
On the Equivalence between Logic Programming
Semantics and Argumentation Semantics

Martin Caminada1,2?, Samy Sá3??, and João Alcântara3??

1 Université du Luxembourg
2 University of Aberdeen

3 Universidade Federal do Ceará

Abstract. In this paper, we re-examine the connection between formal
argumentation and logic programming from the perspective of semantics.
We note that one particular translation from logic programs to instanti-
ated argumentation (the one described by Wu, Caminada and Gabbay)
can serve as a basis for describing various equivalences between logic pro-
gramming semantics and argumentation semantics. In particular, we are
able to provide a formal connection between regular semantics for logic
programming and preferred semantics for formal argumentation. We also
show that there exist logic programming semantics (L-stable semantics)
that cannot be captured by any abstract argumentation semantics.

1 Introduction

The link between logic programming and formal argumentation theory goes back
to the seminal work of [1] in which various connections were pointed out. To
some extent, the approach of abstract argumentation is a way of providing an
abstraction of some aspects of logic programming. This connection is especially
clear when comparing the different semantics for logic programming with the
different semantics for formal argumentation. In this paper, we continue such a
line of research by pointing out that the translation of [2] from logic program-
ming to formal argumentation can account for a whole range of equivalences be-
tween logic programming semantics and formal argumentation semantics. This
includes both existing results like the equivalence between stable model seman-
tics (LP) and stable semantics (argumentation) [1], well-founded semantics (LP)
and grounded semantics (argumentation) [1], and partial stable model semantics
(LP) and complete semantics [2], as well as a newly proved equivalence between
regular model semantics (LP) and preferred semantics (argumentation).

In this paper, besides exploiting the connection between logic programming
and formal argumentation, our results shed light on some aspects of instantiated

? Supported by the National Research Fund, Luxembourg (LAAMI project) and by
the Engineering and Physical Sciences Research Council (EPSRC, UK), grant ref.
EP/J012084/1 (SAsSy project).

?? Supported by CNPq (Universal 2012 - Proc. n 473110/2012-1), CAPES (PROCAD
2009), CNPq/CAPES (Casadinho/PROCAD 2011).

argumentation theory (e.g. [3–6]). In particular we show the connection between
argument-labellings at the abstract level and conclusion-labellings at the instan-
tiated level. With one notable exception, we are able to show that maximizing (or
minimizing) a particular label (in, out or undec) at the argument level coincides
with maximizing (or minimizing) the same label at the conclusion level. These
results are relevant as they indicate the possibilities (and limitations) of applying
argument-based abstractions to formalisms for non-monotonic reasoning.

2 Preliminaries

In the current paper, we follow the approach of Dung [1]. We will restrict our-
selves to finite argumentation frameworks.

Definition 1 ([1]). An argumentation framework is a pair (Ar,Att) where Ar
is a finite set of arguments and Att ⊆ Ar ×Ar.

Arguments are related to others by the attack relation Att: an argument
A attacks B iff (A,B) ∈ Att. An argumentation framework can be seen as a
directed graph where the arguments are nodes and each attack is an arrow.

Definition 2 ([1]). (defense/conflict-free). Let (Ar,Att) be an argumentation
framework, A ∈ Ar and Args ⊆ Ar. We say Args is conflict-free iff there exists
no arguments A,B ∈ Args such that (A,B) ∈ Att. We say Args defends A iff
every argument attacking A is attacked by some argument in Args. We define
a function F : 2Ar → 2Ar, such that F (Args) = {A|A is defended by Args},
to determine the set of all arguments defended by Args. We define Args+ =
{A|A is attacked by Args} to refer to the set of arguments attacked by Args.

Traditional approaches to argumentation semantics are based on extensions
of arguments. Some of the mainstream approaches are summarized below:4

Definition 3. (extension-based argumentation semantics). Given an argumen-
tation framework AF = (Ar,Att), and a conflict-free set of arguments S:

– S is a complete extension of AF iff S = F (S).
– S is a grounded extension of AF iff S is a minimal5complete extension of AF .
– S is a preferred extension of AF iff S is a maximal complete extension ofAF .
– S is a stable extension of AF iff S is a complete ext. of AF with S+ =Ar\S.
– S is a semi-stable extension of AF iff S is a complete ext. of AF with

maximal S ∪ S+ .

As for logic programming, we will focus on propositional normal logic pro-
grams, which we will call logic programs or simply programs from now on.

4 The characterization of the extension-based semantics in Definition 3 differs slightly
from that in their original version (see [1]), but equivalence is proved in [7].

5 When referring to minimal/maximal, we assume the underlying order is set inclusion.

Definition 4. A logic program P is a set of rules of the form c ← a1, . . . , am,
not b1, . . . , not bn (m,n ∈ N), where c, ai (1 ≤ i ≤ m) and bj (1 ≤ j ≤ n) are
atoms and not represents negation as failure. We say c is the head of the rule,
and a1, . . . , am, not b1, . . . , not bn is its body. The Herbrand Base of P is the
set HBP of all atoms occurring in P .

A wide range of logic programming semantics can be defined based on the
3-valued interpretations (for short, interpretation) of programs [8]:

Definition 5. A 3-valued interpretation I of a program P is a pair < T ;F >,
where T∪F ⊆ HBP and T∩F = ∅. Atoms in T (resp. F) are intended to be true
(resp. false) in I. Atoms in U = HBP\(T ∪F) are considered as undefined in I.

Let I =< T ;F > be a 3-valued interpretation of the program P , take P/I
to be the program built by the execution of the following steps:

1. Remove any c← a1, . . . , am, not b1, . . . , not bn ∈ P with {b1, . . . , bn}∩T 6= ∅;
2. Afterwards, remove any occurrence of not bi from P such that bi ∈ F .
3. Then, replace any occurrence of not bi left by a special atom u (u 6∈ HBP).

We note u was tailored to be undefined in every interpretation of P . As
shown in [8], P/I has a unique least 3-valued model: Ψ(I) =< TΨ ;FΨ > with
minimal TΨ and maximal FΨ such that, for every c ∈ HBP :

– c ∈ TΨ if c← a1, . . . , am ∈ P/I and {a1, . . . , am} ⊆ TΨ ;
– c ∈ FΨ if for every c← a1, . . . , am ∈ P/I, {a1, . . . , am} ∩ FΨ 6= ∅;
– c ∈ UΨ otherwise.

We now specify the logic programming semantics to be examined in this paper.

Definition 6. Let P be a program and I =< T,F > be an interpretation:

– I is a partial stable model (p.s.m.) of P iff I = Ψ(I) [8].
– I is a well-founded model of P iff I is a p.s.m. of P with minimal T [8].
– I is a regular model of P iff I is a p.s.m. of P with maximal T [9].
– I is a stable model of P iff I is a p.s.m. of P where F =HBP\T , i.e., U=∅ [8].
– I is an L-stable model of P iff I is a p.s.m. of P with maximal T ∪ F [9].

3 Logic Programming as Argumentation; a 3-step process

The next thing to examine is how argumentation theory can be applied in the
context of logic programming. Our treatment is based on [2]6. The idea is to
apply (as in [3–6]) the standard three-step process of instantiated argumenta-
tion. One starts with a knowledge base and builds the associated argumentation
framework (step 1), then applies abstract argumentation semantics (step 2) and
then looks at what the results of the argumentation semantics imply at the level
of conclusions (step 3).

6 One difference is that in our approach, arguments are recursive, whereas in [2], they
are trees of rules. However, if one identifies the nodes of a tree with rules, one cannot
apply the same rule at different positions in the argument. Our approach, which is
based on [3, 4], avoids this problem.

3.1 Step 1: Argumentation Framework Construction

The approach of instantiated argumentation starts with a particular knowledge
base; in our case, it will be a normal logic program. From this program, one can
start to construct arguments recursively as follows:

Definition 7. Let P be a logic program.

– If c ← not b1, . . . , not bm is a rule in P then it is also an argument (say
A) with Conc(A) = c, Rules(A) = {c← not b1, . . . , not bm}, and Vul(A) =
{b1, . . . , bm}.

– If c ← a1, . . . , an, not b1, . . . , not bm is a rule in P and for each ai (1 ≤
i ≤ n) there exists an argument Ai with Conc(Ai) = ai and c ← a1, . . . , an,
not b1, . . . , not bm 6∈ Rules(Ai) then c← (A1), . . . , (An), not b1, . . . , not bm
is an argument (say A) with Conc(A) = c, Rules(A) = Rules(A1) ∪ . . . ∪
Rules(An)∪{c← a1, . . . , an, not b1, . . . , not bm} , and Vul(A) = Vul(A1)∪
. . . ∪ Vul(An) ∪ {b1, . . . , bm}.

An argumentA can be seen as a tree-like structure of rules (the only difference
with a real tree is that a rule can occur at more than one place in A). We refer
to Conc(A) as the conclusion of A and Vul(A) as the vulnerabilities of A.

The next step is to determine the attack relation: an argument attacks an-
other iff its conclusion is one of the vulnerabilities of the attacked argument.

Definition 8. Let A and B be arguments in the sense of Definition 7. We say
that A attacks B iff Conc(A) ∈ Vul(B).

The notion of attack has a clear meaning: if b ∈ Vul(A), then A is built
using at least one rule with not b in its body. Hence, A is a defeasible derivation
that depends on b not being derivable. An argument B providing a (possibly
defeasible) derivation of b (i.e., Conc(B) = b) can thus be seen as attacking A.

Now one can define the argumentation framework associated to a program:

Definition 9. Let P be a logic program. We define its associated argumentation
framework as AFP = (ArP , attP) where ArP is the set of arguments in the sense
of Definition 7 and attP is the attack relation in the sense of Definition 8.

3.2 Step 2: Applying Argumentation Semantics

Once the argumentation framework has been built, the next question is which
arguments should be accepted and which should be rejected. As shown in Section
2, several approaches have been stated for determining this. Here we will focus
on complete semantics [1], which can be defined via complete labellings [10, 7].

Definition 10. Let AF = (Ar , att) be an argumentation framework. An ar-
gument labelling is a function ArgLab : Ar → {in, out, undec}. It is called a
complete argument labelling iff for each A ∈ Ar it holds that:

– if ArgLab(A) = in, for every B ∈ Ar attacking A it holds ArgLab(B)=out

– if ArgLab(A) = out, there is a B ∈ Ar attacking A such that ArgLab(B)=in
– if ArgLab(A) = undec then (i) not every B ∈ Ar that attacks A has

ArgLab(B) = out and (ii) no B ∈ Ar that attacks A has ArgLab(B) = in

With an argument labelling, one can express a position on which arguments
to accept (labelled in), which ones to reject (labelled out) and which ones to
abstain from having an explicit opinion about (labelled undec). The idea of
a complete labelling is that such a position is reasonable iff one has sufficient
reasons for each argument one accepts (all its attackers are rejected), for each
argument one rejects (it has an attacker that is accepted) and for each argument
one abstains (there are insufficient grounds to accept it and to reject it).

When ArgLab is an argument labelling, we write in(ArgLab) to denote the
set of {A | ArgLab(A) = in}, out(ArgLab) for {A | ArgLab(A) = out} and
undec(ArgLab) for {A | ArgLab(A) = undec}. As an argument labelling defines
a partition among arguments, we sometimes write it as (Args1,Args2,Args3)
where Args1 = in(ArgLab), Args2 = out(ArgLab) and Args3 = undec(ArgLab).

3.3 Step 3: converting argument labellings to conclusion labellings

For many practical purposes, what matters are not so much the arguments them-
selves, but the conclusions they support. Hence, for each position on which argu-
ments to accept, reject or abstain we need to specify the associated position on
which conclusions to accept, reject or abstain. For current purposes, we follow
the approach described in [11]. Here, the idea is for each conclusion to identify
the “best” argument that yields it. We assume a strict total order between dif-
ferent individual labels such that in > undec > out. The best argument for a
conclusion is the one with the highest label. If there is no argument at all for a
particular conclusion, it will be labelled out.

Definition 11 ([11]). Let P be a logic program. A conclusion labelling is a
function ConcLab : HBP → {in, out, undec}.
Let AFP = (ArP , attP) be the argumentation framework associated with P and
ArgLab be an argument labelling of AFP . We say that ConcLab is the associated
conclusion labelling of ArgLab iff ConcLab is a conclusion labelling such that
for each c ∈ HBP it holds that ConcLab(c) = max({ArgLab(A) | Conc(A) =
c} ∪ {out}) where in > undec > out. We say that a conclusion labelling is
complete iff it is associated with a complete argument labelling.

When ConcLab is a conclusion labelling, we write in(ConcLab) to denote
the set of {c | ConcLab(c) = in}, out(ConcLab) for {c | ConcLab(c) = out}
and undec(ConcLab) for {c | ConcLab(c) = undec}. Sometimes we will write a
conclusion labelling as (Concs1, Concs2, Concs3) where Concs1 = in(ConcLab),
Concs2 = out(ConcLab) and Concs3 = undec(ConcLab).

4 Minimization/Maximization of Argument Labellings

In [10, 7] it was observed that for each complete argument labelling ArgLab of a
particular argumentation framework AF , it holds that:

– in(ArgLab) is maximal among all complete argument labellings of AF iff
out(ArgLab) is maximal among all complete argument labellings of AF

– in(ArgLab) is minimal among all complete argument labellings of AF iff
out(ArgLab) is minimal among all complete argument labellings of AF iff
undec(ArgLab) is maximal among all complete argument labellings of AF

If a complete argument labelling has maximal in (or equivalently, maximal
out) we call it a preferred argument labelling. If it has minimal in (or equiva-
lently, minimal out or maximal undec), we call it a grounded argument labelling.
Otherwise, if it has minimal undec, we call it a semi-stable argument labelling.
Lastly, if it has no argument at all labelled undec, we call it an argstable argument
labelling.

Argument labellings and argument extensions are one-to-one related. In fact,
an extension is the in-labelled part of the associated labelling: if ArgLab is a
complete (resp. preferred, grounded, semi-stable or argstable) argument labelling
of argumentation framework AF = (Ar , att), then in(ArgLab) is a complete
(resp. preferred, grounded, semi-stable or stable) extension of AF . Furthermore,
if E is a complete (resp. preferred, grounded, semi-stable or stable) extension
of AF then (E,E+,Ar \ (E ∪ E+)) is a complete (resp. preferred, grounded,
semi-stable or argstable) labelling of AF (see [10, 7] for details).

Note that if ArgLab is a complete (or respectively, preferred, grounded, semi-
stable or argstable) argument labelling, then the associated conclusion labelling
(Definition 11) will be called a complete (or respectively, preferred, grounded,
semi-stable or argstable) conclusion labelling.

5 Minimization/Maximization of Conclusion Labellings

Preferred, grounded, semi-stable, and argstable conclusion labellings, as defined
in the previous section, are based on the common idea of performing the maxi-
mization/minimization at the level of argument labellings and then identifying
the associated conclusion labellings. An alternative procedure would be simply
to identify all complete conclusion labellings and then to perform the maximiza-
tion/minimization right at the level of the conclusion labellings.

It turns out that (as for argument labellings) some of the maximizations
and minimisations of the conclusion labellings are equivalent to others. In [12],
it is proved that for each complete conclusion labelling ConcLab of structured
argumentation framework AF , it holds that:

– in(ConcLab) is maximal among all complete conclusion labellings of AF iff
out(ConcLab) is maximal among all complete conclusion labellings of AF

– in(ConcLab) is minimal among all complete conclusion labellings of AF iff
out(ConcLab) is minimal among all complete conclusion labellings of AF iff
undec(ConcLab) is maximal among all complete argument labellings of AF

If a complete conclusion labelling has maximal in (or equivalently, maximal
out) we call it a regular conclusion labelling. If it has minimal in (or equiv-
alently, minimal out or maximal undec), we call it a well-founded conclusion

labelling. Otherwise, if it has minimal undec, we call it an L-stable conclusion
labelling. Lastly, if it has no argument at all labelled undec, we call it a concstable
conclusion labelling.

Conclusion labellings and logic programming models turn out to be one-
to-one related. The basis of this result is [2], where the equivalence between
complete conclusion labellings and partial stable models was identified. More
specifically:

– if ConcLab is a complete conclusion labelling of structured argumentation
framework AFP (generated by a logic program P) then < in(ConcLab);
out(ConcLab) > is a partial stable model of P

– if < T ;F > is a partial stable model of P then (T, F,HBP \ (T ∪ F)) is a
complete conclusion labelling of the argumentation framework AFP

From this result, other correspondences between conclusion labellings and
logic programming models follow. As a regular model is a partial stable model
with maximal T , and a regular conclusion labelling is a complete conclusion
labelling with maximal in, it follows that they correspond to each other. Simi-
lar correspondences hold between the well-founded model and the well-founded
conclusion labelling, between L-stable models and L-stable conclusion labellings,
and between stable models and concstable conclusion labellings. To sum up, the
various types of logic programming models are actually different forms of con-
clusion labellings.

6 Maximizing/Minimizing Argument Labellings vs.
Maximizing/Minimizing Conclusion Labellings

So far, we have selected subsets of the complete conclusion labellings as follows:

1. Perform minimization (resp. maximization) of a label at the level of complete
argument labellings, then obtain the associated conclusion labellings. This
procedure was described in Section 4, and is in fact similar to what is done
in instantiated argumentation in general [3–6].

2. Take all complete conclusion labellings (these are the associated labellings
of all complete argument labellings) and then perform the minimization
(resp. maximization) of a particular label at the level of complete conclusion
labellings. This procedure was described in Section 5 and is in fact similar
to what is being done by various logic programming semantics.

An interesting question is whether the outcome of the two procedures is the
same. That is, does minimizing/maximizing a label at the level of argument
labellings equal to minimizing/maximizing the label at the level of conclusion
labellings? We will see that the answer is “yes”, with one notable exception.7

Theorem 1. Let ConcLab be a conclusion labelling of logic program P and as-
sociated argumentation framework AFP = (Ar , att). It holds that ConcLab is a
preferred conclusion labelling iff it is a regular conclusion labelling.

7 Proofs that have been omitted due to space restrictions can be found in [12].

Theorem 2. Let ConcLab be a conclusion labelling of logic program P and as-
sociated argumentation framework AFP = (Ar , att). It holds that ConcLab is
the grounded conclusion labelling iff it is the well-founded conclusion labelling.

Theorem 3. Let ConcLab be a conclusion labelling of logic program P and as-
sociated argumentation framework AFP = (Ar , att). It holds that ConcLab is an
argstable conclusion labelling iff it is a concstable conclusion labelling.

One can also ask whether semi-stable conclusion labellings are the same as
L-stable conclusion labellings. Here, however, the answer is negative:

Example 1. Let P be the program below, whose associated argumentation frame-
work AFP is in Fig. 1, and let {A1, A2, A3, A4, A5} be arguments built from P .8

r1 : c← not c r2 : a← not b
r3 : b← not a r4 : c← not c, not a
r5 : g ← not g, not b

– A1 = r1, with Conc(A1) = c and Vul(A1) = {c}
– A2 = r2, with Conc(A2) = a and Vul(A2) = {b}
– A3 = r3, with Conc(A3) = b and Vul(A3) = {a}
– A4 = r4, with Conc(A4) = c and Vul(A4) = {c, a}
– A5 = r5, with Conc(A5) = g and Vul(A5) = {g, b}

A2A1

A3

A4

A5

Fig. 1. The argumentation framework AFP associated with P .

The complete argument labellings ofAFP are ArgLab1 = (∅, ∅, {A1, A2, A3, A4, A5}),
ArgLab2 = ({A2}, {A3, A4}, {A1, A5}), and ArgLab3 = ({A3}, {A2, A5}, {A1, A4}).
The associated complete conclusion labellings are ConcLab1 = (∅, ∅, {a, b, c, g}),
ConcLab2 = ({a}, {b}, {c, g}), and ConcLab3 = ({b}, {a, g}, {c}).

ArgLab2 and ArgLab3 are semi-stable argument labellings. Hence, the asso-
ciated conclusion labellings ConcLab2 and ConcLab3 are semi-stable conclusion
labellings. However, ConcLab2 is not L-stable, because undec(ConcLab2) is not
minimal. So here we have an example of a logic program where the semi-stable
and L-stable conclusion labellings do not coincide.

8 We thank Wolfgang Dvořák for this example.

7 On the Connection between Argumentation Semantics
and Logic Programming Semantics

So far, we examined the general question of how argument labellings are related
to conclusion labellings. We found that for complete labellings:

– maximizing in (or, equivalently, maximizing out) at the argument level
yields the same result as maximizing in (or, equivalently, maximizing out)
at the conclusion level. Hence, preferred conclusion labellings and regular
conclusion labellings coincide.

– minimizing in (or, equivalently, minimizing out or maximizing undec) at
the argument level yields the same result as minimizing in (or, equivalently,
minimizing out or maximizing undec) at the conclusion level. Hence, the
grounded conclusion labelling and the well-founded conclusion labelling co-
incide.

– minimizing undec at the argument level does not yield the same result as
minimizing undec at the conclusion level. Hence, semi-stable conclusion la-
bellings and L-stable conclusion labellings do not coincide.

– ruling out undec at the argument level yields the same result as ruling out
undec at the conclusion level. Hence, argstable conclusion labellings and
concstable conclusion labellings coincide.

We have now arrived at the main point of this paper: the connection between
(traditional) approaches to argumentation semantics and (traditional) approaches
to logic programming semantics. Let us again look at the 3-step process of Sec-
tion 3. Assume that steps 1 and 3 are fixed. At step 2, it follows that

– if one applies complete semantics at step 2, the overall outcome is equivalent
to calculating the partial stable models of the original logic program [2]

– if one applies preferred semantics at step 2, the overall outcome is equivalent
to applying regular semantics to the original logic program

– if one applies grounded semantics at step 2, the overall outcome is equivalent
to applying well-founded semantics to the original logic program

– if one applies stable semantics at step 2, the overall outcome is equivalent
to applying stable model semantics to the original logic program

Thus, differences in logic programming semantics can be reduced to differences in
abstract argumentation semantics (see Table 1). We are also able to explain why
these semantics coincide, as what happens at the argument level tends to affect
the conclusion level. For instance, preferred semantics coincides with regular
semantics because maximizing in at either argument or conclusion level yields the
same results; grounded semantics coincides with well-founded semantics because
minimizing in at either argument or conclusion level yields the same results;
stable semantics coincides with stable model semantics because ruling out undec
at either argument or conclusion level yields the same results. Finally, semi-stable
semantics does not coincide with L-stable model because minimizing undec at
the argument level does not yield the same result as doing so at the conclusion
level.

Argument-Based Relation Logic Programming-Based
Conclusion Labelling Conclusion Labelling

Preferred ≡ Regular
Grounded ≡ Well-Founded

Semi-stable 6≡ L-stable
Argstable ≡ Concstable

Table 1. Connections between argumentation semantics and LP semantics

8 Semi-Stable and L-Stable Semantics Revisited

We will now focus on the previously observed discrepancy between semi-stable
semantics and L-stable semantics. If semi-stable semantics is not able to generate
L-stable conclusion labellings, then is there perhaps any other abstract argumen-
tation semantics that can generate these? More precisely, we are interested in an
abstract argumentation semantics to be applied at step 2 of the argumentation
process, whose associated conclusion labellings (step 3) are precisely the L-stable
labellings. Furthermore, this semantics should purely be defined on the structure
of the graph (argumentation framework) and not rely on the actual contents of
the arguments. That is, the semantics should satisfy the language independence
principle [13].

Definition 12. We say that an abstract argumentation semantics X is L-stable
generating iff it is a function such that

1. For any logic program P , X takes as input AFP and yields as output a set
of argument labellings ArgLabs

2. X satisfies language independence [13, Definition 37], meaning that for any
pair of argumentation frameworks AF1, AF2 that are isomorphic9 by a map-
ping M of their arguments (the nodes in the graphs), each labelling of AF1

can be mapped to a different labelling of AF2 by the same mapping M .
3. It holds that {ConcLab | ConcLab is the associated conclusion labelling of

some ArgLab ∈ ArgLabs} is precisely the set of all L-stable conclusion la-
bellings of AFP .

Theorem 4. No abstract argumentation semantics is L-stable generating.

Proof. Consider the programs P with rules r1, ..., r4 and P ′ with rules r′1, ..., r
′
4:

r1 : c← not c r′1 : d← not c, not d
r2 : a← not b r′2 : a← not b
r3 : b← not a r′3 : b← not a
r4 : c← not c, not a r′4 : c← not c, not a, not d

The argumentation frameworks of P and P ′ are depicted in Fig. 2. Note that:

9 Two argumentation frameworks AF1, AF2 are isomorphic (as in graph isomorphism)
if there is an edge-preserving bijection from the arguments (the nodes) of AF1 to
those of AF2, when these argumentation frameworks are perceived as graphs.

– P has three partial stable models: S1 =< ∅; ∅ >, S2 =< {a}; {b} > and
S3 =< {b}; {a} >, where S2 and S3 are L-stable models.

– P ′ has three partial stable models: S1 =< ∅; ∅ >, S2 =< {a}; {b, c} > and
S3 =< {b}; {a} >, where S2 is the single L-stable model.

The arguments A1, ..., A4 built from P and A′
1, ..., A

′
4 built from P ′ are

A1 : c← not c A1′ : d← not c, not d
A2 : a← not b A2′ : a← not b
A3 : b← not a A3′ : b← not a
A4 : c← not c, not a A4′ : c← not c, not a, not d

A2A1

A3

A4 A′
1 A′

2

A′
3

A′
4

Fig. 2. The argumentation frameworks associated with P and P ′.

Though P has two L-stable models and P ′ has only one, they are indiscernible
in abstract argumentation semantics. Thus, no semantics of abstract argumen-
tation can coincide with the L-stable semantics for each and every program.

9 Discussion

In this paper, we have studied several connections between abstract argumen-
tation semantics and logic programming semantics. We observed that various
argumentation semantics are based on maximizations and minimizations (of
a particular label) at the argument level whereas various logic programming
semantics are based on maximizations and minimizations (of a particular la-
bel) at the conclusion level. Where performing the maximizations/minimizations
at the argument level yields the same results as performing the maximiza-
tions/minimizations at the conclusion level, the associated argumentation se-
mantics and logic programming semantics coincide. Where performing the max-
imizations/minimizations at the argument level does not yield the same results
as performing the maximizations/minimizations at the conclusion level, the cor-
responding argumentation semantics and logic programming semantics (semi-
stable / L-stable) do not coincide.

Although the current paper focuses mainly on instantiated argumentation
based on logic programming, its main findings are in fact relevant for instan-
tiated argumentation in general (like [3, 4, 6, 5]) as it specifies the possibilities

and impossibilities of using the argumentation approach to specify nonmono-
tonic entailment, or to model existing nonmonotonic formalisms. If the aim is,
for instance, to model a formalism that maximizes in or out at the conclusion
level (like [14]) the argumentation approach will do fine (as evidenced by [15]).
However, if the aim is to model a formalism that minimizes undec at the con-
clusion level, the argumentation approach will not be able to provide any help
(Theorem 4). Hence, the current paper has shed some light on the strengths and
limitations of using the argumentation approach for specifying nonmonotonic
entailment.

References

1. Dung, P.: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial Intelligence 77
(1995) 321–357

2. Wu, Y., Caminada, M., Gabbay, D.: Complete extensions in argumentation co-
incide with 3-valued stable models in logic programming. Studia Logica 93(1-2)
(2009) 383–403 Special issue: new ideas in argumentation theory.

3. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Ar-
tificial Intelligence 171(5-6) (2007) 286–310

4. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument and Computation 1(2) (2010) 93–124

5. Modhil, S., Prakken, H.: A general account of argumentation with preferences.
Artificial Intellligence (2013) in press.

6. Gorogiannis, N., Hunter, A.: Instantiating abstract argumentation with classical
logic arguments: Postulates and properties. Artificial Intelligence 175(9-10) (2011)
1479–1497

7. Caminada, M., Gabbay, D.: A logical account of formal argumentation. Studia
Logica 93(2-3) (2009) 109–145 Special issue: new ideas in argumentation theory.

8. Przymusinski, T.: The well-founded semantics coincides with the three-valued
stable semantics. Fundamenta Informaticae 13(4) (1990) 445–463

9. Eiter, T., Leone, N., Saccá, D.: On the partial semantics for disjunctive deductive
databases. Ann. Math. Artif. Intell. 19(1-2) (1997) 59–96

10. Caminada, M.: On the issue of reinstatement in argumentation. In Fischer, M.,
van der Hoek, W., Konev, B., Lisitsa, A., eds.: Logics in Artificial Intelligence;
10th European Conference, JELIA 2006, Springer (2006) 111–123 LNAI 4160.

11. Wu, Y., Caminada, M.: A labelling-based justification status of arguments. Studies
in Logic 3(4) (2010) 12–29

12. Caminada, M., Sá, S., Alcântara, J.: On the equivalence between logic program-
ming semantics and argumentation semantics. Technical Report ABDN–CS–13–01,
University of Aberdeen (2013)

13. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation se-
mantics. Knowledge Engineering Review 26(4) (2011) 365–410

14. Pollock, J.: Cognitive Carpentry. A Blueprint for How to Build a Person. MIT
Press, Cambridge, MA (1995)

15. Jakobovits, H., Vermeir, D.: Robust semantics for argumentation frameworks.
Journal of logic and computation 9(2) (1999) 215–261

