETRACT (B) would be applicable immediately
afterwards, which is in contradiction with the preconditions of theHTB(A) move.

– The discussion does not contain any repeatedCB(A) moves (for the same argumentA).
Suppose, towards a contradiction, that the discussiondoescontain a repeatedCB(A) move. It can be
observed that after the firstCB(A) move has been played, all subsequentCB moves will be related to
arguments with lower min-max numbers thanA, until a moveRETRACT (A) is played (Lemma 6).
A direct consequence of this is that the secondCB(A) move has to be playedafter RETRACT (A)
(asA doesn’t have a lower min-max number than itself). But that means that at the moment the second
CB(A) move is played, there is already aRETRACT (A) move, which is in contradiction with the
preconditions of theCB move.

From the above three observations, it directly follows thatthe discussion does not contain anyHTB -CB
repeats.



We are now ready to present the main result regarding completeness of the discussion game.

Theorem 6. Let A be an argument in the grounded extension of argumentation framework(Ar , att). If
the proponent uses a lowest number strategy, he will win the discussion for main argumentA.

Proof. As we have observed before (Theorem 3) every game has to terminate in a finite number of steps.
This, by definition, means that at some point, one of the conditions for termination has to hold. Lemma 7
tells us that this cannot be due to anyHTB -CB repeats.

We proceed to show that termination also cannot be due to the proponent not being able to react on
a CB move. LetCB(C) (C ∈ Ar) be the last move in a particular (possibly unterminated) discussion,
and assume that no subsequentCONCEDE orRETRACT move is applicable immediately after it. From
Lemma 4 it follows thatC ∈ out(Labgr), so fromLabgr being an admissible labelling, there will be
at least one argument that attacksC and is labelledin by Labgr. This, together with the fact that no
CONCEDE or RETRACT moves are applicable, and the earlier observed fact that there have been no
HTB -CB repeats (Lemma 7) implies that the preconditions for the moveHTB(D) are satisfied, whereD
is anin labelled argument with minimal min-max number. Hence, the last move of a terminated discussion
cannot be aCB move.

From the thus observed fact that the last move of a terminateddiscussion cannot be aCB move, it
directly follows that the last move has to be aCONCEDE , RETRACT or HTB move. Of these moves,
HTB is not actually possible, because it can always be followed with a CB or CONCEDE statement
(this is due to the fact that anHTB statement cannot be repeated for the same argument). This means
the last move has to beCONCEDE or RETRACT . The fact that noCB statement is applicable (has
its precondition satisfied) then by definition means that forevery previousHTB(C) move, either there
has been aCONCEDE (C) move, or for every attackerB of C there has been aRETRACT (B) move.
Suppose, towards a contradiction that there has been aHTB(C) move (C ∈ Ar ) without any subsequent
CONCEDE (C) move. It then follows that for every attackerB of C there has been aRETRACT (B)
move. But then there exists a next move (CONCEDE (C)) so the discussion would not be terminated.
Contradiction. Hence, for every moveHTB(C) (C ∈ Ar) that has been played in the discussion, an asso-
ciatedCONCEDE (C) move has also been played. Since this includes the main argument (A) it follows
that the game is won by the proponent.

As the presence of a winning strategy trivially implies the presence of at least one discussion that is
won by the proponent, we immediately obtain the following result.

Corollary 1. Let A be an argument in the grounded extension of argumentation framework(Ar , att).
There exists at least one terminated grounded discussion, won by the proponent, for main argumentA.

3.3 Efficiency (Communication)

Now that soundness and completeness of the game have been shown, we proceed to examine its efficiency.
Theorem 3 states that every discussion will terminate, and we are interested in how many steps are required
for this. For this, we need the following lemma.

Lemma 8. LetA be an argument in the grounded extension of argumentation framework(Ar , att). When
the proponent uses a lowest number strategy for the discussion ofA, then once the game is terminated it
holds thatLabO = LabP .

Proof. We prove this by showing the following points:

in(LabO) ⊆ in(Lab(P ) LetA ∈ in(LabO). This means the discussion contains a moveCONCEDE (A).
From the preconditions of theCONCEDE move it follows that the discussion also contains a move
HTB(A). That is,A ∈ in(LabP ).

out(LabO) ⊆ out(LabP ) LetA ∈ out(LabO). This means the discussion contains a moveRETRACT (A).
From the preconditions of theRETRACT move it follows that the discussion also contains a move
CB(A). That is,A ∈ out(LabP ).



in(LabP ) ⊆ in(LabO) Let A ∈ in(LabP ). This means the discussion contains a moveHTB(A). In
the proof of Theorem 6 (last paragraph) it was shown that for everyHTB in the discussion has been
conceded. Hence, the dicussion contains aCONCEDE (A) move. That isA ∈ in(LabO).

out(LabP ) ⊆ out(LabO) Let A ∈ out(LabP ). This means the discussion contains a moveCB(A).
Let HTB(B) be the move thatCB(A) reacted to. From the previous point, it follows that there also
has been aCONCEDE (B) move. But the preconditions of theCONCEDE move require that all
attackers (includingA) have been retracted. Hence, there has been aRETRACT (A) statement. That
is,A ∈ out(LabO).

From the first and third point, it follows thatin(LabO) = in(LabP ). From the second and fourth point, it
follows thatout(LabO) = out(LabP ). It then follows that alsoundec(LabO) = undec(LabP ) (since a
labelling essentially defines a partition ofAr ). Hence,LabO = LabP .

The following theorem states that the discussion game requires a relatively low number of moves.

Theorem 7. LetA be an argument in the grounded extension of argumentation frameworkAF = (Ar , att).
When the proponent uses a lowest number strategy forA, the resulting terminated disussion will have a
number of moves that is linear w.r.t. the size of the stronglyadmissible labelling that is has been con-
structed.

Proof. LetLabP andLabO be the proponent and opponent labelling when the discussionis terminated. For
everyB ∈ in(LabP ) there exists precisely oneHTB(B) statement in the discussion (because noHTB(B)
statement can be repeated, Lemma 7) and for everyB ∈ out(LabP ) there exists precisely oneCB(B)
statement (because noCB(B) statement can be repeated, Lemma 7). Also, for everyB ∈ in(LabO)
there exists precisely oneCONCEDE (B) statement in the discussion (because noCONCEDE (B) can
be repeated), and for everyB ∈ out(LabO) there exists precisely oneRETRACT (B) statement in
the discussion (because noRETRACT (B) statement can be repeated). This means the total number of
moves in the discussion is|in(LabP )| + |out(LabP )| + |in(LabO)| + |out(LabO)|. From the facts
that in(LabP ) ∩ out(LabP ) = ∅ andin(LabO) ∩ out(LabO) = ∅, it follows that the total number
of moves is|in(LabP ) ∪ out(LabP )| + |in(LabO) ∪ out(LabO)|. From the fact thatLabP = LabO
(Lemma 8) it then follows that the total number of moves is2 · |in(LabP ) ∪ out(LabP )|, or equivalently
2 · |in(LabO) ∪ out(LabO)|.

As an aside, it can be observed that following a lowest numberstrategy does not always yield a shortest
discussion. As an example, consider the following argumentation framework, which we refer to asAF ex3.

A B

C

D

E3

E2

E1

E4

G

D

F

I

H



Here, following a lowest number strategy (based on the grounded labelling) can produce the following
discussion for main argumentA.
(1) P:HTB(A) (9) O:RETRACT (E2)
(2) O:CB(B) (10) O:CB(E3)
(3) P:HTB(C) (11) O:RETRACT (E3)
(4) O:CB(E1) (12) O:CB(E4)
(5) P:HTB(G) (13) O:RETRACT (E4)
(6) O:CONCEDE (G) (14) O:CONCEDE (C)
(7) O:RETRACT (E1) (15) O:RETRACT (B)
(8) O:CB(E2) (16) O:CONCEDE (A)

However, a shorter discussion that is still won by the proponent would be as follows.
(1) P:HTB(A) (8) O:CONCEDE (G)
(2) O:CB(B) (9) O:RETRACT (I)
(3) P:HTB(D) (10) O:CONCEDE (H)
(4) O:CB(F ) (11) O:RETRACT (F )
(5) P:HTB(H) (12) O:CONCEDE (D)
(6) O:CB(I) (13) O:RETRACT (B)
(7) P:HTB(G) (14) O:CONCEDE (A)

The former discussion yields a strongly admissible labellingLab1 = ({G,C,A}, {E1, E2, E3, E4, B},
{I,H, F,D}) whereas the latter discussion yields a strongly admissiblelabellingLab2 = ({G,H,D,A},
{I, F,B}, {E1, ..., En,C}), with the size ofLab1 being bigger than the size ofLab2.

This example illustrates that in order to have a relatively short discussion we have to carefully chose
the strongly admissible labelling that is the basis of the lowest number strategy, asLab2 will yield a
shorter discussion than chosingLab1 or the grounded labelling. We conjecture that an “optimal” strongly
admissible labelling is one where the main argument is labelledin and where the size is minimal.

Conjecture 1.Let AF = (Ar , att) be an argumentation framework andA ∈ Ar . Let Lab be a strongly
admissible labelling that labelsA in and that has a minimal size among all strongly admissible labellings
that labelA in. When following a smallest number strategy based onLab, the resulting discussion for
main argumentA will have minimal length among all discussions forA that are won by the proponent.

3.4 Efficiency (Computation)

As was observed in Section 3.3, the Grounded Discussion Gameis linear in the number of moves needed
to show grounded membership. As each move consists of a single argument, it is also linear in the total
number of arguments moved, hence the “communication complexity” (total amount of information that
needs to be communicated) is also linear.

Apart from the burden of communication, there is also the burden of computation. After all, each move
has preconditions, and verifying these is not a trivial task. In the current section, we will therefore examine
the computational costs of each step in the discussion. To doso, we assume the presence of a number of
datastructures.

The first datastructure, called theAF datastructure, represents the argumentation frameworkAF =
(Ar , att). It is essentially an array, with an index position for each argument (so argumentA0, gets position
0, argumentA1 gets position1, etc). Each array positioni is the start of two linked lists: one for the
arguments inA−

i and one for the arguments inA+

i . For argumentation frameworkAF ex of Section 2 the
associated AF datastructure is depicted in Figure 1.

Given a particular strongly admissible labelling, we assume that the AF datastructure is such that for
eachout-labelled argumentA, the first element of itsA− linked list will be anin labelled attacker with
minimal min-max number (among allin labelled attackers ofA).

Apart from the AF datastructure, there is a second array, which we will refer to as theflags and counters
datastructure, which for each argumentA contains:

– a flagHTB[A], which indicates whether the argument has been played in aHTB move. Initially, this
flag is false .
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Fig. 1. The AF datastructure of argumentation frameworkAF ex.

– a flagCB[A], which indicates whether the argument has been played in aCB move. Initially, this flag
is false .

– a flagCONC[A], which indicates whether the argument has been conceded (played in aCONCEDE

move). Initially, this flag isfalse .
– a flagRETR[A], which indicates whether the argument has been retracted (played in aRETRACT

move). Initially, this flag isfalse .
– a flag ATT CONC[A], which indicates whether an attacker has been conceded. Initially, this flag is

false .
– a non-negative integerNR ATT[A], which indicates the total number of attackers. It is initialised at|A−|

and never changes.
– a non-negative integerNR ATT RETR[A], which indicates the number of attackers that have been

retracted. Initially, this is set to0.

For keeping track of the last unconcededHTB statement, we use a stack of arguments, called theHTB

stack. The idea is that each time aHTB statement is moved, we push its argument on this stack, and that
each time we need the last unconcededHTB statement, we keep on popping the stack until we find an
argument that has not been conceded.

The last two datastructures are sets: theto be conceded setand the to be retracted set. These, respec-
tively, keep track of the arguments that need to be conceded (because all its attackers have been retracted,
and the argument itself has been used in aHTB move but not yet in aCONCEDE move) or retracted
(because it has an attacker that has been conceded, and the argument itself has been used in aCB move but
not yet in aRETRACT move).

Each time a discussion move is made, the datastructures are updated (except for the AF datastructure,
which is never updated). We distinguish four cases:

– The move isHTB(A). In that case, we first check whether aHTB -CB repeat has occurred. That is,
do we haveHTB[A] or CB[A] in the flags and counters datastructure? If so, the discussion is terminated.
If not, set theHTB[A] flag in the flags and counters datastructure, and pushA onto theHTB stack.
Finally, we need to check whether aCONCEDE move is due: ifNR ATT RETR[A] = NR ATT[A] then
addA to the to be conceded set.

– The move isCB(A). In that case, we first check whether aHTB -CB repeat has occurred. That is, do
we haveHTB[A] or CB[A] in the flags and counters datastructure? If so, the discussion is terminated.
If not, set theCB[A] flag in the flags and counters datastructure. Finally, we needto check whether a
RETRACT is due: ifATT CONC[A] then addA to the to be retracted set.



– The move isCONCEDE (A). In that case, first set theCONC[A] flag in the flags and counters datas-
tructure. Then, for each argumentB in A+ (accessed by traversing theA+ linked list in the AF datas-
tructure):

• Set theATT CONC[B] flag
• Check if theCB[B] flag is set. If so, addB to the to be retracted set.

– The move isRETRACT (A). In that case, first set theRETR[A] flag in the flags and counters datas-
tructure. Then, for each argumentB in A+ (accessed by traversing theA+ linked list in the AF datas-
tructure):

• Increase theNR ATT RETR[B] by 1.
• Check ifNR ATT RETR[B] = NR ATT[B]. If so, addB to the to be conceded set.

Overall, it can be observed that the task of keeping the datastructures up-to-date after a particular move
is at mostO(|Ar |).

Using the up-to-date datastructures, the proponent and opponent can then select their moves. We dis-
tinguish three possibilities:

1. The to be conceded or to be contracted set is not empty. In that case, the opponent has two possible
choices:

(a) Do aCONCEDE (A) move (whereA is in the to be conceded set) and subsequently removeA

from the to be conceded set.
(b) Do aRETRACT (A) move (whereA is in the to be retracted set) and subsequently removeA

from the to be retracted set.

2. The to be conceded set and the to be retracted set are both empty, and the last move wasCB(A).
In that case, it is the proponent’s turn. He has to respond with aHTB(B) move, whereB attacks
A. Preferrably, in order to win the discussion, thisB should be anin-labelled argument with a min-
imal min-max number among allin-labelled attackers ofA. The proponent finds this argument by
examining the AF datastructure. It is the first argument fromtheA− linked list.

3. The to be conceded and to be retracted sets are both empty, and the last move is not aCB move. In
that case, it is the opponent’s turn. Since there is noting toconcede or retract, the next move has to be
aCB statement. This means the opponent needs to find the last unconcededHTB statement. For this,
keep popping theHTB stack until either:

(a) We obtain an argumentB whoseCONC[B] flag isfalse. In that case, traverse theB− linked list
in the AF datastructure and select the firstC whoseRETR[C] flag isfalse. MoveCB(C).

(b) The stack is empty. In that case, there is no unconcededHTB move, so the discussion is termi-
nated.

Overall, the task of using the datastructures for selectingthe next move is at mostO(|Ar |2). So the total
cost per move isO(|Ar |) +O(|Ar |2) = O(|Ar |2). Since the number of moves in the game is linear w.r.t.
the size of the strongly admissible labelling, so at most linear to|Ar |, the overall algorithmic complexity
isO(|Ar |3), so polynomial. This is in contrast with for instance the Standard Grounded Game, where even
if the complexity of playing an individual argument isO(1), the exponential number of arguments makes
the overall complexity exponential.

4 Discussion and Related Work

As was shown in Section 3, the Grounded Discussion Game is based on the concept of strong admissibility.
In essence, it constructs a strongly admissible labelling where the main argument is labelledin (Theo-
rem 4). Moreover, the presence of a strongly admissible labelling provides the proponent with a winning
strategy for the game (Theorem 6). These observations make it possible to compare the Grounded Discus-
sion Game with two previously defined games that are also based on strong admissibility: the Standard
Grounded Game [25, 4, 19] and the Grounded Persuasion Game [10].



4.1 The Standard Grounded Game

The Standard Grounded Game (SGG) [25, 4, 19] is one of the earliest dialectical proof procedures for
grounded semantics. Each game6 consists of a sequence[A1, . . . , An] (n ≥ 1) of arguments, moved by
the proponent and opponent taking turns, with the proponentstarting. That is, a moveAi (i ∈ {1 . . . n})
is a proponent move iffi is odd, and an opponent move iffi is even. Each move, except the first one, is an
attacker of the previous move. In order to ensure termination even in the presence of cycles, the proponent
is not allowed to repeat any of his moves. A game is terminatediff no next move is possible; the player
making the last move wins.

As an example, inAF ex [C,B,A] is terminated and won by the proponent (asA has no attackers,
the opponent cannot move anymore) whereas[G,H ] is terminated and won by the opponent (as the only
attacker ofH isG, which the proponent is not allowed to repeat). It is sometimes possible for the proponent
to win a game even if the main argument is not in the grounded extension. An example would be[F,B,A].
This illustrates that in order to show that an argument is in the grounded extension, a single game won by
the proponent is not sufficient. Instead, what is needed is awinning strategy. This is essentially a tree in
which each node is associated with an argument such that (1) each path from the root to a leaf constitutes a
terminated discussion won by the proponent, (2) the children of each proponent node (a node corresponding
with a proponent move) coincide with all attackers of the associated argument, and (3) each opponent
node (a node corresponding with an opponent move) has precisely one child, whose argument attacks the
argument of the opponent node.

It has been proved that an argument is in the grounded extension iff the proponent has a winning strategy
for it in the SGG [25, 3]. Moreover, it has also been shown thatan SGG winning strategy defines a strongly
admissible labelling, when labelling each argument of a proponent nodein, each argument of an opponent
nodeout and all remaining argumentsundec [7].

As an example, inAF ex the winning strategy for argumentE would be the tree consisting of the two
branchesE − B − A andE −D − C − B − A, thus proving its membership of the grounded extension
by yielding the strongly admissible labelling({A,C,E}, {B,D}, {F,G,H}). As can be observed from
this example, a winning strategy of the SGG can contain some redundancy when it comes to multiple oc-
currences of the same arguments in different branches. In the current example, the redundancy is relatively
mild (consisting of just the two argumentsA andB) but other cases have been found where the SGG
requires a number of moves in the winning strategy that isexponentialw.r.t. the size of the strongly admis-
sible labelling the winning strategy is defining [7, Figure 2].7 Hence, one of the advantages of our newly
defined GDG compared to the SGG is that we go from an exponential [7, Figure 2] to a linear (Theorem 7)
number of moves.8

4.2 The Grounded Persuasion Game

One of the main aims of the Grounded Persuasion Game (GPG) [10] was to bring the proof procedures
of grounded semantics more in line with Mackenzie-style dialogue theory [16, 17] The game has two
participants (P and O) and four types of moves:claim (the first move in the discussion, with which P
utters the main claim that a particular argument has to be labelled in), why (with which O asks why
a particular argument has to be labelled in a particular way), because (with which P explains why a
particular argument has to be labelled a particular way) andconcede (with which O indicates agreement
with a particular statement of P). During the game, both P andO keepcommitment stores, partial labellings
(which we will refer to asP andO) which keep track of which arguments they think arein andout
during the course of the discussion. For P, a commitment is added every time he utters aclaim or because

6 What we call an SGG game is called a “line of dispute” in [19].
7 A similar remark can be made for other tree-based proof procedures, like [12].
8 As each move contains a single argument, this means the “communication complexity” (the total number of argu-

ments that needs to be communicated) is also linear. This contrasts with the computational complexity of playing
the game, which is polynomial (O(n3), wheren is the number of arguments) due to the fact that selecting thenext
move can haveO(n2) complexity, as was explained in Section 3.4. This is still less than when applying Standard
Grounded Game, whose overall complexity would be exponential (even if each move could be selected in just one
step) due to the requirement of a winning strategy, which as we have seen can be exponential in size.



statement. For O, a commitment is added every time he utters aconcede statement. Anopen issueis an
argument where only one player has a commitment. Some of the key rules of the Grounded Persuasion
Game are as follows (full details in [10]).

– If O utters awhy in(A) statement (resp. awhy out(A) statement) then P has to reply withbecause out(B1, . . . , Bn)
whereB1, . . . , Bn are all attackers ofA (resp. withbecause in(B) whereB is an attacker ofA).

– Any why statement of O has to be related to the most recently created open issue in the discussion.
– A because statement is not allowed to use an argument that is already anopen issue.
– Once O has enough evidence to agree with P that a particular argument has to be labelledin (because

for each of its attackers, O is already committed that the attacker is labelledout) or has to be labelled
out (because it has an attacker of which O is already committed that it is labelledin), O has to utter
the relevantconcede statement immediately.

Unlike the SGG, in the GPG it is not necessary to construct a winning strategy to show grounded
membership. Instead, an argumentA is in the grounded extension iff there existsat least one gamethat
starts with P uttering “claim in(A)” and is won by P [10].9

As a general property of the Grounded Persuasion Game, it canbe observed that at every stage of the
discussion, O’s commitment storeO is an admissible labelling [10].10

As an example, for argumentE in AF ex the discussion could go as follows.

in(P) out(P) in(O) out(O)
(1) P: claimin(E) E

(2) O: whyin(E) E

(3) P: becauseout(B,D) E B,D
(4) O: whyout(B) E B,D
(5) P: becausein(A) E,A B,D
(6) O: concedein(A) E,A B,D A

(7) O: concedeout(B) E,A B,D A B

(8) O: whyout(D) E,A B,D A B

(9) P: becausein(C) E,A,C B,D A B

(10)O: concedein(C) E,A,C B,D A,C B

(11)O: concedeout(D) E,A,C B,D A,C B,D
(12)O: concedein(E) E,A,C B,D A,C,E B,D

In the above game, the main claimin(E) is conceded so the proponent wins. As was mentioned above,
a “because” statement is not allowed to use an argument that is already an open issue. This is to ensure
termination even in the presence of cycles. However, this condition has an undesirable side effect. Consider
what happens when, at move (4) of the above discussion, the opponent would have decided to utter “why
out(D)” instead of “whyout(B)”.

(4′) O: whyout(D) E B,D
(5′) P: becausein(C) E,C B,D
(6′) O: whyin(C) E,C B,D

After move (6′) the proponent cannot reply with “becauseout(B)” as out(B) is an open issue, so
the game is terminated (according to the rules of [10]) without the main claim being conceded, meaning
the proponent loses. Moreover, there is nothing the proponent could have done different in order to win
the game, in spite ofE being in the grounded extension. One of the advantages of ourcurrently defined
Grounded Discussion Game is that such anomalies cannot occur (Theorem 6). Once the proponent utters
HTB(E) he can win the game, regardless of whether the opponent responds withCB(B) or withCB(D).

Another difference between the GPG and our currently definedGDG is related to the player who intro-
duces the counterarguments in the discussion. In the GPG this is always the proponent, who for instance
explicitly has to list all the attackers against an argumenthe is actually trying to defend (like “P: because
out(B,A)” in the above discussion). However, in natural discussion it would be rare for any participant

9 A discussion is won by P iff at the end of the game O is committedthat the argument the discussion started with is
labelledin.

10 That is, if one regards all arguments where O does not have anycommitments to be labelledundec.



to provide counterarguments against his own position, other than by mistake. The GDG, however, is such
that in a game won by the proponent, each of the counterarguments uttered against proponent’s position is
uttered by the opponent.

4.3 Summary and Analysis

Overall, the differences between our approach and the othergames are summarised in the following table.

SGG GPG GDG
number of moves needed exp linear linear
to show strong admissibility [7] [7] (Th. 7)
supports RETRACT and/or no yes yes
CONCEDE moves
both propopent and opponentyes no yes
introduce arguments
single succesful game no yes yes
implies grounded membership
grounded membership yes no yes
implies∃ winning strategy

Apart from the technical considerations mentioned above, the research agenda of developing argument-
based discussion games is also relevant because it touches some of the foundations of argumentation theory.
Whereas for instance classical logic entailment is based onthe notion oftruth, this notion simply does not
exist in abstract argumentation and would be problematic even in instantiated argumentation.11 But if not
truth, then what actually is it that is actually yielded by formal argumentation theory? Our view is that ar-
gumentation theory yields what can be defended in rational discussion. As our Grounded Discussion Game
is essentially a form of persuasion dialogue [28] we have shown that grounded semantics can be seen as
a form of persuasion dialogue. Furthermore, Caminada et al.have for instance showed that (credulous)
preferred semantics can be seen as a particular form of Socratic dialogue [6, 8]. Hence, different argumen-
tation semantics correspond to different types of discussion [8], an observation that is not just relevant for
philosophical reasons, but also opens up opportunities forargument-based human computer interaction.
In further research we hope to report on whether engaging in the Grounded Discussion Game increases
people’s trust in particular forms of argument-based inference. An implementation, that can serve as the
basis for this, is currently under development.
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