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Abstract

Argumentation theory has become an important topic in the field of AI. The ba-
sic idea is to construct arguments in favor and against a statement, to select the
“acceptable” ones and, finally, to determine whether the original statement can be
accepted or not.

Several argumentation systems have been proposed in the literature. Some of
them, the so-called rule-based systems, use a particular logical language with strict
and defeasible rules. While these systems are useful in different domains (e.g. legal
reasoning), they unfortunately lead to very unintuitive results, as is discussed in
this paper.

In order to avoid such anomalies, in this paper we are interested in defining
principles, called rationality postulates, that can be used to judge the quality of a
rule-based argumentation system. In particular, we define two important rationality
postulates that should be satisfied: the consistency and the closure of the results
returned by that system.

We then provide a relatively easy way in which these rationality postulates can
be warranted for a particular rule-based argumentation system developed within a
European project on argumentation.
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1 INTRODUCTION

Agents express claims and judgments when engaged in decision making, draw-
ing conclusions, imparting information, and when persuading and negotiating
with other agents. Information may be uncertain and incomplete, or there
may be relevant but partially conflicting information. Also, in multi-agents
systems, conflicts of interest are inevitable. To address these problems, agents
can use argumentation, a process based on the exchange and valuation of ar-
guments for and against opinions, proposals, claims and decisions.

Argumentation, in its essence, can be seen as a particular useful and intu-
itive paradigm for doing nonmonotonic reasoning. The advantage of argu-
mentation is that the reasoning process is composed of modular and quite
intuitive steps, and thus avoids the monolithic approach of many traditional
logics for defeasible reasoning. The process of argumentation starts with the
construction of a set of arguments based on a given knowledge base. As some
of these arguments may attack each other, one needs to apply a criterion for
determining the sets of arguments that can be regarded as “acceptable”: the
argument-based extensions. The last step is then to examine whether a partic-
ular statement can be regarded as justified. This can for instance be the case if
every extension contains an argument which has this statement as its conclu-
sion. An interesting property of the argumentation approach is that it can be
given dialectical proof procedures that are quite close to the process by which
humans would discuss an issue. The similarity with human-style discussions
gives formal argumentation an advantage that can be useful in many contexts.

Argumentation has developed into an important area of study in artificial
intelligence over the last fifteen years, especially in sub-fields such as nonmono-
tonic reasoning (e.g. [19,25,26,28,43,45]), multiple-source information systems
(e.g. [7,9,21]), decision making (e.g. [2,11,12,20,32,31,30]), and modeling in-
teractions between agents (e.g. [3,8,10,14,18,35–38,41]). Several argumenta-
tion systems have been developed for handling inconsistency in knowledge
bases (e.g. [5,15–17,29,33,34,39,42,44]), in other words for inference. All these
systems are built around a logical language and an associated consequence
relation that is used for defining an argument. Some of these systems, called
rule-based systems, use a particular logical language defined over a set of lit-
erals, and two kinds of rules: strict rules and defeasible ones. Arguments and
conflicts among them are first identified, and then an acceptability seman-
tics (e.g. Dung’s semantics) is applied in order to determine the “acceptable”
arguments. Examples of such systems are Prakken and Sartor’s system [42],
Garcia and Simari’s system [33], Governatori et al.’s system [34], and Am-
goud et al.’s system [4]. Such systems are suitable in some domains like legal
reasoning, where knowledge cannot be represented in a classical propositional
language for instance. Unfortunately, existing rule-based systems fail to meet
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the objectives of an inference system, and can lead to very unintuitive results.
Indeed, with these systems it may be the case that an agent believes that “if
a then it is always the case that b”, and the system returns as output a but
not b. Worse yet, if the agent also believes that “if c then it is always the case
that ¬b”, the system may return a and c, which means that the output of the
system is indirectly inconsistent.

In what follows, we will focus only on rule-based argumentation systems. In
order to avoid anomalies like the ones discussed above, the aim of this pa-
per is twofold: on the one hand, as in the field of belief revision, where the
well-known AGM-postulates serve as general properties a system for belief
revision should fulfill, we are interested in defining some principles (called ra-
tionality postulates) that any rule-based argumentation system should obey.
These postulates will govern the sound definition of an argumentation system
and will avoid anomalous results. In this paper we focus particularly on two
important postulates: the closure and the consistency of the results that an
argumentation system may produce. These postulates are violated in systems
such as [4,33,34,42]. On the other hand, we study various ways in which these
postulates can be warranted in the argumentation system developed in [4], as
well as in various other systems.

This paper is structured as follows. First, in section 2, we recall the basic
concepts behind argumentation theory. We present the abstract argumenta-
tion framework of Dung [28], as well as one particular instantiation of it, for
which we have chosen the ASPIC argumentation formalism [4]. In section 3, we
show some examples that yield very unintuitive and undesirable results, not
only for the ASPIC argumentation system, but also for various other argumen-
tation formalisms. Then, in section 4, we state a number of postulates, based
on the analysis of the examples in section 3, that we think any rule-based ar-
gumentation formalism should satisfy. Section 5 proposes a number of generic
solutions which can be applied to the argumentation formalism described in
section 2, as well as to other argumentation formalisms where similar problems
occur (such as [34,42,33]). Two main solutions are suggested, each of which
satisfies all the earlier mentioned rationality postulates. The first approach
is applicable to formalisms that make use of classical logic, the other one is
applicable to formalisms that do not. Section 6 then contains an overview of
the main results of this paper, as well as some open research issues.

2 ARGUMENTATION PROCESS

Argumentation can be seen as a reasoning process consisting of the following
four steps:
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(1) Constructing arguments (in favor of / against a “statement”) from a
knowledge base.

(2) Determining the different conflicts among the arguments.
(3) Evaluating the acceptability of the different arguments.
(4) Concluding, or defining the justified conclusions.

Some argumentation formalisms also allow arguments to be of different strengths,
but for the sake of simplicity we will not address this issue in the current paper.
Many argumentation formalisms are built around an underlying logical lan-
guage L and an associated notion of logical consequence, defining the notion
of argument. Argument construction is a monotonic process: new knowledge
cannot rule out an argument but only gives rise to new arguments which may
interact with the first argument. Since the knowledge bases may give rise to in-
consistent conclusions, the arguments may be conflicting too. Consequently, it
is important to determine among all the available arguments, the ones that are
ultimately acceptable. In [28], an argumentation system is defined as follows:

Definition 1 (Argumentation system) An argumentation system is a pair
〈A, Def〉 where A is a set of arguments and Def ⊆ A × A is a defeat re-
lation. We say that an argument A defeats an argument B iff (A,B) ∈ Def
(or A Def B).

Starting from the set of all (possibly conflicting) arguments, it is important to
know which of them can be relied on for inferring conclusions and for making
decisions. To answer this question, different attempts for defining semantics
for the notion of acceptability have been made. Some approaches return a
unique set of acceptable arguments, called an extension, giving a unique status
to each argument, whereas others return several extensions, allowing multiple
status for arguments. In [28] different semantics for the notion of acceptability
have been proposed. These last have been recently refined in [13,24]. In what
follows, only Dung’s semantics are recalled for illustration purposes.

Definition 2 (Conflict-free, Defense) Let A and B be sets of arguments,
and let B ⊆ A.

• B is conflict-free iff there exist no A, B in B such that A Def B.
• B defends an argument A iff for each argument B ∈ A, if B Def A, then

there exists an argument C in B such that C Def B.

Definition 3 (Acceptability semantics) Let B be a conflict-free set of ar-
guments, and let F : 2A 7→ 2A be a function such that F(B) = {A | B defends A}.

• B is admissible iff it is conflict-free and defends every element in B.
• B is a complete extension iff B = F(B).
• B is a grounded extension iff it is the minimal (w.r.t. set-inclusion) com-

plete extension.
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• B is a preferred extension iff it is a maximal (w.r.t. set-inclusion) complete
extension.

• B is a stable extension iff it is a preferred extension that defeats w.r.t. Def
all arguments in A\B.

Note that a unique grounded extension always exists, although it may be the
empty set. It contains all the arguments which are not defeated, as well as
the arguments which are defended directly or indirectly by non-defeated ar-
guments.
In the remainder of this paper we use the expression “Dung’s standard se-
mantics” to refer to complete, grounded and preferred semantics. We use the
unqualified term “extension” to refer to a complete, grounded or preferred
extension.

Dung’s abstract argumentation theory leaves open the question of how ar-
guments actually look like, how they are constructed from a knowledge base
and the conditions under which one argument defeats the other. Several for-
malisms, such as [4,42,34] aim to fill this gap.

In this paper we have chosen to treat one particular argumentation formalism
called ASPIC system [4], as an illustration of how Dung’s abstract argumen-
tation formalism can be applied for reasoning in the presence of inconsistency,
or for inference. The choice of ASPIC formalism is, we must admit, somewhat
arbitrary. We have chosen it mainly because of its relative simplicity, and the
fact that we have been closely connected to its development. In fact, much of
the current paper is a result of an analysis of the difficulties we encountered
when constructing the formalism, difficulties that turned out also to play a
role in other formalisms for argumentation and nonmonotonic reasoning.

In what follows, L is a set of literals. We assume the availability of a function
“−”, which works with L, such that −ψ = φ iff ψ = ¬φ and −ψ = ¬φ iff ψ
= φ.

A strict rule is an expression of the form φ1, . . . , φn −→ ψ (n ≥ 0), indicating
that if φ1, . . . , φn hold, then without exception it holds that ψ. A defeasible
rule is an expression of the form φ1, . . . , φn =⇒ ψ (n ≥ 0), indicating that if
φ1, . . . , φn hold, then it usually holds that ψ. For both a strict and defeasible
rule it holds that each φi (1 ≤ i ≤ n) as well as ψ are elements of L.

Definition 4 (Theory) A defeasible theory T is a pair 〈S, D〉 where S is
a set of strict rules and D is a set of defeasible rules.

Definition 5 (Closure of a set of formulas) Let P ⊆ L. The closure of
P under the set S of strict rules, denoted ClS(P), is the smallest set such
that:

5



• P ⊆ ClS(P).
• if φ1, . . . , φn −→ ψ ∈ S and φ1, . . . , φn ∈ ClS(P) then ψ ∈ ClS(P).

If P = ClS(P), then P is said to be closed under the set S.

Definition 6 (Consistent set) Let P ⊆ L. P is consistent iff ∄ ψ, φ ∈ P
such that ψ = −φ, otherwise it is said to be inconsistent.

From a defeasible theory 〈S, D〉, arguments can be built. Before defining the
arguments, we first introduce some functions. The function Conc returns the
“top” conclusion of an argument (i.e. the last conclusion), Sub returns all its
sub-arguments and finally the functions StrictRules and DefRules return
respectively all the strict rules and the defeasible rules used in an argument.

In what follows, an argument has a deductive form and is constructed in a
recursive way by applying one or more strict or defeasible rules. In order to
distinguish them from the strict and defeasible object level rules, we use short
arrows for the strict and defeasible argument construction rules.

Definition 7 (Argument) Let 〈S, D〉 be a defeasible theory. An argument
A is:

• A1, . . . , An → ψ if A1, . . . , An, with n ≥ 0, are arguments such that there
exists a strict rule Conc(A1), . . . , Conc(An) −→ ψ.
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}.
StrictRules(A) = StrictRules(A1) ∪ . . . ∪ StrictRules(An) ∪ {Conc(A1),
. . ., Conc(An) −→ ψ},
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An).

• A1, . . . , An ⇒ ψ if A1, . . . , An, with n ≥ 0, are arguments such that there
exists a defeasible rule Conc(A1), . . . , Conc(An) =⇒ ψ.
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
StrictRules(A) = StrictRules(A1) ∪ . . . ∪ StrictRules(An),
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An) ∪ {Conc(A1), . . .
Conc(An) =⇒ ψ}.

Arg denotes the set of all arguments that can be built from the theory 〈S, D〉.
Let A,A′ ∈ Arg.

• A′ is a subargument of A iff A′ ∈ Sub(A).
• A′ is a direct subargument of A iff A′ ∈ Sub(A), ∄A′′ ∈ Arg, A′′ ∈ Sub(A),

A′ ∈ Sub(A′′), A 6= A′′, and A′ 6= A′′.
• A is an atomic argument iff ∄A′ ∈ Arg, A′ 6= A, and A′ ∈ Sub(A).

Let us illustrate the above definition with the following example.
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Example 1 Let S = {−→ a; −→ d} and D = {a =⇒ b; d =⇒ ¬b}. The
following arguments can be built:

A1 : [→ a]
A2 : [→ d]
A3 : [A1 ⇒ b]
A4 : [A2 ⇒ ¬b]

A1 and A2 are atomic arguments. A1 is a direct subargument of A3, and A2

is a direct subargument of A4.

An argument may be either strict if no defeasible rule is involved in it, or
defeasible otherwise. Formally:

Definition 8 (Strict vs. defeasible argument) Let A be an argument. A
is strict iff DefRules(A) = ∅, otherwise A is called defeasible.

Generally arguments may be in conflict with each other in different manners.
The first kind of conflicts concerns the conclusions of the arguments. Indeed,
two arguments may conflict with each other if they support contradictory
conclusions.

Definition 9 (Rebutting) Let A, B ∈ Arg. A rebuts B iff ∃ A′ ∈ Sub(A)
with Conc(A′) = φ and ∃ B′ ∈ Sub(B) with B′ a non-strict argument and
Conc(B′) = −φ.

Example 2 Let S = {−→ a; −→ t; a −→ b}, D = {b =⇒ c; t =⇒
¬b; ¬b =⇒ d}. The argument [[[→ a] → b] ⇒ c] rebuts [[[→ t] ⇒ ¬b] ⇒ d].
The reverse is not true.

The above definition puts strict arguments above defeasible ones in the sense
that a strict argument can rebut a defeasible one, but the reverse cannot be
the case. Note that this definition of rebutting is more general than the classi-
cal one defined in [29]. Indeed, in [29], an argument is supposed to have only
one conclusion. The intermediate consequences obtained when building that
argument are not taken into account. However, in [4] arguments may disagree
not only on their conclusions, but also on their intermediate consequences.

Two arguments may also conflict if one of them uses a defeasible rule whose
applicability is disputed by the other argument. In the following definition,
⌈.⌉ stands for the objectivation operator [40], which converts a meta-level ex-
pression (in our case: a defeasible rule) into an object-level expression (in our
case: a literal). This is needed because, syntactically, the conclusion of a rule
can only be a literal, whereas with undercutting one wants to express the
inapplicability of a rule.
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Definition 10 (Undercutting) Let A and B be arguments. A undercuts B
iff ∃ B′ ∈ Sub(B) of the form B′′

1 , . . . , B′′
n ⇒ ψ and ∃ A′ ∈ Sub(A) with

Conc(A′) = ¬⌈Conc(B′′
1 ), . . . , Conc(B′′

n) =⇒ ψ⌉.

As an example to illustrate the difference between rebutting and undercutting,
consider argument A: “The object is red because John says it looks red.” A
rebutter of A could be (B1) “The object is not red because Suzy says it
looks blue.” An undercutter of A could be [40] (B2) “The object is merely
illuminated by a red light.” This, of course, is not a reason for it not being
red, but merely indicates that the fact that it looks red is no longer a reason
for it actually being red.

The two relations: undercut and rebut are brought together is the definition
of “defeat” as follows: 1

Definition 11 (Defeat) Let A and B be elements of Arg. We say that A
defeats B iff

(1) A rebuts B, or
(2) A undercuts B.

The ASPIC system, built from a theory T = 〈S,D〉, is a pair 〈Arg, Defeat〉,
where Arg is the set of arguments built from T using Definition 7, and Defeat is
the relation given in the above definition 11. For determining among elements
of Arg the acceptable arguments, any of Dung’s standard semantics (Definition
3) can be applied. We will write E1, . . . , En to denote the different extensions
under one of those semantics.

We can show that if an argument is in a given extension, then all its sub-
arguments are also in that extension.

Proposition 1 Let 〈Arg, Defeat〉 be an argumentation system, and let E1,
. . ., En be its different extensions under one of Dung’s standard semantics.
∀Ei ∈ {E1, . . ., En}, ∀A ∈ Ei, Sub(A) ⊆ Ei.

2

The last step of an argumentation process consists of determining, among
all the conclusions of the different arguments, the ones that can ultimately
be accepted: the justified conclusions. Let Output denote this set of justified
conclusions. One way of defining Output is to consider the conclusions that

1 In the original ASPIC system, it is also possible to take into account the relative
strength of the arguments when determining when argument A defeats argument B.
For reasons of simplicity, argument strength is not treated in the current discussion.
In [6], it has been shown that it is straightforward to extend the system to handle
preferences.
2 Proofs for propositions and theorems can be found in the appendix of the paper.
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are supported by at least one argument in each extension. The idea is that
one should not only define rationality postulates for each individual extension,
but also for the overall justified conclusions, thus the need for Output.

Definition 12 (Justified conclusions) Let 〈Arg, Defeat〉 be an argumen-
tation system, and {E1, . . . , En} (n ≥ 1) be its set of extensions under one of
Dung’s standard semantics.

• Concs(Ei) = {Conc(A) | A ∈ Ei} (1 ≤ i ≤ n).
• Output = ∩i=1...nConcs(Ei).

It should be noticed that Output is defined using a skeptical attitude. This is
a deliberate choice, since basing Output on a credulous attitude can result in
inconsistencies, even in the case where each individual extension has consistent
conclusions. In the remainder of this paper, we are interested in both the
conclusions of an individual extension (Concs(Ei)) as well as in the overall
justified conclusions (Output).

It should also be noticed that for simplicity we do not consider the case where
there are no extensions. This, for instance, rules out a treatment of stable
semantics in this paper.

Let us consider the following illustrative example as an illustration of the
above definitions.

Example 3 Let S = {−→ a; −→ d} and D = {a =⇒ b; d =⇒ ¬b}. The
following arguments can be constructed:

A1 : [→ a] A3 : [A1 ⇒ b]

A2 : [→ d] A4 : [A2 ⇒ ¬b]

Argument A3 defeats A4 and vice versa. However, the arguments A1 and A2

do not have any defeaters. Thus, they belong to each extension. Consequently,
a and d will be considered as justified conclusions.

3 SOME PROBLEMS IN ARGUMENTATION FRAMEWORKS

In this section, we start first by proving some interesting properties of the
formalism described in the previous section, especially regarding the consis-
tency of its conclusions. It will then be argued that these properties may not
be enough to warrant a good quality of the formalism. It turns out that there
exist anomalies that occur not only in the above described first version of
the ASPIC formalism, but also in several other of today’s argumentation for-
malisms. Before discussing all these issues in detail, let us first introduce a
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notion that is useful for the rest of the paper, that of consistency of a set S
of strict rules.

Definition 13 (Consistent set of strict rules) Let S be a set of strict rules.
S is said to be consistent iff ∄ A, B ∈ Arg such that A and B are strict ar-
guments and Conc(A) = −Conc(B).

In the remainder of this paper, we will use the pair 〈A, Def〉 to refer to
any argumentation system that is built around a defeasible theory T . The
structure of arguments and the conflict relation are unspecified. This means
that arguments in A may be defined for instance as a tree, a sequence, etc.
Similarly, one may consider any definition of the relation Def . Moreover,
this argumentation system may use any acceptability semantics, i.e. Dung’s
standards ones or their different refinements or alternatives proposed in the
literature.

3.1 Consistency

The ASPIC system, like many other formalisms in the field of argumentation
and defeasible reasoning, satisfies the requirement that each extension has
consistent conclusions.

Proposition 2 Let 〈Arg, Defeat〉 be an argumentation system built from a
theory 〈S,D〉 with S consistent, and E1, . . . , En its different extensions under
one of Dung’s standard semantics. Concs(Ei) is consistent for each 1 ≤ i ≤ n.

We can verify that if the sets of conclusions of the different extensions are con-
sistent, then the output of the system is also consistent. Note that this result
is general in the sense that it does not depend on the particular definitions of
argument structure and defeat of the ASPIC system.

Proposition 3 Let T be a defeasible theory, 〈A, Def〉 be an argumentation
system built from T . Let E1, . . . , En be its extensions under one of Dung’s
standard semantics, and Output be as in definition 12.
If Concs(Ei) is consistent for each 1 ≤ i ≤ n then Output is consistent.

From Proposition 2 and Proposition 3, we can then deduce that the output of
the ASPIC system is consistent.

Property 1 Let T be a defeasible theory with S consistent, 〈Arg, Defeat〉 be
an argumentation system built from T . Then, Output is consistent.
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3.2 Some Problematic Examples

The sole fact that a formalism for defeasible reasoning or argumentation re-
turns consistent results may in many cases not be enough to warrant the
absence of other anomalies. To make this point more clear, it is interesting to
consider the following example.

Example 4 (Married John) Let S = {−→ wr; −→ go; b −→ ¬hw; m −→
hw} and D = {wr =⇒ m; go =⇒ b} with: wr = “John wears something that
looks like a wedding ring”, m = “John is married”, hw = “John has a wife”,
go = “John often goes out until late with his friends”, b = “John is a bache-
lor”. The following arguments can be constructed:

A1 : [→ wr] A4 : [A2 ⇒ b]

A2 : [→ go] A5 : [A3 → hw]

A3 : [A1 ⇒ m] A6 : [A4 → ¬hw]

The argument A5 defeats the argument A6 and vice versa. However, the ar-
guments A1, A2, A3 and A4 do not have any defeaters. If one applies, for in-
stance, grounded semantics, the grounded extension then becomes {A1, A2, A3,
A4}. Consequently, Output = {wr, go,m, b}, this means that both m (”John
is married”) and b (”John is a bachelor”) are considered justified.

Example 4 clearly shows that counter-intuitive conclusions may be inferred
from a defeasible theory using the above argumentation framework. As a con-
sequence, the closure of the set of inferences under the set of strict rules may be
inconsistent. In the previous example, the closure of Output (= {wr, go,m, b})
under the set of strict rules is {wr, go,m, b, hw,¬hw} which is inconsistent.
To some extent, the problem can be identified as m and b being incompatible
without the entailment mechanism being strong enough to detect this. If, for
instance, in the previous example it would be allowed to apply contraposition
on m −→ hw and b −→ ¬hw then counterarguments against m and b could
be constructed, which would prevent them to follow from the same extension.

The above example is problematic not only in the ASPIC system. In fact, the
defeasible logic of Donald Nute, as described in [34] suffers from exactly the
same problem. When one translates the example to Nute’s particular syntax,
one obtains essentially the same result: m and b are justified, and hw and ¬hw
are left undecided.

It should be noted that another argumentation formalism, stated by Prakken
and Sartor [42], is defined in such a way to avoid the problematic outcome
of example 4. When translated to the formalism of [42], example 4 no longer
yields m and b as justified conclusions. This is implemented by extending the
notion of defeat. Informally, argument A rebuts argument B in [42] iff it is
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possible to “add” strict rules to A and B (like m −→ hw to A and b −→ ¬hw
to B) such that the extended versions of A and B have opposite conclusions.

Although Prakken and Sartor’s solution works for the case of example 4, there
exist other examples where their approach still yields anomalies. A relatively
straightforward case is the following.

Example 5 Let S = {−→ a; −→ d; −→ c; b, e −→ ¬c} and D = {a =⇒
b; d =⇒ e}. Here, the arguments
A = [[→ a] ⇒ b],
B = [[→ d] ⇒ e],
C = [→ c]
do not have any defeaters. This means that A, B and C are in any Dung-
style extension. Therefore, the propositions b, e and c are considered justified.
Note that although there exists a strict rule b, e −→ ¬c, ¬c is not a justified
conclusion. This shows that the justified conclusions are not closed under strict
rules. Worse yet, the closure of the justified conclusions under strict rules may
even be inconsistent.

The last formalism to be discussed is that of Garćıa and Simari [33]. It is
interesting to notice that this formalism can properly handle both example
4 and example 5. It essentially does so by considering two arguments to be
conflicting (disagreeing) iff from their respective conclusions, an inconsistency
can be derived using strict rules only. Although this indeed yields the desired
results in example 4 and example 5, there still exist examples that are not
handled correctly.

Example 6 Let S = {−→ a; −→ d; −→ g; b, c, e, f −→ ¬g} and D =
{a =⇒ b; b =⇒ c; d =⇒ e; e =⇒ f}. Now, consider the following arguments:
A = [[→ a] ⇒ b]
B = [[→ d] ⇒ e]
C = [[A ⇒ c]
D = [[B ⇒ f ]
The arguments A, B, C and D do not have any defeaters. To see why, consider
for instance argument D. D has no defeaters because there is no argument that
can produce a literal (conclusion) that disagrees with f . Similar observations
also hold for A, B and C. Because A, B, C and D do not have defeaters, they
are automatically ultimately acceptable. This means that the literals b, c, e and
f are justified (as well as the facts a and g). This means that the closure of
the justified conclusions under strict rules is again inconsistent!
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3.3 Discussion

The way the above mentioned argumentation systems deal with the critical
examples is unsatisfactory from a conceptual point of view. Suppose, for in-
stance, a user wants to use an inference engine of Defeasible Logic [34]. For
this, he provides the inference engine with a set of strict and defeasible rules.
Suppose one of the strict rules is of the form: “if m then it is always the case
that hw”. Then he may be very surprised to find that the outcome of the
inference engine contains m but not hw. Worse yet, if the user tries to do his
own reasoning based on the inference engine’s output (“My inference engine
says m and I know that m always implies hw, so it must hold that hw. My
inference engine also says that b and I know that b always implies ¬hw, so it
must hold that ¬hw.”) then the outcome is directly inconsistent.

The problem with the above examples is that the language used is not ex-
pressive enough to capture all the different kinds of conflicts that may exist
between arguments. As a consequence of missing some conflicts, the conclu-
sions may be counter-intuitive. In example 4, for instance, it should simply
not be possible to conclude that John is both married and bachelor, as deriv-
ing these conclusions means that problems of inconsistency and non-closure
appear.

4 RATIONALITY POSTULATES

Like any reasoning model, an argumentation-based system should satisfy some
principles which support the system to be of good quality. The aim of this sec-
tion is to present and to discuss three important postulates: direct consistency,
indirect consistency and closure, that any rule-based argumentation-based sys-
tem should satisfy in order to avoid the problems discussed in the previous
section.

The idea of closure is that the answer of an argumentation-engine should be
closed under strict rules. That is, if we provide the engine with a strict rule
a −→ b (“if a then it is also without exception the case that b”), together with
various other rules, and our inference engine outputs a as justified conclusion,
then it should also output b as justified conclusion. Consequently, b should
also be supported by an acceptable argument.

We say that an argumentation system satisfies closure if its set of justified
conclusions, as well as the set of conclusions supported by each extension are
closed.
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Postulate 1 (Closure) Let T be a defeasible theory, 〈A, Def〉 be an argu-
mentation system built from T . Output is its set of justified conclusions, and
E1, . . . , En its extensions under a given semantics. 〈A, Def〉 satisfies closure
iff:

(1) Concs(Ei) = ClS(Concs(Ei)) for each 1 ≤ i ≤ n.
(2) Output = ClS(Output).

The first condition says that every extension should be closed in the sense that
an extension should contain all the arguments acceptable w.r.t it. As closure
is an important property, one should search for ways to alter or constrain
one’s argumentation formalism in such a way that its resulting extensions and
conclusions satisfy closure.

It can be shown that if the different sets of conclusions of the extensions are
closed, then the set Output is also closed.

Proposition 4 Let T be a defeasible theory, 〈A, Def〉 be an argumentation
system built from T . Let E1, . . . , En be its extensions under a given semantics,
and Output be as in definition 12.
If Concs(Ei) = ClS(Concs(Ei) for each 1 ≤ i ≤ n, then Output = ClS(Output).

Another important property of an argumentation system is direct consistency.
An argumentation system satisfies direct consistency if its set of justified con-
clusions and the different sets of conclusions corresponding to each extension
are consistent. Formally:

Postulate 2 (Direct Consistency) Let T be a defeasible theory, 〈A, Def〉
be an argumentation system built from T . Output is its set of justified con-
clusions, and E1, . . . , En its extensions under a given semantics. 〈A, Def〉
satisfies direct consistency iff:

(1) Concs(Ei) is consistent for each 1 ≤ i ≤ n.
(2) Output is consistent.

Most argumentation systems satisfy the above postulate of direct consistency.
Unfortunately, they often violate the postulate of indirect consistency. By
indirect consistency we mean that (1) the closure under the set of strict rules
of the set of justified conclusions is consistent, and (2) for each extension, the
closure under the set of strict rules of its conclusions is consistent. When this
postulate is violated, it means that undesirable conclusions can be inferred.

Postulate 3 (Indirect Consistency) Let T be a defeasible theory, 〈A, Def〉
be an argumentation system built from T . Output is its set of justified con-
clusions, and E1, . . . , En its extensions under a given semantics. 〈A, Def〉
satisfies indirect consistency iff:
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(1) ClS(Concs(Ei)) is consistent for each 1 ≤ i ≤ n.
(2) ClS(Output) is consistent.

Again, we can show that if all the extensions produce a consistent closed
output, then the closure of the set Output is consistent. Formally:

Proposition 5 Let T be a defeasible theory, 〈A, Def〉 be an argumentation
system built from T . Let E1, . . . , En be its extensions under a given semantics,
and let Output be as in definition 12.
If ClS(Concs(Ei)) is consistent for each 1 ≤ i ≤ n, then ClS(Output) is
consistent.

Another straightforward result is that, if indirect consistency is satisfied by an
argumentation system, then direct consistency is also satisfied by that system.

Proposition 6 If an argumentation system 〈A, Def〉 satisfies indirect con-
sistency, then it also satisfies direct consistency.

In addition to the above result, one can show that a formalism that satisfies
closure as well as direct consistency also satisfies indirect consistency.

Proposition 7 Let 〈A, Def〉 be an argumentation system. If 〈A, Def〉 satis-
fies closure and direct consistency, then it also satisfies indirect consistency.

So far, we have identified a number of rationality postulates and examined the
effects of their violation. Table 1 provides a brief summary of these effects.

Postulate Violation can result in

Direct consistency Absurdities

Indirect consistency Users not being allowed to apply

modus ponens on strict rules

Closure Conclusions that should come

out appear to be missing

Table 1
The effects of violated postulates.

As for direct consistency, the situation is straightforward. When direct consis-
tency is violated, two contradictory statements (say ψ and ¬ψ) are justified
at the same time, which is clearly an absurdity. As for indirect inconsistency
— which is for instance violated in the original “Married John” example (Ex-
ample 4) — the situation is somewhat more complex. It can be the case that
a formalism satisfies direct consistency but violates indirect consistency (an
example would be the Defeasible Logic of Donald Nute [33]). In that case,
the users of an implementation of such a system would be disallowed from
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doing their own reasoning based on its outcome. That is, one may not take
the outcome of the formalism and apply modus ponens using the strict rules,
as otherwise absurdities may result.

As for the property of closure, the basic idea is that the conclusions of the
formalism should be “complete”. It should not be the case that the user must
do its own reasoning (take the outcome of the formalism and apply modus
ponens using the strict rules) to derive statements that the formalism appar-
ently “forgot” to entail. A formalism that satisfies closure has done all of this
work by itself.

5 POSSIBLE SOLUTIONS

The aim of this section is to “repair” the ASPIC system defined in [4], by
providing two solutions that satisfy the three rationality postulates discussed
in the previous section. Thus, in all what follows, we will handle only the
system of [4]. Nevertheless, the proposed solutions could also be implemented
in [34], [42] and [33].

According to Proposition 2 and Property 1, it is clear that this system already
satisfies direct consistency.

Property 2 Let 〈Arg, Defeat〉 be an argumentation system built from a the-
ory 〈S,D〉 with S consistent. 〈Arg, Defeat〉 satisfies direct consistency (i.e
Postulate 2).

However, as shown through Example 4, the ASPIC system violates closure
and indirect consistency. A possible analysis of Example 4 is that some strict
rules are missing. That is, if the rules ¬hw −→ ¬m and hw −→ ¬b (which are
the contraposed versions of the existing rules m −→ hw and b −→ ¬hw) are
added to S, then one can, for instance, construct a counter-argument against
[[→ go] ⇒ b]: [[[[→ wr] ⇒ m] → hw] → ¬b]. The basic idea is then to make
explicit in S this implicit information by computing a closure of the set S.
The question then becomes whether it is possible to define a closure operator
Cl on S such that the outcome makes sure that the argumentation system
built on the defeasible theory 〈Cl(S),D〉 satisfies closure and consistency.

5.1 Strict rules closed under classical entailment

One way to define a closure operator given a set of strict rules would be to
convert the strict rules to material implications, calculate their closure under
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propositional logic, and convert the result back to strict rules again. In what
follows, ⊢ denotes classical inference.

Definition 14 (Propositional operator) Let S be a set of strict rules and
P ⊆ L. We define the following functions:

• Prop(S) = {φ1 ∧ . . . ∧ φn ⊃ ψ | φ1, . . . , φn −→ ψ ∈ S}
• Cnprop(P) = {ψ | P ⊢ ψ}
• Rules(P) = {φ1, . . . , φn −→ ψ | φ1 ∧ . . . ∧ φn ⊃ ψ ∈ P}

The propositional closure of S is Clpp(S) = Rules(Cnprop(Prop(S))).

First of all, it can easily be seen that Clpp satisfies the following three prop-
erties, which follow from the nature of classical logic:

Property 3 Let S be a set of strict rules and let S1,S2 ⊆ S.

(1) S ⊆ Clpp(S)
(2) If S1 ⊆ S2 then Clpp(S1) ⊆ Clpp(S2)
(3) Clpp(Clpp(S)) = Clpp(S)

Furthermore, by using Clpp(S) instead of just S, one guarantees that under
grounded semantics the postulates closure (postulate 1), direct consistency
(postulate 2) and indirect consistency (postulate 3) are warranted for the
ASPIC system.

Theorem 1 Let 〈Arg, Defeat〉 be an argumentation system built from the
defeasible theory 〈Clpp(S),D〉 such that Clpp(S) is consistent. Output is its
set of justified conclusions and E its grounded extension. Then, 〈Arg, defeat〉
satisfies closure and indirect consistency.

To illustrate how Clpp works, consider again example 4.
Example 4 – continued: Let S = {−→ wr; −→ go; m −→ hw; b −→
¬hw} and D = {wr =⇒ m; go =⇒ b}.
Under 〈Clpp(S),D〉 the following arguments can be constructed:

A1: [→ wr]
A2: [→ go]
A3: [A1 ⇒ m]
A4: [A2 ⇒ b]
A5: [A3 → hw]
A6: [A4 → ¬hw]
A7: [A5 → ¬b] (using the rule hw −→ ¬b)
A8: [A6 → ¬m] (using the rule ¬hw −→ ¬m)
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Now the argument A3 has a defeater which is A8. Since A8 also defeats A3,
the two arguments will not be in the grounded extension. Consequently, m is
no longer a justified conclusion. Similarly, the two arguments A4 and A7 are
conflicting. Therefore, b is not justified either. Thus, only the premises wr and
go are considered justified in this example.

The previous example illustrates that, although the closure of strict rules
under Clpp operator solves the issue of closure and indirect consistency un-
der grounded semantics, the problem is still open for the other acceptability
semantics (like complete and preferred semantics) This can be seen by again
examining the example of “Married John”.
Example 4 – continued: As said before, the argument A4 has a unique de-
feater which is A7 and A3 has one defeater which is A8. However, A4 defeats
A7 and A3 defeats A8. Thus, the set {A3, A4} is an admissible extension since
it defends itself against all its defeaters (A7, A8). And because {A3, A4} is ad-
missible, there also exists a preferred extension (a superset of {A3, A4}) with
conclusions b and also m. This means that this preferred extension does not
satisfy closure. Moreover, the closure under the strict rules of its conclusions
is inconsistent. However, note that since we are using a skeptical reasoning,
neither m nor ¬m (resp. neither b nor ¬b) can be inferred from this theory.
Thus, the problem concerns only the results returned by individual extensions,
and not the output of the system.

To solve this problem, an alteration to the core formalism is necessary, in
particular to the notion of rebutting. The idea is to consider a restricted no-
tion of rebutting so that an argument can only be rebutted on the consequent
of one of its defeasible rules. This can be stated as follows:

Definition 15 (Restricted rebutting) Let A and B be arguments. A re-
strictively rebuts B on (A′, B′) iff A′ ∈ Sub(A) such that Conc(A′) = φ and
B′ ∈ Sub(B) such that B′ is of the form B′′

1 , . . . , B′′
n ⇒ −φ.

Note that the restricted version of rebut is a special case of the unrestricted
version of rebut.

Property 4 Let A and B be arguments. If A restrictively rebuts B, then A
rebuts B. The reverse is not always true.

Let us consider the following counter-example:
Example 4 – continued: In the previous example, the argument A4 rebuts
A7, but A4 does not restrictively rebuts A7.

We now consider the following argumentation system: 〈Arg, Defeat r〉 such
that Defeatr is defined as follows:
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Definition 16 (Restricted Defeating) Let A and B be arguments. We say
that A defeatsr B iff

(1) A restrictively rebuts B, or
(2) A undercuts B.

Before showing how restricted rebut can help to solve the issue of postulates,
let us first introduce an important result. In fact, it can be verified that when
“restricted rebutting” is used instead of “rebutting”, 3 then the argumentation
formalism immediately satisfies closure, without the need to compute any
closure of the set S. On the other hand, when “rebutting” is used, it is direct
consistency that is immediately satisfied, as shown by Property 2.

Proposition 8 Let 〈Arg, Defeatr〉 be an argumentation system built from a
theory 〈S,D〉, and E1, . . . , En its complete extensions. Then, 〈Arg, Defeatr〉
satisfies closure.

Now let us consider again the problem of example 4.
Example 4 – continued: Using the restricted version of defeat, the argument
A4 does not defeat A7 and A3 does not defeat A8. Thus, the set {A3, A4} is
no longer an admissible extension since it does not defend itself against all its
defeaters (A7, A8).

We will now show that if we consider the Clpp operator and the “restricted re-
butting” then the two remaining postulates (closure and indirect consistency)
are satisfied under each of Dung’s standard semantics.

Theorem 2 Let 〈Arg, Defeatr〉 be an argumentation system built from the
theory 〈Clpp(S),D〉 such that S is consistent, Output its set of justified con-
clusions and E1, . . . , En its extensions under one of Dung’s standard seman-
tics.
Then, 〈Arg, Defeatr〉 satisfies direct consistency and indirect consistency.

In the previous example, it can be seen that Clpp can generate a rule (in this
case: ¬hw −→ ¬m) that is needed to obtain an intuitive outcome. As a side
effect, Clpp also generates many rules that are not actually needed to obtain the
intuitive outcome. An example of such a rule is b −→ ¬m, which corresponds

3 Applying “restricted rebutting” instead of (unrestricted) “rebutting” also affects
the validity of some of the results that have been obtained until now. Proposition
2, for instance, is not valid under restricted rebutting (Theorem 2 and 4 will repair
this). Proposition 1, however, can also quite easily be proved under restricted re-
butting. Furthermore, results that do not depend on the particular way in which
defeat is defined (like Proposition 3, 4, 5, 6 and 7) remain valid under restricted
rebutting.
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to applying transitivity on the rules b −→ ¬hw and ¬hw −→ ¬m. Worse
yet, Clpp may also generate rules which are actually harmful for obtaining an
intuitive outcome. An example of such a rule is p,¬p −→ ¬q. To see why this
is harmful, consider the case of two arguments for conflicting conclusions (like
the Nixon diamond) p and ¬p. With strict rules as classical entailment, one
can then combine these arguments to form an argument that can defeat an
arbitrary statement (like q), as p,¬p ⊢ ¬q. This phenomenon is particularly
problematic under grounded semantics [39,40] but also plays a role under
preferred semantics [22]. Although an approach is given in [22] we will not go
into details here.

5.2 Strict rules closed under transposition

In the light of the above, one can observe that the approach of computing
the closure of a set of strict rules requires a closure operator that generates at
least those rules that are needed to satisfy closure and consistency, but at the
same time does generate rules which can be used to build new arguments that
may keep “good” arguments from becoming acceptable, and consequently keep
their conclusions from becoming justified. In other words, the closure operator
should not generate too little, but it should not generate too much either.

We are now about to define a second closure operator Cltp that is significantly
weaker than our first one (Clpp). Our discussion starts with the observation
that a strict rule (say φ1, . . . , φn −→ ψ), when translated to propositional
logic (φ1 ∧ . . . ∧ φn ⊃ ψ) is equivalent to a disjunction (¬φ1 ∨ . . . ∨ ¬φn ∨ ψ).
In this disjunction, different literals can be put in front (like ¬φi in ¬φ1 ∨
. . .∨¬φi−1 ∨ψ ∨¬φi+1 ∨ . . .∨¬φn ∨¬φi), which can again be translated to a
strict rule (φ1, . . . , φi−1,¬ψ, φi+1, . . . , φn −→ ¬φi). This leads to the following
definition.

Definition 17 (Transposition) A strict rule s is a transposition of φ1, . . .,
φn −→ ψ iff s = φ1, . . ., φi−1, ¬ψ, φi+1, . . ., φn −→ ¬φi for some 1 ≤ i ≤ n.

Based on the thus defined notion of transposition, we now define our second
closure operator.

Definition 18 (Transposition operator) Let S be a set of strict rules.
Cltp(S) is a minimal set such that:

• S ⊆ Cltp(S), and
• If s ∈ Cltp(S) and t is a transposition of s then t ∈ Cltp(S).

We say that S is closed under transposition iff Cltp(S) = S.
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It is easily verified that with the Cltp operator, example 4 (Married John) is
handled correctly. More generally, the use of such an operator allows the three
rationality postulates to be satisfied.

Theorem 3 Let 〈Arg, Defeat〉 be an argumentation system built from 〈Cltp(S),
D〉 where Cltp(S) is consistent, Output its set of justified conclusions and E
its grounded extension. Then, 〈Arg, Defeat〉 satisfies closure and indirect con-
sistency.

Note that 〈Arg, Defeat〉 satisfies also consistency (according to Property 2)
since the unrestricted version of the rebutting relation is considered here. As
for the Clpp operator, the Cltp operator by itself is not enough to guaran-
tee the closure and indirect consistency of an argumentation system for the
other acceptability semantics (like complete and preferred semantics). Let us
consider another example to illustrate this issue.

Example 7 Let S = {−→ a; −→ b; −→ c; −→ g; d, e, f −→ ¬g} and
D = {a =⇒ d; b =⇒ e; c =⇒ f}.
Now, consider the following arguments:
A1 : [[→ a] ⇒ d]
A2 : [[→ b] ⇒ e]
A3 : [[→ c] ⇒ f ]
One can easily verify that without Cltp, the arguments A1, A2 and A3 do
not have any counter-arguments (which makes them members of each Dung-
style extension). However, if one would replace the defeasible theory 〈S,D〉
by 〈Cltp(S),D〉, then counter-arguments against A1, A2 and A3 do exist. For
instance, A4 = [[[→ b] ⇒ e], [[→ c] ⇒ f ], [→ g] → ¬d] defeats A1 (because
e, f, g −→ ¬d ∈ Cltp(S)).
The counter-arguments against A1, A2 and A3 make sure that, under grounded
semantics, neither d, e nor f is justified. At the same time, however, it must be
observed that the set {A1, A2, A3} is admissible. Even though A4 defeats A1, A1

also defeats A4, and similar observations can also be made with respect to A2

and A3. And because {A1, A2, A3} is admissible, there also exists a preferred
extension (a superset of {A1, A2, A3}) with conclusions d, e, f and also g.
This means that this preferred extension does not satisfy closure. Moreover,
the closure under the strict rules of its conclusions is inconsistent.

So, while the closure of strict rules under transposition solves the issue of clo-
sure and indirect consistency under grounded semantics, the problem is still
open for preferred semantics. For this, we will consider again the argumenta-
tion system 〈Arg, Defeatr〉 with the restricted version of rebutting.
To see how the restricted rebut can help to solve the issue of postulates, con-
sider again the problem of example 7.
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Example 7 – continued: Again consider the following arguments:
A1 : [[→ a] ⇒ d]
A2 : [[→ b] ⇒ e]
A3 : [[→ c] ⇒ f ]
Under the restricted version of rebutting, it holds that {A1, A2, A3} is not
an admissible set under 〈Cltp(S),D〉. For instance, the argument [[[→ b] ⇒
e], [[→ c] ⇒ f ], [→ g] → ¬d] (A4) now rebuts A1 but A1 does not rebut A4,
nor does any other argument in {A1, A2, A3} defeat A4. Thus {A1, A2, A3}
is not admissible in 〈Cltp(S),D〉 under the restricted definition of rebutting.

We will now show that if we consider the transposition closure Cltp and the
restricted version of the rebutting relation then direct and indirect consistency
are satisfied under each of Dung’s standard semantics.

Theorem 4 Let 〈Arg, Defeatr〉 be an argumentation system built from the
theory 〈Cltp(S),D〉 with S is consistent. Output its set of justified conclusions
and E1, . . . , En its extensions under one of Dung’s standard semantics. Then,
〈Arg, Defeatr〉 satisfies direct consistency and indirect consistency.

Note that 〈Arg, Defeat〉 satisfies also closure as shown by Proposition 8 in the
Appendix.

5.3 Conclusions

So far, we have proposed two solutions for satisfying the three rationality pos-
tulates for the argumentation framework proposed in [4]. Table 2 summarizes
the different results obtained concerning direct consistency, indirect consis-
tency and closure. In what follows, we will use the wording “any extension”
in order to refer to all Dung’s standard semantics.

Type of rebutting Direct consistency Indirect consistency Closure

Rebut Under any Under grounded Under grounded

semantics extension extension

Restricted Rebut Under any Under any Under any

semantics semantics semantics

Table 2
Consistency and closure with the two closure operators.
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6 SUMMARY AND DISCUSSION

Although various systems for formal argumentation have been defined during
recent years, many of them can easily produce results that, when given a closer
inspection, are very problematic to serve as a basis for beliefs, or for any other
purpose that allows for introspection on the results.

In order to avoid such problems, the aim of this paper is to define a number
of postulates that any argumentation system should satisfy. These postulates
should warrant that an argumentation formalism is well-defined and guarantee
some basic suitability of its outputs. We have focused on three important
postulates: the closure, the direct consistency and the indirect consistency of
the results of a system. These are violated by several argumentation systems
such as [33,34,42]. We then studied ways in which these postulates can be
warranted for an instantiation of the Dung system. In particular, we have
proposed two closure operators that allow to make more explicit some implicit
information. Thus, the contribution of this paper is not to state an entirely
new formalism for argumentation and defeasible reasoning. Instead, we have
stated a number of general approaches (like transposition) that can be applied
to a wide variety of argumentation formalisms, including [4,33,34,42].

It should be mentioned that the problem of rationality postulates is not neces-
sarily connected to argumentation formalisms that use Dung-style semantics.
For instance, as was explained in section 3, the formalism of [33] violates the
rationality postulates of closure and indirect consistency, even though it does
not use any of Dung’s standard semantics. The point is that many of the prob-
lematic examples, as discussed in section 3 arise because some arguments do
not have counterarguments (like is for instance the case in the Married John
example), although intuitively they should have. In almost all semantics that
we know of, such arguments without defeaters are in each extension; this is not
only the case for the standard semantics (i.e. grounded, preferred, complete
and stable), but also for semi-stable [24], ideal [1] and CF2 [13].

As for the proposed solutions, in section 5 it was stated that the approach of
transposition (Cltp) in combination with restricted rebutting satisfies the ra-
tionality postulates for any of Dung’s standard semantics. Actually, one could
even generalize this result. As the proof of Theorem 4 works for each semantics
of which the extensions are a non-empty subset of the complete extensions,
this not only includes preferred, complete or grounded semantics, but also for
instance ideal semantics [1] or even relatively new approaches like semi-stable
semantics [24]. For all these semantics, the approach of transposition in com-
bination with restricted rebutting satisfies the rationality postulates discussed
in this paper.
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Although in most of this paper, the rationality postulates are discussed using
Dung’s analysis of formal argumentation [28], it should be mentioned that
the issue of rationality postulates is not necessarily bound to it. In fact, the
rationality postulates are applicable to any formalism for defeasible reason-
ing (be it argumentation or a more traditional nonmonotonic logic) that uses
a knowledge base containing strict and defeasible rules to entail extensions
with associated conclusions. This includes approaches like [39] and [33]. The
reason why we have selected Dung’s approach to illustrate some of the prob-
lems is mainly because it is relatively well-known among researchers in formal
argumentation and nonmonotonic logic.

A different issue is that of computational complexity of the proposed solu-
tions. While it is true that the approach of propositional closure (Clpp) in-
volves the usual issues of computational complexity that are associated with
propositional logic, the approach of transposition (Cltp) can be seen as a more
lightweight approach. It should be observed that a strict rule has at most k
transpositions, where k is the size of its body. If we assume that a set S of n
strict rules has an average body size of k then this generates at most n times
k transpositions of S. Thus, generating the necessary transpositions is a task
that is linear to the size of S. Experiences from the first experimental im-
plementations 4 using Cltp indicate that the added computational complexity
from transposition does not cause any serious problems.

At a first sight, the rationality postulate of closure seems to require the prop-
erty of logical omniscience, but this is not necessarily the case. The point
is that an implementation of an argumentation formalism may very well be
query-based. For semantics like grounded, complete or preferred, it is very well
possible to answer the question whether a formula p follows from at least one
extension, or even from every extension [42,46] without actually computing all
extensions under the semantics in question. With the query-based approach,
logical omniscience is not an issue since one only generates the conclusions
and arguments that one actually needs in order to answer a query.

The approach of closing the strict rules under transposition (Cltp) is to some
extent comparable with the approach of Clark completion for logic programs
[27]. Both make explicit information that was left implicit in the original
formalization. The difference, however, is that Clark completion is related to
the Closed World Assumption. That is, if something does not follow from the
knowledge base, then it is assumed not to hold. Transposition, on the other
hand, is based on the idea that something may not be explicitly in the original
knowledge base, but it still should be assumed to hold since it logically follows
from this knowledge base.

4 See http://aspic.acl.icnet.uk/

24



A topic related to the one discussed in the current paper is whether one can
state rationality postulates not so much with respect to the conclusions of the
argumentation formalism, but with respect to the argument-based semantics
applied by it. It is interesting to see that this topic has caught some recent
attention. Caminada, for instance, is able to capture the traditional Dung-style
semantics (grounded, preferred, complete and stable) as well as the newly
invented semi-stable semantics essentially in one postulate [23]. Baroni and
Giacomin apply a total of nine postulates with which they are able not only
to evaluate the traditional Dung-style semantics, but also non admissibility
based semantics, such as CF2 [13]. Thus, the approach of applying postulates
in formal argumentation has many useful applications.
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Appendix

The following two lemmas follow directly from [28].

Lemma 1 Let 〈A, Def〉 be an argumentation framework and B ⊆ A. If B is
admissible, then B ⊆ F(B).

Proof Suppose that B is admissible. Now take an arbitrary argument A ∈ B.
As A is defended by B (because B is admissible), it is also in F(B). Therefore,
B ⊆ F(B).

Lemma 2 Let 〈A, Def〉 be an argumentation framework and B ⊆ A. If B is
admissible, then F(B) is also admissible.

Proof Suppose B is admissible. In order to prove that F(B) is also admissi-
ble, we have to prove two things:

(1) F(B) is conflict-free.
Suppose F(B) is not conflict-free. That is, there exists some A,B ∈ F(B)
such that A defeats B. The fact that B ∈ F(B) means that B must defend
B against A. That is, B contains some C that defeats A. But the fact that
A ∈ F(B) means that B must defend A against C. Therefore, B must
contain some D that defeats C. But then B would not be conflict-free.
Contradiction.

(2) for each A ∈ F(B): A is defended by F(B).
This follows almost immediately from Lemma 1.

Proposition 1. Let 〈Arg, Defeat〉 be an argumentation system and E1, . . . , En

its different extensions under one of Dung’s standard semantics.
∀Ei ∈ {E1, . . . , En}, ∀ A ∈ Ei, Sub(A) ⊆ Ei

Proof As every complete, grounded or preferred extension is also a complete
extension, we only have to prove this under complete semantics. Let E be a
complete extension. Suppose that A ∈ E and A′ ∈ Sub(A). Suppose also that
A′ /∈ E. Since E is a complete extension, then this means that either E∪{A′}
is not conflict-free, or E does not defend A′.

Case 1: Suppose that E ∪ {A′} is not conflict-free. This means that ∃B ∈ E
such that B defeats A′, or A′ defeats B.
Suppose that B defeats A′, thus, B rebuts A′ or B undercuts A′ on A′′ ∈
Sub(A′). However, A′′ ∈ Sub(A). This means that B defeats A to. This
means that E is not conflict-free. Contradiction with the fact that E is a

30



complete extension.
Suppose that A′ defeats B, thus, A′ rebuts B or A′ undercuts B on B′ ∈
Sub(B). This means also that A defeats B on B′ since A′ ∈ Sub(A) and
B′ ∈ Sub(B) (according to the definitions of Rebutting and Undercutting).
This means that E is not conflict-free. Contradiction with the fact that E
is a complete extension.

Case 2: Suppose that E does not defend A′. This means that ∃B ∈ Arg such
that B defeats A′ on some A′′ ∈ Sub(A′) and ∄C ∈ E such that C defeats
B. Since A′′ ∈ Sub(A) it holds that B defeats A. Since E is a complete
extension and A ∈ E, then E defends A against B. Contradiction.

Proposition 2. Let 〈Arg, Defeat〉 be an argumentation system built from a
theory 〈S,D〉 with S consistent, and E1, . . . , En its different extensions under
one of Dung’s standard semantics. Concs(Ei) is consistent for each 1 ≤ i ≤ n.

Proof Let E be a complete extension. Suppose that {Conc(A) | A ∈ E} is
inconsistent. This means that ∃A,B ∈ E, Conc(A) = −Conc(B). Since E is
a complete extension, E is conflict-free. This means that A does not defeat B
and B does not defeat A. According to the definition of defeat, this means that
A does not rebut B and B does not rebut A. Consequently, A and B are strict
arguments (according to the definition of rebutting). Thus, StrictRules(A) ∪
StrictRules(B) is inconsistent. However, StrictRules(A) ∪ StrictRules(B)
⊆ S, and S is consistent. Contradiction.

Proposition 3. Let T be a defeasible theory, 〈A, Def〉 be an argumentation
system built from T . Let E1, . . . , En be its extensions under one of Dung’s
standard semantics, and Output be as in definition 12.
If Concs(Ei) is consistent for each 1 ≤ i ≤ n then Output is consistent.

Proof Suppose that ∀Ei, {Conc(A)|A ∈ Ei} is consistent. Suppose also that
Output is inconsistent. According to Definition 6 this means that ∃ψ,−ψ ∈
Output. According to Definition 12, it holds that ∀Ei, ∃Ai, Bi ∈ Ei such that
Conc(Ai) = ψ and Conc(Bi) = −ψ. This means that ∀Ei, {Conc(A)|A ∈ Ei}
is inconsistent. Contradiction.

Proposition 4. Let T be a defeasible theory, 〈A, Def〉 be an argumentation
system built from T . Let E1, . . . , En be its extensions under one of Dung’s
standard semantics, and Output be as in definition 12.
If Concs(Ei) = ClS(Concs(Ei) for each 1 ≤ i ≤ n then Output = ClS(Output).

Proof Suppose that ∀Ei, {Conc(A)|A ∈ Ei} = ClS({Conc(A)|A ∈ Ei}).
Suppose also that Output 6= ClS(Output) then ∃ ψ ∈ ClS(Output) such that
ψ /∈ Output.
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Case 1: ∃φ1, . . . , φn −→ ψ ∈ S such that φ1, . . . , φn ∈ Output.
Since φ1, . . . , φn ∈ Output then for each φk (1 ≤ k ≤ n) it holds that ∀Ei,
∃Aj ∈ Ei with Conc(Aj) = φk.
Then ∀Ei, φ1, . . . , φn ∈ {Conc(A)|A ∈ Ei}.
However, ∀Ei, {Conc(A)|A ∈ Ei} = ClS({Conc(A) | A ∈ Ei}). This means
that ∀Ei, ψ ∈ {Conc(A) | A ∈ Ei}. Consequently, ψ ∈ Output. Contradic-
tion

Case 2: By induction, the above reasoning is generalized to the case where
φ1, . . . , φn ∈ ClS(Output).

Proposition 5. Let T be a defeasible theory, 〈A, Def〉 be an argumentation
system built from T . Let E1, . . . , En be its extensions under one of Dung’s
standard semantics and let Output be as in definition 12.
If ClS({Concs(Ei)) is consistent for each 1 ≤ i ≤ n, then ClS(Output) is
consistent.

Proof Suppose that ∀Ei, ClS({Conc(A)|A ∈ Ei}) is consistent. Suppose also
that ClS(Output) is inconsistent. This means that ∃ψ,−ψ ∈ ClS(Output).

Case 1: ∃ψ,−ψ ∈ ClS(Output) means that ∃φ1, . . . , φn −→ ψ ∈ S such that
φ1, . . . , φn ∈ Output and ∃φ′

1, . . . , φ
′
m −→ −ψ ∈ S such that φ′

1, . . . , φ
′
m ∈

Output. This means that φ1, . . ., φn, φ′
1, . . ., φ′

m ∈ {Conc(A) | A ∈ Ei}, ∀
Ei. As a consequence, ψ,−ψ ∈ ClS({Conc(A)|A ∈ Ei}). This means that
ClS({Conc(A)|A ∈ Ei}) is inconsistent. Contradiction.

Case 2: ∃ψ,−ψ ∈ ClS(Output) means that ∃φ1, . . . , φn −→ ψ ∈ S such
that φ1, . . . , φn ∈ ClS(Output) and ∃φ′

1, . . . , φ
′
m −→ −ψ ∈ S such that

φ′
1, . . . , φ

′
m ∈ ClS(Output).

By induction, we apply the reasoning of case 1.

Proposition 6. If an argumentation system 〈A, Def〉 satisfies indirect con-
sistency, then it also satisfies direct consistency.

Proof According to Definition 5, Output ⊆ ClS(Output). Therefore, if
ClS(Output) is consistent, then Output is also consistent. Similarly, since
{Conc(A) | A ∈ Ei} ⊆ ClS({Conc(A) | A ∈ Ei}), then if ClS({Conc(A) | A ∈
Ei}) is consistent, then {Conc(A) | A ∈ Ei} is also consistent. Consequently,
if an argumentation system satisfies indirect consistency, then it also satisfies
direct consistency.
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Proposition 7. Let 〈A, Def〉 be an argumentation system. If 〈A, Def〉 sat-
isfies closure and direct consistency, then it also satisfies indirect consistency.

Proof Suppose that the argumentation system satisfies closure, then Output

= ClS(Output). Suppose also that the system satisfies direct consistency, then
Output is consistent. Consequently, ClS(Output) is also consistent.
Similarly, we have {Conc(A)|A ∈ Ei} = ClS({Conc(A)|A ∈ Ei}) (due to the
closure of the system). Moreover, {Conc(A)|A ∈ Ei} is consistent (because of
direct consistency). Thus, ClS({Conc(A)|A ∈ Ei}) is also consistent. Conse-
quently, the system satisfies indirect consistency.

Lemma 3 Let P be a set of propositions that is closed under propositional
entailment (that is: Cn(P ) = P ). It holds that Cn(Prop(Rules(P ))) = P .

Proof We have to prove two things:

(1) Cn(Prop(Rules(P ) ⊆ P
First of all, it should be mentioned that from the definitions of Prop
and Rules it follows that Prop(Rules(P )) ⊆ P . As in propositional logic
Cn is a monotonic function, it also holds that Cn(Prop(Rules(P ))) ⊆
Cn(P ). As we have that Cn(P ) = P , it also holds that Cn(Prop(Rules(P ))) ⊆
P .

(2) P ⊆ Cn(Prop(Rules(P )))
Let φ ∈ P . Let φCNF be a proposition in Conjunctive Normal Form that
is logically equivalent to φ. Assume, without loss of generality, that φCNF

is of the form (p1 ∨ . . . ∨ pn) ∧ . . . ∧ (q1 ∨ . . . ∨ qm). As P is closed under
propositional entailment, it holds that φCNF ∈ P . This means that P also
contains the formulas ¬p1 ∧ . . . ∧ ¬pn−1 ⊃ pn, . . ., ¬q1 ∧ . . . ∧ ¬qm−1 ⊃
qm. These formulas, by definition of Rules and Prop, will also be in
Prop(Rules(P )). Together, these formulas entail φCNF and therefore also
φ. Therefore, φ ∈ Cn(Prop(Rules(P ))).

Property 3. Let S be a set of strict rules, and let S1,S2 ⊆ S.

(1) S ⊆ Clpp(S)
(2) if S1 ⊆ S2 then Clpp(S1) ⊆ Clpp(S2)
(3) Clpp(Clpp(S)) = Clpp(S)

Proof
(1) S ⊆ Clpp(S). This follows directly from Definition 14.
(2) If S1 ⊆ S2 then Clpp(S1) ⊆ Clpp(S2).

Since S1 ⊆ S2 then Prop(S1) ⊆ Prop(S2) (According to Definition 14
of the function Prop). Due to the monotonicity of the classical infer-
ence relation ⊢, we have Cnprop(Prop(S1)) ⊆ Cnprop(Prop(S2)). Accord-
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ing to the definition of the function Rules in definition 14, we have
Rules(Cnprop(Prop(S1))) ⊆ Rules(Cnprop(Prop(S2))). Thus, Clpp(S1) ⊆
Clpp(S2).

(3) Clpp(Clpp(S)) = Clpp(S)
From the definition of Clpp it follows that:
Clpp(Clpp(S)) = Rules(Cn(Prop(Rules(Cn(Prop(S))))))
As Cn(Prop(S)) is closed under propositional consequence, we can apply
Lemma 3. From this, it follows that:
Rules(Cn(Prop(Rules(Cn(Prop(S)))))) = Rules(Cn(Prop(S)))
Applying the definition of Clpp yields:
Rules(Cn(Prop(S))) = Clpp(S)
By applying transitivity on the thus derived equations, we obtain:
Clpp(Clpp(S)) = Clpp(S).

Lemma 4 Let S be a set of strict rules. Clpp(S) is closed under transposition.
That is: Cltp(Clpp(S)) = Clpp(S).

Proof We have to prove two things:

(1) Clpp(S) ⊆ Cltp(Clpp(S))
This follows directly from Definition 18.

(2) Cltp(Clpp(S)) ⊆ Clpp(S)
Let s ∈ Cltp(Clpp(S)). Then, according to Definition 18, there are two
possibilities:
(a) s ∈ Clpp(S). In that case, we’re done.
(b) s is a transposition of some rule s′ ∈ Clpp(S). Let s′ = φ1, . . . , φn −→

ψ and s = φ1, . . . , φi−1,−ψ, φi+1, . . . , φn −→ −φi. From the fact
that s′ ∈ Clpp(S) it follows that s ∈ Clpp(Clpp(S)) (this is because
φ1 ∧ . . . ∧ φn ⊃ ψ ⊢ φ1 ∧ . . . ∧ φi−1 ∧ −ψ ∧ φi+1 ∧ . . . ∧ φn ⊃ −φi).
From Property 3 (Clpp(Clpp(S)) = Clpp(S)) it then follows that s ∈
Clpp(S).

Theorem 1. Let 〈Arg, Defeat〉 be an argumentation system built from the
defeasible theory <Clpp(S),D> such that Clpp(S) is consistent. Output is its
set of justified conclusions and E its grounded extension.
〈Arg, Defeat〉 satisfies closure and indirect consistency.

Proof From Lemma 4 it follows that <Clpp(S),D>=<Cltp(Clpp(S)),D>.
From Theorem 1 it follows that the argumentation system 〈Arg, Defeat〉 built
from <Cltp(Clpp(S)),D> satisfies closure and indirect consistency.
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Property 4. Let A and B be arguments. If A restrictively rebuts B, then A
rebuts B. The reverse is not always true.

Proof Let A and B be arguments. Suppose that A restrictively rebuts B. This
means that ∃ A′ ∈ Sub(A) with Conc(A′) = φ and ∃ B′ ∈ Sub(B) of the form
B′′

1 , . . . , B′′
n ⇒ −φ. B′ is a non-strict argument, moreover, Conc(B′) = −φ.

Thus, A rebuts B.

Proposition 8. Let 〈Arg, Defeatr〉 be an argumentation system built from
the theory <S,D>, and E1, . . . , En its complete extensions. 〈Arg, Defeatr〉
satisfies closure.

Proof In order to prove closure, it is sufficient to show that ∀Ei, {Conc(A)|A ∈
Ei} = ClS({Conc(A)|A ∈ Ei}). Because, according to Proposition 4, this
means that Output = ClS(Output). Consequently, the argumentation system
satisfies both aspects of closure (Proposition 4).
Let E be a complete extension. Suppose that {Conc(A)|A ∈ E} 6= ClS({Conc(A)|A ∈
E}). This means that there exist arguments A1, . . . , An ∈ E with Conc(A1) =
φ1, . . ., Conc(An) = φn and ∃ φ1, . . ., φn −→ ψ ∈ S, but A = A1, . . ., An →
ψ /∈ E. Two possible cases exist:

Case 1: E∪{A} is not conflict-free. Then either ∃B ∈ E such that B defeats
A, or ∃B ∈ E such that A defeats B.
Suppose that ∃ B ∈ E such that B defeats A on a sub-argument A′. Thus, A′

∈ Sub(A). However, Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}. According to
the definition of restricted rebutting and that of undercut, the top rule of A′ is
defeasible. Thus, A′ ∈ Sub(A1) ∪ . . . ∪ Sub(An). Then, A′ ∈ Sub(A1), or . . .,
or A′ ∈ Sub(An). According to Proposition 1, since Ai ∈ E (1 ≤ i ≤ n), then
Sub(Ai) ⊆ E (1 ≤ i ≤ n). Consequently, A′ ∈ E. Thus, B defeats A′ (accord-
ing to the definition of rebutting and undercut). Thus, E is not conflict-free.
Contradiction.
Now suppose that ∃B ∈ E such that A defeats B. As E is an admissible set,
it must defend itself against A. This can only be the case if E contains some
argument C such that C defeats A1 or . . . or An (this is because C cannot de-
feat A on A’s top-rule). But then E would not be conflict-free. Contradiction.

Case 2: E does not defend A. This means that ∃B ∈ Arg such that B defeats
A and ∄C ∈ E such that C defeats B. Since B defeats A, it must hold that
B rebuts or undercut A on a sub-argument A′ whose top rule is defeasible.
Thus, B rebuts or undercut A′. However, since A′ ∈ Sub(A), it must hold that
A′ ∈ Sub(A1) ∪ . . . ∪ Sub(An). Then, ∃i = 1, . . . , n such that A′ ∈ Sub(Ai).
According to Proposition 1, since Ai ∈ E, then Sub(Ai) ⊆ E, thus, A′ ∈ E.
Consequently, A′ is defended by E against B. Contradiction.
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Theorem 2. Let 〈Arg, Defeatr〉 be an argumentation system built from the
theory <Clpp(S),D> with S is consistent, Output its set of justified conclu-
sions and E1, . . . , En its complete extensions.
〈Arg, Defeatr〉 satisfies direct consistency and indirect consistency.

Proof From Lemma 4 it follows that <Clpp(S), D>=<Cltp(Clpp(S)), D>.
From Theorem 4, it follows that the argumentation system built from <Cltp(Clpp(S),
D> satisfies direct consistency and indirect consistency.

In order to prove Theorem 3, in particular Closure, we need first to prove the
following result:

Lemma 5 Let 〈Arg, Defeat〉 be an argumentation system built from the de-
feasible theory <Cltp(S),D>. Let B be an admissible set of arguments under
this theory. If the set {Conc(A) such that A ∈ B} is closed, then the set
{Conc(A) such that A ∈ F(B)} is closed as well.

Proof Let B be an admissible set of arguments. Suppose that {Conc(A) such
that A ∈ B} is closed, and that {Conc(A) such that A ∈ F(B)} is not closed.
The fact that {Conc(A) such that A ∈ F(B)} is not closed means that there ex-
ists some rule φ1, . . . , φn −→ ψ such that F(B) contains arguments A1, . . . , An

with Conc(A1) = φ1, . . . , Conc(An) = φn but no argument with conclusion ψ.
Now consider the argument A = A1, . . . , An → ψ. It holds that A 6∈ F(B).
This means that A is defeated by some argument (say B) that is not defeated by
B. The fact that A1, . . . , An ∈ F(B) means that B does not defeat A1, . . . , An.
Therefore, B must have conclusion −ψ.
Now, let Ai be an arbitrary element of {A1, . . . , An} (1 ≤ i ≤ n) containing
at least one defeasible rule (such an argument always exists, since otherwise
B could not defeat A). Let B′

i = A1, . . . , Ai−1, B,Ai+1, . . . , An → −Conc(Ai)
(such an argument can be constructed as Cltp(S) is closed under transposi-
tion). The fact that Ai ∈ F (B) means that B contains some argument (say A′

1)
against B′

i. This A′
i cannot defeat any of A1, . . . , An (otherwise F(B) wouldn’t

be conflict-free, since it contains A1, . . . , An as well as A′ (since B ⊆ F(B) for
an admissible set B)), nor does A′

i defeat B (since our assumption is that B
contains no defeaters of B). Therefore, the only way for A′

i to defeat B′
i is to

rebut −Conc(Ai). That is, A′
i has the same conclusion as Ai.

B contains arguments with conclusions φ1, . . . , φn. This is because of the fact
that for each Ai with at least one defeasible rule, B contains an argument A′

i

with the same conclusion, and for each Ai without any defeasible rule, B con-
tains Ai (since Ai is strict and B is assumed to be closed under strict rules).
But the fact that B is closed under strict rules means that B also contains an
argument (say C) with Conc(C) = ψ. Therefore (as B ⊆ F(B)), F(B) also
contains C. Contradiction.

36



Theorem 3. Let 〈Arg, Defeat〉 be an argumentation system built from the
defeasible theory <Cltp(S),D> such that Cltp(S) is consistent. Output is its
set of justified conclusions and E its grounded extension.
〈Arg, Defeat〉 satisfies closure and indirect consistency.

Proof
Closure: In order to prove closure, it is sufficient to show that {Conc(A)|A ∈

E} = ClS({Conc(A)|A ∈ E}). This is because, under grounded semantics,
there exists exactly one grounded extension. Output = ClS(Output). Con-
sequently, the argumentation system satisfies closure.
Let E be the grounded extension, thus E =

⋃i≥1 F(∅). We prove this by
induction using the inductive definition of grounded semantics. Let A0 = ∅
and Ai+1 = F(Ai) (i ≥ 0).
basis (i = 1) Let A1 be the set of all arguments that do not have defeaters.

We now prove that A1 is an admissible set that satisfies closure.
Admissible The set of all arguments that do not have any defeaters is

automatically admissible.
Closure Suppose the conclusions of A1 are not closed under strict rules.

Then there exists a strict rule φ1, . . . , φn −→ ψ such that A1 con-
tains arguments A1, . . . , An with Conc(A1) = φ1, . . . , Conc(An) =
φn but no argument with conclusion ψ. Now consider the argument
A = A1, . . . An → ψ. It holds that A 6∈ A. This means that A has a
defeater (say B). But B does not defeat A1, . . . An (as the fact that
A1, . . . , An ∈ A means they have no defeaters). Therefore, the only
way B can defeat A is by having a conclusion ¬ψ. It must hold that at
least one of A1, . . . , An contains a defeasible rule (otherwise A would
be strict and have no defeaters). Let Ai ∈ {A1, . . . , An} be an ar-
gument containing at least one defeasible rule. The fact that Cltp(S)
is closed under transposition means that Cltp(S) also contains a rule
φ1, . . . , φn−1,¬ψ, φi+1, . . . , φn −→ ¬φi. The argument A1, . . . , Ai−1, B,
Ai+1, . . . , An → ¬φi is now a rebutter of Ai. Contradiction.

step (i ≥ 1) Let us assume that Ai (i ≥ 1) is admissible and closed. We
will now prove that Ai+1 (= F (Ai)) is admissible and closed.
Admissible: This follows directly from Lemma 2.
Closure: This follows directly from Lemma 5.

Indirect Consistency: Since the argumentation system satisfies closure (above)
and direct consistency (Proposition 2), then according to Proposition 7, then
it also satisfies indirect consistency.

Before treating Theorem 4, we first have to give some additional terminology
that is used in the proof of Theorem 4 as well as in the proof of Lemma 6.
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First, we define the depth of an argument.

Definition 19 Let A be an argument. The depth of A (depth(A)) is:

• 1, if A is an atomic argument, or else
• 1 + depth(A′), where A′ is a direct subargument of A such that depth(A′)

is maximal.

Next, we define the depth of a rule in an argument. The problem, however, is
that a rule can occur several times in an argument. In that case, the definition
below simply takes the rule with the smallest depth.

Definition 20 Let A be an argument and r be a rule applied in the construc-
tion of A. We say that the depth of r in A (depth(r, A)) is:

• 0, if r is the top-rule of A, or else
• 1 + depth(r, A′), where A′ is a direct subargument of A such that depth(r, A′)

is minimal.

The next thing to define is when two subarguments are at equal level in some
superargument. Again, an issue is what to do when a subargument is contained
in a superargument more than once. The approach of the following definition
is to see if we can find some occurrence of a subargument A1 that is at the
same level as some occurrence of a subargument A2.

Definition 21 Let A1 and A2 be arguments and A′
1 ∈ Sub(A1) and A′

2 ∈
Sub(A2). We say that A′

1 is at the same level in A1 as A′
2 in A2 iff:

• A′
1 is a direct subargument of A1, and A′

2 is a direct subargument of A2, or
else

• there exists a direct subargument A′′
1 of A1 and a direct subargument A′′

2 of
A2 such that A′

1 ∈ Sub(A′′
1) and A′

2 ∈ Sub(A′′
2), and A′

1 is at the same level
in A′′

1 as A′
2 in A′′

2.

We say that A1 is at the same level as A2 in A iff A1 is at the same level in
A as A2 in A.

To illustrate the above definitions, consider the argument A = [[[→ c] → d], [→
a], [[→ a] → b] → e]. Here, depth(A) = 3, depth(−→ a,A) = 1, depth(−→
c, A) = 2, and the arguments [→ a] and [→ c] are at the same level in A.

Before proving Theorem 4, namely its part concerning direct consistency, we
first need to prove the following result:

Lemma 6 Let (S,D) be a defeasible theory where S is closed under trans-
position, Ass be a nonempty set of assumptions (that is, a set of strict rules
with empty antecedents {−→ a1, . . . ,−→ an}) and A be a strict argument
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under (S ∪ Ass,D) such that A has conclusion c and contains the atomic
subarguments [→ a1], . . . , [→ an]. There exists a strict argument B under
(S ∪ Ass ∪ {−→ −c},D) such that B has conclusion −ai (1 ≤ i ≤ n).

Proof We prove this by induction on the depth of A.

basis Let us assume that the depth of A is 1. In that case, A consists of a
single rule, with empty antecedent. As the set of assumptions that is used
in A is non-empty, it follows that this rule must be an assumption of the
form −→ a. Therefore, the conclusion of A is a (that is: c = a). Then,
trivially, there also exists a strict argument B (with B = [→ −a]) under
(S ∪ Ass ∪ {−→ −a},D) such that B has conclusion −a.

step Suppose the above lemma holds for all strict arguments of depth ≤ j. We
now prove that it also holds for all strict arguments of depth j +1. Let A be
a strict argument under (S ∪ Ass,D) of depth j + 1 with conclusion c. Let
Conc(A1), . . . , Conc(Am) −→ c be the top-rule of A. Let Ai be a direct sub-
argument of A that contains the assumption ai. Because S is closed under
transposition, there exists a rule Conc(A1), . . . , Conc(Ai−1),−c, Conc(Ai+1),
. . . , Conc(Am) −→ −Conc(Ai). The fact that Ai has a depth ≤ j means that
we can apply the induction hypothesis. That is, there exists a strict argument
(say B′) under (S∪Ass∪{−→ −Conc(Ai)},D) with conclusion −ai. Now, in
B′, substitute −Conc(Ai) by the subargument [A1, . . . , Ai−1,−c, Ai+1, . . . Am →
−Conc(Ai)]. The resulting argument (call it B) is a strict argument under
(S ∪ Ass ∪ {−→ −c},D) with conclusion −ai.

Theorem 4. Let 〈Arg, Defeatr〉 be an argumentation system built from the
theory <Cltp(S),D> with Cltp(S) is consistent. Output its set of justified
conclusions and E1, . . . , En its extensions under one of Dung’s standard se-
mantics.
〈Arg, Defeatr〉 satisfies direct consistency and indirect consistency.

Proof
Direct Consistency: In order to prove consistency, it is sufficient to show

that ∀Ei, {Conc(A)|A ∈ Ei} is consistent. This is because Proposition 3
would then imply that Output is also consistent. Consequently, the argu-
mentation system satisfies consistency.
Let E be a complete extension. Suppose the conclusions of E are not con-
sistent. Then E contains an argument (say A) with conclusion c and an
argument (say B) with conclusion −c. As Cltp(S) is assumed to be consis-
tent, at least one of these two arguments must contain a defeasible rule. Let
us, without loss of generality, assume that A contains at least one defeasible
rule. Let d be a defeasible rule in A that has minimal depth. Notice that
the depth of d must be at least 1, for if d were the top-rule of A, then B
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Fig. 1. Graphical representation of the proof of Theorem 4

would defeat A and E would not be conflict-free. It now holds that every
rule in A with a smaller depth than d is a strict rule (see also figure 1).
Let Ai be a subargument of A that has d as its top-rule. We will now prove
that there exists an argument (D′) in E that defeats Ai. Let A1, . . . , An be
the subarguments of A that are at the same level as Ai in A. Lemma 6
tells us that with the conclusions of A1, . . . , An, B it is possible to construct
an argument with a conclusion that is the opposite of the conclusion of Ai.
Call this argument D. Now, let D′ be equal to D, but with the assumptions
Conc(A1), . . . , Conc(An), Conc(B) substituted by the underlying arguments
A1, . . . , An, B. It holds that D′ ∈ E (this is because each defeater of D′ is
also a defeater of A1, . . . , An, B ∈ E, and the fact that E is a complete exten-
sion means it defends itself against this defeater, which means that D′ ∈ E).
D′, however, defeats Ai on d, so the fact that D′, Ai ∈ E means that E is
not conflict-free, and hence also no complete extension. Contradiction.

Indirect Consistency: Since the argumentation system satisfies Closure and
Direct consistency, then according to Proposition 7, then it also satisfies in-
direct consistency.
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