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Abstract. Strongly admissible labelings and min-max numberings of-
fer well-founded explanations in formal argumentation. We establish a
precise correspondence between min-max numberings and remoteness
functions from combinatorial game theory, showing that min-max num-
bers characterize optimal play length, i.e., where players seek the fastest
win or longest delay of loss. Our game–argumentation duality strength-
ens the theoretical and computational foundations for cross-fertilization
between argumentation and game theory: game-theoretic provenance
explanations apply to argumentation frameworks; pure strategy-based
provenance aligns with strongly admissible labelings; and a linear-time
algorithm for computing remoteness is sufficient to compute grounded
labelings and min-max numbers.
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1 Introduction

Formal argumentation is a key approach to reasoning with uncertainty. Strong
admissibility [1,7] plays a central role for grounded semantics, much like admissi-
bility does for preferred semantics, particularly in proof procedures. To show an
argument is in a preferred extension, it suffices to show it is in an admissible set,
without constructing the full extension. Similarly, to show that an argument is
in the grounded extension it suffices to show it is in a strongly admissible set [7].
This strongly admissible set can then be presented directly or used as the basis
for an interactive explanation as a discussion game [6].

Strong admissibility has been defined in several different but equivalent ways
[1,7,2]. We focus on its labeling-based form [7], where min-max numberings are
central to defining and characterizing strong admissibility. In this paper, we
deepen the connection between strong admissibility, min-max numberings, and
optimal play in classical game theory, to further clarify the role of min-max
numberings via connections to solving and explaining games.

⋆ Supported by the Joint Research and Innovation Seed Grants Program between University of Illi-
nois and Cardiff University under XAI-CA: Explainable AI via Computational Argumentation.
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Contributions. We establish a formal and precise correspondence between min-
max numberings and remoteness functions [21] in combinatorial game theory,
showing that min-max numbers are related to optimal play. Using this connec-
tion, we apply existing game-based provenance explanations [5,4] to argumen-
tation frameworks. We also develop a new class of provenance based on pure
strategies that align with strongly admissible labelings. Our results strengthen
the connection between argumentation and game theory, providing a foundation
for cross-fertilization between the two fields.
Outline. Section 2 recalls basic definitions in formal argumentation. Section 3 re-
views relevant game theory concepts and develops provenance-based approaches
for explaining games. Section 4 presents our duality results linking games and ar-
gumentation. Section 5 summarizes our contributions and suggests future work.

2 Preliminaries: AF Labelings and Min-Max Numbers

This section briefly recalls key concepts from formal argumentation. We assume
finite argumentation frameworks (AFs) and games throughout the paper.

Definition 1 ([13]). An argumentation framework F = (A,R) consists of a
finite set of entities, called arguments, and a binary relation R ⊆ A×A. An edge
(x, y) ∈ R means that x attacks y.

A labeling Lab : A → {in, out, undec} maps arguments to their status under a
given semantics where in is accepted, out is rejected, and undec is undecided.

Definition 2 ([7]). Lab is an admissible labeling of F iff for each x ∈ A:

– if Lab(x) = in then for each y that attacks x it holds that Lab(y) = out

– if Lab(x) = out then there exists a y that attacks x such that Lab(y) = in

Lab is a complete labeling of F iff it is an admissible labeling and for each x ∈ A:

– if Lab(x) = undec there is a y that attacks x such that Lab(y) = undec, and
for each y that attacks x where Lab(y) ̸= undec it holds that Lab(y) = out.

We use in(Lab) for {x ∈ A | Lab(x) = in}, out(Lab) for {x ∈ A | Lab(x) = out}
and undec(Lab) for {x ∈ A | Lab(x) = undec}. We can define partial orders on
labelings (similar to subsets of extensions).

Definition 3 ([12]). Let Lab and Lab′ be labelings of F = (A,R): Lab ⊑ Lab′
iff in(Lab) ⊆ in(Lab′) and out(Lab) ⊆ out(Lab′).

The grounded labeling can be defined as the (⊑) smallest complete labeling.

Definition 4 ([7]). Let Lab be a complete labeling of F = (A,R). Lab is the
grounded labeling iff Lab is the (unique) smallest (w.r.t. ⊑) complete labeling.

Strongly admissible labelings can be defined using min-max numberings [7].
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Definition 5 ([7]). Let Lab be an admissible labeling of F = (A,R). A min-
max numbering is a total function MMLab : in(Lab) ∪ out(Lab) → N ∪ {∞}
such that for each x ∈ in(Lab) ∪ out(Lab):

– if Lab(x) = in then MMLab(x) = 1 +max({MMLab(y) | y attacks x and
Lab(y) = out}) (with max(∅) defined as 0)

– if Lab(x) = out thenMMLab(x) = 1 +min({MMLab(y) | y attacks x and
Lab(y) = in}) (with min(∅) defined as ∞)

Theorem 1 ([7]). Every admissible labeling has a unique min-max numbering.

Min-max numbers can be used to define strongly admissible labelings as follows.

Definition 6 ([7]). A strongly admissible labeling Lab is an admissible labeling
whose MMLab yields natural numbers only (no argument is numbered ∞).

3 Combinatorial Games: Remoteness and Optimal Play

We recall basic notions and results from combinatorial game theory [17,21,19,20].
A fundamental question addressed is: Who wins under optimal play? We show
that solved games represent their own provenance, i.e., subgraphs that explain
objective position values and the length of optimal play.

3.1 Playing Games, Winning Strategies, and Solving Games

Games. A game is a finite digraph G = (V,E) consisting of positions V and
moves E ⊆ V × V . To play the game from a starting position x0 ∈ V , players I
and II take turns moving a pebble along the available edges E.
Plays. A play π starting at x0 ∈ V is a (finite or infinite) sequence of moves:

x0
I→ x1

II→ x2
I→ x3

II→ · · · (π)

Player I starts. The length |π| of a play is the length of the sequence. A play π is
complete if it either ends after |π| = k moves in a terminal position (a sink of G),
or if |π| =∞. The latter means π is a draw and the players are forever repeating
moves (G is finite, so must have cycles). The player moving to a terminal node
wins, so the opponent cannot move and loses. Players may play optimally, “good
enough”, or even blunder (e.g., turning a win into a draw or loss). To determine
the objective value of a position, i.e., under optimal play, we need strategies.
Strategies. A (pure) strategy for G = (V,E) is a function S : V → V such that
(x, S(x)) ∈ E. S can be partial (e.g., for terminal positions). For strategy SI, in
position x, Player I chooses SI(x) as the next position if it’s I’s turn (otherwise II
moves according to SII). Any pair SI, SII of strategy functions for I and II defines
a unique play πSI,SII from a starting position x0 ∈ V :

x0
I→ SI(x0)︸ ︷︷ ︸

x1

II→ SII ◦ SI(x0)︸ ︷︷ ︸
x2

I→ SI ◦ SII ◦ SI(x0)︸ ︷︷ ︸
x3

II→ · · · (πSI,SII
)
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(b) Solved game GR
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(d) Grounded Lab of F with MMLab

Fig. 1: (a) Game G = (V,E) and (b) R-labeled solution GR. Node labels “x.k”
mean R(x)= k and optimal play πx from x has length |πx| = k. R’s parity
determines valG: x is won (odd/green), lost (even/red), or drawn (∞/yellow).
(c) AF F is the dual of G. (d) The grounded labeling of F with min-max numbers
MMLab and Lab: x ∈ Ar is either in (blue), out (orange), or undec (yellow).

Position Values. Position x0 ∈ V is won in ≤ k moves if there exists a strategy
SI for Player I such that for all strategies SII of II there is an odd number j < k

and SI ◦ (SII ◦ SI)
j−1
2 (x0) exists, but is not defined for SII. In other words, II

cannot move. Such an SI is a winning strategy. Conversely, x0 is won for II in ≤ k
moves if there is a strategy SII such that for all strategies SI there is an even
number j < k and (SII ◦SI)

j
2 (x) exists, but is not defined for SI: I cannot move!

Note that the objective value valG(x0) of position x0 is not determined by an
individual play π. Instead, the value of x0 is won (lost) if Player I (II) can force
a win, starting from x0, no matter how the opponent moves. If neither player
can force a win, then x0 is drawn and optimal play is infinite (repeating moves).
Solved Games. Fig. 1b shows the values valG : V → {won, lost, drawn} for all
x ∈ V using node colors, i.e., it shows a solved game. It is well known that the
position values of a solved game satisfy the following two rules:4

– valG(x) := lost if ∀y: (x, y) ∈ E implies valG(y) = won. (R∀)
– valG(x) := won if ∃y: (x, y) ∈ E such that valG(y) = lost. (R∃)

3.2 Winning by Numbers: Smith’s Remoteness Function R

A classic approach to solve games uses a remoteness function due to Steinhaus
and Smith [21]. The remoteness R not only yields position values, but does so
by defining for each x ∈ V the length of optimal play from x.

Let E+(x) = {y | (x, y) ∈ E} denote the followers of x in G = (V,E).

4 Indeed, one way to compute the solution is by iterating these rules, e.g., see [5].
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Definition 7 ([21]). The remoteness R : V → N ∪ {∞} is defined as:

R(x) =


0 if x has no followers,
1 + min{R(y) | y ∈ E+(x),R(y) is even} . . . has an even follower,
1 + max{R(y) | y ∈ E+(x),R(y) is odd} . . . has only odd followers,
∞ . . . otherwise.

It is well-known that the parity of R determines the objective value of a position:

Theorem 2 (R→ valG [21]). For G = (V,E), position x ∈ V is won, lost, or
drawn if and only if R(x) is odd, even, or ∞, respectively.

This means “remoteness is all you need ”, i.e., R yields two connected insights:
how long an optimal play from x will last and whether x is won, lost, or drawn.
Remoteness Algorithm. Definition 7 suggests a simple algorithm5 to compute
R, which then can be used to solve for the values of a finite game G and identify
optimal play in G: Label all terminal positions x with R = 0. Then label all
predecessors y of these x with R = 1. Now delete all such numbered positions x
and y from G and repeat after increasing R by 2, i.e., in the next round, R(x)
will be 2 and 3 (instead of 0 and 1), etc. Repeat until there are no more terminal
nodes. The remaining nodes receive R =∞.

In Figure 2, succ and pred return the successors E+ and predecessors E−

of positions, respectively. Lines 2–6 initialize: R-values to ∞; Nsucc to successor
counts; T to the terminal nodes; del to false for each node; and the remoteness
counter k to 0. Lines 7–20 repeat while there are terminal nodes x to process: in
each round, these receive R = k (meaning lost in k), and their predecessors y get
R = k + 1 (i.e., won in k + 1), after which these nodes are deleted. Lines 13–16
compute the new terminal nodes after deletions; k is incremented by 2, and the
loop starts over. It is easy to see that R can be computed in linear time:

Theorem 3. Smith’s remoteness function R can be computed in O(|V |+ |E|).

Proof. Consider the algorithm in Figure 2. Initialization: Lines 2, 4, 5 are O(|V |)
and Line 3 is O(|E|). Main loop: Each x ∈ V can occur in T at most once, then it
is deleted; so the loop in Line 7 executes at most O(|V |) times. Predecessor pro-
cessing (Lines 11–17): When x ∈ T is processed, each predecessor y corresponds
to an edge (y, x) ∈ E, yielding O(|E|) total (i.e., over all loop iterations) for
Lines 11, 12, 17. Successor count updates (Lines 13–16): For each y, we examine
each of its predecessors z and the edge (z, y) ∈ E. Each of these is processed
once (and then deleted with y). Lines 14–16 are O(1) per edge, so no edge is
visited more than once in the main loop, resulting in a total cost of O(|V |+ |E|).

Since on connected graphs |E| ≥ |V | − 1, we have:

Corollary 4. On connected graphs, R can be computed in O(|E|).6
5 The authors of [3] attribute the method to vonNeumann and Morgenstern [17]
6 Fraenkel [14] sketches essentially the same algorithm, claiming it is O(|E|).
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Algorithm: Computing Remoteness R
Input: Finite game graph G = (V,E)
Result: Remoteness function R : V → N ∪ {∞}

1 begin
2 R(x) := ∞ for each x ∈ V // drawn unless proven otherwise

3 Nsucc[x] := |succ(x)| for each x ∈ V // count successors

4 T := {x ∈ V | Nsucc[x] = 0} // initial terminal nodes

5 del[x] := false for each x ∈ V // nothing deleted yet

6 k := 0 // initial remoteness

7 while T ̸= ∅ do // until no more terminals

8 Tnext := ∅ // prepare next terminal set

9 for x ∈ T do // for each current terminal

10 R(x) := k // even R(x) ⇒ x is lost

11 for y ∈ pred(x) and ¬del[y] do // for each predecessor

12 R(y) := k + 1 // odd R(y) ⇒ y is won

13 for z ∈ pred(y) and ¬del[z] do // update predecessor counts:

14 Nsucc[z] := Nsucc[z]− 1 // . . . z loses successor y

15 if Nsucc[z] = 0 then // . . . z becomes terminal

16 Tnext := Tnext ∪ {z} // . . . add to next iteration

17 del[y] := true // remove y from graph

18 del[x] := true // remove x from graph

19 T := Tnext // ready for new terminal set

20 k := k + 2 // ready for the next two levels

Fig. 2: Computing Smith’s remoteness function R [21] for finite games.

Example 1 (R→ valG). Consider the game G in Fig. 1a and its R-labeled,
colored solution GR in Fig. 1b. Positions {A,D} are terminal (R=0) and thus
immediately lost (red). Positions {B,E} are predecessors of {A,D}, so they are
won (green) with R=1. After removing these four nodes, {C,F} become the new
terminal (lost) nodes, receiving R = 2. After these have been removed, no more
new terminal nodes are created and the algorithm terminates. H and G haven’t
been reached, so they are drawn (yellow), having infinite remoteness (R = ∞).

Optimal Play. The R-numbers of a solved game GR allow to find optimal
plays and winning strategies easily. Similar to how node colors indicate position
values, edge colors (Fig. 1b) indicate which moves are winning (green), delaying
a loss (red), or drawing (yellow). Another edge type are blunders (grey, dashed),
e.g., B→H: While B→A is a winning move,7 the move to H blunders the win
from B and gives the opponent a draw (via an infinite play H⇌G.) The optimal
“countdown play” from E.1 is to D.0; the “count-up” move to C.2 is still winning,
but requires a longer play.

7 B→A is also optimal because it counts down: R(A) = R(B)− 1.
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Proposition 1 (Optimal Moves). All non-terminal positions x in GR have
at least one optimal (i.e., countdown) move to y, i.e., where R(y) = R(x) − 1.
For drawn x, i.e., R(x) =∞, some y also has R(y) =∞ (keeping the draw).

Consider a game G and itsR-annotated solution GR. Using the latter, an optimal
play π from any position x ∈ V is found simply by following countdown moves.

Definition 8 (R→Optimal Strategies [21]). Given a solved game GR, the
strategy S:V →V is optimal if S(x)= y implies (x, y) ∈ E and R(y) = R(x)−1.

If both players follow optimal strategies, they win in the fewest moves possi-
ble, delay inevitable defeat as long as possible, and avoid losing from drawn
positions. Starting from x, this means that R(x) bounds the length of optimal
play. Winning strategies (and winning moves) don’t have to be optimal: e.g., in
Fig. 1b, the move E→C is winning but not optimal.

3.3 Provenance: Explaining Position Values through Subgraphs

The provenance P(x) of x ∈ V is a subgraph of G that explains x’s value (won,
lost, or drawn) and possibly its remotenessR(x). Informally, P(x) is a subgraph
rooted at x that contains some or all of the complete plays from x that are rele-
vant for establishing x’s value. We define different types of provenance: potential,
actual, primary, and pure. Each type provides more specific (i.e., usually smaller)
subgraphs that justify x’s value (or remoteness).

Definition 9 (Potential Provenance). The potential provenance Ppt(x) of a
node x ∈ V is the subgraph of nodes and edges reachable from x in G = (V,E).

Ppt(x) might overestimate but never underestimate the subgraph needed to jus-
tify the value of x. If x is won, there exists a move to y that is lost for the
opponent. However, x may also have moves that are blunders, i.e., to some y
which is won or drawn for the opponent. Similarly, if x is drawn, it may have a
follower y that blunders the draw and allows the opponent to win. Actual prove-
nance Pac eliminates all blunders, i.e., contains only moves that can be used to
determine position values. To this end, we first define edge types.

Definition 10 (Edge Types). Given GR = (V,E) and position values valG,
the edge types τ : V × V → {won, lost, drawn, blunder} are defined by:

τ(x, y) :=


won if valG(x) = won and valG(y) = lost

lost if valG(x) = lost and valG(y) = won

drawn if valG(x) = drawn and valG(y) = drawn

blunder otherwise.

Definition 11 (Actual Provenance). Pac(x), the actual provenance of x, is
the subgraph of G reachable from x by following won, lost, and drawn edges.
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(a) A solved game
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(b) Grounded labeling of the dual AF

Fig. 3: (a) Optimal play vs. minimal-size explanation: The primary provenance
Ppr(A) excludes the dashed edge B→C and the subgraph C⇝G as only count-
down paths are in Ppr. The suboptimal B→C⇝G, however, is a minimal-size
explanation of val(A). (b) The AF-dual of (a): {A,C,E,G} is a minimal strongly
admissible set witnessing Lab(A): it uses the subgraph A←B←C ⇝G.

Since all blunders are removed, the remaining moves in Pac(x) are “good enough”
to achieve the best outcome val(x), independent of what the opponent does.
However, by playing suboptimal moves, a mixed strategy8 may be required to
win: In Fig. 1b, although the move E→F is winning, it requires the player to
break out of the cycle eventually and move from E to either C or D to force a
win. This is only possible with a mixed strategy, which allows a player to take
one of many possible moves from a given position, but not with a pure strategy.

One solution to this problem is to exclude suboptimal winning moves from
consideration. This idea gives rise to the notion of primary provenance. In the
resulting subgraphs pure strategies are sufficient to explain position values.

Definition 12 (Primary Provenance). Ppr(x) is the subset of Pac(x) that
excludes suboptimal (i.e., non-countdown) winning moves.

Example 2. In Fig. 1b Ppr(E) excludes both the “detour” through F, which was
included in Pac(E), and the suboptimal path E→C⇝A.

Ppr only follows optimal winning moves, but includes suboptimal (not maximal)
delaying moves. The rationale for this choice is that all followers of a losing
position x must be explored to establish x as lost. Primary provenance avoids
“detours” (e.g., through F above) and bases explanations on pure strategies.
Finally, like actual provenance, Ppr is easily computed using R.
Optimal vs. Minimal Explanations. If we are interested in minimal-size ex-
planations, by design, Ppr may exclude smaller explanations (subgraphs) that
are not countdown-optimal: e.g., in Fig. 3a, the primary provenance Ppr(A) ex-
cludes the dashed edge B→C (it’s not a countdown edge), and thus the subgraph
C⇝G, as only countdown paths are in Ppr. However, the subgraph B→C⇝G is

8 In that case, S is a relation and not necessarily a function.
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(a) The pure provenance of E

A.1 B.2 C.3

E.2

D.1

F.3
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(b) AF strongly-admissible set from E

Fig. 4: (a) The pure provenance Ppu(E) of E (highlighted) does not include F,
since E→F is not selected by any pure winning strategies (otherwise, it would
result in infinite play from E), however, both the optimal move E→D (as in
primary provenance) and the suboptimal move E→C (unlike in primary prove-
nance) are included. (b) The corresponding explanation of E in the dual AF,
where {A,C}, {D}, and {A,C,D} are corresponding strongly admissible sets.

a size-minimal explanation of val(A). Thus, Ppr can be too selective to include
all minimal explanations. The actual provenance Pac(A) does include the size-
minimal subgraph (B⇝G), but unfortunately also includes the unfounded loop
that primary provenance was meant to eliminate. What is needed is a new form
of provenance that lies between actual and primary provenance.

Definition 13 (Pure-Strategy Provenance). Ppu(x) is the subset of Pac(x)
that excludes all y that cannot be reached from x via a pure (winning) strategy.

Example 3. Fig. 4a depicts the pure provenance Ppu(E) of E, which includes
the subgraphs E→C⇝A and E→D. Unlike with actual provenance, F is not
included in Ppu(F): no pure (winning) strategy can include E→F as it would
result in infinite play from E (where a pure strategy allows only one move from
a given position). The suboptimal move E→C is included in Ppu(E) (and its
associated subgraph) unlike with Ppr(E).

Proposition 2. Let GR be a solved game. For all positions x ∈ V :

Ppt(x) ⊇ Pac(x) ⊇ Ppu(x) ⊇ Ppr(x)

This hierarchy allows users to employ the most suitable notion of provenance for
their use cases. The potential provenance is easy to compute since it reduces to
a simple reachability query. Similarly, actual and primary provenance are easily
computed via R and regular path queries [5]. The pure provenance Ppu(x), on
the other hand, cannot be computed based on R alone.

4 Game–Argumentation Duality

It has been shown that grounded labelings of argumentation frameworks and
solutions of games (computed via the well-founded semantics [15]) directly cor-
respond to one another [4]. We revisit and expand this Game–AF duality here,
as it allows us to transfer notions and results from one community to another.
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4.1 Argumentation Frameworks as Combinatorial Games

To view an argumentation framework F as a game GF (G for short), we reverse
its attack edges, i.e., use the attacked-by relation.

Definition 14 (Dual Game). Let F = (A,R) be an AF. The dual game G =
(A,R−1) of F has the same nodes, but reversed edges, i.e., the moves of G are
the attacked-by relation: R−1 = {(y, x) | (x, y) ∈ R}.

Example 4. The game in Fig. 1a and the AF in Fig. 1c are dual to each other.
They only differ in the interpretation of nodes (positions vs. arguments) and
edges (moves vs. attacks). The duality carries over to the solved game GR in
Fig. 1b and its dual, the grounded labeling MMLab in Fig. 1d: Positions that
are won (green), lost (red), and drawn (yellow) correspond to arguments that
are out (orange), in (blue), and undec (yellow), respectively. Positions have a
remoteness R, while arguments have similar min-max numbers fromMMLab.

A Skeptic’s Argumentation Game (SAG [4]). Consider argument E in
Fig. 1c and 1d. To show that x=E is defeated (out), it suffices to find an attacker
y ∈ {C,D,F} that is accepted (in). As it turns out (see below), this is equivalent
to moving from x to a follower y ∈ {C,D,F} which is lost. More generally, if a
player makes the move x → y in G, the intent is to demonstrate that x is won

by selecting a y that is lost for the opponent. If, however, all moves from x
end in a position that is won by the opponent, then x itself is lost. In the dual
AF, this means that to show that x is out, one must find an attacker y that is
in. If, however, all attackers y of x are out, then x itself is in. The first duality
between G and F , illustrated by Fig. 1, is captured by the following theorem.

Theorem 5 (Duality Lab ∼= val). Let F = (A,R) be an AF, Lab its grounded
labeling, and GR = (A,R−1) the solved dual game. For all x ∈ A:

Lab(x) = in/out/undec iff valG(x) = lost/won/drawn, respectively.

Proof. It is well-known [13] that the following rules, under the well-founded
semantics (WFS) [15], compute the grounded solutions of AFs.

out(x) ← attacks(y, x), in(y).

in(x) ← ¬ out(x).
(PAF )

The following are equivalent under the reversed “attacked-by” direction of edges
and thus also compute the grounded solutions.

out(x) ← attackedBy(x, y), in(y).

in(x) ← ¬ out(x).
(P−1

AF )

It is also well-known that the WFS of the following program solves games [15].

won(x) ← move(x, y), lost(y).

lost(x) ← ¬ won(x).
(PG)
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Since P−1
AF and PG are the same program (up to renaming), they have the same

well-founded models (up to renaming/interpretation). Note that if x is out in the
grounded labeling, a skeptic making the claim that x is defeated has a winning
strategy, hence we call this the Skeptics Argumentation Game (SAG) [4].

Example 4 (Continued). Consider again the solved game in Fig. 1b and the
grounded AF labeling in Fig. 1d. As in Theorem 5, each won (green) position in
the game is out (orange) in the AF, each lost position is in (blue), and each
drawn position (yellow) is undec (also yellow).

4.2 Remoteness vs. Min-Max Numbers

An argumentation framework F and its dual G each have an associated number-
ing, i.e., min-max numbers MMLab for the grounded labeling of F and remote-
ness R for G, respectively. Fig. 1 shows that these two numberings differ by 1.
Another difference is that R-values are derived directly from G, while min-max
numbers are defined for (strongly) admissible labelings.

Theorem 6 (DualityMM∼= R+1, Grounded Lab). Let F = (A,R) be an
AF, Lab be the grounded labeling of F , MMLab its min-max numbering, and
GR = (A,R−1) be the solved dual of F . For each x ∈ A:

– If Lab(x) ∈ {in, out} then MMLab(x) = R(x) + 1;
– If Lab(x) = undec then MMLab(x) = ⊥ (undefined) and R(x) =∞.

Proof. By induction using Def. 5 and 7.

Base Case: If x is unattacked, Lab(x) = in, MMLab(x) = 1 + max(∅) = 1,
and R(x) = 0 (since x is terminal in G), thusMMLab(x) = R(x) + 1.

Rejected Case: Suppose Lab(x) is out and x has in-labeled attackers
y1, . . . , yn, then MMLab(x) = min({MMLab(y1), . . . ,MMLab(yn)}) + 1.
Assume MMLab(yi) = R(yi) + 1 for 1≤i≤n. Because Lab(yi) is in, val(yi)
is lost and R(yi) is even, thus R(x) = 1 + min({R(y1), . . . ,R(yn)}). If
MMLab(yk) has the smallest number of y1, . . . , yn, then MMLab(x) =
MMLab(yk) + 1, R(x) = R(yk) + 1, and since MMLab(yk) = R(yk) + 1,
MMLab(x) = R(x) + 1.

Accepted Case: Suppose Lab(x) is in with attackers y1, . . . , yn, which must
be out, and MMLab(x) = max(MMLab(y1), . . . ,MMLab(yn)} + 1. As-
sume MMLab(yi) = R(yi) + 1 for 1≤i≤n. Because Lab(yi) is out, val(yi)
is won and R(yi) is odd, thus R(x) = 1 + max({R(y1), . . . ,R(yn)}).
If MMLab(yk) has the largest min-max number of y1, . . . , yn, then
MMLab(x) =MMLab(yk)+1, R(x) = R(yk)+1, and sinceMMLab(yk) =
R(yk) + 1, MMLab(x) = R(x) + 1.

Undecided Case: If Lab(x) is undec, then by definitionMMLab(x) = ⊥, and
since val(x) is drawn, R(x) =∞.

Example 4 (Continued). As shown in the solved game in Fig. 1b and the
grounded solution of the dual AF in Fig. 1d, remoteness and min-max num-
bers differ by 1 when the values are natural numbers. This “off-by-1” nature of
remoteness and min-max numbers follows from Theorem 6.
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The MM ∼= R + 1 correspondence also extends to admissible labelings. Let
G|W = (W,E ∩ (W ×W )) denote the restriction of G to a set of nodes W ⊆ V .

Theorem 7 (Duality MM ∼= R, Admissible Lab). For F = (A,R), its
admissible labeling Lab with W = in(Lab) ∪ out(Lab), MMLab the min-max
numbering, G = (A,R−1), and RG|W the remoteness function on G|W . Then for
all x ∈ A:
– IfMMLab(x) ̸= ⊥ then MMLab(x) = RG|W (x) + 1.

Proof. MMLab is a unique numbering of F that only examines arguments la-
beled in or out by Lab: for any x whose Lab(x) is undec,MMLab(x) = ⊥. It fol-
lows thatMMLab returns the same numbers for F |W as for F . From Theorem 6,
when x is in or out in the grounded labeling of F |W ,MMLab(x) = RG|W (x)+1.
For those arguments x that are labeled undec in the grounded labeling of F |W ,
RG|W (x) = ∞. Thus, it is enough to show that these same arguments have
MMLab(x) =∞. Note that such an x must have at least one move to a drawn

position (undec attacker) and no moves to lost positions (in arguments) in
G|W (F |W , resp.). There are two cases to consider for such an argument x,
which we show by contradiction: (1) If Lab(x) is out and MMLab(x) ̸= ∞, x
must have an in-labeled attacker y such that MMLab(y) ̸= ∞. However, such
a y implies RG|W (y) ̸= ∞ which means y cannot be drawn. (2) If Lab(x) is in

and MMLab(x) ̸= ∞, then all attackers y must have MMLab(y) ̸= ∞. This
means each such y cannot be drawn since RG|W (y) ̸= ∞, and so RG|W (x) ̸= ∞
implying x cannot be drawn.

The extension to admissible labelings is a direct consequence of the fact that,
like the remoteness function,MMLab computes the grounded solution of an AF
restricted to the in/out-labeled arguments of Lab.
Corollary 8 (Parity ofMM). Let F = (A,R) be an AF, Lab1 an admissible
labeling of F with W = in(Lab1)∪out(Lab1),MMLab1 its min-max numbering,
and Lab2 the grounded labeling of F |W . For each x ∈ A:
– MMLab1(x) is odd/even/∞ iff Lab2(x) = in/out/undec, respectively.

Given the connection between min-max numberings and remoteness, min-max
numbers can be viewed as lengths given by optimal play. The following is imme-
diate from Theorem 7.

Corollary 9 (MM vs. Optimal Play). Let F = (A,R) be an AF, Lab be
an admissible labeling of F with W = Lab(in) ∪ Lab(out), and MMLab its
min-max numbering. If MMLab(x) = n, then the length of optimal play from
x in the dual game G|W is n− 1, for all x ∈ A.

As a consequence of Theorems 2–6, the grounded labeling Lab and its min-max
numbering MMLab can be computed in linear time:

Corollary 10 (Computing Grounded Lab). Let F = (A,R) be an AF. The
grounded labeling Lab of F can be computed in O(|A|+ |R|).
Corollary 11 (Computing MMLab). Let F = (A,R) be an AF and Lab its
grounded labeling. MMLab can be computed in O(|A|+ |R|).
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4.3 Strong Admissibility and Games

Close connections exist between strongly admissible labelings (as a form of ex-
planation) and game provenance for explaining position values. As an example,
min-max numberings can be used to check if a labeling is strongly admissible
(Definition 6), and in a similar way, remoteness can be used to check if a subgraph
of G corresponds to an admissible labeling.

Definition 15 (Admissible Subgraph). Let G be a game graph and valG
be a (potentially partial) won-lost labeling that satisfies the rules R∀ and R∃
(Section 3.1). G′ is an admissible subgraph of G if it is an induced subgraph
containing exactly the positions labeled as won or lost in valG.

The following is immediate from Definition 6 and the duality ofMM and R.

Corollary 12 (Strongly Admissible Subgraphs). Let G′ be an admissible
subgraph of G. Then G′ is a strongly admissible subgraph of G if its remoteness
only yields natural numbers for all positions in G′.

Additionally, pure provenance of a won or lost position in a game represents a
strongly admissible labeling of the dual AF. This follows because only position
values with natural numbers are used to construct pure provenance.

Corollary 13 (Pure Provenance vs. Strong Admissibility). The pure
provenance Ppu(x) of a position in G is a strongly admissible subgraph of G.

4.4 Applying Game Provenance to Argumentation Frameworks

Game provenance can be directly applied to AFs based on the Game–AF duality.

Definition 16 (AF Potential Provenance). The potential provenance Ppt(x)
of argument x is the subgraph of arguments and attacks that reach x in F .

In games, the provenance of a node x is determined by what can be reached (via
moves) from x, while in AFs (with edges reversed), x’s provenance depends on
the arguments that can reach it (i.e., attack x directly or indirectly). As in games,
the potential provenance Ppt(x) is an overestimate of the actual provenance (it
includes attacks that correspond to blunders in SAG). The following defines the
edge types of AFs for actual provenance.

Definition 17 (AF Edge Types). Let F = (A,R) and Lab be its grounded
labeling. The edge types τ : A×A→ {out, in, undec, blunder} are defined by:

τ(x, y) :=


out if Lab(x) = out and Lab(y) = in

in if Lab(x) = in and Lab(y) = out

undec if Lab(x) = undec and Lab(y) = undec

blunder otherwise.

Actual provenance for AFs is then defined as:
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Definition 18 (AF Actual Provenance). Pac(x), the actual provenance of
x, is the subgraph of F that reaches x by following in, out, and undec edges.

As in games, the actual provenance of an AF discards blunder attacks, but may
include suboptimal attacks according to MMLab. The primary provenance of
an AF removes suboptimal attacks:

Definition 19 (AF Primary Provenance). Ppr(x) is the subset of Pac(x)
that excludes in attacks (x, y) ∈ R where MMLab(x) ̸=MMLab(y)− 1.

Fig. 3b highlights the suboptimal attack C→B within the actual provenance of A.
Like games, the smaller explanations provided by primary provenance may not
include all well-founded explanations of an argument, unlike in pure provenance:

Definition 20 (AF Pure Provenance). Ppu(x) is the subset of Pac(x) that
excludes arguments y that cannot reach x via a pure (winning) strategy in SAG.

Fig. 4b gives the pure provenance of E, which discards the unfounded attack
from F. Finally, from Corollary 13, the pure provenance Ppu(x) of argument x is
a strongly admissible set of F , which also provides the well-founded justification
for the grounded label of x.

5 Conclusion

We established formal connections between min-max numberings in abstract
argumentation and optimal play in combinatorial games. By linking min-max
numbers to Smith’s remoteness function, provenance-based explanations can be
directly applied to AFs. We also showed that pure strategy-based explanations
provide a new class of provenance that bridges optimal and minimal approaches.
Finally, we obtained new insights into min-max numberings via remoteness, in-
cluding that parity determines argument labeling status and enables efficient
computation of grounded labelings for admissible AF subgraphs.

Connections between game theory and argumentation have been studied ex-
tensively. Dung’s seminal paper on argumentation frameworks [13] drew on n-
player cooperative games from [17], while [16] uses similar game-theoretic con-
cepts for defining argument strength. Two-player combinatorial games can be
viewed as instances of n-person games in [18] where notions of independence
and dominance apply. However, existing two-player dialog games for argumenta-
tion [7,10] operate on already-labeled AFs under specific semantics like strongly
admissible and stable extensions, rather than establishing a direct correspon-
dence between unlabeled frameworks and games that we develop here.

In future work, we aim to further explore the connections between games and
argumentation. Since checking whether a strongly admissible labeling is minimal
is co-NP-complete [8] for a given in-labeled argument, we conjecture that con-
structing minimal provenance explanations in games faces similar computational
challenges. This contrasts with our remoteness-based provenance explanations,
which can be computed efficiently. Building on approximation techniques [11,9],
we will investigate tractable methods for computing approximately minimal ex-
planations while preserving the theoretical guarantees of our duality framework.
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