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Abstract. Strong admissibility plays an important role in formal argu-
mentation under the grounded semantics, especially when explaining the
acceptance of an argument. However, strong admissibility has so far only
been defined in the context of finite argumentation frameworks. In the
current paper, we examine the case of infinite argumentation frameworks.
In particular, we assess what the challenges are when moving from finite
to infinite argumentation frameworks and we show that despite these
challenges, strong admissibility can be meaningfully defined and applied
in the context of finitary argumentation frameworks.
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1 Introduction

Formal argumentation has become one of the key approaches for symbolic rea-
soning under uncertainty [1]. Within formal argumentation, strong admissibility
[2, 4, 6] plays a key role, especially in the context of grounded semantics. In
essence, strong admissibility relates to grounded semantics in a similar way as
admissibility relates to preferred semantics, especially when it comes to proof
procedures. In order to show that an argument is in a preferred extension, it is
not necessary to construct the entire preferred extension. Instead, it is sufficient
to show that the argument is in an admissible set. Similarly, in order to show
that an argument is in the grounded extension, it is not necessary to construct
the entire grounded extension. Instead, it is sufficient to show that the argument
is in a strongly admissible set [6]. Such a strongly admissible set can then either
be presented in its original form, or be the basis for an interactive explanation
in the form of a discussion game [5].

Strong admissibility has so far only been defined for finite argumentation
frameworks [2, 4, 6, 9, 8]. This can be a limitation, especially when applying
strong admissibility in the context of instantiated argumentation. For instance,
when applying aspic+ [14] with domain independent strict rules (that is, with
strict rules based on classical logic entailment) the mere fact that there exist
an infinite number of tautologies implies that there will be an infinite number
of arguments. As such, it is worthwhile to explore how the concept of strong
admissibility can be applied to infinite argumentation frameworks as well.
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In the current paper, we examine the challenges when it comes to applying
strong admissibility in the context of infinite argumentation frameworks. We
show that for a particular class of infinite argumentation frameworks (called
finitary argumentation frameworks [13]) it is still possible to apply strong ad-
missibility, in both its set-based form and in its labelling-based form. We show
that these forms are equivalent to each other and satisfy the same properties that
have previously been proved in the context of finite argumentation frameworks.

The current paper is structured as follows. First, in Section 2, we provide
some basic definitions and formal preliminaries. Then, in Section 3 we present
some of the existing definitions of strong admissibility and examine why these
are problematic in the context of infinite argumentation frameworks. Then, in
Section 4 we examine how two of the definitions of strong admissibility (a set-
based definition and a labelling-based definition) can still be used in the context
of finitary argumentation frameworks, and that doing so results in properties
similar as in the context of finite argumentation frameworks. We round off in
Section 5 with a discussion of the obtained results.

2 Preliminaries

In the current section, we briefly restate some of the key concepts of abstract
argumentation theory, in both its extension-based and labelling-based form.

Definition 1. An argumentation framework is a pair (Ar , att) where Ar is a
set of entities, called arguments, whose internal structure can be left unspecified,
and att is a binary relation on Ar . For any A,B ∈ Ar we say that A attacks B
iff (A,B) ∈ att .

Definition 2. Let (Ar , att) be an argumentation framework, A ∈ Ar and Args ⊆
Ar . We define A+ as {B ∈ Ar | A attacks B}, A− as {B ∈ Ar | B attacks A},
Args+ as ∪{A+ | A ∈ Args}, and Args− as ∪{A− | A ∈ Args}. Args is said to
be conflict-free iff Args ∩Args+ = ∅. Args is said to defend A iff A− ⊆ Args+.
The characteristic function F : 2Ar → 2Ar is defined as F (Args) = {A | Args
defends A}.
Definition 3. Let (Ar , att) be an argumentation framework. Args ⊆ Ar is said
to be:
– an admissible set iff Args is conflict-free and Args ⊆ F (Args)
– a complete extension iff Args is conflict-free and Args = F (Args)
– a grounded extension iff Args is the (unique) smallest (w.r.t. ⊆) complete

extension
– a preferred extension iff Args is a maximal (w.r.t. ⊆) complete extension

The above definitions essentially follow the extension-based approach of [13].1
It is also possible to define the key argumentation concepts in terms of argument
labellings [3, 7].
1 In [13] a preferred extension is defined as a maximal admissible set, instead of as a

maximal complete extension, but as was first stated in [3], these two characterisations
are equivalent.
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Definition 4. Let (Ar , att) be an argumentation framework. An argument la-
belling is a function Lab : Ar → {in, out, undec}. An argument labelling Lab is
called an admissible labelling iff for each A ∈ Ar it holds that:

– if Lab(A) = in then for each B that attacks A it holds that Lab(B) = out
– if Lab(A) = out then there exists a B that attacks A such that Lab(B) = in

Lab is called a complete labelling iff it is an admissible labelling and for each
A ∈ Ar it also holds that:

– if Lab(A) = undec then there is a B that attacks A such that Lab(B) =
undec, and for each B that attacks A such that Lab(B) ̸= undec it holds
that Lab(B) = out

As a labelling is essentially a function, we sometimes write it as a set of
pairs. Also, if Lab is a labelling, we write in(Lab) for {A ∈ Ar | Lab(A) = in},
out(Lab) for {A ∈ Ar | Lab(A) = out} and undec(Lab) for {A ∈ Ar | Lab(A) =
undec}. As a labelling is also a partition of the arguments into sets of in-labelled
arguments, out-labelled arguments and undec-labelled arguments, we sometimes
write it as a triplet (in(Lab), out(Lab), undec(Lab)).
Definition 5 ([10]). Let Lab and Lab′ be argument labellings of an argumen-
tation framework (Ar , att). We say that Lab ⊑ Lab′ iff in(Lab) ⊆ in(Lab′) and
out(Lab) ⊆ out(Lab′). Lab⊓Lab′ is defined as (in(Lab)∩ in(Lab′), out(Lab)∩
out(Lab′),Ar \ ((in(Lab) ∩ in(Lab′)) ∪ (out(Lab) ∩ out(Lab′)))). Lab ⊔ Lab′ is
defined as ((in(Lab)\out(Lab′))∪(in(Lab′)\out(Lab)), (out(Lab)\in(Lab′))∪
(out(Lab′)\in(Lab)), (in(Lab)∩out(Lab′)∪(out(Lab)∩in(Lab′))∪(undec(Lab)∩
undec(Lab′)))).
Definition 6. Let Lab be a complete labelling of an argumentation framework
(Ar , att). Lab is said to be

– a grounded labelling iff Lab is the (unique) smallest (w.r.t. ⊑) complete la-
belling

– a preferred labelling iff Lab is a maximal (w.r.t. ⊑) complete labelling

Given an argumentation framework (Ar , att) we define two functions Args2Lab
and Lab2Args (to translate a conflict-free set of arguments to an argument la-
belling, and to translate an argument labelling to a set of arguments, respec-
tively) such that Args2Lab(Args) = (Args,Args+,Ar \ (Args ∪ Args+)) and
Lab2Args(Lab) = in(Lab). It has been proven [7] that if Args is an admissible
set (resp. a complete, grounded or preferred extension) then Args2Lab(Args) is
an admissible labelling (resp. a complete, grounded or preferred labelling), and
that if Lab is an admissible labelling (resp. a complete, grounded or preferred
labelling) then Lab2Args(Lab) is an admissible set (resp. a complete, grounded
or preferred extension). Moreover, when the domain and range of Args2Lab and
Lab2Args are restricted to complete extensions and complete labellings they be-
come injective functions that are each other’s reverses, which implies that the
complete extensions (resp. the grounded extension and the preferred extensions)
and the complete labellings (resp. the grounded labelling and the preferred la-
bellings) are one-to-one related [7].
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3 Strong Admissibility and Infinite Argumentation
Frameworks

In the current section, we provide a brief overview of strong admissibility in
its various forms, as well as of the challenges one encounters when trying to
apply this concept in the context of infinite argumentation frameworks. Due to
space limitations, we are unable to provide a general discussion of how strong
admissibility is applied for finite argumentation frameworks. For this, we refer
the reader to [6].

The concept of strong admissibility was first introduced by Baroni and Gia-
comin [2], using the notion of strong defence.

Definition 7 ([2]). Let (Ar , att) be an argumentation framework, A ∈ Ar and
Args ⊆ Ar . A is strongly defended by Args iff each attacker B ∈ Ar of A is
attacked by some C ∈ Args \{A} such that C is strongly defended by Args \{A}.

Baroni and Giacomin say that a set Args satisfies the strong admissibility
property iff it strongly defends each of its arguments [2]. However, it is also
possible to define strong admissibility in an equivalent way without having to
refer to strong defence [6].

Definition 8 ([6]). Let (Ar , att) be an argumentation framework. Args ⊆ Ar is
strongly admissible iff every A ∈ Args is defended by some Args ′ ⊆ Args \ {A}
which in its turn is again strongly admissible.

It is important to note that Definition 7 and Definition 8 have so far only been
applied in the context of finite argumentation frameworks (that is, argumen-
tation frameworks in which the number of arguments is finite). Unfortunately,
these definitions cannot easily be applied in the context where the argumentation
framework is infinite. To see why, consider the infinite argumentation framework
AF 1 = (Ar , att) where Ar = {A1, A2, A3, . . .} and att = {(Ai+1, Ai) | i ≥ 1}.
This argumentation framework is shown in Figure 1.

A3A2A1 A4 A5 A6

Fig. 1. AF 1: each argument is attacked by its successor

In argumentation framework AF 1 there exist precisely three admissible sets:
∅, {Ai | i is odd } and {Ai | i is even }. The first set is the grounded extension.
The second and third set are the preferred extensions. However, when trying to
apply either Definition 7 or Definition 8 to assess whether the latter two sets
are strongy admissible, one stumbles upon a problem. Take for instance the set
{Ai | i is odd }. When applying Definition 7 to assess whether A1 is strongly
defended by {Ai | i is odd }, we observe that A1’s attacker A2 is attacked by
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A3 ∈ {Ai | i is odd }\{A1}. So we need to assess whether A3 is strongly defended
by {Ai | i is odd } \ {A1}. For this, we need to assess whether A5 is strongly
defended by {Ai | i is odd } \ {A1, A3}, etc. The point here is that Definition 7
has a recursive nature, and for the argumentation framework AF 1 the recursion
does not end. As such, one could either assume that for each odd j, Aj is strongly
defended by {Ai | i is odd } \ {Ak | k is odd and k < j}, or that for each odd j,
Aj is not strongly defended by {Ai | i is odd } \ {Ak | k is odd and k < j}. Both
assumptions are consistent with Definition 7, yet only one of them can hold.

A similar problem occurs in the context of Definition 8. Here, in order to
determine whether {Ai | i is odd } is a strongly admissible set, we have to
determine whether A1 is defended by some subset of {Ai | i is odd }\{A1} which
in its turn is strongly admissible. In essence, Definition 8 is another example of
a recursive definition of which the recursion does not end for argumentation
framework AF 1.

A third definition of strong admissibility was provided in [6, Lemma 2, The-
orem 1].2

Definition 9. Let (Ar , att) be an argumentation framework and let Args ⊆ Ar .
Let H0

Args = ∅ and Hi+1
Args = F (Hi

Args)∩Args (i ≥ 0). Args is strongly admissible
iff ∪∞

i=0H
i
Args = Args.

Definition 9 is not recursive. As such, it avoids the problem of potential
infinite recursion. In particular, for AF 1 it can be observed that for any set
Args, H0

Args = ∅, H1
Args = F (H0

Args)∩Args = ∅, H2
Args = F (H1

Args)∩Args = ∅,
etc. As such, the only set that is strongly admissible is the empty set, which as
we observed before, is also the grounded extension.

Although Definition 9 allows one to unambiguously assess, even for infininite
argumentation frameworks, whether a particular set is strongly admissible or not,
it still has some issues. Consider the argumentation framework AF 1 = (Ar , att)
with Ar = {Ai | i ≥ 1} ∪ {B} and att = {(Ai, Ai+1) | i ≥ 1} ∪ {(Aj , B) | j is
even }. This argumentation framework is shown in Figure 2.

A3A2A1 A4 A5 A6

B

Fig. 2. AF 2: an argumentation framework that is not finitary in the sense of [13]

2 It has been shown that Definition 7, Definition 8 and Definition 9 are equivalent to
each other in the context of finite argumentation frameworks [6].
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AF 2 only has one complete extension: {Aj | j is odd } ∪ {B}, which is also
the grounded extension. Yet, this grounded extension is not strongly admissible,
at least not according to Definition 9. This is because (when taking Args as
{Aj | j is odd } ∪ {B}) ∪∞

i=0H
i
Args is {Aj | j is odd } instead of {Aj | j is odd }

∪{B}.3 More seriously, even though B is in the grounded extension, there is
no strongly admissible set that contains B, at least not according to Definition
9. This is a problem, as the whole idea of strong admissibility is to show that
an argument is in the grounded extension by showing that it is in a strongly
admissible set [9].4 For finite argumentation frameworks, this property actually
holds; in particular, it also holds that the grounded extension is always strongly
admissible. For infinite argumentation frameworks, the property unfortunately
does not always hold, as shown by the counter example of AF 2.

Strong admissibility, apart from its set-based form, has also been defined in
a labelling-based form. This is done using the concept of a min-max numbering.

Definition 10 ([6]). Let Lab be an admissible labelling of an argumentation
framework (Ar , att). A min-max numbering is a total function MMLab : in(Lab)
∪out(Lab) → N∪ {∞} such that for each A ∈ in(Lab)∪ out(Lab) it holds that:
– if Lab(A) = in then MMLab(A) = max({MMLab(B) | B attacks A and

Lab(B) = out}) + 1 (with max(∅) defined as 0)
– if Lab(A) = out then MMLab(A) = min({MMLab(B) | B attacks A and

Lab(B) = in}) + 1 (with min(∅) defined as ∞)

In the context of finite argumentation frameworks, it has been proven that
every admissible labelling has a unique min-max numbering [6].

Definition 11. A strongly admissible labelling is an admissible labelling whose
min-max numbering yields natural numbers only (so no argument is numbered
∞).

An important limitation is that min-max numberings have only been ap-
plied in the context of finite argumentation frameworks. Unfortunately, apply-
ing min-max numberings in the context of infinite argumentation frameworks
is not straightforward. Consider again the example of AF 2 (Figure 2). Here,
there exists only one complete labelling. In this labelling (which is also the
grounded labelling) every odd Ai is labelled in, every even Ai is labelled out,
and B is labelled in. As for the min-max numbering of this labelling, it can
be verified that each Ai will be numbered with i. However, when it comes to
numbering B we encounter a problem. The attackers of B are the out-labelled
arguments A2, A4, A6, etc. These are respectively numbered 2, 4, 6, etc. As B
itself is labelled in, we have to apply point 1 of Definition 10, which specifies
that MMLab(B) = max({2, 4, 6, . . .}) + 1. However the maximum element of
the set {2, 4, 6, . . .} is not defined. Therefore, the min-max number of B is not
defined, at least not according to Definition 10.
3 A similar problem was observed in [13] w.r.t. the inductive proof procedure for

grounded semantics.
4 In a similar way, one shows that an argument is in a preferred extension by showing

that it is in an admissible set.
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4 Strong Admissibility and Finitary Argumentation
Frameworks

In the current section, we show how the concept of strong admissibility can be
applied in the context of infinite argumentation frameworks. However, we do have
to restrict ourselves to argumentation frameworks that are finitary [13], meaning
that although there can be an infinite number of arguments and an infinite
number of attacks, each argument has to have a finite number of attackers.

Definition 12 ([13]). An argumentation framework AF = (Ar , att) is called
finitary iff for each A ∈ Ar , the set {B | (B,A) ∈ att} is finite.

It turns out that for finitary argumentation frameworks, Definition 9 yields
the same desirable properties as have previously been proved for finite argumen-
tation frameworks [6].

Theorem 1. Let (Ar , att) be a finitary argumentation framework and let Args ⊆
Ar be a strongly admissible set (in the sense of Definition 9). It holds that Args
is an admissible set.

Proof. We first observe that if Args ′ is an admissible set then (1) F (Args ′) is
admissible, and (2) Args ′ ⊆ F (Args ′). We proceed to show, by induction on i,
that Hi

Args is admissible.

BASIS Let i = 0. In that case, Hi
Args = H0

Args = ∅, which is admissible.
STEP Suppose that Hi

Args is admissible. From observation (1) it follows that
F (Hi

Args) is also admissible. We now have to prove that also F (Hi
Args) ∩

Args is admissible. We first observe that F (Hi
Args)∩Args is conflict-free, as

F (Hi
Args) is conflict-free by virtue of being admissible. Next, suppose towards

a contradiction that F (Hi
Args) ∩ Args does not defend all of its arguments.

This means that F (Hi
Args)∩Args contains an argument (say A) that has an

attacker (say B) that is not attacked by any argument C ∈ F (Hi
Args)∩Args.

This is in spite of the fact that F (Hi
Args) does contain at least one attacker

of B (follows from observation (1)). It follows that all such attackers are not
in Args. But then all these attackers are also not in Hi

Args , which means
that A ̸∈ F (Hi

Args). Contradiction.

From the thus obtained fact that each Hi
Args is admissible, observation (2) allows

us to infer that Hi
Args ⊆ Hi+1

Args (for each i ≥ 0). This implies that ∪∞
i=0H

i
Args is

conflict-free (as any two attacking A,B ∈ ∪∞
i=0H

i
Args would also have to be in

some Hi
Args (i ≥ 0), which conflicts with Hi

Args being admissible and conflict-
free). It also implies that ∪∞

i=0H
i
Args defends all of its arguments. This can be

seen as follows. Let A ∈ ∪∞
i=0H

i
Args . Then there exists a Hi

Args (i ≥ 0) such
that A ∈ Hi

Args . The fact that Hi
Args is admissible means that for each attacker

B of A, Hi
Args contains a C that attacks B. But then ∪∞

i=0H
i
Args contains the
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same C. As such, ∪∞
i=0H

i
Args defends all its arguments. This, together with the

earlier observed fact that ∪∞
i=0H

i
Args is conflict-free, means that ∪∞

i=0H
i
Args is

admissible. As ∪∞
i=0H

i
Args = Args, it therefore follows that Args is admissible.

Baroni and Giacomin prove that in the context of finite argumentation frame-
works, the grounded extension is the unique biggest (w.r.t. ⊆) strongly admis-
sible set [2]. We proceed to prove that this result still holds in the context of
finitary argumentation frameworks.

Theorem 2. Let AF = (Ar , att) be a finitary argumentation framework. The
grounded extension of AF is the biggest (w.r.t. ⊆) strongly admissible set (in the
sense of Definition 9) of AF .

Proof. We first show that the grounded extension is a strongly admissible set.
Let GE be the grounded extension. From [13] it follows that GE = ∪∞

i=0F
i,

where F 0 = ∅ and F i+1 = F (F i). It directly follows that for each i ≥ 0,
F i ⊆ GE, so F i ∩ GE = F i. This implies that for each i ≥ 0, Hi

GE = F i, so
∪∞
i=0H

i
GE = ∪∞

i=0F
i = GE, which means that GE is a strongly admissible set.

We proceed to show that GE is also the biggest strongly admissible set. Let
Args be an arbitrary strongly admissible set. From the fact that Args is strongly
admissible, it follows that ∪∞

i=0H
i
Args = Args. Suppose Args ⊇ GE. Then from

F i ∩GE = F i it follows that F i ∩Args = F i. This implies that Hi
Args = F i, so

∪∞
i=0H

i
Args = ∪∞

i=0F
i = GE. From the fact that Args is strongly admissible, it

then follows that Args = GE.

In addition to the grounded extension being the biggest strongly admissible
set, it can be shown that the empty set is the smallest strongly admissible set.

Proposition 1. Let AF = (Ar , att) be a finitary argumentation framework.
The empty set (∅) is the smallest strongly admissible set (in the sense of Defi-
nition 9) of AF .

Proof. This follows from the fact that the empty set is always strongly admissible
in the sense of Definition 9, together with the fact that the empty set is a subset
of each strongly admissible set.

It can be proved that the strongly admissible sets form a lattice5 with the
grounded extension as its top element (Theorem 2) and the empty set as its
bottom element (Proposition 1). This has previously been proved in the context
of finite argumentation frameworks [6], but we show that this result still holds
in the context of finitary argumentation frameworks.

Proposition 2. Let Args and Args ′ be sets of arguments such that Args ⊆
Args ′. For every i ≥ 0 it holds that Hi

Args ⊆ Hi
Args′ .

Proof. By induction on i.
5 We recall that a lattice is a partial order such that each two elements have both a

greatest lower bound and a least upper bound.
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BASIS Let i = 0. Then H0
Args = ∅ = H0

Args′ .
STEP Suppose that for some i it holds that Hi

Args ⊆ Hi
Args′ . As F is a mono-

tonic function, it follows that F (Hi
Args) ⊆ F (Hi

Args′). From the fact that
Args ⊆ Args ′ it then follows that F (Hi

Args) ∩ Args ⊆ F (Hi
Args′) ∩ Args ′.

That is, Hi
Args ⊆ Hi

Args′ .

Lemma 1. Let AF = (Ar , att) be a finitary argumentation framework and let
Args1 ⊆ Ar and Args2 ⊆ Ar . If Args1 and Args2 are strongly admissible sets
(in the sense of Definition 9), then Args1 ∪ Args2 is also a strongly admissible
set (in the sense of Definition 9).

Proof. Suppose Args1 and Args2 are strongly admissible. That is, ∪∞
i=0H

i
Args1

=

Args1 and ∪∞
i=0H

i
Args2

= Args2. We now proceed to prove that ∪∞
i=0H

i
Args1∪Args2

= Args1 ∪ Args2.

“⊆” By definition, it holds for each i ≥ 0 that Hi
Args1∪Args2

⊆ Args1 ∪ Args2,
which implies that ∪∞

i=0H
i
Args1∪Args2

⊆ Args1 ∪ Args2.
“⊇” Let A ∈ Args1 ∪ Args2. Then either A ∈ Args1 or A ∈ Args2. Assume

without loss of generality that A ∈ Args1 (the case of A ∈ Args2 is similar).
From the fact that Args1 = ∪∞

i=0H
i
Args1

it follows that A ∈ ∪∞
i=0H

i
Args1

. This
means there exists an i ≥ 0 such that A ∈ Hi

Args1
. As Args1 ⊆ Args1∪Args2,

we can apply Proposition 2 to obtain that Hi
Args1

⊆ Hi
Args1∪Args2

, so A ∈
Hi

Args1∪Args2
. This directly implies that A ∈ ∪∞

i=0H
i
Args1∪Args2

.

Lemma 2. Let AF = (Ar , att) be a finitary argumentation framework. Each
set of arguments Args ⊆ Ar has a unique biggest (w.r.t. ⊆) strongly admissible
(in the sense of Definition 9) subset.

Proof. We first observe that there is always at least one strongly admissible set
(the empty set). We also observe that every increasing sequence of strongly ad-
missible sets Args1,Args2,Args3, . . . has an upper bound (∪∞

i=1Argsi which is
again strongly admissible; this follows from Lemma 1). This allows us to apply
Zorn’s lemma and obtain that there is at least one maximal strongly admissible
set.6 We now proceed to show that this maximal strongly admissible subset is
unique. Let Args1 and Args2 be maximal strongly admissible subsets of Args.
Now consider Args1∪Args2. From Lemma 1 it follows that this is again a strongly
admissible set. From the fact that Args1 and Args2 are maximal strongly ad-
missible subsets, it follows that if Args1 ⊆ Args1 ∪Args2 then Args1 = Args1 ∪
Args2, and that if Args2 ⊆ Args1 ∪ Args2 then Args2 = Args1 ∪ Args2, so we
obtain that Args1 = Args1∪Args2 and Args2 = Args1∪Args2 so Args1 = Args2.

Theorem 3. Let AF be a finitary argumentation framework. The strongly ad-
missible sets (in the sense of Definition 9) of AF form a lattice (w.r.t. ⊆).
6 Although not explicitly mentioned in [13], a similar form of reasoning is needed to

prove that maximal admissible sets (i.e. preferred extensions) always exist, even for
an infinite argumentation framework with an infinite sequences of ever increasing
admissible sets.
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Proof. This can be proved in a similar way as Theorem 5 of [6], although the
lemmas used in this proof would need to be replaced by Lemma 1 and Lemma 2,
as the latter apply in the context of finitary argumentation frameworks instead
of finite argumentation frameworks.

As for the labelling-based definition of strong admissibility, we observe that
when restricting ourselves to finitary argumentation frameworks, the concept of
a min-max numbering is always well-defined. This is because, in Definition 10,
the maximal element of a set of numbers is always defined as long as this set
is finite. Although the existing proofs in [6] were developed in the context of a
finite argumentation framework, they do not actually rely on this, as long as the
concept of a min-max numbering is well-defined. This means the existing proofs
in [6] carry over to finitary argumentation frameworks in a straightforward way.

Theorem 4. Let AF = (Ar , att) be a finitary argumentation framework and let
Lab be an admissible labelling of AF . Lab has a unique min-max numbering.

Proof. Similar to the proof of Theorem 6 of [6].

Theorem 5. Let AF = (Ar , att) be a finitary argumentation framework.

– for every strongly admissible set Args of AF (in the sense of Definition 9),
it holds that Args2Lab(Args) is a strongly admissible labelling

– for every strongly admissible labelling Lab of AF , it holds that Lab2Args(Lab)
is a strongly admissible set (in the sense of Definition 9)

Proof. Similar to the proof of Theorem 7 of [6].

We proceed to show that the grounded labelling is the biggest strongly admis-
sible labelling and that the all-undec labelling7 is the smallest strongly admissible
labelling.

Theorem 6. Let AF = (Ar , att) be a finitary argumentation framework. The
grounded labelling of AF is the biggest (w.r.t. ⊑) strongly admissible labelling of
AF .

Proof. Let Args be the grounded extension of AF and let Lab be Args2Lab(Args).
From [7, Definition 9 and Theorem 6] it follows that Lab is the grounded la-
belling. From Theorem 5 and the fact that the grounded extension is strongly
admissible (Theorem 2), it follows that Lab is a strongly admissible labelling.
The next thing to show is that Lab is also the biggest (w.r.t. ⊑) strongly ad-
missible labelling. Let Lab′ be a strongly admissible labelling. Then Theorem
5 implies that Args ′ = Lab2Args(Lab′) is a strongly admissible set. As the
grounded extension is the biggest strongly admissible set (Theorem 2), it holds
that Args ′ ⊆ Args, so in(Lab′) ⊆ in(Lab). From [7, Lemma 1] it follows that
out(Lab′) ⊆ out(Lab), so it follows that Lab′ ⊑ Lab. This, together with our
initial assumption that Lab ⊑ Lab′ implies that Lab′ = Lab.
7 The all-undec labelling labels each argument undec.
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Proposition 3. Let AF = (Ar , att) be a finitary argumentation framework.
The all-undec labelling of AF is the smallest (w.r.t. ⊑) strongly admissible la-
belling of AF .

Proof. From Definition 4 it follows that the all-undec labelling is admissible. Its
min-max numbering is empty, as there are no in or out labelled arguments to
be numbered. This trivially implies that no argument is numbered ∞. Hence,
the all-undec labelling is strongly admissible. It is also the smallest strongly
admissible labelling, as for each strongly admissible labelling Lab′ it holds that
Lab ⊑ Lab′, with Lab being the all-undec labelling.

We proceed to show that the strongly admissible labellings form a lattice
with the grounded labelling as its top element (Theorem 6) and the all-undec
labelling as its bottom element (Proposition 3). Notice that the mere fact that
the strongly admissible sets form a lattice does by itself not directly imply that
the strongly admissible labellings also form a lattice, as the relationship between
strongly admissible sets and strongly admissible labellings is one-to-many instead
of one-to-one.8 Still, the proofs are very similar.

Lemma 3. Let AF = (Ar , att) be a finitary argumementation framework. If
Lab1 and Lab2 are strongly admissible labellings, then Lab1 ⊔ Lab2 is also a
strongly admissible labelling.

Proof. Similar to the proof of Lemma 5 of [6]

Lemma 4. Let AF = (Ar , att) be a finitary argumentation framework. Each
admissible labelling Lab of AF has a unique biggest (w.r.t. ⊑) strongly admissible
sublabelling.

Proof. Similar to the proof of Lemma 2, but with labellings instead of sets and
⊆ replaced by ⊑ and ∪ replaced by ⊔.

Theorem 7. Let AF be a finitary argumentation framework. The strongly ad-
missible labellings of AF form a lattice (w.r.t. ⊑).

Proof. This can be proved similar to Theorem 5 of [6], with ⊆ replaced by ⊑,
∪ replaced by ⊔, ∩ replaced by ⊓, and by using the labelling-specific results of
Lemma 3 and Lemma 4 instead of their set-specific variants.

5 Discussion

In essence, the current work generalises the results in [6], regarding both the
well-definedness and the properties of strong admissibility, in both its set-based
form and its labelling-based form. In particular, we have shown that for finitary
argumentation frameworks, the concept of strong admissibility is well-defined
8 We refer to [6] for an example.
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(using Definition 9, as well as Definition 10 and Definition 11) and satisfies the
same properties that were previously shown for finite argumentation frameworks.

As for the practical applicability of our results, we could look at the field
of instantiated argumentation formalisms. For instance, in Assumption-Based
Argumentation (ABA) [11] each argument is written as Asms ⊢ c, where Asms
is a set of assumptions that allows one to infer conclusion c. This inference in
essence takes the form of a tree of ABA rules (similar to how inferences work
in for instance aspic+) [14]. If one would take the set of ABA rules to coincide
with all possible classical logic entailments (as was for instance done in [12]),
one would obtain an infinite set of rules and an infinite set or arguments, as
there would for instance be an argument ∅ ⊢ t for each tautology t. However,
as long as the set of assumptions is finite,9 each argument will have a finite
number of assumptions and a finite number of attackers. As such, the resulting
argumentation framework is finitary, which means that we can apply the concept
of strong admissibility as discussed in the current paper. That is, in order to show
that an argument is in the grounded extension, we do not have to show the entire
grounded extension (which would be infinite). Instead, it suffices to show that
the argument is in a strongly admissible set.10

In terms of how the theory in the current paper relates to what was previ-
ously been developed regarding strong admissibility, we can make the following
observations.

1. We have loosened the restriction on the argumentation frameworks under
which the concept is defined (from finite argumentation frameworks to fini-
tary argumentation frameworks).

2. Our theory is backwards compatible, meaning that for finite argumentation
frameworks, a set of arguments is strongly admissible (Definition 9) iff it
is strongly admissible according to the definitions that only work for finite
argumentation frameworks (Definition 7 and Definition 8).

3. The strongly admissible sets (and labellings) form a lattice with the empty
set (all-undec labelling) at the bottom and the grounded extension (grounded
labelling) at the top.

One could imagine a further broadening of the concept of strong admissibility,
which, instead of from finite to finitary, would go from finitary to unrestricted.
Ideally, such a broadening would satisfy similar properties as those mentioned
above. That is, such a theory would relate to finitary argumentation frameworks
in a similar way as our theory relates to finite argumentation frameworks (point
2). How to construct such a theory is a topic for further research.

Acknowledgments. This publication is supported in part by the Joint Research and
Innovation Seed Grants Program between Cardiff University and the University of
Illinois System.
9 Additionally, we would also need to require that for each assumption the set of its

contraries is finite.
10 In essence, showing that an argument is in a strongly admissible set can be done by

the kind of tree-based proof procedures that are also applied in ABA [6].
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