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Abstract. In an abstract argumentation framework, there are often multiple plausi-
ble ways to evaluate (orlabel) the status of each argument as accepted, rejected, or
undecided. But often there exists acritical set of arguments whose status is suffi-
cient to determine uniquely the status of every other argument. Once an agent has
decided its position on a critical set of arguments, then essentially the entire frame-
work has been evaluated. Likewise, once a group, e.g. a jury,agrees on the status of
a critical set of arguments, all of their different views over all other arguments are
resolved. Thus, critical sets of arguments are important both for efficient evaluation
by individual agents and for collective agreement by groupsof such. To exploit
this idea in practice, however, a number of computational questions must be con-
sidered. In particular, how much computational effort is needed to verify that a set
is, indeed, a critical set or aminimal critical set. In this paper we determine exact
bounds on the computational complexity of these and relatedquestions. In addition
we provide similar analyses ofissues: a concept closely related to critical set and
derived in terms of (equivalence) classes of arguments related through “common”
labelling behaviours.

Keywords.argumentation frameworks; labelling schemes; computational complexity.

Introduction

Labelling schemes have received increasing attention as a basis for analyzing semantic
properties of Dung’s seminal abstract model of argumentation [1] and its developments,
e.g. [2,3,4]. Informally, the basic structures used in thisapproach are: a set of argument
labels; criteria for determining whether an argument can (or must)be assigned a particu-
lar label and for distinguishing “valid” from “improper” labellings; and, in the context of
labelling-based argumentation algorithms, criteria for determining whether a particular
labelling is “terminal” or allows for the evolvement of further labellings.

Among the benefits offered by this approach is the potential to develop algorithmic
schemes for standard decision and enumeration problems. Empirical studies have indi-
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cated that a number of the algorithms exploiting label-based techniques perform reason-
ably. Labelling-based algorithms and proof procedures have been described in the work
of Verheij [5], Cayrolet al. [6], Caminada [7,8], Thanget al. [9], Nofal et al. [10]. In
contrast to the proven worst-case complexity classifications that have been demonstrated
for the associated problems, see e.g. the survey of Dunne andWooldridge [11], exper-
imental studies indicate that these, often, deliver results within a feasible time. A fur-
ther advantage of labelling formalisms, is that they allow for the specification of simple
and straightforward discussion games to determine the status of a particular argument
(acceptable or not w.r.t. a particular semantics4) [12,13,14,15]

In recent work, Boothet al. [16] raised questions concerning appropriate mecha-
nisms by which to compare distinct labellings belonging to the same general class, i.e.
the class of labellings coinciding with a particular argumentation semantics [17]. In dis-
cussing this question, Boothet al. [16] apply the concept of acritical set [18]. Infor-
mally a critical set of arguments with respect to a labelling-based semantics is one for
which any valid labelling under this semantics uniquely determines which labels can be
assigned to every other argument. Thus, in principle, by identifying “small” critical sets
one has a method of finding all valid labellings and thereby determining labelling-based
semantics quickly: find a small critical set,S say, and, having verified thatS is, indeed,
critical, one need only consider labellings ofS to determine labellings of arguments not
in S. Hence, identifying critical sets of arguments can be useful for the efficient evalua-
tion of the entire argument graph.

Another application of the critical sets approach can be found in argument-based
judgement aggregation. Suppose a group of evaluators (e.g.a jury) wishes to collectively
label a given set of arguments presented to all of them (e.g. all evidence and arguments
from the defense team and prosecution) [19,20]. If the groupmembers agree on the
labelling of a critical set of arguments, they will have resolved all of their different views
over all other arguments. Thus, critical sets of arguments can facilitate efficient collective
agreement by a group of agents.

Of course, there is one obvious obstacle facing such methods: the question of how
much computational effort one needs to invest in order to identify a “minimal” critical
set. It is this question which is the central topic of discussion in the current article.

We present formal background and definitions in the next section. In Section 2 we
formulate precisely the decision problems relating to questions of interest. Section 3
presents our main technical results with conclusions and discussion offered in Section 4.

1. Notation and Definitions

The following concepts were introduced in Dung [1].

Definition 1 An argumentation framework(AF) is a pairH = 〈X ,A〉, in whichX is a
finite set ofargumentsandA ⊆ X ×X is theattack relationshipfor H. A pair 〈x, y〉 ∈ A
is referred to as ‘y is attacked byx’ or ‘ x attacksy’. For R, S subsets of arguments in
theAF H(X ,A), we say thats ∈ S is attackedbyR – writtenattacks(R, s) – if there is
somer ∈ R such that〈r, s〉 ∈ A. For subsetsR andS of X we writeattacks(R,S) if

4The reader should note that “acceptable” is being used in its standard natural language sense ratherthan
with the technical connotations introduced later.



there is somes ∈ S for whichattacks(R, s) holds;x ∈ X is acceptable with respect toS
if for everyy ∈ X that attacksx there is somez ∈ S that attacksy; S is conflict-freeif no
argument inS is attacked by any other argument inS. For S ⊆ X , S− (resp.S+) denote
the sets{ p : ∃ q ∈ S such that〈p, q〉 ∈ A} (resp.{ p : ∃ q ∈ S such that〈q, p〉 ∈
A}). Thecharacteristic function,F : 2X → 2X , is defined as

F (S) = { x ∈ X : x is acceptable with respect toS }

A conflict-free setS is admissibleiff S ⊆ F (S).

1.1. Extension-based semantics forAFs

Based on the approach of a complete extension, one can proceed to define various
extension-based argumentation semantics. The idea is to define properties that a subset
of X must satisfy in order to be considered justifiable. Thus ifσ : 2X → 〈⊤,⊥〉 then
the extensions of anAF, 〈X ,A〉, with respect toσ (more concisely theσ-extensions) are
denotedEσ(〈X ,A〉) and formed by

Eσ(〈X ,A〉) = { S ⊆ X : σ(S)}

The next definition presents some widely studied choices forσ.

Definition 2 GivenH = 〈X ,A〉

a. Eco(H) = {S ⊆ X : S is conflict-free∧ F (S) = S}
b. Egr(H) = {S ⊆ X : S ∈ Eco ∧ ∀ T ∈ Eco(H) ¬(T ⊂ S)}
c. Epr(H) = {S ⊆ X : S ∈ Eco ∧ ∀ T ∈ Eco(H) ¬(S ⊂ T )}
d. Esst(H) = {S ⊆ X : S ∈ Eco ∧ ∀ T ∈ Eco(H) ¬(S ∪ S+ ⊂ T ∪ T+)}
e. Est(H) = {S ⊆ X : S ∈ Eco ∧ S ∪ S+ = X}
f. Eid(H) = {S ⊆ X : S ∈ Eco ∧ S ⊆ ∩Epr ∧ ∀T ∈ Eco ¬(T ⊆ ∩Epr ∧ S ⊂ T )}
g. Eeag(H) = {S ⊆ X : S ∈ Eco ∧ S ⊆ ∩Esst ∧ ∀T ∈ Eco ¬(T ⊆ ∩Esst ∧ S ⊂ T )}

These correspond in turn to: complete extensions (a); the grounded extension (b); pre-
ferred extensions (c); semi-stable extensions [2,3](d); stable extensions (e); the ideal
extension [4](f); the eager extension [21] (g).

Please notice that Definition 2 specifies the argumentation semantics in a slightly
different way than in [1,4,21] but equivalence is shown in [22,23]. The advantage of
Definition 2 is that it emphasizes that the most common argumentation semantics are
based on complete semantics. That is, they select among the complete extensions.

For a given semantics,σ, and its associatedσ-extensions,Eσ(〈X ,A〉) a number of
natural decision questions can be formulated. Thus, givenx ∈ X or S ⊆ X we might
ask:

1. Isx ∈ S for at least oneS ∈ Eσ(〈X ,A〉)? (Credulous Acceptance, CAσ)
2. Isx ∈ S for everyS ∈ Eσ(〈X ,A〉)? (Sceptical Acceptance, SAσ)
3. IsS ∈ Eσ(〈X ,A〉)? (Verification, VERσ)



1.2. Labelling semantics forAFs.

The other widely used approach for definingAF semantics, is that of applying argument
labellings, as was pioneered by Pollock [24], Jakobovits and Vermeir [25] and Verheij
[2]. The starting point for such schemes is a set oflabels: for the purposes of our sub-
sequent presentation we use{I, O, U} (corresponding toIn, Out, Undecided).5 The key
concept of interest in this paper is that of acompletelabelling [26,22].

Definition 3 A labellingof an AF H = 〈X ,A〉 is a functionλ : X → {I, O, U}. A
labelling is said to be acomplete labellingiff for eachx ∈ X it holds that:

λ(x) = I ⇔ (∀ y : 〈y, x〉 ∈ A ⇒ λ(y) = O)
λ(x) = O ⇔ (∃ y : 〈y, x〉 ∈ A ∧ λ(y) = I)

If λ is a labelling then we writeλI for {x ∈ X : λ(x) = I},λO for {x ∈ X : λ(x) = O}
andλU for {x ∈ X : λ(x) = U}. Furthermore, ifλ1 andλ2 are labellings, we say that
λ1 ⊑ λ2 iff λI1 ⊆ λI2 andλO1 ⊆ λO2 , andλ1 ⊏ λ2 iff λ1 ⊑ λ2 andλ1 6= λ2. Also,
if L is a set of labellings, we define⊓L as{(x, I) : x ∈ X and∀λ ∈ L, λ(x) = I}∪
{(x,O) : x ∈ X and∀λ ∈ L, λ(x) = O}∪ {(x, U) : x ∈ X and¬∀λ ∈ L, λ(x) =
I and¬∀λ ∈ L, λ(x) = O}.
The next definition presents some common labelling-based argumentation semantics.

Definition 4 GivenH = 〈X ,A〉

a. Lco(H) = {λ : λ is a complete labelling ofH }
b. Lgr(H) = {λ : λ ∈ Lco ∧ ∀ λ′ ∈ Lco(H) ¬(λ′I ⊂ λI)}
c. Lpr(H) = {λ : λ ∈ Lco ∧ ∀ λ′ ∈ Lco(H) ¬(λI ⊂ λ′I)}
d. Lsst(H) = {λ : λ ∈ Lco ∧ ∀ λ′ ∈ Lco(H) ¬(λ′U ⊂ λU )}
e. Lst(H) = {λ : λ ∈ Lco ∧ λ

U = ∅}
f. Lid(H) = {λ : λ ∈ Lco ∧ λ ⊑ ⊓Lpr ∧ ∀λ′ ∈ Lco ¬(λ′ ⊑ ⊓Lpr ∧ λ ⊏ λ′)}
g. Leag(H) = {λ : λ ∈ Lco ∧ λ ⊑ ⊓Lsst ∧ ∀λ′ ∈ Lco ¬(λ′ ⊑ ⊓Lsst ∧ λ ⊏ λ′)}

These correspond in turn to: complete labellings (a); the grounded labelling (b); pre-
ferred labellings (c); semi-stable labellings (d); stablelabellings (e); the ideal labelling
(f); the eager labelling (g).

We first recall some well-known properties of argument labellings.

Fact 1 LetH = 〈X ,A〉 be anAF.

a. If λ is a complete (resp. grounded, preferred, semi-stable, stable, ideal or eager)
labelling of H thenλI is a complete (resp. grounded, preferred, semi-stable,
stable, ideal or eager) extension ofH.

b. If S is a complete (resp. grounded, preferred, semi-stable, stable, ideal or eager)
extension ofH thenλ with λI = S, λO = S+ andλU = X \ (S ∪ S+) is a
complete (resp. grounded, preferred, semi-stable, stable, ideal or eager) labelling
of H.

5In recent work on algorithmic techniques, e.g. Nofalet al. [10] additional labels have been proposed.



It has been observed in [17] that labellings and extensions are one-to-one related. In
essence, an argument extension is simply theI-labelled part of an argument labelling.

In the remaining part of this paper, we will focus on completelabellings. We do so
not only because these turn out to be the basis of the mainstream argumentation semantics
(see Definition 4) but also because we aim to follow the approach of [16].

2. Critical argument sets and decision problems

A subsetS of X is acritical setof H if,

∀ 〈λ1, λ2〉 ∈ Lco(H)× Lco(H) (λ1(S) = λ2(S) ⇒ λ1 = λ2)

That is,S is a critical set ofH if its labelling within any complete labelling uniquely
determines the labelling of every argument inX . Treating the concept of “S is a critical
set in〈X ,A〉” as defining a collection ofσ–extensions, we useEcs to denote

Ecs(〈X ,A〉) = { S ⊆ X : S is a critical set of〈X ,A〉}

Recall that thestandard translationof a CNF ϕ(Z) with clauses{C1, . . . , Cm} is
theAF, Hϕ(Xϕ,Aϕ) with arguments

{ zi,¬zi : zi ∈ Z} ∪ {C1, . . . , Cm} ∪ {ϕ}

and attack relation,

{ 〈zi,¬zi〉, 〈¬zi, zi〉 : zi ∈ Z} ∪
{ 〈zi, Cj〉 : zi is a literal in clauseCj} ∪
{ 〈¬zi, Cj〉 : ¬zi is a literal in clauseCj} ∪
{ 〈Cj , ϕ〉 : 1 ≤ j ≤ m}

This AF is (with some very minor modifications) originally presented in work of Di-
mopolous and Torres [27] wherein the credulous acceptance problem with respect to
admissibility semantics (CAadm) was shown to beNP–complete. Specifically, we have

Fact 2 For ϕ(Z) a CNF formula andHϕ(〈Xϕ,Aϕ〉) the AF defined by the standard
translation ofϕ(Z).

CAadm(Hϕ, ϕ) ⇔ ϕ(Z) is satisfiable
⇔ ∃ λ ∈ Lco(Hϕ) : λ(ϕ) = I

From{X} ∈ Ecs(〈X ,A〉), the credulous acceptance problem,CAcs(H, x), is trivial.

3. Complexity in critical set computations

We now consider the computational complexity of theverificationproblemVERcs and
related questions. We first observe that this, in common withsimilar questions concern-
ing preferred and semi-stable extensions is unlikely to be computationally feasible.

Lemma 1 VERcs is coNP–complete.



Proof: For membership in coNP, consider the complementary problem (¬VERcs) that
accepts instances〈H, S〉 for which S 6∈ Ecs(H). That this is inNP follows by the al-
gorithm which guesses labellings,〈λ1, λ2〉, verifies that these are both inLco(H), have
λ1(S) = λ2(S), but are distinct (i.eλ1 6= λ2). All these verification steps being polyno-
mial time decidable, it follows that¬VERcs ∈ NP, thusVERcs is in coNP.

For hardness we again use the complementary problem, showing this to beNP–hard
by a reduction fromCNF-SAT. Letϕ(Z) be an instance ofCNF-SAT with Hϕ = 〈Xϕ,Aϕ〉
theAF given by the standard translation. The instance of¬VERcs uses anAF,Fϕ, formed
by adding three arguments –{y,¬y, ψ} toXϕ, together with attacks

{〈ϕ, ψ〉, 〈ψ, y〉. 〈ψ,¬y〉, 〈y,¬y〉, 〈¬y, y〉}

The resultingAF is shown in Fig 1.

Figure 1. TheAF,Fϕ formed from the standard translation ofϕ(Z).

Finally,S the candidate critical set is formed byXϕ ∪ {ψ}.
We claim thatS is not a critical set (for thisAF) if and only ifϕ(Z) is satisfiable.
Suppose first thatαZ is an assignment of propositional values toZ for which

ϕ(αZ) = ⊤, i.e thatϕ(Z) is satisfiable. Consider the labelling ofS in whichλ(x) = I
if x = zi andαi = ⊤, orx = ¬zi andαi = ⊥ orx = ϕ. For all otherx ∈ S, λ(x) = O.
This can be extended to a labellingλ1 in whichλ1(y) = I, λ1(¬y) = O; and a labelling
λ2, with λ2(y) = O, λ2(¬y) = I. Now bothλ1 andλ2 are inLco: from the properties of
the standard translation described in Fact 2 and the fact that λ(ψ) = O. Hence we have
found〈λ1, λ2〉 with λ1(S) = λ2(S) butλ1 6= λ2. ThusS is not a critical set.

Conversely, suppose thatS is not a critical set. We show that, in this caseϕ(Z)
is satisfiable. Let〈λ1, λ2〉 be complete labellings witnessing thatS is not critical and
denote byλ the restriction of these to the arguments inS (noting thatλ is well-defined
sinceλ1(S) = λ2(S) from the premise). Then we cannot haveλ(ψ) = I, for then both
y and¬y can only be labelledO. Similarly, if λ(ψ) = U then bothy and¬y must be
labelledU (neither can be labelledI, sinceλ(ψ) 6= O). It follows that, since〈λ1, λ2〉
is a witness toS not being a critical set, we must haveλ(ψ) = O, whence it follows
thatλ(ϕ) = I. It is immediate (from Fact 2 and the construction ofHϕ) thatϕ(Z) is
satisfiable. In total,S is a not a critical set if and only ifϕ(Z) is satisfiable, from which
it follows VERcs is coNP–hard. 2

The notion of critical set imposes quite strong conditions on the relationship betweenS ∈
Ecs(〈X ,A〉) and arguments inX \S: no matter how we labelS within λ ∈ Lco(〈X ,A〉)
only one labelling is possible forX \ S.



Rather than this “global” condition governing the relationship betweenS andall ar-
guments outsideS, suppose we refine this property by considering an equivalence rela-
tion betweenindividualarguments. That is to say, the equivalence relation,≡ overX×X
defined forH(〈X ,A〉) via x ≡ y if and only if

1. ∀ λ ∈ Lco(H) λ(x) = λ(y) ∨
2. ∀ λ ∈ Lco(H) (λ(x) = I ⇔ λ(y) = O) ∧ (λ(x) = O ⇔ λ(y) = I)

That≡ is an equivalence relation is proved in Boothet al. [16, Propn. 6]. Now consider
the (sets of arguments in) the equivalence classes of≡ which we refer to as theissuesof
〈X ,A〉 and letEissue(H) denote

{ S ⊆ X : ∀ 〈x, y〉 ∈ S × S x ≡ y, and∀T ⊃ S∃〈u, v〉 ∈ T × T ¬(u ≡ v)}

ThusS ∈ Eissue(H) if and and only ifS describes an equivalence class ofH under the
relation≡.

Let EQUIV denote the decision problem whose instances –(〈X ,A〉, x, y) are ac-
cepted if and only ifx ≡ y with respect to complete labellings of〈X ,A〉 (similarly we
useINEQUIV to denote the complementary problem).

Lemma 2 EQUIV is coNP–complete.

Proof: As with the previous lemma, the argument is couched in terms of the comple-
mentary problem so that we showINEQUIV to beNP–complete. ThatINEQUIV∈NP fol-
lows by noting, given an instance(〈X ,A〉, x, y) that¬(x ≡ y) if and only if there are
complete labellings –〈λ1, λ2〉 – for whichλ1(x) 6= λ1(y) underλ1 (so thatλ1 witnesses
〈x, y〉 failing to satisfy condition 1); andλ2, similarly, witnesses that〈x, y〉 do not satisfy
condition (2). We note that any labelling in whichλ(x) = λ(y) = I orλ(x) = λ(y) = O
suffices for the latter (although not one for whichλ(x) = λ(y) = U ).

Guessing two labellings〈λ1, λ2〉 and validating their properties can be accomplished
by anNP algorithm.

To show thatINEQUIV is NP–hard, we use a reduction fromCNF-SAT. Given an
instance,ϕ(Z) of this, form exactly the sameAF,Fϕ, described in the proof of Lemma 1.
Within this AF, we consider the arguments,ϕ andy. We claim that¬(ϕ ≡ y) if and only
if ϕ(Z) is satisfiable.

Suppose thatαZ is an assignment for whichϕ(αZ) = ⊤. We therefore find a la-
belling under whichλ(ϕ) = I forcingλ(ψ) = O. This labelling, however, is consistent
with labellingsλ1 with λ1(ϕ) = I andλ1(y) = O (by usingλ1(¬y) = I) andλ2 with
λ2(ϕ) = I andλ2(y) = I (by usingλ2(¬y) = O). We deduce thatλ1 violates condition
(1) andλ2 condition (2) so that the satisfiability ofϕ implies¬(ϕ ≡ y).

Conversely suppose¬(ϕ ≡ y). Observing that¬(ϕ ≡ y) is witnessed bytwo com-
plete labellings,〈λ1, λ2〉 it suffices to show that one of these allows the satisfiabilityof
ϕ(Z) to be inferred. Letλ1 be a labelling under whichλ1(ϕ) 6= λ1(y). If λ1(ϕ) = U
then, contradicting the premise, this forcesλ1(y) = U . If λ1(ϕ) = O then, again in con-
tradiction, we getλ1(y) = O (sinceλ1(ψ) = I). Henceλ1(ϕ) = I and we can choose
λ1(y) = O (via λ1(¬y) = I). From the fact thatλ1(ϕ) = I it is immediate thatϕ is
satisfiable. 2

The main structures we are interested in areminimal(wrt ⊆) critical sets andmaxi-
malsets of equivalent arguments, i.e. equivalence classes (issues) under≡.



We now address the complexity of related verification questions, i.e.
MIN -CS

Instance: (〈X ,A〉, S) with S ⊆ X .
Question: Is S ∈ Ecs(〈X ,A〉) but nostrict subset,T of S is in Ecs(〈X ,A〉)?

ISSUE

Instance: (〈X ,A〉, S) with S ⊆ X .
Question: IsS an issue for〈X ,A〉, i.e. an equivalence class of≡ wrt complete labellings
of 〈X ,A〉?

We first establish upper bounds on the complexity of these. Recall that the complex-
ity classDp consists of languages,L, that may be expressed in the formL = L1 ∩ L2,
whereL1 ∈ NP andL2 ∈ coNP.

Lemma 3

a. MIN -CS ∈ Dp.
b. ISSUE∈ Dp.

Proof: For part (a), consider the following two languages,

L1 = { (〈X ,A〉, S) : S ∈ Ecs(〈X ,A〉)}
L2 = { (〈X ,A〉, S) : ∀ x ∈ S, S \ {x} 6∈ Ecs(〈X ,A〉)}

From Lemma 1, it is immediate thatL2 ∈ NP and L1 ∈ coNP.6 We now have
MIN -CS = L1 ∩ L2 and, hence, inDp.

For part (b), letL1 andL2 be given by,

L1 = { (〈X ,A〉, S) : ∀〈x, y〉 ∈ S × S, x ≡ y}
L2 = { (〈X ,A〉, S) : ∀〈x, y〉 ∈ S ×X \ S, ¬(x ≡ y)}

Again it is easily seen thatISSUE= L1 ∩ L2 (noting, again,(〈X ,A〉, S) ∈ L2 does not
indicate thatx ≡ y for every〈x, y〉 ∈ S × S). To complete the proof, it suffices to show
L1 ∈ coNP andL2 ∈ NP. The complementary language toL1 is

{ (〈X ,A〉, S) : ∃〈x, y〉 ∈ S × S, ¬(x ≡ y)}

This is a language inNP (via witnesses of the form(x, y, 〈λ1, λ2〉) and the results
of Lemma 2): thusL1 ∈ coNP. For L2, denotingS = {p1, . . . , pr} andX \ S =
{q1, . . . , qt} we need only guess a witnessw of the form

〈λ1,11 , λ1,12 〉# · · · #〈λi,j1 , λi,j2 〉# · · ·#〈λr,s1 , λr,s2 〉

where〈λi,j1 , λi,j2 〉 ∈ Lco(〈X ,A〉)×Lco(〈X ,A〉) are complete labellings witnessing that
¬(pi ≡ qj). The correctness of these labellings (of which there will atmost|S| × |X \
S| ≤ |X |2/4) can be validated in polynomial time. Hence,L2 ∈ NP, so completing the
proof thatISSUE∈ Dp. 2

We can now proceed to the main result of this section.

6Notice thatL2 doesnot requireS itself to be critical, simply that every subset obtained by removing a
single argument ofS fails to be critical.



Theorem 1

a. MIN -CS is Dp–complete.
b. ISSUE is Dp–complete.

Proof: Lemma 3 has already shown that both problems are inDp so it remains only
to show both areDp–hard. ForMIN -CS we proceed via a reduction from the canonical
Dp–hard problemSAT-UNSAT, instances of which are a pair ofCNF-formulae〈ϕ1, ϕ2〉
(without loss of generality over disjoint sets of propositional variables), such instances
being accepted if and only ifϕ1 is satisfiableandϕ2 is unsatisfiable.

Given an instance〈ϕ1(Y ), ϕ2(Z)〉 of SAT-UNSAT, form theAF, Hϕ1,ϕ2
consisting

of AFs,F1 andF2 resulting from the translation presented in Lemma 1 appliedrespec-
tively toϕ1(Y ) andϕ2(Z). We use{ψ1, p,¬p} for the arguments added (to the standard
translation) inF1 and{ψ2, q,¬q} for those added inF2. To complete the instance of
MIN -CS, we setS = {y1, . . . , yn, z1, . . . , zn, p}.

We claim thatS is a minimal critical set ofHϕ1,ϕ2
if and only ifϕ1(Y ) is satisfiable

andϕ2(Z) is not satisfiable.
Suppose thatϕ1(Y ) is satisfiable andϕ2(Z) has no satisfying assignment. First

observe thatS is, indeeda critical set: given any labelling ofS, this uniquely deter-
mines the labellings of{¬yi,¬zi : 1 ≤ i ≤ n}, and thence the labellings of each
of the “clause” arguments inF1 andF2. In consequence the labellings of{ϕ1, ϕ2}
are fixed as well as the arguments{ψ1, ψ2,¬p}. Finally from the premise thatϕ2 is
unsatisfiable the labellings of{q, ¬q} are determined via similar arguments to those
from Lemma 1. In addition to being critical, however,S is also aminimalsuch set: for
x ∈ {y1, . . . , yn, z1, . . . , zn}, the setS \{x} fails to be critical since we cannot uniquely
determine the labellings of{x,¬x} from S \ {x}. Finally, sinceϕ1 is satisfiable, again
via Lemma 1, we deduce thatS \ {p} cannot be a critical set. It follows that if〈ϕ1, ϕ2〉
is accepted as an instance ofSAT-UNSAT then〈Hϕ1,ϕ2

, S〉 is accepted as an instance of
MIN -CS.

Conversely, suppose thatS is a minimal critical set ofHϕ1,ϕ2
. If ϕ1(Y ) is unsatisfi-

able, then this contradicts minimality sinceS \ {p} remains critical. Similarly, ifϕ2(Z)
is satisfiable, this is in contradiction toS being critical: there is a labelling ofS that does
not uniquely determine the labelling of{q,¬q}. It follows that〈Hϕ1,ϕ2

, S〉 being a pos-
itive instance ofMIN -CS implies that〈ϕ1, ϕ2〉 is accepted as an instance ofSAT-UNSAT.
This completes the proof thatMIN -CS is Dp–complete.

For part (b), we also use a reduction fromSAT-UNSAT, however, since arguments
{x, y} in separate frameworks are not, in general equivalent7 some modification to the
reduction is needed.

Given 〈ϕ1, ϕ2〉, an instance ofSAT-UNSAT the instance ofISSUE usesHϕ1,ϕ2
as

described in (a), but with an additional attack{〈ϕ2, ψ1〉}. This AF is shown in Fig. 2.
The candidate issue,S, is {ϕ2, ψ2, q,¬q}.
We claim thatS is an issue of (the modified)Hϕ1,ϕ2

, if and only if 〈ϕ1, ϕ2〉 is
accepted as an instance ofSAT-UNSAT.

To begin, suppose thatϕ1 is satisfiable butϕ2 is not. It is certainly the case that
S ⊆ T for someissueT , since as argued in the proof of Lemma 2,ϕ2 ≡ q and, trivially,

7With the trivial exception of arguments which can only be labelledU , e.g. theAF 〈{x, y}, {〈x, x〉, 〈y, y〉}〉
whose only complete labelling isλ(x) = λ(y) = U or when{x}− = {y}− = ∅.



Figure 2. TheAF, Hϕ,ϕ2
: ISSUE({ϕ2, ψ2, q,¬q}) ⇔ SAT-UNSAT(〈ϕ1, ϕ2〉)

ϕ2 ≡ ψ2. From the premise that for any complete labelling,λ of Hϕ1,ϕ2
it follows that

the only possibilities forλ(〈ϕ2, ψ2, q,¬q〉) are {UUUU,OIOO}. This set, however,
must also be maximal, i.e.S = T : we cannot add any clause argument toS, since we
can always identify a labelling ofZ (or Y ) under which such arguments can be labelled
eitherI orO. Similarly, we cannot add any literalx ∈ {yi,¬yi, zi,¬zi} toS since, again
we can always construct complete labellings havingλ(x) = O andλ(x) = I. Hence, if
S is not an issue the only possibilities are from{ϕ2 ≡ ϕ1, ϕ2 ≡ ψ1, ϕ2 ≡ p, ϕ2 ≡
¬p}. From the premise thatϕ1(Y ) is satisfiable, it follows that there is a labelling with
λ(ϕ1) = I; trivially, however, there is also a labelling withλ(ϕ1) = O (since we can
always arrange that some clause argument ofF1 is labelledI). It now follows from
ϕ1 ≡ ψ1 (from the fact thatλ(ϕ2) ∈ {U,O}) we cannot haveϕ2 ≡ ψ1. Finally since,
as noted in the proof of Lemma 2, from any labelling under which λ(ϕ1) = I, we can
find labellings allowingλ(p) to be eitherI or O (similarly, λ(¬p) to be eitherO or I)
we deduce (via the satisfiability ofϕ1) thatS is an issue.

Conversely suppose thatS is an issue. We wish to show that in this case,〈ϕ1, ϕ2〉 is
accepted as an instance ofSAT-UNSAT.

From the fact thatS is an issue, it must be the case that¬(ϕ1 ≡ ϕ2) andϕ2 ≡ q. The
second of these holds if and only ifϕ2 is unsatisfiable as argued in Lemma 2. Consider
the possible labellings for〈ϕ1, ψ1〉 (given that we have shownλ(ϕ2) ∈ {U,O}). Since
¬(ϕ2 ≡ p) it cannot be the case that every complete labelling leads toλ(ψ1) ∈ {I, U},
hence there must be some labelling under whichλ(ψ1) = O, i.e. eitherλ(ϕ1) = I or
λ(ϕ2) = I. The latter, as we have seen from the premise thatS is an issue cannot occur,
therefore such a labelling results inλ(ϕ1) = I, henceϕ1 is satisfiable as required.

We deduce that〈ϕ1, ϕ2〉 is accepted as an instance ofSAT-UNSAT if and only if
{ϕ2, ψ2, q,¬q} is an issue ofHϕ1,ϕ2

and thatISSUE is Dp–complete. 2

For the argument thatMIN -CS is Dp–complete we chose as the candidate minimal critical
set structure to be verified a set{y1, y2, . . . , yn} ∪ {z1, z2, . . . , zn} ∪ {p}.

There is no need within the proof structure, however, to use arguments correspond-
ing only to positive literals: that is to say exactly the same proof holds wereS to be
formed by,{¬y1,¬y2, . . . ,¬yn} ∪ {¬z1,¬z2, . . . ,¬zn} ∪ {p}. Using this observation
the following consequence is immediate.

Corollary 1 There areAFs, 〈X ,A〉 with |X | = n and

|{S ⊆ X : S is a minimal critical set in〈X ,A〉}| ≥ 2n/3



Proof: Consider anyCNF, ϕ over, say,m variables,Z, and having exactlym clauses.
The standard translation ofϕ to anAF has exactly3m+ 1 arguments and any setS with
exactly one argument from each{zi,¬zi} is a minimal critical set. 2

4. Conclusions and discussion

We have studied the computational complexity of different decision problems centered
around critical sets of arguments: subsets of arguments that, once labelled, uniquely de-
termine the labels of all the other arguments in the argumentation framework. Also, we
have examined the complexity of different decision problems related to the different is-
sues [16] that can be identified.

The complexity classifications obtained are at a level typically viewed as intractable
under the standard assumptions, namely coNP-complete andDp-complete. It is noted,
however, that this is at a similar level as a number of decision questions that have pre-
viously been studied in extension-based semantics of argumentation. For example, the
questions of verifying a given subset as a preferred or semi-stable extension are both
coNP-complete [27,3], as is the question of verifying if a set is an idealset (that is a,
not necessarily maximal, admissible subset contained in all preferred extensions) [28].
Indeed a number of common decision questions are well-knownto involve rather higher
levels of complexity: e.g. sceptical acceptability under both preferred and semi-stable
semantics [29,30]; the verification problem for ideal extensions (that is, maximal ideal
sets) [28]. From such perspectives, just as efforts to identify both tractable fragments
and reasonable heuristics continue with regard to Dung-style extension based models,
so too, similar investigation of techniques for identifying minimal (or “near” minimal)
critical sets are well motivated. This is especially the case, given the gains (with respect
to, among others, enumeration of labellings in a given class) that the formal structure of
critical sets offers.

As a final point we mention that the notions of (minimal) critical sets and issues
are related to specific argumentation semantics. So far, these have only been defined
in the context of complete semantics [16]. It would, however, be equally possible to
define them in terms of preferred, semi-stable or stable semantics. As an example how
critical sets and issues change when the semantics is changed, consider the argumentation
framework of Figure 3. Here,{E} is a critical set under semi-stable and stable semantics,
but not a critical set under complete and preferred semantics. One of the open research
challenges is to broaden the notions of critical sets and issues of [16] also to work under
different semantics than complete, and to examine how this affects the complexity of the
associated decision problems.

Figure 3. Different semantics yield different critical sets and issues.
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