Attack Semantics and Collective Attacks Revisited

⁹ Martin Caminada^{a,*}, Matthias König^b, Anna Rapberger^c and Markus Ulbricht^d

¹⁰ ^a Cardiff University, United Kingdom

E-mail: CaminadaM@cardiff.ac.uk

¹² ^b Institute of Logic and Computation, TU Wien, Austria

E-mail: matthias.koenig@tuwien.ac.at

^c Department of Computing, Imperial College London, United Kingdom

E-mail: a.rapberger@imperial.ac.uk

¹⁰ ^d ScaDS.AI, Department of Computer Science, Leipzig University, Germany

E-mail: mulbricht@informatik.uni-leipzig.de

Abstract. In the current paper we re-examine the concepts of attack semantics and collective attacks in abstract argumentation, and examine how these concepts interact with each other. For this, we systematically map the space of possibilities. Starting with standard argumentation frameworks (which consist of a directed graph with nodes and arrows) we briefly state both node semantics and arrow semantics (the latter a.k.a. attack semantics) in both their extensions-based form and labellings-based 2.2 form. We then proceed with SETAFs (which consist of a directed hypergraph of nodes and arrows, to take into account the notion of collective attacks) and state both node semantics and arrow semantics, in both their extensions-based and labellings-based form. We then show equivalence between the extensions-based and labellings-based form, for node semantics and arrow semantics of AFs, as well as for node semantics and arrow semantics of SETAFs. Moreover, we show equivalence between node semantics and arrow semantics for AFs, and equivalence between node semantics and arrow semantics for SETAFs (with the notable exception of semi-stable). We also provide a novel way of converting a SETAF to an AF such that semantics are preserved, without the use of any "meta arguments".

Although the main part of our work is on the level of abstract argumentation, we do provide an application of our theory on the instantiated level. More specifically, we show that the classical characterisation of Assumption-Based Argumentation (ABA) can be seen as an instantiation based on a SETAF, whereas the contemporary characterisation of ABA can be seen as an instantiation based on a standard AF. Our theory of how to convert a SETAF to an AF can then be used to account for both the similarities and the differences between the classical and contemporary characterisations of ABA. Most prominently, our

theory is able to explain the semantic mismatch for semi-stable semantics that arises in the ABA instantiation process.

33 Keywords: Abstract Argumentation, Assumption-Based Argumentation, Attack Semantics, Collective Attacks

1. Introduction

The 1990s saw some of the foundational work in argumentation theory. This includes the work of Simari and Loui [1] that later evolved into Defeasible Logic Programming (DeLP) [2] as well as the ground-breaking work of Vreeswijk [3] whose way of constructing arguments has subsequently been applied in the various versions of the ASPIC formalism [4–7]. Two approaches, however, stand out for their ability to model a wide range of existing formalisms for non-monotonic inference. First of all,

2.0

2.2

^{*}Corresponding author. E-mail: CaminadaM@cardiff.ac.uk.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2.0

21

2.2

23

24

25

26 27

28

29 30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

there is the abstract argumentation approach of Dung [8], which is shown to be able to model formalisms
such as Default Logic, logic programming under stable and well-founded model semantics [8], as well
as Nute's Defeasible Logic [9] and logic programming under 3-valued stable model semantics [10]
and regular semantics [11]. Secondly, there is the assumption-based argumentation (ABA) approach of
Bondarenko, Dung, Kowalski and Toni [12], which is shown to model formalisms like Default Logic,
logic programming under stable model semantics, auto epistemic logic and circumscription [12].

One of the essential differences between these two approaches is that abstract argumentation is argument-based. The idea is to use the information in the knowledge base to construct arguments and to examine how these arguments attack each other. Semantics are then defined on the resulting argumentation framework (AF), i.e., the directed graph in which the nodes represent arguments and the arrows represent the attack relation. In assumption-based argumentation, on the other hand, semantics are defined on sets of assumptions that attack each other based on their possible inferences.

To some extent, assumption-based argumentation can be regarded as applying a directed hypergraph of which the nodes contain assumptions and the arrows coincide with ABA-arguments that each attack an assumption. This is different from the ABA-AA instantiation [13], which applies a normal (binary) graph of which the nodes (not the arrows) contain ABA-arguments. In the current work, we investigate this hypergraph on the abstract level and refer to it as a SETAF. The hyperedges of such a SETAF can be interpreted as collective attacks, which have first been investigated by Nielsen and Parsons [14].

Even though SETAFs extend the limits of AFs by allowing for collective attacks, it has been shown that many semantics properties and principles still apply in this more general setting [15–18]. This holds even though SETAFs are more expressive than AFs [19]. Recent work examines the computational complexity of reasoning and the underlying hypergraph structure of SETAFs [20–23]. We will use the theory developed in this paper to show the semantic correspondence between ABA and its SETAF instantiation.

One particular claim in the literature is that assumption-based argumentation and abstract argumentation are equivalent to some extent [13, 24]. That is, the outcome (in terms of conclusions) of assumptionbased argumentation would be the same as the outcome of its abstract argumentation interpretation (the ABA-AA instantiation of [13]). In the current paper, we re-examine this claim, by carefully analysing what happens on the abstract level. After all, if a SETAF is an abstraction of ABA, and an AF is an abstraction of the ABA-AA instantiation, then examining equivalence between ABA and the ABA-AA instantiation boils down to examining equivalence between SETAFs and AFs.

To carry out our inquiry, we need to borrow a number of concepts from the argumentation literature. The first concept is that of SETAF labellings [15]. Through our theory it becomes clear that these essentially coincide with the assumption labellings of [25]. The second concept is that of attack-semantics [26], which turns out to play an important role in the conversion process from SETAFs to AFs.

We want to highlight that our approach differs from existing conversions from SETAFs to AFs [15, 17] These approaches can be seen as an instance of *flattening* [28], i.e., the additional meaning of 17] collective attacks is modelled by the introduction of additional arguments to the "flat" AF. The semantics 18] then coincide under projection. However, in our approach the original SETAF is turned "inside-out", i.e., 19] we construct an AF where the arguments correspond to the attacks of the SETAFs. We then show the 10] semantic correspondence via attack semantics.

In our current work, we systematically fill the gaps in the space of collective attacks and attack semantics via extensions and labellings. This orthogonal approach is summarised in Figure 1. Using the thus developed theory, connecting SETAFs and AFs, we then re-examine the often claimed equivalence between assumption-based argumentation and abstract argumentation. We find that some of the already observed equivalences (under complete [29], preferred [29], stable [24] and grounded semantics [30])

Fig. 1. Illustration of the contents of Section 2 and Section 3. The contributions of this paper are highlighted in red colour.

¹³ are special cases of our theory. In addition, for a particular non-equivalence (under semi-stable seman-¹⁴ tics [29]) our theory is able to explain *why* assumption-based argumentation is not equivalent to the ¹⁵ ABA-AA instantiation. As we will see, this is due to the fact that on the abstract level the translation ¹⁶ process from SETAFs to AFs does not preserve equivalence under semi-stable semantics.

The remaining part of this paper is structured as follows. First, in Section 2 (Argumentation Frame-works and their Semantics) we briefly summarise some key concepts from the formal argumentation literature, including that of an AF, extension-based semantics, labelling-based semantics, and the notion of attack-semantics. Then, in Section 3 (SETAFs and their Semantics) we recall the concept of SETAFs and how the semantics generalise to this setting. We then broaden the notion of attack-semantics to op-2.2 erate on SETAFs. The results of Section 2 and 3 form the theoretical underpinning of our theory; the obtained relationships between the semantics are summarised in Figure 1. In Section 4 (Relating SETAFs to AFs) we provide a translation procedure to convert SETAFs into AFs, based on the concept of attack-semantics. In Section 5 (Instantiating AFs and SETAFs using ABA) we examine the consequences of the thus obtained theory on AFs and SETAFs in the specific context of ABA, and what this means for the perceived equivalence between ABA and AA¹. We round off with a discussion in Section 6.

In order to improve readability, we have moved the proofs to the appendices of the paper. A reader who is only interested in our main findings could decide only to read Section 1 to Section 6.

2. Argumentation Frameworks and their Semantics

In the current section, we provide a summary of some of the existing theory in formal argumentation that we will build on. We start with the concept of an argumentation framework, which is essentially a graph consisting of nodes (N) and arrows (arr). For current purposes, we restrict ourselves to finite argumentation frameworks.

Definition 1. An argumentation framework is a pair (N, arr) where N is a finite set of nodes (called arguments) whose internal structure can be left implicit, and $arr \subseteq N \times N$.

We will commonly refer to the elements of *arr* as the *arrows* of the argumentation framework. We say that $A \in N$ attacks $B \in N$ iff $(A, B) \in arr$. Semantics of argumentation frameworks can be defined in terms of the nodes [8] and in terms of the arrows [26]. We will now discuss each of these approaches.

- ¹These results are based on preliminary considerations presented at COMMA 2022 [31].

1	2.1. Node Semantics for AFs	1
2 3	Semantics for argumentation frameworks were originally defined in terms of its nodes [8].	2 3
4		4
5	Definition 2. Let (N, arr) be an argumentation framework, $M \subseteq N$ and $B \in N$. We say that M attacks B iff $\exists A \in M : (A, B) \in arr$. We say that $M_1 \subseteq N$ attacks $M_2 \subseteq N$ iff M_1 attacks some $B \in M_2$. We define	5
6	M^+ as $\{A \in N \mid M \text{ attacks } A\}$. We say that $M_1 \subseteq N$ attacks $M_2 \subseteq N$ iff $M \cap M^+ = \emptyset$. We say that M defends	6
7	A iff each $B \subseteq N$ that attacks A is attacked by M. We define the function $F : 2^N \to 2^N$ as follows:	7
8 9	$F(M) = \{A \in N \mid A \text{ is defended by } M\}.$	8 9
10		10
11	Definition 3. Let (N, arr) be an argumentation framework. A set of nodes $M \subseteq N$ is called:	11
12	(1) an admissible set iff M is conflict-free and $M \subseteq F(M)$	12
13	(2) a complete extension iff M is conflict-free and $M = F(M)$	13
14	(3) a grounded extension iff M is minimal (w.r.t. \subseteq) among all complete extensions	14
15	(4) a preferred extension iff M is a maximal (w.r.t. \subseteq) complete extension	15
16	(5) a semi-stable extension iff M is a complete extension where $M \cup M^+$ is maximal (w.r.t. \subseteq) among	16
17	all complete extensions	17
18	(6) a stable extension iff M is a complete extension with $M \cup M^+ = N$	18 19
19 20	Although Definition 2 defines the common node compating in a slightly different more than far instance	20
20	Although Definition 3 defines the common node semantics in a slightly different way than for instance in [8], equivalence can be observed [32].	20
22	An alternative way of defining node semantics is by applying labellings, as is done in the following	22
23	definition based on [32, 33].	23
24		24
25	Definition 4. Let (N, arr) be an argumentation framework. A node labelling is a function NLab : $N \rightarrow$	25
26	{in, out, undec}. A node labelling NLab is called admissible iff for each $A \in N$:	26
27	• if $NLab(A) = in$ then for each $B \in N$ such that $(B, A) \in arr$ it holds that $NLab(B) = out$	27
28	• if $NLab(A) = \text{out then there exists a } B \in N$ such that $(B,A) \in arr$ and $NLab(B) = \text{out}$ • if $NLab(A) = \text{out then there exists a } B \in N$ such that $(B,A) \in arr$ and $NLab(B) = \text{in}$	28
29		29
30	A node labelling NLab is called complete iff it is admissible and also satisfies for each $A \in N$:	30
31 32	• <i>if</i> $NLab(A) = undec$ <i>then not for each</i> $B \in N$ <i>such that</i> $(B, A) \in arr$ <i>it holds that</i> $NLab(B) = out$,	31 32
32 33	and there does not exists a $B \in N$ such that $(B, A) \in arr$ and $NLab(B) = in$	33
34	As a convention, we write $in(NLab)$ for $\{A \in N \mid NLab(A) = in\}$, $out(NLab)$ for $\{A \in N \mid A \in N \mid A \in N \mid A \in A \}$	34
35	$NLab(A) = \text{out}$ and $undec(NLab)$ for $\{A \in N \mid NLab(A) = undec\}$. A complete node labelling	35
36	NLab is called:	36
37	(1) arounded iff $i = (NL, ab)$ is minimal (write C) among all complete node labellings	37
38	 (1) grounded iff in(NLab) is minimal (w.r.t. ⊆) among all complete node labellings (2) preferred iff in(NLab) is maximal (w.r.t. ⊆) among all complete node labellings 	38
39	(2) preferred iff $(NLab)$ is maximal (w.r.t. \subseteq) among all complete node labellings (3) semi-stable iff $undec(NLab)$ is minimal (w.r.t. \subseteq) among all complete node labellings	39
40	(3) semi-stable (i) undec(NLab) is minimal (w.r.t. \subseteq) among all complete node labellings (4) stable iff undec(NLab) = \emptyset	40
41	(T) since ijj and $c(i) = v$	41
42	As a node labelling essentially defines a partition, we sometimes write it as a triple (in(NLab),	42
43	out(<i>NLab</i>), undec(<i>NLab</i>)).	43
44	It has been shown that the complete node labellings with maximal in are equal to the complete node	44
45	labellings with maximal out [33], and that the complete node labelling where in is minimal is unique	45
46		46

cover all possibilities rea		U	· 1	l semi-stable node labelling
	-			particular label (among th
complete node labellings)	. This is summarised i	n Table	1.	
		Table 1		
Implementing	different conditions on con			ation frameworks
	condition of		esulting	
	node labell	-	emantics	
	maximal i	-	referred	
	maximal o	-	referred	
	maximal u minimal i		rounded	
	minimal or	0	rounded	
	minimal u		emi-stable	
	no undec		table	
. • . • •			• • • • • •••	1 . •
-			-	d extensions are one-to-or
related through the function	ons <i>NLab2Args</i> and Ar	rgs2NLa	b, where	
NLab2Args(NLab) =	= in(<i>NLab</i>), and			
Args2NLab(M) =	$= (M, M^+, N \setminus (M \cup M))$	$(+))^2$		
11,8521(1200 (111)		·)) ·		
That is if <i>NLab</i> is a con	nnlete (resp. grounde	d profor	rad sami stable or	stable) node labelling, the
		-		stable) noue labelling, in
NIab2Aras(NIab) is a c			erred semi-stable	or stable) extension and
_ 、 ,		-		
M is a complete (resp. gr	ounded, preferred, ser	ni-stable	e or stable) extension	on, then $Args2NLab(M)$ is
<i>M</i> is a complete (resp. gr complete (resp. grounded	ounded, preferred, sen , preferred, semi-stabl	ni-stable le or stat	e or stable) extension ole) node labelling	on, then $Args2NLab(M)$ is [33]. Moreover, under cor
<i>M</i> is a complete (resp. gr complete (resp. grounded plete semantics (as well as	ounded, preferred, sen , preferred, semi-stabl s under grounded, pref	ni-stable le or stab erred, se	e or stable) extension ole) node labelling mi-stable and stable	on, then $Args2NLab(M)$ is [33]. Moreover, under cor e semantics) $NLab2Args$ and
<i>M</i> is a complete (resp. gr complete (resp. grounded plete semantics (as well as <i>Args2NLab</i> are bijective f	ounded, preferred, sen , preferred, semi-stabl s under grounded, pref	ni-stable le or stab erred, se	e or stable) extension ole) node labelling mi-stable and stable	on, then $Args2NLab(M)$ is [33]. Moreover, under cor e semantics) $NLab2Args$ and
<i>M</i> is a complete (resp. gr complete (resp. grounded plete semantics (as well as	ounded, preferred, sen , preferred, semi-stabl s under grounded, pref	ni-stable le or stab erred, se	e or stable) extension ole) node labelling mi-stable and stable	on, then $Args2NLab(M)$ is [33]. Moreover, under cor e semantics) $NLab2Args$ and
<i>M</i> is a complete (resp. gr complete (resp. grounded plete semantics (as well as <i>Args2NLab</i> are bijective f	ounded, preferred, sen , preferred, semi-stabl s under grounded, pref	mi-stable le or stab ferred, se ner's inve	e or stable) extension ole) node labelling mi-stable and stable	on, then $Args2NLab(M)$ is [33]. Moreover, under con e semantics) $NLab2Args$ ar
<i>M</i> is a complete (resp. gr complete (resp. grounded plete semantics (as well as <i>Args2NLab</i> are bijective to results.	ounded, preferred, sen , preferred, semi-stabl s under grounded, pref functions and each oth	ni-stable le or stab cerred, se her's inve Table 2	e or stable) extension ole) node labelling mi-stable and stable erses [33]. Table 2	on, then $Args2NLab(M)$ is [33]. Moreover, under come e semantics) $NLab2Args$ ar provides an overview of th
<i>M</i> is a complete (resp. gr complete (resp. grounded plete semantics (as well as <i>Args2NLab</i> are bijective f results.	ounded, preferred, sen , preferred, semi-stabl s under grounded, pref functions and each oth ensions and node labellings	ni-stable le or stab ferred, se ner's inve Table 2 of argume	e or stable) extension ole) node labelling mi-stable and stable erses [33]. Table 2 entation frameworks, th	on, then $Args2NLab(M)$ is [33]. Moreover, under come e semantics) $NLab2Args$ ar provides an overview of th
<i>M</i> is a complete (resp. gr complete (resp. grounded plete semantics (as well as <i>Args2NLab</i> are bijective to results.	ounded, preferred, sen , preferred, semi-stabl s under grounded, pref functions and each oth ensions and node labellings <u>node extension</u>	ni-stable le or stab ferred, se her's invo Table 2 of argume relation	e or stable) extension ole) node labelling mi-stable and stable erses [33]. Table 2 entation frameworks, th node labelling	on, then $Args2NLab(M)$ is [33]. Moreover, under come e semantics) $NLab2Args$ ar provides an overview of th
<i>M</i> is a complete (resp. gr complete (resp. grounded plete semantics (as well as <i>Args2NLab</i> are bijective to results.	ounded, preferred, sen , preferred, semi-stabl s under grounded, pref functions and each oth ensions and node labellings <u>node extension</u> <u>complete extension</u>	ni-stable le or stab rerred, se ner's inve Table 2 of argume relation	e or stable) extension ole) node labelling mi-stable and stable erses [33]. Table 2 entation frameworks, th node labelling complete labelling	on, then $Args2NLab(M)$ is [33]. Moreover, under come e semantics) $NLab2Args$ ar provides an overview of th
<i>M</i> is a complete (resp. gr complete (resp. grounded plete semantics (as well as <i>Args2NLab</i> are bijective to results.	rounded, preferred, sen , preferred, semi-stabl s under grounded, pref functions and each oth ensions and node labellings node extension complete extension grounded extension	ni-stable le or stab ferred, se ner's inve Table 2 of argume relation \Leftrightarrow \Leftrightarrow	e or stable) extension ole) node labelling mi-stable and stable erses [33]. Table 2 entation frameworks, the node labelling complete labelling grounded labelling	on, then $Args2NLab(M)$ is [33]. Moreover, under come e semantics) $NLab2Args$ ar provides an overview of th
<i>M</i> is a complete (resp. gr complete (resp. grounded plete semantics (as well as <i>Args2NLab</i> are bijective to results.	ounded, preferred, sen , preferred, semi-stabl s under grounded, pref functions and each oth ensions and node labellings <u>node extension</u> <u>complete extension</u>	ni-stable le or stab rerred, se ner's inve Table 2 of argume relation	e or stable) extension ole) node labelling mi-stable and stable erses [33]. Table 2 entation frameworks, th node labelling complete labelling	on, then $Args2NLab(M)$ is [33]. Moreover, under come e semantics) $NLab2Args$ ar provides an overview of th
<i>M</i> is a complete (resp. gr complete (resp. grounded plete semantics (as well as <i>Args2NLab</i> are bijective f results.	ensions and node labellings node extension grounded extension preferred extension	mi-stable le or stab ferred, se ner's inve Table 2 of argume relation \Leftrightarrow \Leftrightarrow \Leftrightarrow	e or stable) extension ole) node labelling mi-stable and stable erses [33]. Table 2 entation frameworks, th node labelling complete labelling grounded labelling preferred labelling	or stable) extension, and on, then <i>Args2NLab(M)</i> is [33]. Moreover, under com e semantics) <i>NLab2Args</i> ar provides an overview of th rough <i>Args2NLab</i> and <i>NLab2Arg</i>
<i>M</i> is a complete (resp. gr complete (resp. grounded plete semantics (as well as <i>Args2NLab</i> are bijective f results.	ounded, preferred, sen , preferred, semi-stabl s under grounded, pref functions and each oth ensions and node labellings <u>node extension</u> <u>complete extension</u> <u>grounded extension</u> <u>preferred extension</u> <u>semi-stable extension</u>	ni-stable le or stab erred, se ner's invo Table 2 of argume relation \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow	e or stable) extension ole) node labelling mi-stable and stable erses [33]. Table 2 entation frameworks, th node labelling complete labelling grounded labelling preferred labelling semi-stable labelling	on, then $Args2NLab(M)$ is [33]. Moreover, under come e semantics) $NLab2Args$ ar provides an overview of th
<i>M</i> is a complete (resp. gr complete (resp. grounded plete semantics (as well as <i>Args2NLab</i> are bijective f results.	ounded, preferred, sen , preferred, semi-stabl s under grounded, pref functions and each oth ensions and node labellings <u>node extension</u> <u>complete extension</u> <u>grounded extension</u> <u>preferred extension</u> <u>semi-stable extension</u>	ni-stable le or stab erred, se ner's invo Table 2 of argume relation \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow	e or stable) extension ole) node labelling mi-stable and stable erses [33]. Table 2 entation frameworks, th node labelling complete labelling grounded labelling preferred labelling semi-stable labelling	on, then $Args2NLab(M)$ is [33]. Moreover, under come e semantics) $NLab2Args$ ar provides an overview of th

2.2. Arrow Semantics for AFs

As an alternative to defining semantics based on the *nodes* of an argumentation framework, it is also possible to define semantics based on the arrows of the argumentation framework. This idea of "attack semantics" was first introduced in [26]—however, these semantics have not yet been defined in terms of extensions, as we introduce them in Definition 5.

Definition 5. Let (N, arr) be an argumentation framework, $a \subseteq arr$ and $(A, B) \in arr$. We say that a attacks (A, B) iff $(C, A) \in a$ for some $C \in N$. We say that $a_1 \subseteq arr$ attacks $a_2 \subseteq arr$ iff a_1 attacks some element of a_2 . We define a^+ as $\{(C, D) \in arr \mid a \text{ attacks } (C, D)\}$. We say that a is conflict-free iff $a \cap a^+ = \emptyset$. We say that a defends (A, B) iff each $(C, A) \in arr$ is attacked by a. We define the function $F: 2^{arr} \to 2^{arr}$ as follows: $F(a) = \{(A, B) \in arr \mid (A, B) \text{ is defended by } a\}.$

Definition 6. Let (N, arr) be an argumentation framework. $a \subseteq arr$ is called:

- (1) an admissible set iff a is conflict-free and $a \subseteq F(a)$
- (2) a complete extension iff a is conflict-free and a = F(a)
 - (3) a grounded extension iff a is minimal (w.r.t. \subseteq) among all complete extensions
- (4) a preferred extension iff a is a maximal (w.r.t. \subseteq) complete extension
 - (5) a semi-stable extension iff a is a complete extension where $a \cup a^+$ is maximal (w.r.t. \subseteq) among all *complete extensions*
 - (6) *a* stable extension *iff a is a complete extension with* $a \cup a^+ = arr$

An alternative way of defining arrow semantics is by applying labellings, as is done in the following definition.³

Definition 7. Let (N, arr) be an argumentation framework. An arrow labelling is a function ALab : $arr \rightarrow \{\text{in,out,undec}\}$. An arrow labelling ALab is called admissible iff for each $(A, B) \in arr$:

- *if* ALab((A, B)) = in *then for each* $(C, A) \in arr$ *it holds that* ALab((C, A)) = out
- if ALab((A, B)) = out then there exists a $(C, A) \in arr$ such that ALab((C, A)) = in

An arrow labelling ALab is called complete iff it is admissible and also satisfies for each $(A, B) \in arr$:

• if ALab((A, B)) = undec then not for each $(C, A) \in arr$ it holds that ALab((C, A)) = out, and there does not exist a $(C,A) \in arr$ such that ALab((C,A)) = in

As a convention, we write in(ALab) for $\{(A, B) \in arr \mid ALab((A, B)) = in\}$, out(ALab) for $\{(A, B) \in arr \mid ALab((A, B)) = in\}$, out(ALab) for $\{(A, B) \in arr \mid ALab((A, B)) = in\}$, out(ALab) for $\{(A, B) \in arr \mid ALab((A, B)) = in\}$. $arr \mid ALab((A, B)) = out \}$ and undec(ALab) for $\{(A, B) \in arr \mid ALab((A, B)) = undec\}$. complete arrow labelling ALab is called:

- (1) grounded iff in(ALab) is minimal (w.r.t. \subseteq) among all complete arrow labellings
- (2) preferred iff in(ALab) is maximal (w.r.t. \subseteq) among all complete arrow labellings
- (3) semi-stable iff undec(ALab) is minimal (w.r.t. \subseteq) among all complete arrow labellings
- (4) *stable iff* undec(ALab) = \emptyset

2.2

2.2

³The labelling-based version of complete attack semantics is defined in a slightly different way in [26] than in Definition 7, but equivalence is proved in Appendix A.

2.0

2.2

As an arrow labelling essentially defines a partition, we sometimes write it as a triple (in(ALab), out(ALab), undec(ALab)).

It can be shown that the complete arrow labellings with maximal in are equal to the complete arrow labellings with maximal out (Appendix A) and that the complete arrow labelling where in is minimal is unique and equal to both the complete arrow labelling where out is minimal and the complete arrow labelling where undec is maximal (Appendix A). This means that the grounded, preferred and semistable arrow labellings cover all possibilities regarding the minimisation and maximisation of a particular label (among the complete arrow labellings). This is summarised in Table 3.

Implementing different conditions on complete arrow labellings of argumentation frameworks

Table 3

condition on	resulting
arrow labelling	semantics
maximal in	preferred
maximal out	preferred
maximal undec	grounded
minimal in	grounded
minimal out	grounded
minimal undec	semi-stable
no undec	stable

It can be shown that arrow extensions and arrow labellings are one-to-one related through the functions *ALab2a* and *a2ALab*, where

ALab2a(ALab) = in(ALab), and

$$a2ALab(a) = (a, a^+, arr \setminus (a \cup a^+))^4.$$

If *ALab* is a complete (resp. grounded, preferred, semi-stable or stable) arrow labelling, then *ALab2a(ALab)* is a complete (resp. grounded, preferred, semi-stable or stable) arrow extension, and if *a* is a complete (resp. grounded, preferred, semi-stable or stable) arrow extension then *a2ALab(a)* is a complete (resp. grounded, preferred, semi-stable or stable) arrow labelling. Moreover, under complete semantics (as well as under grounded, preferred, semi-stable and stable semantics) *ALab2a* and *a2ALab* are bijective functions that are each other's inverses. Details and proofs can be found in Appendix H. Table 4 provides an overview of the results.

35			Table 4			35
36	The relation between arrow ex	tensions and arrow label		umentation frameworks	through a24Lab and ALab2a	36
37					unough uz/iLub and /iLubzu	37
38		arrow extension	relation	arrow labelling		38
39		complete extension	\Leftrightarrow	complete labelling		39
40		grounded extension	⇔	grounded labelling		40
41		preferred extension	⇔	preferred labelling		41
42		semi-stable extension	⇔	semi-stable labelling		42
		stable extension	⇔	stable labelling		
43	l			U		43
44						44
45	⁴ We note that $a2ALab$ is define	ed for <i>conflict-free</i> sets a	$\subseteq arr.$			45

It turns out that arrow labellings and node labellings are one-to-one related through the functions

 $\{A \in N \mid \exists (B,A) \in arr : ALab((B,A)) = in\},\$

 $\{A \in N \mid \neg \forall (B, A) \in arr : ALab((B, A)) = \text{out and} \}$

 $\neg \exists (B,A) \in arr : ALab((B,A)) = in \}),$

ALab2NLab and NLab2ALab, where

2.3. On the Equivalence between Node Semantics and Arrow Semantics for AFs

 $ALab2NLab(ALab) = (\{A \in N \mid \forall (B, A) \in arr : ALab((B, A)) = \text{out}\},\$

- $NLab2ALab(NLab) = (\{(A, B) \in arr \mid NLab(A) = in\},\$
 - $\{(A,B)\in arr\mid NLab(A)=\texttt{out}\},$

$$\{(A, B) \in arr \mid NLab(A) = undec\}\}.$$

It can be shown that if *ALab* is a complete (resp. grounded, preferred or stable) arrow labelling, then *ALab2NLab* is a complete (resp. grounded, preferred or stable) node labelling, and if *NLab* is a complete (resp. grounded, preferred, semi-stable or stable) node labelling, then *NLab2ALab(NLab)* is a complete (resp. grounded, preferred, semi-stable or stable) arrow labelling (see Appendix B for proofs). Moreover, under complete semantics (as well as under grounded, preferred and stable semantics) *ALab2NLab* and *NLab2ALab* are bijective functions and each other's inverses (see Appendix B for proofs). Table 5 and Theorem 8, respectively, provide an overview of these results.

		Table 5		
The relation between node l	abellings and arrow labellings	of argume	ntation frameworks, through N	Lab2ALab and ALab2NLab
	node labelling	relation	arrow labelling	
	complete node labelling	\Leftrightarrow	complete arrow labelling	
	grounded node labelling	⇔	grounded arrow labelling	
	preferred node labelling	⇔	preferred arrow labelling	
	semi-stable node labelling	⇔	semi-stable arrow labelling	
	stable node labelling	⇔	stable arrow labelling	

Theorem 8. Let AF = (N, arr) be an argumentation framework and let NLab and ALab be a node labelling and an arrow labelling of AF, respectively. It holds that:

- (1) If NLab is a complete node labelling, then NLab2ALab(NLab) is a complete arrow labelling.
 If ALab is a complete arrow labelling, then ALab2NLab(ALab) is a complete node labelling.
 (2) When restricted to complete node labellings and complete arrow labellings the function
 - (2) When restricted to complete node labellings and complete arrow labellings, the functions ALab2NLab and NLab2ALab become bijections and each other's inverses.
- 40 (3) If NLab is a grounded node labelling, then NLab2ALab(NLab) is a grounded arrow labelling.
 41 If ALab is a grounded arrow labelling, then ALab2NLab(ALab) is a grounded node labelling.
- (4) If NLab is a preferred node labelling, then NLab2ALab(NLab) is a preferred arrow labelling.
 ⁴³ If ALab is a preferred arrow labelling, then ALab2NLab(ALab) is a preferred node labelling.
 - (5) If NLab is a stable node labelling, then NLab2ALab(NLab) is a stable arrow labelling.
 - If ALab is a stable arrow labelling, then ALab2NLab(ALab) is a stable node labelling.

2.0

2.2

Note that this implication does not hold for semi-stable semantics (in neither direction), as the follow-ing counter-examples illustrate. Intuitively, the problem are nodes that have no outgoing arrows, which means in arrow semantics we cannot distinguish the cases out and undec. **Example 9.** Let AF = (N, arr) be an argumentation framework with $N = \{A, B, C, D\}$ and arr = $\{(A, A), (A, C), (B, D), (D, B), (D, C)\}.$ AF has three complete node labellings: $NLab_1 = (\emptyset, \emptyset, \{A, B, C, D\})$ $NLab_2 = (\{B\}, \{D\}, \{A, C\})$ $NLab_3 = (\{D\}, \{B, C\}, \{A\})$ and three complete arrow labellings: 2.2 $ALab_1 = (\emptyset, \emptyset, \{(A, A), (A, C), (B, D), (D, B), (D, C)\})$ $ALab_2 = (\{(B,D)\}, \{(D,B), (D,C)\}, \{(A,A), (A,C)\})$ $ALab_3 = (\{(D, B), (D, C)\}, \{(B, D)\}, \{(A, A), (A, C)\})$ These node labellings and arrow labellings correspond to each other through the functions NLab2ALab and ALab2NLab. While ALab₂ is a semi-stable arrow labelling, $NLab_2 = ALab2NLab(ALab_2)$ is not a semi-stable node labelling (the only semi-stable node labelling is NLab₃). **Example 10.** Let AF = (N, arr) be an argumentation framework with $N = \{A, B, C, D, E, F\}$ and $arr = \{(A, B), (C, B), (C, C), (A, D), (D, A), (D, E), (E, E), (E, F)\}.$ AF has three complete node labellings: $NLab_1 = (\emptyset, \emptyset, \{A, B, C, D, E, F\})$ $NLab_2 = (\{A\}, \{B, D\}, \{C, E, F\})$ $NLab_3 = (\{D, F\}, \{A, E\}, \{B, C\})$

1 2	and three complete arrow labellings:
2	$ALab_{1} = (\emptyset, \emptyset, \{(A, B), (C, B), (C, C), (A, D), (D, A), (D, E), (E, E), (E, F)\})$
4	$ALab_{2} = (\{(A, B), (A, D)\}, \{(D, A), (D, E)\}, \{(C, B), (C, C), (E, E), (E, F)\})$
5 6	$ALab_{3} = (\{(D,A), (D,E)\}, \{(A,B), (A,D), (E,E), (E,F)\}, \{(C,B), (C,C)\})$
7	$ALab_3 = (\{(D,A), (D, L)\}, \{(A, D), (A, D), (L, L), (L, F)\}, \{(C, D), (C, C)\})$
8 9 10 11	These node labellings and arrow labellings correspond to each other through the functions NLab2ALab and ALab2NLab. While NLab ₂ is a semi-stable node labelling, $ALab_2 = NLab2ALab(NLab_2)$ is not a semi-stable arrow labelling (the only semi-stable arrow labelling is $ALab_3$).
12 13	Node extensions and arrow extensions are one-to-one related via the functions
14 15	$Args2a = ALab2a \circ NLab2ALab \circ Args2NLab$, and
16 17	$a2Args = Args2NLab \circ ALab2NLab \circ ALab2a.$
18 19	The following table provides an overview (see Appendix I for proofs).
20	Table 6
21	The relation between node extensions and arrow extensions of argumentation frameworks.
22	node extension relation arrow extension
23	complete node extension \Leftrightarrow complete arrow extension
24	grounded node extension \Leftrightarrow grounded arrow extension
25	preferred node extension \Leftrightarrow preferred arrow extension
26	semi-stable node extension \Leftrightarrow semi-stable arrow extension
27	stable node extension \Leftrightarrow stable arrow extension
28 29	
30	
31	
32	3. SETAFs and their Semantics
33	
34	Apart from defining argumentation semantics based on a normal (binary) directed graph, one can
35	also define argumentation semantics that take collective attacks into account. The idea is that instead
36	of one node attacking another node, there is a set of nodes attacking another node. We note that these
37	frameworks are a special case of directed hypergraphs where the target element is a singleton. For current
38	purposes, we restrict ourselves to hypergraphs that are finite.
39	
40	Definition 11. An argumentation framework with set attacks (SETAF) is a tuple $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ where
41	$\mathfrak N$ is a finite set of nodes, whose structure can be left implicit, and $\mathfrak{arr} \subseteq 2^{\mathfrak N} imes \mathfrak N$.
42	
43	As for AFs, we refer to the elements of \mathfrak{N} as the <i>nodes</i> and to the elements of \mathfrak{arr} as the <i>arrows</i> of
44	the SETAF. Moreover, we say \mathfrak{M} attacks A iff $(\mathfrak{M}, A) \in \mathfrak{arr}$. Consider the following example for an
45	illustration.
46	

Example 12. Consider the following SETAF $\mathfrak{S}\mathfrak{F} = (\mathfrak{N}, \mathfrak{arr})$ with $\mathfrak{arr} = \{(\emptyset, A), (\{A\}, B), (\{B, C\}, E), (\{C, F\}, E), (\{C\}, F), (\{D\}, B), (\{E\}, D), (\{F\}, C)\}.$

Remark 13. Originally, set attacks have been introduced without allowing for the empty set attacking an argument [14]: an argumentation framework with collective attacks is a pair $(\mathfrak{N}, \mathfrak{arr})$ where \mathfrak{N} is a finite set of nodes and $\mathfrak{arr} \subseteq (2^{\mathfrak{N}} \setminus \emptyset) \times \mathfrak{N}$. Hence each AF with collective attacks is a SETAF but not vice versa. However, the difference can be neglected, as we show in Appendix G: given a SETAF $\mathfrak{S}\mathfrak{F} = (\mathfrak{N},\mathfrak{arr})$, if we simply delete all nodes $A \in \mathfrak{N}$ with $(\emptyset, A) \in \mathfrak{arr}$ and all arrows (\mathfrak{M}, B) where either $A \in \mathfrak{M}$ or B = A, we obtain an AF with collective attacks that is equivalent (w.r.t. all semantics under consideration) to our original SETAF $\mathfrak{S}\mathfrak{F}$.

Remark 14. Note that (with a slight abuse of notation) every AF can be seen as a SETAF (cf. [14]): let AF = (N, arr) be an AF, the corresponding SETAF \mathfrak{SF}_{AF} is defined as $\mathfrak{SF}_{AF} = (N, \{(\{A\}, B) \mid A\}, B\})$ $(A, B) \in arr$ }). Both the node semantics and arrow semantics (see next sections) coincide in this case.

Just as is the case for AFs, semantics of SETAFs can be defined in terms of nodes [14, 15] and in terms of arrows (which is a novel contribution of this paper). We will now discuss each of these approaches.

3.1. Node Semantics for SETAFs

 $\mathfrak{N} = \{A, B, C, D, E, F\},\$

Semantics for SETAFs were originally defined in terms of its nodes [14].

Definition 15. Let $\mathfrak{S}\mathfrak{F} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF, $\mathfrak{M} \subseteq \mathfrak{N}$ and $A \in \mathfrak{N}$. We say that \mathfrak{M} attacks A iff $\exists \mathfrak{M}' \subseteq \mathfrak{M} : (\mathfrak{M}', A) \in \mathfrak{arr}$. We say that $\mathfrak{M}_1 \subseteq \mathfrak{N}$ attacks $\mathfrak{M}_2 \subseteq \mathfrak{N}$ iff \mathfrak{M}_1 attacks some $B \in \mathfrak{M}_2$. We define $\mathfrak{M}^+_{\mathfrak{S}\mathfrak{F}}$ as $\{A \in \mathfrak{N} \mid \mathfrak{M} \text{ attacks } A\}$. We say that \mathfrak{M} is conflict-free iff $\mathfrak{M} \cap \mathfrak{M}^+_{\mathfrak{S}\mathfrak{F}} = \emptyset$. We write $cf(\mathfrak{SF}) = \{Mh \subseteq \mathfrak{N} \mid \mathfrak{M} \cap \mathfrak{M}_{\mathfrak{SF}}^+ = \emptyset\}$ to denote the set of conflict-free sets. We say that \mathfrak{M} defends A iff for each $\mathfrak{M}' \subseteq \mathfrak{N}$ that attacks A, \mathfrak{M} attacks \mathfrak{M}' . We define the characteristic function $F_{\mathfrak{SF}}: 2^{\mathfrak{N}} \to 2^{\mathfrak{N}}$ with $F_{\mathfrak{S}\mathfrak{T}}(\mathfrak{M}) = \{A \in \mathfrak{N} \mid A \text{ is defended by } \mathfrak{M}\}$. We omit subscript $\mathfrak{S}\mathfrak{T}$ if it is clear from the context.

Definition 16 ([14, 15]). Let $(\mathfrak{N}, \mathfrak{arr})$ be a SETAF. $\mathfrak{M} \subseteq \mathfrak{N}$ is called:

- (1) an admissible set iff \mathfrak{M} is conflict-free and $\mathfrak{M} \subseteq F(\mathfrak{M})$
- (2) a complete extension iff \mathfrak{M} is conflict-free and $\mathfrak{M} = F(\mathfrak{M})$
- (3) a grounded extension iff \mathfrak{M} is minimal (w.r.t. \subseteq) among all complete extensions
- (4) a preferred extension iff \mathfrak{M} is a maximal (w.r.t. \subseteq) complete extension
- (5) a semi-stable extension iff \mathfrak{M} is a complete extension where $\mathfrak{M} \cup \mathfrak{M}^+$ is maximal (w.r.t. \subseteq) among all complete extensions
- (6) a stable extension iff \mathfrak{M} is a complete extension where $\mathfrak{M} \cup \mathfrak{M}^+ = \mathfrak{N}$

If one interprets an arrow (\mathfrak{M}, A) as a collective attack [14] from \mathfrak{M} to A, then the semantics of	1
Definition 16 coincide with those defined in [14] (minus semi-stable, which is missing in [14] but has	2
been considered in later work, e.g., in [15]). In contrast to the original definitions, we have decided to	3
follow the approach from [15] and use complete semantics as the basis for defining preferred, semi- stable, grounded, and stable semantics. It holds that the grounded extension is unique, and that there	4
always exists at least one preferred and at least one semi-stable extension.	5 6
An alternative way of defining SETAF semantics is by applying node labellings as done in [15].	7
	8
Definition 17 ([15]). Let $(\mathfrak{N}, \mathfrak{arr})$ be a SETAF. A SETAF node labelling is a function $\mathfrak{NLab} : \mathfrak{N} \to \{ \mathtt{in}, \mathtt{out}, \mathtt{undec} \}$. A SETAF node labelling \mathfrak{NLab} is called admissible iff for each $A \in \mathfrak{N}$:	9 10
• if $\mathfrak{NLab}(A) = in$ then for each $\mathfrak{M} \subseteq \mathfrak{N}$ such that $(\mathfrak{M}, A) \in \mathfrak{arr}$ it holds that $\exists B \in \mathfrak{M} : \mathfrak{NLab}(B) = out$	11 12
• <i>if</i> $\mathfrak{NLab}(A) = \operatorname{out}$ <i>then there exists an</i> $\mathfrak{M} \subseteq \mathfrak{N}$ <i>such that</i> $(\mathfrak{M}, A) \in \operatorname{arr}$ <i>and</i> $\forall B \in \mathfrak{M} : \mathfrak{NLab}(B) = \operatorname{in}$	13
A SETAF node labelling \mathfrak{NLab} is called complete iff it is admissible and also satisfies for each $A \in \mathfrak{N}$:	14
• if $\mathfrak{NLab}(A) = undec$ then not for each $\mathfrak{M} \subseteq \mathfrak{N}$ such that $(\mathfrak{M}, A) \in \mathfrak{arr}$ it holds that $\exists B \in \mathfrak{M}$:	15 16
$\mathfrak{NLab}(B) = $ out and there does not exist an $\mathfrak{M} \subseteq \mathfrak{N}$ such that $(\mathfrak{M}, A) \in \mathfrak{arr}$ and $\forall B \in \mathfrak{M}$:	17
$\mathfrak{NLab}(B) = in$	18
As a convention, we write $in(\mathfrak{NLab})$ for $\{A \in \mathfrak{N} \mid \mathfrak{NLab}(A) = in\}$, $out(\mathfrak{NLab})$ for $\{A \in \mathfrak{N} \mid A \in \mathfrak{N} \mid A \in \mathfrak{N}\}$	19
$\mathfrak{NLab}(A) = \operatorname{out} $ and $\operatorname{undec}(\mathfrak{NLab})$ for $\{A \in \mathfrak{N} \mid \mathfrak{NLab}(A) = \operatorname{undec} \}$. A complete SETAF node	20
labelling NLab is called:	21
(1) grounded iff $in(\mathfrak{NLab})$ is minimal (w.r.t. \subseteq) among all complete SETAF node labellings	22 23
(2) preferred iff $in(\mathfrak{NLab})$ is maximal (w.r.t. \subseteq) among all complete SETAF node labellings	23 24
(3) semi-stable iff $undec(\mathfrak{NLab})$ is minimal (w.r.t. \subseteq) among all complete SETAF node labellings	24
(4) stable iff $undec(\mathfrak{NLab}) = \emptyset$	26
As a SETAF node labelling essentially defines a partition, we sometimes write it as a triple	27
$(in(\mathfrak{NLab}), out(\mathfrak{NLab}), undec(\mathfrak{NLab})).$	28
It can been shown that the complete SETAF node labellings with maximal in are equal to the com-	29
plete SETAF node labellings with maximal out (see Appendix D) and that the complete SETAF node	30
labelling where in is minimal is unique and equal to both the complete SETAF node labelling where	31
out is minimal and the complete SETAF node labelling where undec is maximal (See Appendix D).	32 33
This means that the grounded, preferred and semi-stable SETAF node labellings cover all possibilities	34
regarding the minimisation and maximisation of a particular label (among the complete SETAF node labellings). This is summarised in Table 7.	35
As shown in [15, Theorem 5.10, Theorem 5.11], it holds that SETAF node labellings and SETAF	36
extensions are one-to-one related through the functions MLab2Args and Args2MLab, where	37
	38
$\mathfrak{NLab}_{\mathfrak{ab}}(\mathfrak{NLab}) = \mathrm{in}(\mathfrak{NLab}),$ and	39
$\mathfrak{Args2MLab}(\mathfrak{M}) = (\mathfrak{M}, \mathfrak{M}^+, \mathfrak{N} \setminus (\mathfrak{M} \cup \mathfrak{M}^+))^5.$	40 41
If MLab is a complete (resp. grounded, preferred, semi-stable or stable) SETAF node labelling, then	42
NLab2Args(NLab) is a complete (resp. grounded, preferred, semi-stable or stable) SETAF exten-	43
	44
⁵ We note that $\mathfrak{Args_2MLab}$ is defined for <i>conflict-free</i> sets $\mathfrak{M} \subseteq \mathfrak{N}$.	45
	46

1			Table 7					1
1 2	Implen	nenting different condition	ns on com	olete node lab	bellings of SI	ETAFs		1 2
3		condition of	on r	esulting				3
4		node labell		emantics				4
5		maximal i	n p	referred				5
6		maximal o	~	referred				6
7		maximal u	ndec g	rounded				7
8		minimal i	n g	rounded				8
9		minimal or	ut g	rounded				9
10		minimal u	ndec s	emi-stable				10
11		no undec	s	table				11
12								12
13	sion, and if \mathfrak{M} is a comple							13
14	$\mathfrak{Args2MLab}(\mathfrak{M})$ is a comp		-				-	14
15	(see Appendix D for proofs		-			•	-	15
16	semi-stable and stable semi	· •	-		U		each other's	16
17	inverses (see Appendix D f	for proofs). Table 8 p	rovides a	in overviev	w of these i	esults.		17
18			T 11 0					18
19		4	Table 8			<u> </u>	- O(19
20	The relation between no	de extensions and node la	-			51200 and 512002	Latys	20
21		node extension	relation	node la	-			21
22		complete extension	\Leftrightarrow	complete	-			22
23		grounded extension	\Leftrightarrow	grounded	-			23
24		preferred extension	⇔	preferred	-			24
25		semi-stable extension stable extension	⇔	semi-stable	-			25
26		stable extension	\Leftrightarrow	stable la	idennig			26
27								27
28	2.2 Amous Samantias for	CETA E						28
29	3.2. Arrow Semantics for S	DEIAFS						29
30	As an alternative to defi	ning compation baco	l on the	nodes of a	SETAE :	t is also possib	la ta dafina	30
31	semantics based on the arr	·				•		31
32	labellings. We start with ar		IIIS Call	be done us	sing entiter	allow extensio		32
33	labellings. we start with a	TOW EXTENSIONS.						33
34	Definition 18. Let (<i>N</i> , arr	(\cdot) be a SETAE $\sigma \subset \sigma$	arr and	$(\mathfrak{M} A) \subset$	arr We sa	v that a attack	s (M A) iff	34
35	$(\mathfrak{M}', B) \in \mathfrak{a}$ with $B \in \mathfrak{M}$ f	/		· /		•	() 00	35
36	element of \mathfrak{a}_2 . We define \mathfrak{a}_2		•					36
37	$\mathfrak{a} \cap \mathfrak{a}^+ = \emptyset$. We say that \mathfrak{a} d							37
38	the function $F: 2^{\mathfrak{arr}} \to 2^{\mathfrak{a}}$						a. We dejine	38
39	$\frac{1}{2} - \frac{1}{2} = \frac{1}{2}$	us jouows. I'(u) =	- ((~~, A	$j \subset \mathfrak{u} \mathfrak{l} \mathfrak{l} + [0]$	~~·,11) is a	.jenucu by u _f .		39
40	Definition 19. Let (M, arr) be a SETAF ∩⊂ ∩	rr <i>is call</i>	ed:				40
41	× ×	,						41
42	(1) an admissible set iff \mathfrak{o}		. ,					42
43	(2) a complete extension			· /				43
44	(3) a grounded extension			-	-	nsions		44 45
45 46	(4) a preferred extension	iff a is a maximal (w	$r.t. \subseteq c$	omplete ex	tension			45 46
40								40

M. Caminada et al. / Attack Semantics and Collective Attacks Revisited

2.0

2.2

(5) a semi-stable extension iff a is a complete extension where $\mathfrak{a} \cup \mathfrak{a}^+$ is maximal (w.r.t. \subseteq) among all *complete extensions* (6) a stable extension iff a is a complete extension with $a \cup a^+ = arr$ An alternative way of defining arrow semantics for SETAF is by applying labellings, as is done in the following definition. **Definition 20.** Let $(\mathfrak{N}, \mathfrak{arr})$ be a SETAF. A SETAF arrow labelling is a function \mathfrak{ALab} : $\mathfrak{arr} \rightarrow \mathfrak{ALab}$ {in, out, undec}. A SETAF arrow labelling \mathfrak{ALab} is called admissible iff for each $(\mathfrak{M}, A) \in \mathfrak{arr}$: • if $\mathfrak{ALab}((\mathfrak{M},A)) =$ in then for each $(\mathfrak{M}',B) \in$ are such that $B \in \mathfrak{M}$ it holds that $\mathfrak{ALab}((\mathfrak{M}', B)) = \text{out}$ • if $\mathfrak{ALab}((\mathfrak{M},A))$ = out then there exists an $(\mathfrak{M}',B) \in \mathfrak{arr}$ such that $B \in \mathfrak{M}$ and $\mathfrak{ALab}((\mathfrak{M}', B)) = in$ A SETAF arrow labelling \mathfrak{ALab} is called complete iff it is admissible and satisfies for each $(\mathfrak{M}, A) \in \mathfrak{arr}$: • if $\mathfrak{ALab}((\mathfrak{M},A))$ = undec then not for each $(\mathfrak{M}',B) \in \mathfrak{arr}$ such that $B \in \mathfrak{M}$ it holds that $\mathfrak{ALab}((\mathfrak{M}',B)) =$ out and there does not exist an $(\mathfrak{M}',B) \in \mathfrak{arr}$ such that $B \in \mathfrak{M}$ and $\mathfrak{ALab}((\mathfrak{M}', B)) = in$ As a convention, we write $in(\mathfrak{ALab})$ for $\{(\mathfrak{M}, A) \in \mathfrak{arr} \mid \mathfrak{ALab}((\mathfrak{M}, A)) = in\}$, $out(\mathfrak{ALab})$ for $\{(\mathfrak{M},A)\in\mathfrak{arr}\mid\mathfrak{ALab}((\mathfrak{M},A))=\mathsf{out}\}$ and $\mathsf{undec}(\mathfrak{ALab})$ for $\{(\mathfrak{M},A)\in\mathfrak{arr}\mid\mathfrak{ALab}((\mathfrak{M},A))=\mathsf{arr}\mid\mathfrak{ALab}((\mathfrak{M},A))=\mathsf{arr}\mid\mathfrak{ALab}((\mathfrak{M},A))$ undec}. A complete SETAF arrow labelling ALab is called: (1) grounded iff $in(\mathfrak{ALab})$ is minimal (w.r.t. \subseteq) among all complete SETAF arrow labellings (2) preferred iff $in(\mathfrak{ALab})$ is maximal (w.r.t. \subseteq) among all complete SETAF arrow labellings (3) semi-stable iff undec(\mathfrak{ALab}) is minimal (w.r.t. \subseteq) among all complete SETAF arrow labellings (4) *stable iff* undec(\mathfrak{ALab}) = \emptyset As a SETAF arrow labelling essentially defines a partition, we sometimes write it as a triple (in(ALab), out(ALab), undec(ALab)). It can be shown that the complete arrow labellings with maximal in are equal to the complete arrow labellings with maximal out (Appendix E) and that the complete arrow labelling where in is minimal is unique and equal to both the complete arrow labelling where out is minimal and the complete arrow labelling where undec is maximal (Appendix E). This means that the grounded, preferred and semi-stable arrow labellings cover all possibilities regarding the minimisation and maximisation of a particular label (among the complete arrow labellings). This is summarised in Table 9. It can be shown that arrow extensions and arrow labellings are one-to-one related through the functions ALab2a and a2ALab, where $\mathfrak{ALab2a}(\mathfrak{ALab}) = \operatorname{in}(\mathfrak{ALab}),$ $\mathfrak{a2ALab}(\mathfrak{a}) = (\mathfrak{a}, \mathfrak{a}^+, \mathfrak{arr} \setminus (\mathfrak{a} \cup \mathfrak{a}^+))^6.$ ⁶We note that $\mathfrak{ALab2a}$ is defined for *conflict-free* sets $\mathfrak{a} \subseteq \mathfrak{arr}$.

		Table 9			
Impler	nenting different conditio		olete arrow la	bellings of SETAF	1
mpro	condition		esulting		2
	arrow labe		emantics		3
	maximal i	-	referred		4
	maximal	-	referred		5
	maximal u	-	rounded		6
	minimal i	-	rounded		7
	minimal o	0	rounded		8
	minimal u	-	emi-stable		9
	no undec		table		1
ALab2a(ALab) is a comp if a is a complete (resp. gr a complete (resp. grounded	blete (resp. grounded ounded, preferred, se l, preferred, semi-sta	, preferre mi-stable ble or sta	ed, semi-s e or stable ble) arrow	ble or stable) arrow labelling, the table or stable) arrow extension, an arrow extension then a2ALab(a) is labelling. Moreover, under complet table semantics) ALab2a and a2ALa	$\begin{array}{c} \mathbf{n} \\ \mathbf{d} \\ \mathbf{d} \\ \mathbf{s} \\ \mathbf{e} \\ \mathbf{n} \\ \mathbf{e} \\ \mathbf{n} \\ $
	•			oofs can be found in Appendix J. Ta	1
ble 10 provides an overvie		1505. Del	uns and pi	oors can be round in Appendix J. 16	1
one to provides all overvie	w of the results.				1
		Table 10			2
The relation between	n arrow extensions and ar	row labellin	ngs of SETA	F, through a2ALab and ALab2a	2
	arrow extension	relation	arrow la	belling	2
	complete extension	⇔	complete	labelling	2
	grounded extension	⇔	grounded		2
	preferred extension	⇔	preferred	labelling	2
	semi-stable extension	⇔	semi-stabl	e labelling	2
	stable extension	\Leftrightarrow	stable la	belling	2
	stable extension	⇔	stable la	belling	
		I	1		2
3.3. On the Equivalence of		I	1		2 2
	f Node Semantics and	d Arrow S	Semantics	for SETAFs	2 2 3 3
It can be shown that S	f Node Semantics and	d Arrow S	Semantics		2 2 3 4
	f Node Semantics and	d Arrow S	Semantics	for SETAFs	2 2 3 d 3
It can be shown that S through the functions ALa	f Node Semantics and ETAF arrow labellir b2N£ab and N£ab2	d Arrow S lgs and S 2ALab, w	Semantics SETAF no vhere	for SETAFs de labellings are one-to-one relate	2 2 3 d 3. 3.
It can be shown that S	f Node Semantics and ETAF arrow labellir b2N£ab and N£ab2	d Arrow S lgs and S 2ALab, w	Semantics SETAF no vhere	for SETAFs de labellings are one-to-one relate	2 2 3 d 3. 3 3 3
It can be shown that S through the functions ALa	f Node Semantics and ETAF arrow labellir b2N£ab and N£ab2	dArrowS ags and S 2ALab, w $A) \in \mathfrak{arr}$	Semantics SETAF no vhere : ALab((S	for SETAFs de labellings are one-to-one relate $\mathfrak{M}, A)) = \operatorname{out}\},$	2 2 3 3 3 3 3 3 3 3
It can be shown that S through the functions ALa	f Node Semantics and ETAF arrow labellin $\mathfrak{b}_2\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}$ and $\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}\mathfrak{a}$ $= (\{A \in \mathfrak{N} \mid \forall (\mathfrak{M}, A \in \mathfrak{N} \mid \exists (\mathfrak{M}, A \in \mathfrak{N} \mid \exists (\mathfrak{M}, A \in \mathfrak{M}))\}$	dArrowS ags and S $2\mathfrak{ALab}$, w $A) \in \mathfrak{arr}$ $A) \in \mathfrak{arr}$	Semantics SETAF no vhere : ALab((S : ALab((S	for SETAFs de labellings are one-to-one relate $\mathfrak{M}, A)) = \operatorname{out}\},$ $\mathfrak{M}, A)) = \operatorname{in}\},$	2: 2: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3:
It can be shown that S through the functions ALa	f Node Semantics and ETAF arrow labellin $\mathfrak{b}_2\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}$ and $\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}\mathfrak{a}$ $= (\{A \in \mathfrak{N} \mid \forall (\mathfrak{M}, A \in \mathfrak{N} \mid \exists (\mathfrak{M}, A \in \mathfrak{N} \mid \exists (\mathfrak{M}, A \in \mathfrak{M}))\}$	dArrowS ags and S $2\mathfrak{ALab}$, w $A) \in \mathfrak{arr}$ $A) \in \mathfrak{arr}$	Semantics SETAF no vhere : ALab((S : ALab((S	for SETAFs de labellings are one-to-one relate $\mathfrak{M}, A)) = \operatorname{out}\},$	2: 2: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3:
It can be shown that S through the functions ALa	f Node Semantics and ETAF arrow labellin $\mathfrak{b}_2\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}$ and $\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}\mathfrak{a}$ $= (\{A \in \mathfrak{N} \mid \forall (\mathfrak{M}, A \in \mathfrak{N} \mid \exists (\mathfrak{M}, A \in \mathfrak{N} \mid \exists (\mathfrak{M}, A \in \mathfrak{M}))\}$	$d \ Arrow S$ ags and S $ags 2 \mathfrak{A} \mathfrak{B} \mathfrak{a} \mathfrak{b}, \mathfrak{w}$ $A) \in \mathfrak{arr}$ $A) \in \mathfrak{arr}$ $C, A) \in \mathfrak{arr}$	Semantics SETAF no where : ALab((S : ALab((S rr : ALab(for SETAFs de labellings are one-to-one relate $\mathfrak{M}, A)) = \operatorname{out}\},$ $\mathfrak{M}, A)) = \operatorname{in}\},$	2: 2: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3:
It can be shown that S through the functions ALa ALab2MLab(ALab)	f Node Semantics and ETAF arrow labellin $\mathfrak{b}_2\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}$ and $\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}_2$ $= (\{A \in \mathfrak{N} \mid \forall (\mathfrak{M}, A \in \mathfrak{N} \mid \exists a) \in \mathfrak{M}))))$	d Arrow S d S and S $d \Omega Lab, w$ $A) \in \mathfrak{arr}$ $A) \in \mathfrak{arr}$ $C, A) \in \mathfrak{arr}$ $\neg \exists (\mathfrak{M})$	Semantics SETAF now where $: \mathfrak{ALab}((S\mathfrak{ALab}(S))\mathfrak{ALab}(S)\mathfrak{ALab}(S)\mathfrak{ALab}(S)\mathfrak{A}) \in \mathfrak{art}$	for SETAFs de labellings are one-to-one relate $\mathfrak{M}, A)) = \operatorname{out}\},$ $\mathfrak{M}, A)) = \operatorname{in}\},$ $(\mathfrak{M}, A)) = \operatorname{out}$ and $\mathfrak{m}: \mathfrak{ALab}((\mathfrak{M}, A)) = \operatorname{in}\}),$	2: 2: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3:
It can be shown that S through the functions ALa	f Node Semantics and ETAF arrow labellin $\mathfrak{b}_2\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}$ and $\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}_2\mathfrak{A}$ $= (\{A \in \mathfrak{N} \mid \forall (\mathfrak{M}, A) \in \mathfrak{N} \mid \exists (\mathfrak{M}, A) \in \mathfrak{arr} \mid \exists (\mathfrak{M}, A) \in \mathfrak{arr} \mid \exists (\mathfrak{M}, A) \in \mathfrak{arr} \mid d \in \mathfrak{M} \}$	$d \text{ Arrow } S$ $gs \text{ and } S$ $g\mathfrak{Lab}, w$ $A) \in \mathfrak{arr}$ $A) \in \mathfrak{arr}$ $\neg \exists (\mathfrak{M})$ $\forall B \in \mathfrak{M}$	Semantics SETAF no where $: \mathfrak{ALab}(S$ $: \mathfrak{ALab}(S$ $: \mathfrak{ALab}(S$ $: \mathfrak{ALab}(S$ $: \mathfrak{ALab}(S$	for SETAFs de labellings are one-to-one relate $(\mathfrak{M}, A)) = \operatorname{out}\},$ $(\mathfrak{M}, A)) = \operatorname{in}\},$ $(\mathfrak{M}, A)) = \operatorname{out}$ and $\mathfrak{m}: \mathfrak{ALab}((\mathfrak{M}, A)) = \operatorname{in}\}),$ $\mathfrak{B}) = \operatorname{in}\},$	2 (2) 3 (3) 3) 3 () 3 () 3) 3 () 3) 3 () 3 (
It can be shown that S through the functions ALa ALab2MLab(ALab)	f Node Semantics and ETAF arrow labellin $\mathfrak{b}_2\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}$ and $\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}_2$ $= (\{A \in \mathfrak{N} \mid \forall (\mathfrak{M}, A \in \mathfrak{N} \mid \exists a) \in \mathfrak{M}))))$	$d \text{ Arrow } S$ $gs \text{ and } S$ $g\mathfrak{Lab}, w$ $A) \in \mathfrak{arr}$ $A) \in \mathfrak{arr}$ $\neg \exists (\mathfrak{M})$ $\forall B \in \mathfrak{M}$	Semantics SETAF no where $: \mathfrak{ALab}(S$ $: \mathfrak{ALab}(S$ $: \mathfrak{ALab}(S$ $: \mathfrak{ALab}(S$ $: \mathfrak{ALab}(S$	for SETAFs de labellings are one-to-one relate $(\mathfrak{M}, A)) = \operatorname{out}\},$ $(\mathfrak{M}, A)) = \operatorname{in}\},$ $(\mathfrak{M}, A)) = \operatorname{out}$ and $\mathfrak{m}: \mathfrak{ALab}((\mathfrak{M}, A)) = \operatorname{in}\}),$ $\mathfrak{B}) = \operatorname{in}\},$	28 29 30 33 34 35 36 37 38 36 37 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39
It can be shown that S through the functions ALa ALab2MLab(ALab)	f Node Semantics and ETAF arrow labellin $\mathfrak{b}_2\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}$ and $\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}_2\mathfrak{A}$ $= (\{A \in \mathfrak{N} \mid \forall (\mathfrak{M}, A) \in \mathfrak{arr} \mid A \in \mathfrak{N} \mid \neg \forall (\mathfrak{M}, A) \in \mathfrak{arr} \mid A \in \mathfrak{M}, A) \in \mathfrak{arr} \mid A \in \mathfrak{M}, A \in \mathfrak{M} \in \mathfrak{arr} \mid A \in \mathfrak{M}, A \in \mathfrak{m} \in \mathfrak{arr} \mid A \in \mathfrak{M}, A \in \mathfrak{m} \in \mathfrak{arr} \mid A \in \mathfrak{M}, A \in \mathfrak{m} \in \mathfrak{m}$	$d \text{ Arrow } S$ $gs \text{ and } S$ $g\mathfrak{QLab, w}$ $A) \in \mathfrak{arr}$ $A) \in \mathfrak{arr}$ $\neg \exists (\mathfrak{M})$ $\forall B \in \mathfrak{M}$ $\exists B \in \mathfrak{M}$	Semantics SETAF no where $: \mathfrak{ALab}(S$ $: \mathfrak{ALab}(S$ $: \mathfrak{ALab}(S$ $: \mathfrak{ALab}(S$ $: \mathfrak{ALab}(S$	for SETAFs de labellings are one-to-one relate $(\mathfrak{M}, A)) = \operatorname{out}\},$ $(\mathfrak{M}, A)) = \operatorname{in}\},$ $(\mathfrak{M}, A)) = \operatorname{out}$ and $\mathfrak{m}: \mathfrak{ALab}((\mathfrak{M}, A)) = \operatorname{in}\}),$ $\mathfrak{B}) = \operatorname{in}\},$ $\mathfrak{B}) = \operatorname{out}\},$	2 28 29 30 33 34 35 36 36 37 38 38 39 40 42 42 42 42 42
It can be shown that S through the functions ALa ALab2MLab(ALab)	f Node Semantics and ETAF arrow labellin $\mathfrak{b}_2\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}$ and $\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}_2\mathfrak{A}$ $= (\{A \in \mathfrak{N} \mid \forall (\mathfrak{M}, A) \in \mathfrak{N} \mid \exists (\mathfrak{M}, A) \in \mathfrak{arr} \mid \exists (\mathfrak{M}, A) \in \mathfrak{arr} \mid \exists (\mathfrak{M}, A) \in \mathfrak{arr} \mid d \in \mathfrak{M} \}$	$d Arrow S$ $gs and S$ $g\Omega Lab, w$ $A) \in arr$ $A) \in arr$ $\neg \exists (\mathfrak{M})$ $\forall B \in \mathfrak{M}$ $\exists B \in \mathfrak{M}$ $\neg \forall B \in \mathfrak{L}$	Semantics SETAF no vhere : ALab((S : ALab(S : ALab(S : ALab(A) \in are : ALab(A : ALab(A M : ALab(A	for SETAFs de labellings are one-to-one relate $(\mathfrak{M}, A)) = \operatorname{out}\},$ $(\mathfrak{M}, A)) = \operatorname{in}\},$ $(\mathfrak{M}, A)) = \operatorname{out}$ and $\mathfrak{m}: \mathfrak{ALab}((\mathfrak{M}, A)) = \operatorname{in}\}),$ $\mathfrak{B}) = \operatorname{in}\},$ $\mathfrak{B}) = \operatorname{out}\},$ $(\mathfrak{B}) = \operatorname{in}$ and	28 29 30 32 33 34 35 36 36 37 38 38 38 38 38 38 38 38 49 42 42
It can be shown that S through the functions ALa ALab2MLab(ALab)	f Node Semantics and ETAF arrow labellin $\mathfrak{b}_2\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}$ and $\mathfrak{N}\mathfrak{L}\mathfrak{a}\mathfrak{b}_2\mathfrak{A}$ $= (\{A \in \mathfrak{N} \mid \forall (\mathfrak{M}, A) \in \mathfrak{arr} \mid A \in \mathfrak{N} \mid \neg \forall (\mathfrak{M}, A) \in \mathfrak{arr} \mid A \in \mathfrak{M}, A) \in \mathfrak{arr} \mid A \in \mathfrak{M}, A \in \mathfrak{M} \in \mathfrak{arr} \mid A \in \mathfrak{M}, A \in \mathfrak{m} \in \mathfrak{arr} \mid A \in \mathfrak{M}, A \in \mathfrak{m} \in \mathfrak{arr} \mid A \in \mathfrak{M}, A \in \mathfrak{m} \in \mathfrak{m}$	$d Arrow S$ $gs and S$ $g\Omega Lab, w$ $A) \in arr$ $A) \in arr$ $\neg \exists (\mathfrak{M})$ $\forall B \in \mathfrak{M}$ $\exists B \in \mathfrak{M}$ $\neg \forall B \in \mathfrak{L}$	Semantics SETAF no vhere : ALab((S : ALab(S : ALab(S : ALab(A) \in are : ALab(A : ALab(A M : ALab(A	for SETAFs de labellings are one-to-one relate $(\mathfrak{M}, A)) = \operatorname{out}\},$ $(\mathfrak{M}, A)) = \operatorname{in}\},$ $(\mathfrak{M}, A)) = \operatorname{out}$ and $\mathfrak{m}: \mathfrak{ALab}((\mathfrak{M}, A)) = \operatorname{in}\}),$ $\mathfrak{B}) = \operatorname{in}\},$ $\mathfrak{B}) = \operatorname{out}\},$	2 (2) 3 (3) 4 (4) 4 (4) 4 (4) 4 (4) 4 (4) 4) 4 (4) 4) 4 (4) 4) 4 (4) 4) 4) 4) 4) 4) 4) 4) 4) 4)

M. Caminada et al. / Attack Semantics and Collective Attacks Revisited

1		· ·		unded, preferred, semi-st	-	1
2	arrow labelling, then S	ALab2NLab(ALab) is	a comple	te (resp. grounded, prefe	rred or stable) SETAF	2
3	node labelling, and if	MLab is a complete (r	esp. grou	inded, preferred or stable	e) node labelling, then	3
4	NLab2ALab(NLab)	is a complete (resp. grou	unded, pro	eferred or stable) arrow la	abelling (see Appendix	4
5	F for proofs).		-			5
6	· ·	on between SETAF arro	w labelli	ngs and SETAF node la	bellings does <i>not</i> hold	6
7				me counter example as in	e	7
8				it, under complete semar	**	8
9	• •	· •) ALab2NLab and NLa	-	9
10	e 1				Ũ	10
11			uix f 101	proofs). Theorem 21 and	Table 11, respectively,	11
12	provide an overview of	t these results.				12
13						13
14	-			t NLab and ALab be a	node labelling and an	14
15	arrow labelling of \mathfrak{SF}	, respectively. It holds th	at:			15
16	(1) $H \otimes O_{-} h := -$			$\mathcal{O}(\mathcal{O}_{\mathbf{x}}) := \cdots$	1 - 4	16
17				$\mathfrak{Lab}(\mathfrak{NLab}) \text{ is a comp}$	0	17
18	•	• •		2MLab(ALab) is a comp	8	18
19		-	0	ind complete arrow lab	0	19
20			0	and each other's inverse		20
21		8		2ALab(NLab) is a ground	0	21
22		0		$\mathfrak{p2MLab}(\mathfrak{ALab})$ is a group	0	22
23		0		2ALab(NLab) is a prefe	8	23
24				2MLab(ALab) is a prefe	_	24
25	(5) If \mathfrak{NLab} is a stab	ole node labelling, then ?	NLab2A!	Eab(NLab) is a stable ar	rrow labelling.	25
26	If ALab is a stab	le arrow labelling, then	ALab2N	$\mathfrak{Lab}(\mathfrak{ALab})$ is a stable n	ode labelling.	26
27						27
28						28
29			Table 11			29
30	The relation betwee	n node labellings and arrow la		SETAFs, through NLab2ALc	ih and Meah2Meah	30
31	The relation betwee	_	-	-		31
32		node labelling	relation	arrow labelling		32
33		complete node labelling	⇔	complete arrow labelling		33
34		grounded node labelling	⇔	grounded arrow labelling		34
35		semi-stable node labelling		preferred arrow labelling semi-stable arrow labelling		35
36		stable node labelling		stable arrow labelling		36
37		stable node labelling	\forall	stable allow labelling		37
38						38
39	Conflict-free node e	xtensions and arrow exte	ensions a	e one-to-one related via	the functions	39
40						40
41	Nrasza — N Cab	2a o NLab2ALab o Arg	152MPah			41
42	-	•				42
43	$\mathfrak{a2Args} = \mathfrak{Args2}$	NLab 0 ALab2NLab 0	ALab2a			43
44						44
45	Table 12 provides ar	n overview (see Appendi	ix K for n	roofs).		45
46	provideb ur	(ore repende	ror p			46

	Table 12	
The relation between node ext	tensions an	d arrow extensions of SETAFs.
node extension	relation	arrow extension
complete node extension	⇔	complete arrow extension
grounded node extension	⇔	grounded arrow extension
preferred node extension	⇔	preferred arrow extension
semi-stable node extension	\$	semi-stable arrow extension
stable node extension	⇔	stable arrow extension

4. Relating SETAFs to AFs

It is possible to translate a SETAF to an AF, and in the current section we will provide one particular way of doing so (other methods are presented, e.g., in [27]). The idea is that the arrows of the SETAF become the nodes of the AF.⁷ As the arrows of the original framework become the nodes of the associated framework we say we turn the framework "inside-out". The proofs of this section can be found in Appendix L.

Definition 22. Let $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF. We define the associated inside-out argumentation framework $AF_{\mathfrak{SF}}$ as (N, arr) with $N = \mathfrak{arr}$ and $arr = \{((\mathfrak{M}_1, A_1), (\mathfrak{M}_2, A_2)) \mid (\mathfrak{M}_1, A_1), (\mathfrak{M}_2, A_2) \in \mathbb{C}\}$ arr and $A_1 \in \mathfrak{M}_2$

As a side effect of this translation, the arrow labellings of the SETAF become the node labellings of the associated argumentation framework.

Theorem 23. Let $\mathfrak{S}\mathfrak{F} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF and $AF_{\mathfrak{S}\mathfrak{F}} = (N, arr)$ be the associated argumentation framework. It holds that ALab is a complete (resp. grounded, preferred, semi-stable or stable) SETAF arrow labelling of SF iff ALab is a complete (resp. grounded, preferred, semi-stable or stable) node labelling of $AF_{\mathfrak{S}\mathfrak{F}}$.

The relation described in Theorem 23 is summarised in Table 13. The fact that SETAF arrow labellings

$\begin{array}{c c} \text{arrow labelling of } \mathfrak{S}\mathfrak{F} \\ \hline \\ \hline \\ \text{complete arrow labelling} \\ \end{array}$	relation ⇔	node labelling of $AF_{\mathfrak{S}\mathfrak{F}}$ complete node labelling]
grounded arrow labelling	\Leftrightarrow	grounded node labelling	-
preferred arrow labelling	⇔	preferred node labelling	
semi-stable arrow labelling	⇔	semi-stable node labelling	
stable arrow labelling	\Leftrightarrow	stable node labelling]
 associated argumentation	framewoi	rk node labellings (Theo	orem 23), together

⁷This is similar to what was sketched at the end of Appendix A.

 2.0

2.2

2.2

Definition 25 ([13]). An ABAF is a tuple $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{})$ where:

- $(\mathcal{L}, \mathcal{R})$ is a deductive system, with \mathcal{L} being a logical language, and \mathcal{R} being a set of inference rules on this language,
 - $\mathcal{A} \subseteq \mathcal{L}$ is a (non-empty) set of assumptions,
 - *is the* contrary function, *i.e.*, *a total mapping from* A *into* \mathcal{L} ; $\overline{\alpha}$ *is called the contrary of* α .

For current purposes we only consider ABAFs that are *flat* in the sense of [12], which amounts to no assumption being the head of an inference rule.

Definition 26 ([13]). Given an ABAF $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{})$, a derivation tree for $c \in \mathcal{L}$ (the conclusion or claim) supported by Asms $\subseteq \mathcal{A}$ is a finite tree t with nodes labelled by formulas in \mathcal{L} or by the special symbol \top such that:

- the root is labelled c
- for every node N

2.2

- * if N is a leaf then N is labelled either by an assumption or by \top
- * if N is not a leaf and b is the label of N, then there exists an inference rule $b \leftarrow b_1, \ldots, b_m$ ($m \ge 0$) and either m = 0 and the child of N is labelled by \top , or m > 0 and N has m children, labelled by b_1, \ldots, b_m respectively
- Asms(t) is the set of all assumptions labelling the leaves

We denote by cl(t) = c the conclusion of t.

Note that for each assumption $\gamma \in A$, a trivial derivation tree consisting of a leaf labelled γ is induced. Now that the notions of an ABAF and a derivation tree have been defined, we proceed with defining the ABA semantics [12, 34]. Historically, they have been defined in two different ways: using extensions of assumptions or using extensions of arguments [12, 13, 34]. We start with the more contemporary argument-based notion.

Definition 27. Given an ABAF $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{})$, an ABA-argument is a pair (Asms, c) where Asms \subseteq A and $c \in \mathcal{L}$ such that there is a derivation tree t with cl(t) = c and Asms(t) = Asms. We say that an ABA-argument (Asms₁, c₁) attacks an ABA-argument (Asms₂, c₂) iff $c_1 = \bar{\gamma}$ for some $\gamma \in Asms_2$.

Our notion of an ABA-argument (Definition 27) is in line with the notation in the ABA literature [30], where a derivation tree is often denoted as $Asms \vdash c$. Notice, however, that as observed in [30] there can be several derivation trees (Definition 26) that yield the same assumptions-conclusion pair (Definition 27). However, for the purpose of the ABA semantics it does not matter whether one defines arguments as derivation trees or as pairs of assumptions and conclusions, since the semantics are characterised by considering this information only. Formally, ABA-arguments (Asms, c) are equivalence classes of derivation trees for the purpose of argumentation semantics. Using the notion of ABA-arguments and their attacks, it is straightforward to define the associated AF

Using the notion of ABA-arguments and their attacks, it is straightforward to define the associated AF.

⁴⁴ **Definition 28.** Given an ABAF $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{})$, the associated AF AF_D is defined as (N, arr) with N ⁴⁵ being the set of ABA-arguments, and arr being the attack relation among ABA-arguments. The semantics of the ABAF *D* can now be determined by the semantics of the associated AF AF_D in the usual way. Due to the altered notion of ABA-arguments in Definition 27 as compared to [12, 30], the associated AF of an ABAF might contain fewer nodes (ABA-arguments) and arrows than the one constructed according to [30]. Nevertheless, the semantics correspond as proven in Appendix M.

Example 29. We consider the ABAF $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{})$ where $\mathcal{A} = \{a, b, c, d, e, f\}$, $\mathcal{L} = \mathcal{A} \cup \{a_c \mid a \in \mathcal{A}\}$, $\overline{a} = a_c$ for each $a \in \mathcal{A}$, and

$$a_c \leftarrow b_c \leftarrow d.$$
 $d_c \leftarrow e.$ $e_c \leftarrow b, c.$
 $b_c \leftarrow a.$ $e_c \leftarrow c, f.$ $f_c \leftarrow c.$ $c_c \leftarrow f.$

In this example, each rule induces one ABA-argument, for instance $(\{c, f\}, e_c)$. The attack relation is the natural one. Hence the AF F_D is given as follows.

Note the structural similarity to the inside-out AF from Example 24 when ignoring the trivial ABAarguments of the form $(\{a\}, a)$.

Now that we have provided the contemporary definition of ABA semantics which is based on extensions (resp. labellings) of *arguments*, we shift our attention to the more classical definition of ABA semantics which is based on extensions (resp. labellings) of *assumptions*. While the former can be captured by constructing an AF, the latter can be captured by a SETAF, which we are going to demonstrate subsequently. First, we define the semantics directly on the ABAF, without any kind of instantiation.

Definition 30. Let $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \neg)$ be an ABAF, Asms $\subseteq \mathcal{A}$ and $\alpha \in \mathcal{A}$. We say that Asms attacks α iff there is an ABA-argument (Asms', $\overline{\alpha}$) with Asms' \subseteq Asms. We say that Asms₁ $\subseteq \mathcal{A}$ attacks Asms₂ $\subseteq \mathcal{A}$ iff Asms₁ attacks some $\beta \in Asms_2$. We define Asms⁺ as { $\alpha \in \mathcal{A} \mid Asms$ attacks α }. We say that Asms is conflict-free iff Asms $\cap Asms^+ = \emptyset$. We say that Asms defends α iff for each Asms' $\subseteq \mathcal{A}$ that attacks α , Asms attacks Asms'. We define the function $F : 2^{\mathcal{A}} \to 2^{\mathcal{A}}$ as follows: $F(Asms) = {\alpha \in \mathcal{A} \mid \alpha is}$ defended by Asms}.

Definition 31. Let $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{})$ be an ABAF. The set Asms $\subseteq \mathcal{A}$ is called

- ⁴² (1) an admissible assumption set *iff Asms is conflict-free and Asms* \subseteq *F*(*Asms*)
- (2) *a* complete assumption extension *iff* Asms is conflict-free and Asms = F(Asms)
- (3) *a* grounded assumption extension *iff* Asms is the (unique) minimal (w.r.t. \subseteq) complete assumption extension

2.2

M. Caminada et al. / Attack Semantics and Collective Attacks Revisited

- (4) a preferred assumption extension iff Asms is a maximal (w.r.t. \subseteq) complete assumption extension (5) a semi-stable assumption extension iff Asms is a complete assumption extension where Asms \cup Asms⁺ is maximal (w.r.t. \subseteq) among the complete assumption extensions (6) a stable assumption extension iff Asms is a complete assumption extension with Asms \cup Asms⁺ = ASince the notion of ABA-arguments (Definition 27) influences the attack and defense relations be-tween arguments (Definition 30), it also affects the definition of semantics of an ABAF as compared to [12, 30]. However, the semantics of an ABAF are the same no matter whether our definition of arguments or the one in [30] is used. It should also be noticed that description of preferred and stable semantics in Definition 31 is slightly different from [12, 30]. We prove equivalence in Appendix M. **Theorem 32.** Let $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{})$ be an ABAF. (1) The set Asms $\subseteq A$ is an admissible assumption set according to Definitions 26-31 iff Asms is an admissible assumption set according to the definitions in [12, 30]. (2) The set Asms $\subseteq A$ is a complete (resp. grounded, preferred, semi-stable or stable) assumption extension according to Definitions 26-31 iff Asms is a complete (resp. grounded, preferred, semi-stable or stable) assumption extension according to the definitions in [12, 29, 30] We next consider the SETAF instantiation of an ABAF. The SETAF is close to the original ABAF as for instance stated in [12, 30]. Instead of computing all derivation trees to construct an AF, the SETAF we instantiate only contains the set A of assumptions as arguments. Then, the induced attacks are defined in a very natural way: if $(Asms, \overline{\gamma})$ is an ABA-argument, then the set Asms attacks the assumption γ . Since SETAFs have the modeling capabilities of capturing this, we can simply use this as the definition of our attack relation. In summary, this yields the following definition of the associated SETAF. **Definition 33.** Given an ABAF $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{})$, the associated SETAF \mathfrak{SF}_D is defined as $(\mathfrak{N}, \mathfrak{arr})$ with $\mathfrak{N} = \mathcal{A}$ and $\mathfrak{arr} = \{(Asms, \gamma) \mid (Asms, \overline{\gamma}) \text{ is an ABA-argument with } \gamma \in \mathcal{A}\}.$ **Example 34.** Recall the previous ABAF $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{})$ where $\mathcal{A} = \{a, b, c, d, e, f\}, \mathcal{L} = \mathcal{A} \cup \{a_c \mid c \in \mathcal{A}\}$ $a \in \mathcal{A}$, $\overline{a} = a_c$ for each $a \in \mathcal{A}$, and rules $b_c \leftarrow d.$ $d_c \leftarrow e.$ $e_c \leftarrow b, c.$ a. $e_c \leftarrow c, f.$ $f_c \leftarrow c.$ $c_c \leftarrow f.$ $a_c \leftarrow$ $b_c \leftarrow a$. Each assumption in \mathcal{A} induces one argument in our SETAF $\mathfrak{S}_{\mathcal{D}}$. Moreover, the attacks can be read off of the rules: for instance, c and f collectively attack e due to the rule " $e_c \leftarrow c, f$." Consequently, \mathfrak{SF}_D is given as follows.

2.2

It is not difficult to see that the extensions of the thus constructed SETAF correspond to the traditional

Theorem 35. Let $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{})$ be an ABAF, $\mathfrak{S}_{\mathcal{D}}$ be the associated SETAF, and Asms $\subseteq \mathcal{A}$. It holds that (1) Asms is a complete extension of \mathfrak{S}_D iff Asms is a complete extension of D in the sense of [12, 30]; (2) Asms is a grounded extension of $\mathfrak{S}_{\mathcal{D}}$ iff Asms is a grounded extension of D in the sense of [12, 30]; (3) Asms is a preferred extension of \mathfrak{S}_D iff Asms is a preferred extension of D in the sense of [12, 30]; (4) As ms is a semi-stable extension of $\mathfrak{S}_{\mathcal{T}_D}$ iff As ms is a semi-stable extension of D in the sense of [35]; (5) Asms is a stable extension of \mathfrak{S}_D iff Asms is a stable extension of D in the sense of [12, 30]. Hence, the essential difference between the classical ABA definitions (in which semantics are defined in terms of assumptions [12, 30]) and the more contemporary ABA-AF instantiation (in which semantics are defined in terms of arguments [13]) is that the classical ABA definititions are based on a SETAF, in which the ABA-arguments form the arrows, whereas the ABA-AF instantiation is based on an AF, in which the ABA-arguments form the nodes.⁸ Now that the difference between the classical ABA definitions and the ABA-AF instantiation has been made clear, we can shed new light on the issue of whether these are actually equivalent. The idea is to apply the abstract theory on AF labellings and SETAF labellings in the particular context of ABA. This is done using the following steps: (1) Start with the SETAF generated by the ABA SETAF instantiation. The complete (resp. grounded, preferred, semi-stable or stable) assumption extensions of the ABA-framework correspond one-toone with the complete (resp. grounded, preferred, semi-stable and stable) node labellings of the SETAF. (2) Convert the SETAF node labellings to the associated SETAF arrow labellings (that is, apply the concept of arrow-semantics to the SETAF). Since each arrow of the SETAF is associated with an ABA-argument, this will essentially define a labelling of ABA-arguments. (3) Convert the SETAF into an AF (the associate inside-out AF, cf. Definition 22). The arrows of the SETAF become the nodes of the AF. The arrow labellings of the SETAF become the node labellings of the AF. (4) The thus obtained AF is almost equivalent to the ABA-AF instantiation. However, two things still need to be taken care of. First, we should restore the contrary signs in the conclusions of the ABAarguments, which were lost when generating the SETAF at step 1. Secondly, it can be observed that the resulting graph only contains the *attacking* ABA-arguments (arguments whose conclusion is the contrary of an assumption) whereas the ABA-AF instantiation also contains the *non-attacking* ABA-arguments (arguments whose conclusion is *not* the contrary of an assumption). These need to be added to the graph. The thus added nodes might have in-going arrows, but do not have any outgoing arrows. Consequently, the node labellings can be extended in a straightforward way. Thereby, the overall set of accepted assumptions is preserved. The result will be the ABA-AF instantiation, with associated labellings.

ABA extensions of assumptions.

2.2

⁸It should be observed, however, that in the SETAF not all ABA-arguments are represented, as only ABA-arguments that attack an assumption (that is, ABA-arguments whose conclusion is the contrary of an assumption) can be used as arrows of the SETAF.

 $AF_1 = (N_1, arr_1)$ to an AF $AF_2 = (N_2, arr_2)$ such that

$$N_1 \subseteq N_2 \quad \text{and} \quad arr_2 \cap (N_1 \times N_1) = arr_1 \quad (1)$$
(no new arrows are added among the nodes that were already there) and
$$arr_2 \cap ((N_2 \setminus N_1) \times N_2) = \emptyset \quad (2)$$
(the new nodes do not have out-going arrows). In this situation, the complete (resp. grounded, preferred or stable) node labellings of AF_2 can be computed straightforwardly if we are given the labellings of AF_1 .
While this is in inutively clear, from a formal point of view we make use of the directionality principle here [36].
Proposition 36. Let $AF_1 = (N_1, arr_1)$ and $AF_2 = (N_2, arr_2)$ be two AFs such that conditions (1) and (2) are met.
(i) If $NLab_1$ is a complete (resp. grounded, preferred or stable) node labelling of AF_1 , then
$$NLab_2 = NLab_1 \cup \{(A, in) \mid A \in N_2 \setminus N_1, \forall (B, A) \in arr_2 : NLab_1(B) = out\} \cup \{(A, out) \mid A \in N_2 \setminus N_1, \exists (B, A) \in arr_2 : NLab_1(B) = out, \neg \exists (B, A) \in arr_2 : NLab_1(B) = in\}$$
is a complete (resp. grounded, preferred or stable) node labelling of AF_2 , then $NLab_1$ is a complete (resp. grounded, preferred or stable) node labelling of AF_2 .
(ii) If $NLab_2$ is a complete (resp. grounded, preferred or stable) node labelling of AF_2 .
(iii) If $NLab_2$ is a complete (resp. grounded, preferred or stable) node labelling of AF_2 .
(iii) If $NLab_2$ is a complete (resp. grounded, preferred or stable) node labelling of AF_2 .
(iii) If $NLab_2$ is a complete (resp. grounded, preferred or stable) node labelling of AF_1 .
It can be observed that the thus defined conversion functions between node labellings of AF_1 and node labellings of AF_2 are bijective functions that are each other's inverses. Hence, the complete (resp. grounded, preferred and stable) node labelling of AF_1 .
The one formalise that the relation between the inside-out AF associated to \mathfrak{S}_{D} and the AF_{AP_D} corresponding to D meets the conditions described in Proposition 36.
The position 37. Let D be an ABAF. Let \mathfrak{S}_D be the associated SETAF and let $AF \mathfrak{S}_{D}$ be the AF associated with D . Then the r

 $Asms2Args(Asms) = \{(Asms', c) \in N \mid Asms' \subseteq Asms\}$

Args2Asms : $2^N \rightarrow 2^{\hat{\mathcal{A}}}$ as follows:

and

2.2

Args2Asms(M) =	L	Asms'.
	(Asms', a	$(z) \in M$

We are now ready to give an alternative proof for the (known) result that an ABAF D can be evaluated by computing the semantics of the associated AF AF_D . Our proof will make use of several relations we showed throughout the present paper.⁹

Theorem 38. Let $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{})$ be an ABA framework and $AF_D = (N, arr)$ be the associated argumentation framework.

- (1) If Asms is a complete (resp. grounded, preferred or stable) assumption extension of D, then Asms2Args(Asms) is a complete (resp. grounded, preferred or stable) extension of AF_D .
- (2) If M is a complete (resp. grounded, preferred or stable) extension of AF_D then Args2Asms(M) is a complete (resp. grounded, preferred or stable) assumption extension of D.
 - (3) When restricted to complete (resp. grounded, preferred and stable) assumption extensions of D and complete (resp. grounded, preferred and stable) extensions of AF_D the functions Asms2Args and Args2Asms are bijective and each other's inverses.
 - **Proof.** We only do the case of complete semantics (the other semantics can be handled in a similar way).
- (1) Let *Asms* be a complete assumption extension of *D*. We proceed in several steps, combining the results from our paper.
- (i) By Theorem 35, the set *Asms* is a complete node extension of the associated SETAF $\mathfrak{S}_{\mathcal{D}}$.
- (ii) Now let \mathfrak{NLab} be the SETAF node labelling associated with *Asms*. From the correspondence between extensions and labellings (see Table 8), it follows that \mathfrak{NLab} is a complete SETAF node labelling of \mathfrak{S}_D . (iii) In the next step, let \mathfrak{ALab} be the associated SETAF arrow labelling associated with \mathfrak{NLab} . By
- (iii) In the next step, let \mathfrak{ALab} be the associated SETAF arrow labelling associated with \mathfrak{KLab} . By Theorem 21, it holds that \mathfrak{ALab} is a complete SETAF arrow labelling of \mathfrak{SF}_D .
- (iv) Let $AF_{\mathfrak{S}_{\mathcal{T}_D}}$ be the inside-out AF that results from converting the SETAF $\mathfrak{S}_{\mathcal{T}_D}$ (Definition 22). By Theorem 23, it holds that \mathfrak{ALab} is a complete node labelling of $AF_{\mathfrak{S}_{\mathcal{T}_D}}$.
- (v) Now let AF_D be the AF associated to D. By Proposition 37, it holds that AF_D is the result of taking $AF_{\mathfrak{SF}_D}$ and adding some nodes without out-going arrows. Since \mathfrak{ALab} is a complete node labelling of $AF_{\mathfrak{SF}}$ it follows that the labelling \mathfrak{ALab}' resulting from applying Proposition 36 is a complete node labelling of AF_D .
- (vi) Let M be the associated complete extension. It holds that M consists of precisely those ABAarguments whose assumptions are in *Asms*. This can be seen as follows: Each attacking ABAargument whose assumptions are in *Asms* will have been represented as an arrow in the SETAF that was labelled in by the SETAF arrow labelling (this is because the assumptions *Asms* were labelled in as nodes of the SETAF); consequently it was still labelled in by the node labelling of $AF_{\mathfrak{S}\mathfrak{F}}$, so still labelled in by the node labelling of AF_D , and thus an element of M. We have left to deal with the auxiliary nodes without out-going arrows. As we already mentioned, the node

⁹Our main contribution here is not the (known) correspondence between ABA and AFs, but the way we can proof this result by means of our theory. We thereby shed new light on this correspondence. Consequently, we include the proof here instead of moving it to the appendix.

1 2 3 4 5 6 7 8 9	 labelling of AF_D can be obtained by applying Proposition 36 to AF_{SF}. So we analyse which further arguments are labelled in: By construction of AF_D, the additional nodes are ABA-arguments of the form (Asms', γ) s.t. γ is not the contrary of any assumption in D. Since in-going arrows in ABA are determined by the assumptions required to construct an argument, (Asms', γ) is defended by our complete labelling of AF_D iff Asms' ⊆ Asms. In this case, (Asms', γ) is labelled in (Proposition 36); otherwise it is not. Consequently, the set Asms of accepted assumptions does not change when moving from AF_{SF} to AF_D and applying Proposition 36 to the novel nodes without out-going arrows. (2) Let M be a complete extension of AF_D and let Asms be the set
10	
11	$Asms = \bigcup_{(Asms',c)\in M} Asms'.$
12	$(Asms',c) \in M$
13 14	
15	All of the aforementioned steps are applicable in both directions, so we can
16	(i) remove suitable nodes from AF_D to yield correspondence to the inside-out AF $AF_{\mathfrak{S}\mathfrak{F}_D}$ associ-
17	ated with $\mathfrak{S}\mathfrak{F}_D$;
18	(ii) move from the node labelling of $AF_{\mathfrak{S}\mathfrak{F}_D}$ to an arrow labelling of $\mathfrak{S}\mathfrak{F}_D$;
19	(iii) move from the arrow labelling of \mathfrak{S}_D^* to a node labelling of \mathfrak{S}_D^* ;
20	(iv) move from the node labelling of $\mathfrak{S}\mathfrak{F}_D$ to a node extension of $\mathfrak{S}\mathfrak{F}_D$.
21	By the same chain of reasoning, the thus obtained set Asms' is a complete assumption set of D.
22	(3) In each step of the above proof, the applied mappings are bijective and each other's inverses. Con-
23 24	sequently, this also applies to the whole process altogether. Note in particular that, as we pointed
25	out, the auxiliary nodes added to move from the inside-out SETAF to the associated AF do not
26	impact the accepted assumptions. \Box
27	An interesting observation is that this proof can be used to explain at which step the transformation
28	fails for semi-stable semantics: While most of the steps would actually also work for semi-stable se-
29	mantics (applying Theorem 35, Theorem 23, Table 8, and Proposition 37), the problem arises in step
30	(iii) where we apply Theorem 21 moving from node labellings to arrow labellings in the SETAF under
31	consideration.
32	

6. Discussion

In this paper we thoroughly investigated abstract argumentation semantics in several dimensions: we studied extension-based and labelling-based node and arrow semantics for standard argumentation frameworks and for argumentation frameworks with collective attacks (SETAFs), and investigated the relation between these semantics. We mapped out the entire space of possibilities, also regarding what happens when minimising or maximising a particular label. We systematically filled the gaps in the lit-erature and introduced arrow extensions for AFs as well as arrow extensions and labellings for SETAFs (cf. red coloured elements in Figure 2). We studied the relation to the already established semantics and compared the obtained results for SETAFs with the results for AFs. We showed that each SETAF can be "turned inside-out" and efficiently transformed into a semantically corresponding AF (cf. red coloured arc in Figure 2). Note that arrow semantics for SETAFs can be defined in various ways (for example,

2.2

2.2

Fig. 2. The separation line for semi-stable semantics (dashed) indicates transformations for which semi-stable semantics is not preserved. The arc (red coloured, *inside-out* labelled) between SETAF Arrow Labellings and AF Node Labellings visualises the result from Theorem 23: each SETAF arrow labelling corresponds to the node labelling of the corresponding inside-out AF.
 Notably, semi-stable semantics are preserved in this translation. The contributions of this paper are highlighted in red colour.

¹⁶ preferred extensions can be defined in terms of \subseteq -maximal admissible or \subseteq -maximal complete exten-¹⁷ sions). We immediately obtain the same flexibility for these definitions that we are used to from AF ¹⁸ semantics by applying Theorem 23.

Finally, we applied our findings in the realm of structured argumentation. We pointed out that for ABA frameworks our inside-out frameworks capture the instantiation process: while traditionally the semantics on the abstract level are evaluated via AFs, the original definitions are closer to the semantics of SETAFs. If this obtained SETAF is turned "inside-out", then we obtain the traditional instantiated AF.

The subtle difference of semi-stable semantics. We want to highlight that the semantics correspondence holds for some of the established semantics, with the notable exception of semi-stable semantics. As in-dicated in Figure 2, semi-stable semantics does not survive each transformation step. The parting line lies between node and arrow semantics for both AFs and SETAFs. Figure 2 shows that our transforma-tions preserve all considered semantics on the horizontal axis, i.e., transforming node extensions to node labellings (arrow extensions and arrow labellings, respectively) and vice versa; but they fail to preserve semi-stable semantics vertically, i.e., for switching from node extensions to arrow extensions (node la-bellings to arrow labellings, respectively) and vice versa. Interestingly, when moving from SETAFs to AFs via the inside-out transformation, we switch levels: as shown in Section 4, semi-stable SETAF arrow semantics correspond to semi-stable AF node semantics of the resulting AF and vice versa.

The heterogeneous behaviour of semi-stable semantics has been already observed in several different settings, e.g., when comparing logic programs and AFs [11], in the context of ABA and AFs [29], and for different variants of claim semantics [37–39]. In our present work, we show that these differences can be found even within the same formalism, when comparing node and arrow semantics. Utilising our novel transformation from SETAFs to AFs, we furthermore reveal that AF node semantics and SETAF arrow semantics lie in the same category (with respect to semi-stable semantics).

An alternative view on attack semantics. Arrow semantics on AFs have been initially introduced as "attack semantics" [26]. However, our intuition differs slightly from the initial definition: in [26] the arrows (i.e., attacks) are partitioned into "successful" and "unsuccessful"; these correspond to the in/undec and out labelled arrows, respectively. In contrast, our arrow extensions capture precisely the in labelled arrows. In this way, we establish a closer correspondence to the traditional three-valued node

labellings for AFs which are based on the same intuition [40]. We want to emphasise however that the labelling-based arrow semantics coincide with the notions of [26]. We furthermore note that labellings for SETAFs that assign both arrows and nodes in, out, or undec labels have been already considered [41]. In contrast, we consider arrow labelling semantics separately from node labellings. The generalisation of both arrow extension and labelling semantics to SETAFs is a novel contribution of this paper.	1 2 3 4 5 6
A radically new approach to flattening. Whether the simplicity of AFs is an advantage or a disadvan- tage has not yet been conclusively clarified; in any case, recent years have witnessed numerous gener- alisations of standard argumentation frameworks, e.g., generalisations that allow for preferences [42], values [43], collective attacks [14], as discussed in the present work, or a support relation [44], just to name a few. Regardless of other potential shortcomings, a unified model has its advantages; and in response to any generalisations, methods have been developed to reintegrate the generalisations into standard argumentation frameworks. The <i>flattening technique</i> [28] is the task to translate generalised argumentation frameworks into AFs. Usually, additional arguments are introduced to compensate the in- creased expressiveness of the generalised model [27, 45]. Moreover, while translations from SETAFs to AFs exist (cf. [27]) these methods usually capture the semantic correspondence in the arguments (under projection). Our approach is radically different: each arrow in the SETAF becomes a node in the AF. Instead of handling the increased expressiveness with additional arguments, we exploit the close correspondence	7 8 9 10 11 12 13 14 15 16 17 18 19 20
 of arrow labellings of SETAFs to node labellings of AFs. That is, starting from a given SETAF, (1) we exploit the connection between node extensions and node labellings (for SETAFs); (2) we switch from node labellings to arrow labellings (for SETAFs); (3) we turn the framework inside-out—now, each arrow in the SETAF becomes a node in the AF; (4) we move from node labellings to node extensions (for AFs). 	21 22 23 24 25 26
In this way, we obtain the desired AF without any additional arguments. Due to the correspondence of node labellings of AFs and arrow labellings on SETAFs we can establish a semantic correspondence between the nodes of a SETAF and its inside-out AF. This method is successful for all except semi-stable semantics when comparing the node semantics of the original SETAF instance with the node semantics of the obtained AF. As discussed above, semi-stable semantics is not preserved in point (2), i.e., when switching from node labellings to arrow labellings. We note that the proof of Theorem 38 in Section 5 makes use of the close connection of the formalisms we discussed. Finally, we want to point out that a model that is similar to our inside-out AF has been studied in the context of dynamics in argumentation. For any given SETAF, the resulting inside-out AF resembles a cvAF [46]—an argumentation framework with explicit claims (conclusions) and vulnerabilities. For an arrow (\mathfrak{M}, A) of the original SETAF \mathfrak{SF} (i.e., a node of the associated inside-out argumentation framework $AF_{\mathfrak{SF}}$) the claim is A and the vulnerabilities are the elements of \mathfrak{M} .	20 27 28 29 30 31 32 33 34 35 36 37 38 39
<i>Future Work.</i> For future work, we want to investigate further semantics in all of the considered dimensions. In particular, we want to study ideal and eager semantics [47]. We anticipate that eager semantics admit a behaviour that is similar to semi-stable semantics. Ideal semantics, on the other hand, are expected to behave in line with the classical Dung semantics. Furthermore, the investigation of more involved semantics like $cf2$ [48], $stage2$ [49] or the more recent weak admissibility [50] would be a challenging, yet exciting task.	40 41 42 43 44 45 46

2.0

2.2

Abstract argumentation formalisms have been extensively investigated in terms of formal properties, principles [18, 36], and the expressive power of standard argumentation frameworks and their generalisations [38, 51–53]. However, the aforementioned results focus on node extensions in the respective formalism. It would be insightful to explore to which extent our inter-translations can help to study these properties also for e.g. arrow extensions.

Acknowledgements

This research has been supported by the Vienna Science and Technology Fund (WWTF) through project ICT19-065, the Austrian Science Fund (FWF) through project P32830, and by the Federal Ministry of Education and Research of Germany and by Sächsische Staatsministerium für Wissenschaft, Kultur und Tourismus in the programme Center of Excellence for AI-research "Center for Scalable Data Analytics and Artificial IntelligenceDresden/Leipzig", project identification number: ScaDS.AI.

References

- [1] G.R. Simari and R.P. Loui, A mathematical treatment of defeasible reasoning and its implementation, *Artificial Intelligence* **53** (1992), 125–157.
- [2] A.J. García, J. Dix and G.R. Simari, Argument-based Logic Programming, in: *Argumentation in Artificial Intelligence*,
 G. Simari and I. Rahwan, eds, Springer US, 2009, pp. 153–171. ISBN 978-0-387-98196-3.
- [3] G.A.W. Vreeswijk, Abstract argumentation systems, Artificial Intelligence 90 (1997), 225–279.
- [4] M.W.A. Caminada and L. Amgoud, On the evaluation of argumentation formalisms, *Artificial Intelligence* **171**(5–6) (2007), 286–310.
- [5] H. Prakken, An abstract framework for argumentation with structured arguments, *Argument and Computation* 1(2) (2010),
 93–124.
- [6] S. Modgil and H. Prakken, A general account of argumentation with preferences, *Artificial Intellligence* **195** (2013), 361–397.
- [7] S. Modgil and H. Prakken, Abstract Rule-Based Argumentation, in: *Handbook of Formal Argumentation*, Vol. 1, College
 Publications, 2018, pp. 287–364.
- [8] P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and *n*-person games, *Artificial Intelligence* **77**(2) (1995), 321–357.
- [9] G. Governatori, M.J. Maher, G. Antoniou and D. Billington, Argumentation Semantics for Defeasible Logic, *Journal of Logic and Computation* 14(5) (2004), 675–702.
- [10] Y. Wu, M.W.A. Caminada and D.M. Gabbay, Complete Extensions in Argumentation Coincide with 3-Valued Stable
 Models in Logic Programming, *Studia Logica* 93(1–2) (2009), 383–403, Special issue: new ideas in argumentation theory.
- [11] M.W.A. Caminada, S. Sá, J. Alcântara and W. Dvořák, On the Equivalence between Logic Programming Semantics and Argumentation Semantics, *International Journal of Approximate Reasoning* 58 (2015), 87–111.
- [12] A. Bondarenko, P.M. Dung, R.A. Kowalski and F. Toni, An abstract, argumentation-theoretic approach to default reasoning, *Artificial Intelligence* 93 (1997), 63–101.
- [13] P.M. Dung, R.A. Kowalski and F. Toni, Assumption-Based Argumentation, in: *Argumentation in Artificial Intelligence*, G. Simari and I. Rahwan, eds, Springer US, 2009, pp. 199–218. ISBN 978-0-387-98196-3.
- [14] S.H. Nielsen and S. Parsons, A Generalization of Dung's Abstract Framework for Argumentation: Arguing with Sets of
 Attacking Arguments, in: *Proceedings of ArgMAS 2006*, LNAI 4766, 2006, pp. 54–73.
- [16] W. Dvořák, A. Rapberger and S. Woltran, On the different types of collective attacks in abstract argumentation: equivalence results for SETAFs, *Journal of Logic and Computation* **30**(5) (2020), 1063–1107. doi:10.1093/logcom/exaa033.
- [17] A. Bikakis, A. Cohen, W. Dvořák, G. Flouris and S. Parsons, Joint Attacks and Accrual in Argumentation Frameworks,
 FLAP 8(6) (2021), 1437–1501. https://collegepublications.co.uk/ifcolog/?00048.
- [18] W. Dvořák, M. König, M. Ulbricht and S. Woltran, Principles and their Computational Consequences for Argumentation
 Frameworks with Collective Attacks, *Journal of Artificial Intelligence Research* 79 (2024), 69–136.

M. Caminada et al. / Attack Semantics and Collective Attacks Revisited

[19]	W. Dvořák, J. Fandinno and S. Woltran, On the expressive power of collective attacks, <i>Argument Comput.</i> 10 (2) (2019),	1
50 01	191–230. doi:10.3233/AAC-190457.	2
[20]	W. Dvořák, A. Greßler and S. Woltran, Evaluating SETAFs via Answer-Set Programming, in: <i>Proceedings of SAFA 2018</i> ,	3
[01]	CEUR Workshop Proceedings, Vol. 2171, CEUR-WS.org, 2018, pp. 10–21. http://ceur-ws.org/Vol-2171/paper_2.pdf.	
[21]	W. Dvořák, M. König and S. Woltran, On the Complexity of Preferred Semantics in Argumentation Frameworks with	4
[22]	Bounded Cycle Length, in: <i>Proceedings of KR 2021</i> , 2021, pp. 671–675. doi:10.24963/kr.2021/67.	5
[22]	W. Dvořák, M. König and S. Woltran, Deletion-Backdoors for Argumentation Frameworks with Collective Attacks, in:	6
[22]	Proceedings of SAFA 2022, Vol. 3236, 2022, pp. 98–110. http://ceur-ws.org/Vol-3236/paper8.pdf.	7
[23]	W. Dvořák, M. König and S. Woltran, Treewidth for Argumentation Frameworks with Collective Attacks, in: <i>Proceedings</i>	
[7 41	<i>of COMMA 2022</i> , FAIA, Vol. 353, IOS Press, 2022, pp. 140–151. F. Toni, Reasoning on the Web with Assumption-Based Argumentation, in: <i>Reasoning Web. Semantic Technologies for</i>	8
[24]	Advanced Query Answering, T. Eiter and T. Krennwallner, eds, 2012, pp. 370–386.	9
[25]		10
	C. Schultz and F. Toni, Complete Assumption Labellings, in: <i>Proceedings of COMMA 2014</i> , 2014, pp. 405–412. S. Villata, G. Boella and L. van der Torre, Attack Semantics for Abstract Argumentation, in: <i>Proceedings of IJCAI 2011</i> ,	11
[20]	2011, pp. 164–171.	
271		12
[27]	S. Polberg, Developing the Abstract Dialectical Framework, PhD thesis, Vienna University of Technology, Institute of	13
201	Information Systems, 2017. https://permalink.obvsg.at/AC13773888.	14
20]	G. Boella, D.M. Gabbay, L.W.N. van der Torre and S. Villata, Meta-Argumentation Modelling I: Methodology and Tech-	
201	niques, <i>Stud Logica</i> 93 (2–3) (2009), 297–355. doi:10.1007/s11225-009-9213-2.	15
29]	M.W.A. Caminada, S. Sá, J. Alcântara and W. Dvořák, On the Difference between Assumption-Based Argumentation and	16
201	Abstract Argumentation, <i>IfCoLog Journal of Logic and its Applications</i> 2 (2015), 15–34.	17
50J	P.M. Dung, P. Mancarella and F. Toni, Computing ideal sceptical argumentation, <i>Artificial Intelligence</i> 171 (10–15) (2007),	18
217	642-674. M. König A. Donkarger and M. Illhright. Just a Matter of Derenastive Intertranslating Everyspice Argumentation For	
<u>]</u>	M. König, A. Rapberger and M. Ulbricht, Just a Matter of Perspective – Intertranslating Expressive Argumentation For- malisms, in: <i>Proceedings of COMMA 2022</i> , FAIA, Vol. 353, IOS Press, 2022, pp. 212–223.	19
201		20
52]	M.W.A. Caminada, On the Issue of reinstatement in Argumentation, in: <i>Proceedings of JELIA 2006</i> , Springer, 2006,	21
	pp. 111–123, LNAI 4160.	
55]	M.W.A. Caminada and D.M. Gabbay, A logical account of formal argumentation, <i>Studia Logica</i> 93 (2–3) (2009), 109–145,	22
2 4 3	Special issue: new ideas in argumentation theory.	23
54J	K. Čyras, X. Fan, C. Schulz and F. Toni, Assumption-Based Argumentation: Disputes, Explanations, Preferences, in:	24
0.51	Handbook of Formal Argumentation, Vol. 1, College Publications, 2018, pp. 365–408.	25
55]	M.W.A. Caminada, S. Sá and J. Alcântara, On the Equivalence between Logic Programming Semantics and Argumenta-	
1/1	tion Semantics, in: <i>Proceedings ECSQARU 2013</i> , 2013, pp. 97–108.	26
20]	P. Baroni and M. Giacomin, On principle-based evaluation of extension-based argumentation semantics, <i>Artificial Intelli-</i>	27
171	gence 171(10–15) (2007), 675–700.	28
57]	A. Rapberger, Defining Argumentation Semantics under a Claim-centric View, in: <i>Proceedings of STAIRS 2020</i> , CEUR	
	Workshop Proceedings, Vol. 2655, CEUR-WS.org, 2020. https://ceur-ws.org/Vol-2655/paper2.pdf.	29
58]	W. Dvořák, A. Rapberger and S. Woltran, Argumentation Semantics under a Claim-centric View: Properties, Expressive-	30
201	ness and Relation to SETAFs, in: <i>Proceedings of KR 2020</i> , 2020, pp. 341–350.	31
[עי	W. Dvorák, A. Rapberger and S. Woltran, A claim-centric perspective on abstract argumentation semantics: Claim-defeat,	32
	principles, and expressiveness, Artif. Intell. 324 (2023), 104011. doi:10.1016/J.ARTINT.2023.104011. https://doi.org/10.	
101	1016/j.artint.2023.104011.	33
ŧυj	B. Verheij, Two approaches to dialectical argumentation: admissible sets and argumentation stages, in: <i>Proceedings of</i>	34
411	NAIC 1996, 1996, pp. 357–368. W. Dvořák, A. Rapberger and J.P. Wallner, Labelling-based Algorithms for SETAFs, in: <i>Proceedings of SAFA 2020</i> ,	35
+1]	W. Dvorak, A. Rapberger and J.P. Wallner, Labelling-based Algorithms for SETAFs, in: <i>Proceedings of SAFA 2020</i> , CEUR Workshop Proceedings, Vol. 2672, CEUR-WS.org, 2020, pp. 34–46. https://ceur-ws.org/Vol-2672/paper_4.pdf.	
101		36
+2]	L. Amgoud and C. Cayrol, On the acceptability of arguments in preference-based argumentation framework, in: <i>Proceed-</i>	37
121	ings of UAI 1998, 1998, pp. 1–7.	38
+3]	T.J.M. Bench-Capon, Persuasion in Practical Argument Using Value-based Argumentation Frameworks, <i>Journal of Logic</i>	39
1 1 1	and Computation 13 (3) (2003), 429–448.	
4 4]	C. Cayrol and M. Lagasquie-Schiex, On the Acceptability of Arguments in Bipolar Argumentation Frameworks, in:	40
457	Proceedings of ECSQARU 2005, LNCS, Vol. 3571, Springer, 2005, pp. 378–389.	41
43]	D.M. Gabbay, Semantics for Higher Level Attacks in Extended Argumentation Frames Part 1: Overview, <i>Stud Logica</i>	42
167	93(2-3) (2009), 357-381. doi:10.1007/s11225-009-9211-4.	
40]	A. Rapberger and M. Ulbricht, On Dynamics in Structured Argumentation Formalisms, <i>Journal of Artificial Intelligence Research</i> 77 (2023), 563–643. doi:10.1613/JAIR.1.14481. https://doi.org/10.1613/jair.1.14481.	43
	M.W.A. Caminada, Comparing two unique extension semantics for formal argumentation: ideal and eager, in: <i>Proceedings</i>	44
171		
[47]	of BNAIC 2007, 2007, pp. 81–87.	45

M. Caminada et al. / Attack Semantics and Collective Attacks Revisited

[48] P. Baroni, M. Giacomin and G. Guida, SCC-recursiveness: a general schema for argumentation semantics, *Artificial Intelligence* 168(1–2) (2005), 165–210.
[49] W. Dvořák and S.A. Gaggl, Stage semantics and the SCC-recursive schema for argumentation semantics, *Journal of Logic*

2.0

2.2

- [49] w. Dvorak and S.A. Gaggi, stage semantics and the SCC-recursive schema for argumentation semantics, *Journal of Logic and Computation* **26**(4) (2016), 1149–1202. doi:10.1093/logcom/exu006.
- [50] R. Baumann, G. Brewka and M. Ulbricht, Shedding new light on the foundations of abstract argumentation: Modularization and weak admissibility, *Artificial Intelligence* **310** (2022), 103742. doi:10.1016/j.artint.2022.103742.
 - [51] R. Baumann and H. Strass, On the Maximal and Average Numbers of Stable Extensions, in: *Proceedings of TAFA 2013*, LNCS, Vol. 8306, Springer, 2013, pp. 111–126. doi:10.1007/978-3-642-54373-9_8.
- [52] P.E. Dunne, W. Dvořák, T. Linsbichler and S. Woltran, Characteristics of multiple viewpoints in abstract argumentation, *Artificial Intelligence* **228** (2015), 153–178. doi:10.1016/j.artint.2015.07.006.
- [53] M. Ulbricht, On the Maximal Number of Complete Extensions in Abstract Argumentation Frameworks, in: Proceedings of KR 2021, 2021, pp. 707–711.
- [54] P. Baroni, M.W.A. Caminada and M. Giacomin, An Introduction to Argumentation Semantics, *Knowledge Engineering Review* 26(4) (2011), 365–410.

Appendix A. Properties of Arrow Labellings for Argumentation Frameworks

The labelling-based version of complete attack-semantics is defined in a slightly different way in [26]. Instead of characterising a complete arrow labelling using three if-statements, as is done in Definition 7, it is characterised using two iff-statements [26, Theorem 7]. However, it can be proved that these two characterisations are equivalent.

Theorem 39. Let AF = (N, arr) be an argumentation framework and let ALab be an arrow labelling of AF. ALab is a complete arrow labelling of AF iff for every $(A, B) \in arr$ it holds that:

- (1) $ALab((A, B)) = in iff for each (C, A) \in arr it holds that <math>ALab((C, A)) = out$
 - (2) $ALab((A, B)) = \text{out iff there exists } a(C, A) \in arr such that <math>ALab((C, A)) = \text{in}$

Proof. " \Rightarrow ": Let *ALab* be a complete arrow labelling of *AF*. Point 1 LTR follows directly from the first bullet of Definition 7. As for point 1 RTL, suppose that for each $(C,A) \in arr$ it holds that ALab((C,A)) = out. Then ALab((A,B)) cannot be out (otherwise there would have to be a $(C,A) \in arr$ such that ALab((C,A)) = in) and cannot be undec (otherwise not for each $(C,A) \in arr$ it holds that ALab((C,A)) = out). Since ALab((A,B)) can only be in, out or undec, it then follows that ALab((A,B)) = in.

Point 2 LTR follows directly from the second bullet of Definition 7. As for point 2 RTL, suppose that there exists a $(C,A) \in arr$ such that ALab((C,A)) = in. Then ALab((A,B)) cannot be in (otherwise for each $(C,A) \in arr$ it holds that ALab((C,A)) = out) and cannot be undec (otherwise there does not exist a $(C,A) \in arr$ such that ALab((C,A)) = out). Since ALab((A,B)) can only be in, out or undec, it follows that ALab((A,B)) = out.

" \Leftarrow ": Let *ALab* be an arrow labelling satisfying points 1 and 2. We now need to show that *ALab* also satisfies the first three bullets of Definition 7. The first bullet follows directly from point 1. The second bullet follows directly from point 2. As for the third bullet, take an arbitrary $(A, B) \in arr$ such that ALab((A, B)) = undec. The fact that $ALab((A, B)) \neq in$, together with point 1, then implies that not for each $(C, A) \in arr$ it holds that ALab((C, A)) = out. The fact that $ALab((A, B)) \neq out$, together with point 2, then implies that there does not exist a $(C, A) \in arr$ such that ALab((C, A)) = in. \Box

We now proceed to prove a number of lemmas on how arrow labellings relate to each other, and how
 arrow labellings relate to node labellings.

Lemma 40. Let $ALab_1$ and $ALab_2$ be complete arrow labellings of argumentation framework $AF = (N, arr)$. It holds that:	1 2
	3
(1) $in(ALab_1) \subseteq in(ALab_2)$ iff $out(ALab_1) \subseteq out(ALab_2)$	4
(2) $in(ALab_1) = in(ALab_2)$ iff $out(ALab_1) = out(ALab_2)$	
(3) $in(ALab_1) \subsetneq in(ALab_2)$ iff $out(ALab_1) \subsetneq out(ALab_2)$	5
	6
Proof. (1) " \Rightarrow ": Suppose $in(ALab_1) \subseteq in(ALab_2)$. Let $(A, B) \in out(ALab_1)$. This means that	7
(Definition 7, second bullet point) there exists a $(C,A) \in arr$ such that $ALab_1((C,A)) = in$.	8
That is, $(C,A) \in in(ALab_1)$. The fact that $in(ALab_1) \subseteq in(ALab_2)$ then implies that $(C,A) \in in(ALab_2)$	9
$in(ALab_2)$. This, together with the fact that $ALab_2$ is a complete arrow labelling implies (by point	10
2 of Theorem 39) that $(A, B) \in \text{out}(ALab_2)$.	11
" \Leftarrow ": Suppose $out(ALab_1) \subseteq out(ALab_2)$. Let $(A, B) \in in(ALab_1)$. This means that (Def-	12
inition 7, first bullet point) that for each $(C,A) \in arr$ it holds that $(C,A) \in out(ALab_1)$. The	13
fact that $out(ALab_1) \subseteq out(ALab_2)$ then implies that $(C,A) \in out(ALab_2)$. This, together	14
with the fact that $ALab_2$ is a complete arrow labelling implies (by point 1 of Theorem 39) that	15
$(A,B) \in in(ALab_2).$	16
	17
(2) This follows directly from point 1.	18
(3) This follows directly from point 1 and point 2.	19
\square	20
	21
Lemma 41. Let $ALab_1$ and $ALab_2$ be complete arrow labellings of argumentation framework $AF =$	22
(N, arr). It holds that:	23
	24
(1) if $in(ALab_1) \subseteq in(ALab_2)$ then $undec(ALab_1) \supseteq undec(ALab_2)$	25
(2) if $in(ALab_1) = in(ALab_2)$ then $undec(ALab_1) = undec(ALab_2)$	26
(3) if $in(ALab_1) \subsetneq in(ALab_2)$ then $undec(ALab_1) \supsetneq undec(ALab_2)$	20
(4) if $out(ALab_1) \subseteq out(ALab_2)$ then $undec(ALab_1) \supseteq undec(ALab_2)$	
(5) if $out(ALab_1) = out(ALab_2)$ then $undec(ALab_1) = undec(ALab_2)$	28
(6) if $\operatorname{out}(ALab_1) \subsetneq \operatorname{out}(ALab_2)$ then $\operatorname{undec}(ALab_1) \supsetneq \operatorname{undec}(ALab_2)$	29
	30
Proof. (1) Suppose $in(ALab_1) \subseteq in(ALab_2)$. Then (Lemma 40, point 1) it follows that $out(ALab_1) \subseteq abcorder and black an$	31
$\operatorname{out}(ALab_2)$. Let $(A, B) \in \operatorname{undec}(ALab_2)$. Then $(A, B) \notin \operatorname{in}(ALab_2)$ so $(A, B) \notin \operatorname{in}(ALab_1)$.	32
Also, $(A, B) \notin \text{out}(ALab_2)$ so $(A, B) \notin \text{out}(ALab_1)$. From the fact that (A, B) is labelled either	33
in, out or under by $ALab_1$, it follows that $(A, B) \in \text{under}(ALab_1)$.	34
(2) This follows directly from point 1.	35
(3) This follows directly from point 1 of this lemma, and Lemma 40 (point 3) and the fact that every	36
arrow is labelled either in, out, or undec.	37
(4) This follows directly from Lemma 40 (point 1) and point 1 of this lemma.	38
(5) This follows directly from point 4.	39
(6) This follows directly from point 4 of this lemma, and Lemma 40 (point 3) and the fact that every	40
arrow is labelled either in, out, or undec.	41
	42
	43
The following theorem states that minimising (resp. maximising) particular labels sometimes yields	44
the same outcome.	45 46
	-

32	M. Caminada et al. / Attack Semantics and Collective Attacks Revisited
	Let $AF = (N, arr)$ be an argumentation framework, and let ALab be a complete arrow AF . The following two statements are equivalent:
1. in(<i>ALab</i>)	is maximal (w.r.t. set inclusion) among all complete arrow labellings of AF
· · · ·	b) is maximal (w.r.t. set inclusion) among all complete arrow labellings of AF
	f is maximum (which set metassion) among an complete arrow tabellings of m
The following	g three statements are also equivalent:
3. in(ALab)	is minimal (w.r.t. set inclusion) among all complete arrow labellings of AF
4. out(ALal	b) is minimal (w.r.t. set inclusion) among all complete arrow labellings of AF
5. undec(A	Lab) is maximal (w.r.t. set inclusion) among all complete arrow labellings of AF
Furthermore	it holds that the complete arrow labelling with minimal in is unique.
Proof. from	1 to 2 Suppose $in(ALab)$ is maximal among all complete arrow labellings of AF. That is,
	is no complete arrow labelling $ALab'$ of AF such that $in(ALab) \subseteq in(ALab')$. Suppose,
	s a contradiction, that $out(ALab)$ is not maximal among all complete arrow labellings of
	then there exists a complete arrow labelling $ALab'$ such that $out(ALab) \subsetneq out(ALab')$. It
	llows from Lemma 40 (point 3) that $in(ALab) \subseteq in(ALab')$. Contradiction.
	Similar to the previous point.
	Suppose $in(ALab)$ is minimal among all complete arrow labellings of AF. That is, there is
	suppose $\operatorname{In}(\operatorname{IL}ab)$ is minimum anong an complete area incomings of II . That is, note is inplete arrow labelling $\operatorname{AL}ab'$ of AF such that $\operatorname{in}(\operatorname{AL}ab') \subseteq \operatorname{in}(\operatorname{AL}ab)$. Suppose, towards a
	liction, that $out(ALab)$ is not minimal among all complete arrow labellings of AF. Then
	xists a complete arrow labelling $ALab'$ such that $out(ALab') \subsetneq out(ALab)$. It then follows
	emma 40 (point 3) that $in(ALab') \subseteq in(ALab)$. Contradiction.
	Similar to the previous point.
	Suppose $undec(ALab)$ is maximal among all complete arrow labellings of AF. That is,
	no complete arrow labelling $ALab'$ of AF such that undec $(ALab) \subseteq$ undec $(ALab')$. Sup-
	owards a contradiction, that $in(ALab)$ is not maximal among all complete arrow labellings
•	Then there exists a complete arrow labelling $ALab'$ such that $in(ALab) \subsetneq in(ALab')$. It
	llows from Lemma 41 (point 3) that $undec(ALab') \subseteq undec(ALab)$. Contradiction.
As for the th	e last point to be proved (from 3 to 5), a particular difficulty is that we cannot just use the
same proof s	trategy as the previous point (from 5 to 3). This is because point 3 of Lemma 41 only goes
one-way (it's	an "if" instead of an "iff"). To overcome this, we will need to make use of the uniqueness
of the ground	led arrow labelling.
uniqueness s	grounded arrow labelling Suppose $ALab_1$ and $ALab_2$ are complete arrow labellings of
	th minimal in. That is, they are grounded arrow labellings of AF . From Lemma 51 it
	S^{10} that $NLab_1 = ALab2NLab(ALab_1)$ and $NLab_2 = ALab2NLab(ALab_2)$ are grounded
	abellings of AF. However, since the grounded node labelling is unique [33] it follows
	$Lab_1 = NLab_2$, so also $NLab2ALab(NLab_1) = NLab2ALab(NLab_2)$. However, since
	$ALab(NLab_1) = ALab_1$ and $NLab2ALab(NLab_2) = ALab_2$ (by Lemma 48) ¹¹ it follows
	$ab_1 = ALab_2.$
10	
	e proof of Lemma 51 does not depend on this result or its consequences.
**Note that th	e proof of Lemma 48 does not depend on this result or its consequences.

1 2	Using the uniqueness of the grounded arrow labelling, we can then proceed to show that point 3 implies point 5.
3	from 3 to 5 Suppose $ALab_1$ is a complete arrow labelling of AF with minimal in. That is, $ALab_1$ is a
4	minimal element of the set of complete arrow labellings of AF (when applying an ordering based
5	on set-inclusion on the in-labelled part of the labellings). As this minimal element is unique, it is
6	
7	also the smallest element, meaning that it is less or equal to each element of the set. That is, for
8	each complete arrow labelling $ALab'$ of AF , it holds that $in(ALab) \subseteq in(ALab')$. From Lemma
9	41 (point 1) it then follows that $undec(ALab') \subseteq undec(ALab)$. It then follows that there is
10	there is no complete arrow labelling $ALab'$ of AF such that $undec(ALab) \subsetneq undec(ALab')$.
11	That is, ALab is a complete arrow labelling with maximal undec.
12	
13	
14	From Theorem 42 it follows that the grounded preferred and somi stable arrow labellings eaver all
15	From Theorem 42 it follows that the grounded, preferred and semi-stable arrow labellings cover all
16	possibilities regarding the maximisation and minimisation of a particular label (among the complete arrow labellings)
17	arrow labellings).
18	As an aside, there exists an alternative way of proving the correctness of Theorem 39, Lemma 40,
19	Lemma 41 and Theorem 42. The idea is that where a node labelling is based on nodes attacking each
20	other, an arrow labelling is based on arrows attacking each other. Whereas a node A attacks a node B iff $(A, B) = (B, $
21	$(A, B) \in arr$, an arrow (C, D) attacks an arrow (E, F) iff $D = E$. Hence, the notion of attack becomes
	a binary relation between the arrows of the argumentation framework. This binary relation can in its
22	turn be represented in the form of a graph (a meta-graph of the original argumentation framework). The
23	idea is to take the original argumentation framework and "turn it inside out". That is, the arrows of the
24	original graph become the nodes of the new meta-graph.
25	$\mathbf{D}_{\mathbf{r}} \mathbf{f}_{\mathbf{r}} \mathbf{f}$
26	Definition 43. Let $AF = (N, arr)$ be an argumentation framework. The inside out argumentation frame-
27	work of AF is defined as $AF' = (N', arr')$ with $N' = arr$ and $arr' = \{((A, B), (B, C)) \mid (A, B), (B, C) \in \mathbb{N}\}$
28	arr}.
29	$\mathbf{T}_{\mathbf{h}} = \mathbf{T}_{\mathbf{h}} + $
30	Theorem 44. Let $AF = (N, arr)$ be an argumentation framework and $AF' = (N', arr')$ be its inside out
31	argumentation framework.
32	(1) If ALab is a complete arrow labelling of AF, then ALab is a complete node labelling of AF' .
33	If NLab is a complete node labelling of AF' , then NLab is a complete arrow labelling of AF .
34	(2) If ALab is a preferred (resp. grounded or stable) arrow labelling of AF, then ALab is a preferred
35	(resp. grounded or stable) node labelling of AF'.
36	If NLab is a preferred (resp. grounded, stable or semi-stable) node labelling of AF', then NLab is
37	a preferred (resp. grounded, stable or semi-stable) arrow labelling of AF.
38	
39	Proof. (1) This follows directly from the definition of a complete node labelling (Definition 4, first
40	three bullet points), the definition of a complete arrow labelling (Definition 7, first three bullet
41	points) and the definition of an inside out argumentation framework (Definition 43).

- points) and the definition of an inside out argumentation framework (Definition 43).
 (2) This follows directly from point 1, together with the definition of a preferred (resp. grounded, stable or semi-stable) node labelling (Definition 4) and the definition of a preferred (resp. grounded, stable or semi-stable) arrow labelling (Definition 7).

2.0

2.2

As arrow labellings are essentially node labellings (of the inside out argumentation framework) they satisfy the standard properties of node labellings described in the literature. Hence, Theorem 39 follows from [33, Definition 5, Definition 6 and Theorem 1], Lemma 40 follows from [33, Lemma 1], Lemma 41 follows from [11, Lemma 2] and Theorem 42 follows from [33, Theorem 6, Theorem 7].

Appendix B. Equivalence of Node Labellings and Arrow Labellings for Argumentation Frameworks

Lemma 45. Let AF = (N, arr) be an argumentation framework. If NLab is a complete node labelling of AF then ALab = NLab2ALab(NLab) is a complete arrow labelling of AF.

Proof. We need to prove that the three bullet points of Definition 7 are satisfied. Let $(A, B) \in arr$. We distinguish three cases:

(1) ALab((A, B)) = in. From the definition of NLab2ALab it then follows that NLab(A) = in. From the fact that NLab is a complete node labelling, it then follows that NLab(C) = out for each $C \in N$ that attacks A. From the definition of NLab2ALab it then follows that ALab((C, A)) = out.

(2) ALab((A, B)) = out. From the definition of NLab2ALab it then follows that NLab(A) = out. From the fact that *NLab* is a complete node labelling, it then follows that NLab(C) = in for some $C \in N$ that attacks A. From the definition of NLab2ALab it then follows that ALab((C, A)) = in.

(3) ALab((A, B)) = undec. From the definition of NLab2ALab it then follows that NLab(A) =undec. From the fact that NLab is a complete node labelling, it then follows that not for each $C \in N$ that attacks A it holds that NLab(C) = out and there is no $C \in N$ that attacks A such that NLab(C) = in. From the definition of NLab2ALab it then follows that not for each $(C, A) \in arr$ it holds that ALab((C,A)) = out, and there is no $(C,A) \in arr$ such that ALab((C,A)) = in.

Lemma 46. Let AF = (N, arr) be an argumentation framework. If ALab is a complete arrow labelling of AF then NLab = ALab2NLab(ALab) is a complete node labelling of AF.

Proof. We need to prove that the three bullet points of Definition 4 are satisfied. Let $A \in N$. We distinguish three cases:

34	(1) $NLab(A) = in$. We need to show that for every $B \in N$ that attacks A, it holds that $NLab(B) = in$
35	out. Let $B \in N$ be a node that attacks A. This means that $(B,A) \in arr$. From the definition of
36	ALab2NLab and the fact that $NLab(A) = in$ it follows that $ALab((B,A)) = out$. From the fact
37	that ALab is a complete arrow labelling it then follows that there exists a $(C, B) \in arr$ such that
38	ALab((C, B)) = in. From the definition of $ALab2NLab$ it then follows that $NLab(B) = out$.
2.0	

(2) NLab(A) = out. We need to show that there exists a $B \in N$ that attacks A such that NLab(B) =in. From the definition of ALab2NLab and the fact that NLab(A) = out it follows that there is a $(B,A) \in arr$ such that ALab((B,A)) = in. From the fact that ALab is a complete arrow labelling, it then follows that for each $C \in N$ that attacks B, it holds that ALab((C, B)) = out. From the definition of *ALab2NLab*, it then follows that NLab(B) = in.

(3) NLab(A) = undec. We need to show that not for all $B \in N$ that attack A it holds that NLab(B) =out, and that there is no $B \in N$ that attacks A such that NLab(B) = in. From the definition

1 2 3 4 5 6 7	of $ALab2NLab$ and the fact that $NLab(A) =$ undec it follows that (i) not for all $(B, A) \in arr$ it holds that $ALab((B, A)) =$ out, and (ii) there is no $(B, A) \in arr$ such that $ALab((B, A)) =$ in. From (i) it follows that there is a $(B, A) \in arr$ such that $ALab((B, A)) \neq$ out. From the fact that $ALab$ is a complete arrow labelling, it then follows that there is no $C \in N$ that attacks B such that $ALab((C, B)) =$ in, which from the definition of $ALab2NLab$ implies that $NLab(B) \neq$ out. From (ii) it follows that for each $(B, A) \in arr$ it holds that $ALab((B, A)) \neq$ in. Let B be an arbitrary attacker of A . It directly follows that $ALab((B, A)) \neq$ in. From the fact that $ALab$ is a complete
8 9 10	arrow labelling, it follows that there is a $(C, B) \in arr$ such that $ALab((C, B)) \neq \text{out}$. From the definition of $ALab2NLab$, it then follows that $NLab(B) \neq \text{in}$.
11	
12 13 14	Lemma 47. Let NLab be a complete node labelling of argumentation framework $AF = (N, arr)$. It holds that $ALab2NLab(NLab2ALab(NLab)) = NLab$.
15 16 17	Proof. Let $ALab = NLab2ALab(NLab)$. It suffices to prove the following three properties, for an arbitrary $A \in N$.
18 19 20 21 22	(1) If $NLab(A) = in$ then $ALab2NLab(ALab)(A) = in$. Suppose $NLab(A) = in$. Then from $NLab$ being a complete node labelling, it follows that for each <i>B</i> that attacks <i>A</i> it holds that $NLab(B) = out$, which from the definition of $NLab2ALab$ implies that $ALab((B, A)) = out$. From the definition of $ALab2NLab$ it then follows that $ALab2NLab(ALab)(A) = in$
23 24 25 26 27	(2) If $NLab(A) = \text{out}$ then $ALab2NLab(ALab)(A) = \text{out}$. Suppose $NLab(A) = \text{out}$. Then from $NLab$ being a complete node labelling, it follows that there is a $B \in N$ that attacks A such that $NLab(B) = \text{in}$, which from the definition of $NLab2ALab$ implies that $ALab((B, A)) = \text{in}$. From the definition of $ALab2NLab$ it then follows that $ALab2NLab(ALab)(A) = \text{out}$
28 29 30 31 32 33 34 35 36 37 38 39	(3) If $NLab(A) = undec$ then $ALab2NLab(ALab)(A) = undec$. Suppose $NLab(A) = undec$. Then from $NLab$ being a complete node labelling, it follows that (i) not for each $B \in N$ that attacks A it holds that $NLab(B) = out$, and (ii) there is no $B \in N$ that attacks A such that $NLab(B) = in$. From (i) it directly follows that there exists a $B \in N$ that attacks A such that $NLab(B) \neq out$, thus $ALab((B,A)) \neq out$. Then, from the defini- tion of $ALab2NLab$ it follows that $ALab2NLab(ALab)(A) \neq in$. From (ii) it directly follows that for each $B \in N$ that attacks A it holds that $NLab(B) \neq in$. Then, from the definition of $NLab2ALab$ it follows that $ALab((B,A)) \neq in$. Then, from the definition of $NLab2ALab$ it follows that $ALab((B,A)) \neq in$. Then, from the definition of $NLab2ALab$ it follows that $ALab((B,A)) \neq in$. Then, from the definition of $ALab2NLab$ $(ALab)(A) \neq out$. This, together with the earlier obtained fact that $ALab2NLab(ALab)(A) \neq in$ implies that $ALab2NLab(NLab)(A) = undec$.
40	
41 42 43	Lemma 48. Let ALab be a complete arrow labelling of argumentation framework $AF = (N, arr)$. It holds that $NLab2ALab(ALab2NLab(ALab)) = ALab$.
44 45	Proof. Let $NLab = ALab2NLab(ALab)$. It suffices to prove the following three properties, for an arbitrary $(A, B) \in arr$

45 trary $(A, B) \in arr.$

1	(1) If $ALab((A, B)) = in$ then $NLab2ALab(NLab)((A, B)) = in$.	1
2	Suppose $ALab((A, B)) = in$. Then from the fact that $ALab$ is a complete arrow labelling, it fol-	2
3	lows that for each C that attacks A, $ALab((C, A)) = out$. From the definition of $ALab2NLab$	3
4	it then follows that $NLab(A) = in$. From the definition of $NLab2ALab$ it then follows that	4
5	NLab2ALab(NLab)((A, B)) = in.	5
6	(2) If $ALab((A, B)) = \text{out then } NLab2ALab(NLab)((A, B)) = \text{out.}$	6
7	Suppose $ALab((A, B)) = out$. Then, from the fact that $ALab$ is a complete arrow labelling, it	7
8	follows that there exists a C that attacks A such that $ALab((C,A)) = in$. From the definition	8
9	of ALab2NLab it then follows that $NLab(A) = out$. From the definition of NLab2ALab it then	9
10	follows that $NLab2ALab(NLab)((A, B)) = out$.	10
11	(3) If $ALab((A, B)) = undec$ then $NLab2ALab(NLab)((A, B)) = undec$.	11
12	Suppose $ALab((A, B)) =$ undec. Then from the fact that $ALab$ is a complete arrow labelling,	12
13	it follows that (i) not for each C that attacks A it holds that $ALab((C,A)) = out$, and (ii)	13
14	there is no C that attacks A such that $ALab((C, A)) = in$. From (i) it directly follows that	14
15	there is a C that attacks A such that $ALab((C,A)) \neq \text{out}$. From the definition of $ALab2NLab$	15
16	it then follows that $NLab(A) \neq in$. From the definition of $NLab2ALab$ it then follows that	16
17	$NLab2ALab(NLab)((A, B)) \neq in$. From (ii) it directly follows that for each C that attacks A it	17
18	holds that $ALab((C, A)) \neq in$. From the definition of $ALab2NLab$ it then follows that $NLab(A) \neq in$.	18
19	out. From the definition of <i>NLab2ALab</i> it then follows that <i>NLab2ALab</i> (<i>NLab</i>)((A , B)) \neq out.	19
20	From this, together with the earlier observed fact that $NLab2ALab(NLab)((A, B)) \neq in$, it follows	20
21	that $NLab2ALab(NLab)((A, B)) =$ undec.	21
22		22
23		23
24	Lemma 49. Let $NLab_1$ and $NLab_2$ be complete node labellings of an argumentation framework $AF =$	24
25	(N, arr) . Let $ALab_1 = NLab2ALab(NLab_1)$ and $ALab_2 = NLab2ALab(NLab_2)$. It holds that:	25
26 27		26 27
28	(1) $\operatorname{in}(NLab_1) \subseteq \operatorname{in}(NLab_2)$ iff $\operatorname{in}(ALab_1) \subseteq \operatorname{in}(ALab_2)$. (2) $\operatorname{in}(NLab_1) = \operatorname{in}(NLab_1)$ iff $\operatorname{in}(ALab_1) = \operatorname{in}(ALab_1)$	28
29	(2) $\operatorname{in}(NLab_1) = \operatorname{in}(NLab_2)$ iff $\operatorname{in}(ALab_1) = \operatorname{in}(ALab_2)$. (2) $\operatorname{in}(NLab_1) \subseteq \operatorname{in}(NLab_2)$ iff $\operatorname{in}(ALab_1) \subseteq \operatorname{in}(ALab_2)$.	29
30	(3) $\operatorname{in}(NLab_1) \subsetneq \operatorname{in}(NLab_2)$ iff $\operatorname{in}(ALab_1) \subsetneq \operatorname{in}(ALab_2)$. (4) $\operatorname{surt}(NLab_1) \subseteq \operatorname{surt}(NLab_1)$ iff $\operatorname{surt}(ALab_1) \subseteq \operatorname{surt}(ALab_1)$	30
31	(4) $\operatorname{out}(NLab_1) \subseteq \operatorname{out}(NLab_2)$ iff $\operatorname{out}(ALab_1) \subseteq \operatorname{out}(ALab_2)$. (5) $\operatorname{out}(NLab_1) = \operatorname{out}(NLab_1)$ iff $\operatorname{out}(ALab_1) = \operatorname{out}(ALab_2)$.	31
32	(5) $\operatorname{out}(NLab_1) = \operatorname{out}(NLab_2)$ iff $\operatorname{out}(ALab_1) = \operatorname{out}(ALab_2)$. (6) $\operatorname{out}(NLab_1) \subseteq \operatorname{out}(NLab_2)$ iff $\operatorname{out}(ALab_1) \subseteq \operatorname{out}(ALab_2)$.	32
33	(6) $\operatorname{out}(NLab_1) \subsetneq \operatorname{out}(NLab_2)$ if $\operatorname{out}(NLab_2)$ if $\operatorname{out}(NLab_2)$. (7) If $\operatorname{undec}(NLab_1) \subseteq \operatorname{undec}(NLab_2)$ then $\operatorname{undec}(ALab_1) \subseteq \operatorname{undec}(ALab_2)$.	33
34	(8) If $undec(NLab_1) \subseteq undec(NLab_2)$ then $undec(ALab_1) \subseteq undec(ALab_2)$.	34
35	(b) i_j undec(i_1Luv_1) - undec(i_1Luv_2) men undec(i_1Luv_1) - undec(i_1Luv_2).	35
36	Proof. (1) " \Rightarrow ": Suppose $in(NLab_1) \subseteq in(NLab_2)$. Let $(A, B) \in in(ALab_1)$. Then, from the def-	36
37	inition of <i>NLab2ALab</i> it follows that $A \in in(NLab_1)$. The fact that $in(NLab_1) \subseteq in(NLab_2)$	37
38	then implies that $A \in in(NLab_2)$. From the definition of $NLab_2ALab$ it then follows that	38
39	$(A, B) \in in(ALab_2).$	39
40	" \Leftarrow ": Suppose in(ALab ₁) \subseteq in(ALab ₂). Let $A \in$ in(NLab ₁). First assume that there is a	40
41	$(= 1)$ Suppose $\Pi(ALab_1) \subseteq \Pi(ALab_2)$. Let $A \subset \Pi(ALab_1)$. This assume that there is a node $B \in N$ such that $(A, B) \in arr$, i.e., A has an outgoing arrow. Then, from the definition of	41
42	<i>NLab2ALab</i> it follows that for each $B \in N$ such that $(A, B) \in arr$ it holds $(A, B) \in in(ALab_1)$.	42
43	The fact that $in(ALab_1) \subseteq in(ALab_2)$ then implies that $(A, B) \in in(ALab_2)$. From the definition	43
44	of <i>NLab2ALab</i> it then follows that $A \in in(NLab_2)$ and we are done. Now on the other hand	44
45	assume that there is no node $B \in N$ such that $(A, B) \in arr$, i.e., A has no outgoing arrows. Towards	45
46		46

1	contradiction assume that $A \notin in(NLab_2)$. This means either A is not defended by $in(NLab_2)$	1
2	or there is some $B \in in(NLab_2)$ such that $(B,A) \in arr$. Since we assume $A \in in(NLab_1)$	2
3	and $NLab_1$ is complete we know that for each arrow $(C, A) \in arr$ towards A there is a counter-	3
4	attack $(D, C) \in arr$ with $D \in in(NLab_1)$. From the definition of $NLab2ALab$ it then follows that	4
5	$(D,C) \in in(ALab_1)$. From $in(ALab_1) \subseteq in(ALab_2)$ we then get $(D,C) \in in(ALab_2)$ and,	5
6	hence, from the definition of <i>NLab2ALab</i> we get $D \in in(NLab_2)$. Since we chose an arbitrary	6
7	attacker C of A, we know that A is defended by $in(NLab_2)$. It remains to handle the case where	7
8	there is some $B \in in(NLab_2)$ such that $(B, A) \in arr$, i.e., A is not in $in(NLab_2)$ due to a conflict.	8
9	However, since $NLab_1$ is complete this means that $B \in out(NLab_1)$, and therefore $(B,A) \in$	9
10	$\operatorname{out}(ALab_1)$. From this and the fact that $\operatorname{in}(ALab_1) \subseteq \operatorname{in}(ALab_2)$ and from Lemma 40 (point	10
11	1) we get $(B,A) \in \text{out}(ALab_2)$, which gives us from the definition of NLab2ALab that $B \in$	11
12	out(<i>NLab</i> ₂), a contradiction to our assumption $B \in in(NLab_2)$.	12
13	(2) This follows directly from point 1.	13
14	(3) This follows directly from point 1 and point 2.	14
15	(4) " \Rightarrow ": Suppose $\operatorname{out}(NLab_1) \subseteq \operatorname{out}(NLab_2)$. Let $(A, B) \in \operatorname{out}(ALab_1)$. Then, from the definition	15
16	of <i>NLab2ALab</i> it follows that $A \in \text{out}(NLab_1)$. The fact that $\text{out}(NLab_1) \subseteq \text{out}(NLab_2)$ then	16
17	implies that $A \in \text{out}(NLab_2)$. From the definition of $NLab2ALab$ it then follows that $(A, B) \in$	17
18	out($ALab_2$).	18
19		19
20	" \Leftarrow ": Suppose $\operatorname{out}(ALab_1) \subseteq \operatorname{out}(ALab_2)$. Let $A \in \operatorname{out}(NLab_1)$. Then, since $NLab_1$ is com-	20
21	plete, there is a $B \in in(NLab_1)$ such that $(B,A) \in arr$. From the definition of $NLab2ALab$	21
22	it follows that $(B,A) \in in(ALab_1)$. From our assumption $out(ALab_1) \subseteq out(ALab_2)$ and	22
23	Lemma 40 (point 1) we get $in(ALab_1) \subseteq in(ALab_2)$, and therefore $(B, A) \in in(ALab_2)$. From	23
24	the definition of <i>NLab2ALab</i> it follows that $B \in in(NLab_2)$, and since <i>NLab</i> ₂ is complete we get	24
25	$A \in \operatorname{out}(NLab_2).$	25
26	(5) This follows directly from point 4.	26
27	(6) This follows directly from point 4 and point 5.	27
28	(7) Suppose $undec(NLab_1) \subseteq undec(NLab_2)$. Let $(A, B) \in undec(ALab_1)$. Then, from the def-	28
29	inition of NLab2ALab it follows that $A \in$ undec(NLab ₁). The fact that undec(NLab ₁) \subseteq	29
30	undec($NLab_2$) then implies that $A \in undec(NLab_2)$. From the definition of $NLab2ALab$ it then	30
31	follows that $(A, B) \in \text{undec}(ALab_2)$.	31
32	(8) This follows directly from point 7.	32
33		33
34		34
35	Note that the following similar statements do not hold :	35
36		36
37	7' If $undec(ALab_1) \subseteq undec(ALab_2)$ then $undec(NLab_1) \subseteq undec(NLab_2)$. A counter ex-	37
38	ample is AF in Example 9: We have $undec(ALab_2) \subseteq undec(ALab_3)$ but $undec(NLab_2) \nsubseteq$	38
39	undec $(NLab_3)$.	39
40	8' If $undec(ALab_1) = undec(ALab_2)$ then $undec(NLab_1) = undec(NLab_2)$. A counter ex-	40
41	ample is AF in Example 9: We have $undec(ALab_2) = undec(ALab_3)$ but $undec(NLab_2) \neq 0$	41
42	$undec(NLab_3).$	42
43	9 If $undec(NLab_1) \subsetneq undec(NLab_2)$ then $undec(ALab_1) \subsetneq undec(ALab_2)$. A counter ex-	43
44	ample is AF in Example 9: We have $undec(NLab_3) \subsetneq undec(NLab_2)$ but $undec(NLab_3) \nsubseteq$	44
45	undec $(NLab_2)$.	45
46		46

9' If $undec(ALab_1) \subsetneq undec(ALab_2)$ then $undec(NLab_1) \subsetneq undec(NLab_2)$. A counter ex-ample is AF in Example 10: We have $undec(ALab_3) \subsetneq undec(ALab_2)$ but $undec(NLab_3) \not\subseteq$ undec($NLab_2$). **Lemma 50.** Let $ALab_1$ and $ALab_2$ be complete arrow labellings of argumentation framework AF =(N, arr). Let $NLab_1 = ALab2NLab(ALab_1)$ and $NLab_2 = ALab2NLab(ALab_2)$. It holds that: (1) $in(ALab_1) \subseteq in(ALab_2)$ iff $in(NLab_1) \subseteq in(NLab_2)$. (2) $in(ALab_1) = in(ALab_2)$ iff $in(NLab_1) = in(NLab_2)$. (3) $in(ALab_1) \subseteq in(ALab_2)$ iff $in(NLab_1) \subseteq in(NLab_2)$. (4) $\operatorname{out}(ALab_1) \subseteq \operatorname{out}(ALab_2)$ iff $\operatorname{out}(NLab_1) \subseteq \operatorname{out}(NLab_2)$. (5) $\operatorname{out}(ALab_1) = \operatorname{out}(ALab_2)$ iff $\operatorname{out}(NLab_1) = \operatorname{out}(NLab_2)$. (6) $\operatorname{out}(ALab_1) \subsetneq \operatorname{out}(ALab_2)$ iff $\operatorname{out}(NLab_1) \subsetneq \operatorname{out}(NLab_2)$. (7) If undec($NLab_1$) \subseteq undec($NLab_2$) then undec($ALab_1$) \subseteq undec($ALab_2$). (8) If $undec(NLab_1) = undec(NLab_2)$ then $undec(ALab_1) = undec(ALab_2)$. **Proof.** (1) " \Rightarrow ": Suppose $in(ALab_1) \subseteq in(ALab_2)$. Let $A \in in(NLab_1)$. Then, from the definition of ALab2NLab it follows that for every C that attacks A, $(C, A) \in \text{out}(ALab_1)$. From the fact that $in(ALab_1) \subseteq in(ALab_2)$ it follows that (Lemma 40) $out(ALab_1) \subseteq out(ALab_2)$, so $(C, A) \in$ $out(ALab_2)$. From the definition of ALab2NLab it then follows that $NLab_2(A) = in$. That is, 2.0 $A \in in(NLab_2).$ " \Leftarrow ": Suppose in($NLab_1$) \subseteq in($NLab_2$). Let (A, B) \in in($ALab_1$). Since we assume that $ALab_1$ 2.2 is complete, it follows that for every (C, A) towards $A, (C, A) \in out(ALab_1)$. This means for some $(D, C) \in arr$ we have $(D, C) \in in(ALab_1)$. Then, from the definition of ALab2NLab it follows that $C \in \text{out}(NLab_1)$. From $\text{in}(NLab_1) \subseteq \text{in}(NLab_2)$ and [54, Lemma 1] we then get $\operatorname{out}(NLab_1) \subseteq \operatorname{out}(NLab_2)$. From this and $C \in \operatorname{out}(NLab_1)$ we get $C \in \operatorname{out}(NLab_2)$. Then from the definition of ALab2NLab it follows that there is some $(D, C) \in in(ALab_2)$ which means $(C,A) \in \text{out}(ALab_2)$, and then since $ALab_2$ is complete we get $(A, B) \in \text{in}(ALab_2)$. (2) This follows directly from point 1. (3) This follows directly from point 1 and point 2. (4) " \Rightarrow ": Suppose $\operatorname{out}(ALab_1) \subseteq \operatorname{out}(ALab_2)$. Let $A \in \operatorname{out}(NLab_1)$. Then, from the definition of ALab2NLab it follows that there exists a C that attacks A such that $(C, A) \in in(ALab_1)$. From the fact that $\operatorname{out}(ALab_1) \subseteq \operatorname{out}(ALab_2)$ it follows that (Lemma 40) $\operatorname{in}(ALab_1) \subseteq \operatorname{in}(ALab_2)$, so $(C,A) \in in(ALab_2)$. From the definition of ALab2NLab it then follows that $NLab_2(A) = out$. That is, $A \in \text{out}(NLab_2)$. " \Leftarrow ": Suppose $out(NLab_1) \subseteq out(NLab_2)$. Let $(A, B) \in out(ALab_1)$. Since we assume that $ALab_1$ is complete, it follows that there exists a (C, A) towards A such that $(C, A) \in in(ALab_1)$. By completeness this means for every $(D, C) \in arr$ towards C we have $(D, C) \in out(ALab_1)$. Then, from the definition of ALab2NLab it then follows that $C \in in(NLab_1)$. From $out(NLab_1) \subseteq$ $out(NLab_2)$ and [54, Lemma 1] we then get $in(NLab_1) \subseteq in(NLab_2)$. From this and $C \in$ $in(NLab_1)$ we get $C \in in(NLab_2)$. Then from the definition of ALab2NLab it follows that for every $(D, C) \in arr$ towards C we have $(D, C) \in out(ALab_2)$, which means $(C, A) \in in(ALab_2)$, and then since $ALab_2$ is complete we get $(A, B) \in out(ALab_2)$. (5) This follows directly from point 4. (6) This follows directly from point 4 and point 5.

1 2 3	(7) Suppose $undec(NLab_1) \subseteq undec(NLab_2)$. Let $(A, B) \in undec(ALab_1)$. Then, by complete- ness of $ALab_1$ it follows that for no $(C, A) \in arr$ it holds $(C, A) \in in(ALab_1)$ and there is some $(C, A) \in arr$ such that $(C, A) \notin out(ALab_1)$, i.e., $(C, A) \in undec(ALab_1)$. From the definition of
4 5 6	ALab2NLab it follows that $A \in undec(NLab_1)$. The fact that $undec(NLab_1) \subseteq undec(NLab_2)$ then implies that $A \in undec(NLab_2)$. From the definition of ALab2NLab it follows then that for no $(C, A) \in arr$ towards A it holds $(C, A) \in in(ALab_2)$ and not for all $(C, A) \in arr$ we have
7 8	$(C, A) \in \text{out}(ALab_2)$. From this we get $(A, B) \in \text{undec}(ALab_2)$. (8) This follows directly from point 7.
9 10	
11 12	Notice that the respective missing cases do not hold—analogous to Lemma 49 (the same counter examples apply in this case). In fact, the similarities between Lemma 49 and Lemma 50 are no coincidence,
13 14	they are a direct consequence of the fact that the functions <i>NLab2ALab</i> and <i>ALab2NLab</i> are each others inverses (see Theorem 8, point 2).
15	To illustrate why these cases do not hold, we recall Example 9 from Section 2 (see below). It holds that
16	undec $(ALab_3) \subseteq$ undec $(ALab_2)$ but undec $(ALab2NLab(ALab_3)) \not\subseteq$ undec $(ALab2NLab(ALab_2))$. Furthermore, it also holds that undec $(ALab_3) =$ undec $(ALab_2)$ but undec $(ALab2NLab(ALab_3)) \neq$
17 18	undec $(ALab_2)$ but undec $(ALab_3) \neq$ undec $(ALab_2NLab(ALab_3)) \neq$
19	
20 21	Example 9. Let $AF = (N, arr)$ be an argumentation framework with $N = \{A, B, C, D\}$ and $arr = \{(A, A), (A, C), (B, D), (D, B), (D, C)\}$.
22	
23	$\begin{pmatrix} \mathbf{Q} \\ \mathbf{A} \end{pmatrix} = \mathbf{B}$
24 25	\mathbb{A}
26	
27 28	
29 30	AF has three complete node labellings:
31	$NLab_1 = (\emptyset, \emptyset, \{A, B, C, D\})$
32 33	$NLab_2 = (\{B\}, \{D\}, \{A, C\})$
34	$NLab_3 = (\{D\}, \{B, C\}, \{A\})$
35 36	
37	and three complete arrow labellings:
38	$ALab_1 = (\emptyset, \emptyset, \{(A, A), (A, C), (B, D), (D, B), (D, C)\})$
39 40	$ALab_{2} = (\{(B,D)\}, \{(D,B), (D,C)\}, \{(A,A), (A,C)\})$
41	$ALab_3 = (\{(D, B), (D, C)\}, \{(B, D)\}, \{(A, A), (A, C)\})$
42 43	These node labellings and among labellings compared to each other through the function ML 1241. I
44	These node labellings and arrow labellings correspond to each other through the functions NLab2ALab and ALab2NLab. While ALab ₂ is a semi-stable arrow labelling, $NLab_2 = ALab2NLab(ALab_2)$ is not a
45	semi-stable node labelling (the only semi-stable node labelling is NLab ₃).
46	

2.0

2.2

- **Lemma 51.** Let AF = (N, arr) be an argumentation framework.
- (1) If NLab is a grounded node labelling of AF then NLab2ALab(NLab) is a grounded arrow labelling of AF.
- (2) If ALab is a grounded arrow labelling of AF then ALab2NLab(ALab) is a grounded node labelling of AF.
- **Proof.** (1) Let *NLab* be a grounded node labelling of *AF*. Since a grounded node labelling is also a complete node labelling, it follows (Lemma 45) that ALab = NLab2ALab(NLab) is a com-plete arrow labelling. Suppose, towards a contradiction, that ALab does not have minimal in. That is, there exists a complete arrow labelling ALab' such that $in(ALab') \subseteq in(ALab)$. From point 3 of Lemma 50 it then follows that $in(ALab2NLab(ALab')) \subsetneq in(ALab2NLab(ALab))$. Let NLab' = ALab2NLab(ALab'). It follows (Lemma 46) that NLab' is a complete node labelling. Furthermore, it follows from Lemma 47 that ALab2NLab(ALab) = NLab. Hence, we obtain $in(NLab') \subseteq in(NLab)$. But this is impossible since NLab is a grounded node labelling and therefore has minimal in among all complete node labellings.
- (2) Let ALab be a grounded arrow labelling of AF. Since a grounded arrow labelling is also a complete arrow labelling, it follows (Lemma 46) that NLab = ALab2NLab(ALab) is a complete node labelling. Suppose, towards a contradiction, that *NLab* does not have minimal in. That is, there exists a complete node labelling NLab' such that $in(NLab') \subseteq in(NLab)$. From point 3 of Lemma 49 it then follows that $in(NLab2ALab(NLab')) \subseteq in(NLab2ALab(NLab))$. Let ALab' = NLab2ALab(NLab'). It follows (Lemma 45) that ALab' is a complete arrow labelling. Furthermore, it follows from lemma 48 that NLab2ALab(NLab) = ALab. Hence, we obtain 2.2 $in(ALab') \subseteq in(ALab)$. But this is impossible since ALab is a grounded arrow labelling and therefore has minimal in among all complete arrow labellings.

Lemma 52. Let AF = (N, arr) be an argumentation framework.

- (1) If NLab is a preferred node labelling of AF then NLab2ALab(NLab) is a preferred arrow labelling of AF.
- (2) If ALab is a preferred arrow labelling of AF then ALab2NLab(ALab) is a preferred node labelling of AF.
- **Proof.** Similar to the proof of Lemma 51 \Box

Lemma 53. Let AF = (N, arr) be an argumentation framework.

- (1) If NLab is a stable node labelling of AF then NLab2ALab(NLab) is a stable arrow labelling of AF.
- (2) If ALab is a stable arrow labelling of AF then ALab2NLab(ALab) is a stable node labelling of AF.
- **Proof.** (1) Let *NLab* be a stable node labelling of *AF*. Since a stable node labelling is also a complete node labelling, it follows (Lemma 45) that ALab = NLab2ALab(NLab) is a complete arrow labelling. In order to prove that *ALab* is also a stable arrow labelling, we need to show that no arrow is labelled undec. Let $(A, B) \in arr$. The fact that *NLab* is a stable node labelling implies that *A* is labelled either in or out. In case NLab(A) = in, it follows from the definition of *NLab2ALab* that ALab((A, B)) = in. In case NLab(A) = out, it follows from the definition of *NLab2ALab* that ALab((A, B)) = out. In both cases, $ALab((A, B)) \neq$ undec.

1	(2) Let <i>ALab</i> be a stable arrow labelling of <i>AF</i> . Since a stable arrow labelling is also a complete arrow
2	labelling, it follows (Lemma 46) that $NLab = ALab2NLab(ALab)$ is a complete node labelling. In
3	order to prove that NLab is also a stable node labelling, we need to show that no node is labelled
4	undec. Let $A \in N$ and let \mathcal{B} be the set of attackers of A. The fact that ALab is a stable arrow
5	labelling means that for every attacker $B \in \mathcal{B}$ it holds that $ALab((B, A))$ is either in or out. This
6	implies that either there exists a $B \in \mathcal{B}$ such that $ALab((B, A)) = in$, or for each $B \in \mathcal{B}$ it holds
7	that $ALab((B,A)) = \text{out}$. In the former case, it follows from the definition of $ALab2NLab$ that
8	NLab(A) = out. In the latter case, it follows from the definition of $ALab2NLab$ that $NLab(A) =$
9	in. In either case, it holds that $NLab(A) \neq$ undec.
10	

2.2

Remark 54. Notice that it does not hold that if NLab is a semi-stable node labelling of AF then NLab2ALab(NLab) is a semi-stable arrow labelling of AF. Example 10 provides a counter example: while NLab₂ is a semi-stable node labelling, ALab₂ is not a semi-stable arrow labelling. Neither does the other direction hold (i.e., if ALab is a semi-stable arrow labelling of AF then ALab2NLab(ALab) is a semi-stable node labelling of AF), Example 9 provides a counter example: while $ALab_2$ is a semi-stable arrow labelling, NLab₂ is not a semi-stable node labelling.

We recall Example 10 from Section 2 (see below). It holds that $undec(ALab_3) \subsetneq undec(ALab_2)$ but undec($ALab2NLab(ALab_3)$) $\not\subseteq$ undec($ALab2NLab(ALab_2)$).

Example 10. Let AF = (N, arr) be an argumentation framework with $N = \{A, B, C, D, E, F\}$ and $arr = \{(A, B), (C, B), (C, C), (A, D), (D, A), (D, E), (E, E), (E, F)\}.$

AF has three complete node labellings:

 $NLab_1 = (\emptyset, \emptyset, \{A, B, C, D, E, F\})$

 $NLab_2 = (\{A\}, \{B, D\}, \{C, E, F\})$

$NLab_3 = (\{D, F\}, \{A, E\}, \{B, C\})$

and three complete arrow labellings:

$ALab_1 = (\emptyset, \emptyset, \{(A, B), (C, B), (C, C), (A, D), (D, A), (D, E), (D,$	$(E,E),(E,F)\})$
$ALab_2 = (\{(A, B), (A, D)\}, \{(D, A), (D, E)\}, \{(C, B), (C, C)\}$	$,(E,E),(E,F)\})$
$ALab_3 = (\{(D, A), (D, E)\}, \{(A, B), (A, D), (E, E), (E, F)\},\$	$\{(C,B),(C,C)\})$

These node labellings and arrow labellings correspond to each other through the functions NLab2ALab and ALab2NLab. While NLab₂ is a semi-stable node labelling, $ALab_2 = NLab2ALab(NLab_2)$ is not a

semi-stable arrow labelling (the only semi-stable arrow labelling is ALab₃).

2.2

	42 M. Caminada et al. / Attack Semantics and Collective Attacks Revisited	
1	We recall the following Theorem 8 from Section 2 that sums up our findings regarding the connections	1
2	between arrow labellings and node labellings on AFs.	2
3		3
4	Theorem 8. Let $AF = (N, arr)$ be an argumentation framework and let NLab and ALab be a node	4
5	labelling and an arrow labelling of AF, respectively. It holds that:	5
6	(1) If NLab is a complete node labelling, then NLab2ALab(NLab) is a complete arrow labelling.	6
7	If ALab is a complete arrow labelling, then ALab2NLab(ALab) is a complete node labelling.	7
8	(2) When restricted to complete node labellings and complete arrow labellings, the functions	8
9	ALab2NLab and NLab2ALab become bijections and each other's inverses.	9
10	(3) If NLab is a grounded node labelling, then NLab2ALab(NLab) is a grounded arrow labelling.	10
11	If ALab is a grounded arrow labelling, then ALab2NLab(ALab) is a grounded node labelling.	11
12	(4) If NLab is a preferred node labelling, then NLab2ALab(NLab) is a preferred arrow labelling.	12
13	If ALab is a preferred arrow labelling, then ALab2NLab(ALab) is a preferred node labelling.	13
14	(5) If NLab is a stable node labelling, then NLab2ALab(NLab) is a stable arrow labelling.	14
15	If ALab is a stable arrow labelling, then ALab2NLab(ALab) is a stable node labelling.	15
16		16
17	Proof. (1) This follows from Lemma 45 and Lemma 46.	17
18	(2) This follows from Lemma 47 and Lemma 48.	18
19	(3) This follows from Lemma 51.	19 20
20	(4) This follows from Lemma 52.	20
21 22	(5) This follows from Lemma 53. \Box	21
22		22
24	Appendix C. Node extensions for SETAFs: Equivalent definitions	24
25	Appendix C. Node extensions for SETAFS. Equivalent demittions	25
26	In this section, we show that the semantics for AFs with collective attacks defined in [14] coincide	26
27	with the formulations we present in Section 3.	27
28	Recall that AFs with collective attacks and SETAFs differ in their treatment of the empty attack:	28
29	in AFs with collective attacks, the attack relation is a subset of $(2^n \setminus \emptyset) \times \mathfrak{N}$ while SETAFs allow	29
30	for attacks of the form $(\emptyset, A), A \in \mathfrak{N}$. However, this difference can be neglected, as we discuss in	30

Appendix G. Another difference between the work of Nielsen and Parsons and the theory on SETAFs in Section 3 is how preferred and stable semantics are defined. Throughout the current paper, we have decided to use complete semantics as the basis for defining the other semantics (including preferred and stable). This is to provide a level of uniformity, and to allow for easy conversion between extensions and labellings. However, the work of Nielsen and Parsons stays closer to [8] in the sense that preferred semantics is defined in terms of admissibility and stable semantics in terms of conflict-freeness. The resulting notions, however, are equivalent, as is stated by the following results.

Lemma 55 (Fundamental Lemma). Let $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF, let $\mathfrak{M} \subseteq \mathfrak{N}$ be admissible, and let $A, A' \in F_{\mathfrak{SF}}(\mathfrak{M})$ (i.e., A and A' are defended by \mathfrak{M}). Then

⁴¹ (1) $\mathfrak{M}' = \mathfrak{M} \cup \{A\}$ is admissible, and ⁴² (2) $A' \in F_{\mathfrak{SF}}(\mathfrak{M}')$.

44
 Proof. The proof is analogous to the proof of the fundamental lemma for AFs [8] and AFs with collec 45
 46

 (1) By definition of admissibility, it suffices to show that M' is conflict-free. Towards a contradiction, assume that there exists an argument B ∈ M' and a set M'' ⊆ M' such that (M'', B) ∈ arr. We consider three cases: (i) A = B and A ∉ M''; (ii) A = B and A ∈ M''; (iii) A ≠ B and A ∈ M'', (iv) A ≠ B and A ∉ M''. (i) First assume A = B and A ∉ M''. That is, M'' ⊆ M attacks A. Since A is defended by M, there is some M''' ⊆ M that attacks M''. Hence we have M is not conflict-free, contradiction. (ii) Now assume A = B and A ∈ M''. Since A is defended by M, there is some M''' ⊆ M that attacks M''. Hence we have M is not conflict-free, contradiction. (ii) Now assume A = B and A ∈ M''. Since A is defended by M, there is some M''' ⊆ M that attacks some element C ∈ M''. In case C ∈ M'' ∩ M, it follows that M is not conflict-free, contradiction. In case C = A, consider case (i). (iii) Next assume A ≠ B and A ∈ M''. That is, the set M is attacked by M'' containing A. Since M is admissible, there is some set M''' ⊆ M that attacks some element in D ∈ b. Since M is conflict-free, we have D ∉ M. It follows that D = A, i.e, there is an attack (M''', A) ∈ arr with M''' ⊆ M. Hence, we can consider case (i) again to derive a contradiction. (iv) Finally, suppose A ≠ B and A ∉ M''. Hence, M'' ∪ {B} ⊈ M, contradiction to admissibility of M. 	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(2) By of the characteristic function.	16
	17
	18
Theorem 56. Let $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF and let $\mathfrak{M} \subseteq \mathfrak{N}$. The following two statements are	19
equivalent.	20
(1) \mathfrak{M} is a maximal (w.r.t. \subseteq) admissible set of $\mathfrak{S}\mathfrak{F}$	21 22
(1) If the a maximal (w.r.t. \subseteq) complete extension if $\mathfrak{S}\mathfrak{F}$	22
	24
Proof. from 1. to 2. Consider a maximal (w.r.t. \subseteq) admissible set \mathfrak{M} of \mathfrak{SF} . First, we show that \mathfrak{M} is	25
complete. We show that \mathfrak{M} contains all nodes it defends. Let $A \in F(\mathfrak{M})$. By the fundamental	26
lemma, it holds that $\mathfrak{M} \cup \{A\}$ is admissible. Since \mathfrak{M} is a \subseteq -maximal admissible set, it follows	27
that $A \in \mathfrak{M}$.	28
Next, we show that \mathfrak{M} is \subseteq -maximal among all complete extensions. Towards a contradiction,	29
assume that there is a complete extension \mathfrak{M}' such that $\mathfrak{M}' \supset \mathfrak{M}$. By definition of complete	30
semantics, \mathfrak{M}' is admissible. Hence, we have a contradiction to \subseteq -maximality of \mathfrak{M} among the admissible axtensions of \mathfrak{ST}	31
admissible extensions of $\mathfrak{S}\mathfrak{F}$.	32
from 2. to 1. Consider a maximal (w.r.t. \subseteq) complete set \mathfrak{M} of $\mathfrak{S}\mathfrak{F}$. By definition, each complete set	33
is admissible. It remains to show that \mathfrak{M} is \subseteq -maximal among admissible sets. Towards a con- tradiction, suppose there is an admissible set \mathfrak{M}' such that $\mathfrak{M}' \supset \mathfrak{M}$. By monotonicity of the	34
characteristic function, there is a complete extension \mathfrak{M}'' such that $\mathfrak{M}' \subseteq \mathfrak{M}''$. Hence, we obtain	35
a contradiction to the \subseteq -maximality of \mathfrak{M} . \Box	36
a contradiction to the \subseteq -maximality of \mathfrak{M} . \Box	37
Theorem 57. Let $\mathfrak{S}\mathfrak{F} = (\mathfrak{N},\mathfrak{arr})$ be a SETAF and let $\mathfrak{M} \subseteq \mathfrak{N}$. The following two statements are	38
equivalent.	39 40
(1) \mathfrak{M} is a conflict free set that attacks all updag in $\mathfrak{N} \setminus \mathfrak{M}$	41
 (1) M is a conflict-free set that attacks all nodes in N \ M (2) M is a complete extension with M ∪ M⁺ = N 	42
(2) So is a complete extension with $SA \cup SA^* = SA$	43
Proof. from 1. to 2. Consider a conflict-free set \mathfrak{M} of \mathfrak{SF} that attacks all nodes in $\mathfrak{N} \setminus \mathfrak{M}$. Hence, it	44
holds that $\mathfrak{M} \cup \mathfrak{M}^+ = \mathfrak{N}$.	45
	46

44	M. Caminada et al. / Attack Semantics and Collective Attacks Revisited
We	show that \mathfrak{M} is complete:
Bya	assumption, \mathfrak{M} is conflict-free.
Mo	eover, it defends itself: towards a contradiction, assume there is some node $A \in \mathfrak{M}$ that is not
	nded by \mathfrak{M} . I.e., there is some attack $(\mathfrak{M}', A) \in \mathfrak{arr}$ such that $\mathfrak{M}' \cap \mathfrak{M}^+ = \emptyset$. By assumption
	ttacks all nodes in $\mathfrak{N} \setminus \mathfrak{M}$, it follows that $\mathfrak{M}' \subseteq \mathfrak{M}$, contradiction to \mathfrak{M} being conflict-free.
	ce we conclude that \mathfrak{M} is admissible.
	show that \mathfrak{M} contains all nodes it defends: let $A \in F(\mathfrak{M})$. By the fundamental lemma, it holds
	$\mathfrak{M} \cup \{A\}$ is admissible. Since \mathfrak{M} attacks all nodes not contained in \mathfrak{M} , it follows that $A \in \mathfrak{M}$.
	1. By definition, each complete set is conflict-free. Moreover, $\mathfrak{M} \cup \mathfrak{M}^+ = \mathfrak{N}$ iff \mathfrak{M} attacks
all r	odes in $\mathfrak{N} \setminus \mathfrak{M}$ for all conflict-free sets by definition. This concludes the proof. \Box
Appendix	D. Properties of Node Labellings for SETAFs
Theorem	58. Let $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF, let $\mathfrak{M} \subseteq \mathfrak{N}$ and let \mathfrak{NLab} be a SETAF node labelling of
SF. It hol	ds that:
(1) if \mathfrak{M}	is a complete extension of \mathfrak{SF} then
• 91	$\mathfrak{gs2MLab}(\mathfrak{M})$ is a complete SETAF node labelling of \mathfrak{SF} , and
	$\mathfrak{Lab}_{\mathfrak{A}\mathfrak{r}\mathfrak{g}\mathfrak{s}}(\mathfrak{A}\mathfrak{r}\mathfrak{g}\mathfrak{s}\mathfrak{s}\mathfrak{M}\mathfrak{Lab}(\mathfrak{M})) = \mathfrak{M}$
	Lab is a complete SETAF node labelling of $\mathfrak{S}\mathfrak{F}$ then
	$\mathfrak{Lab}_{\mathfrak{Args}}(\mathfrak{NLab})$ is a complete extension of \mathfrak{SF} , and
• 21	$\mathfrak{gs2MLab}(\mathfrak{NLab2Args}(\mathfrak{NLab})) = \mathfrak{NLab}$
(3) if \mathfrak{M}	is a grounded extension of \mathfrak{SF} then $\mathfrak{Args2MLab}(\mathfrak{M})$ is a grounded SETAF node labelling of
SF	
	Cab is a grounded SETAF node labelling of SF then NLab2Args(NLab) is a grounded ex-
	on of $\mathfrak{S}\mathfrak{F}$
(5) けか です	is a preferred extension of SF then $\mathfrak{Args2MLab}(\mathfrak{M})$ is a preferred SETAF node labelling of
e	Cab is a preferred SETAF node labelling of SF then NLab2Args(NLab) is a preferred ex-
-	on of $\mathfrak{S}_{\mathfrak{F}}$
(7) <i>if</i> M	is a semi-stable extension of \mathfrak{SF} then $\mathfrak{Args2MLab}(\mathfrak{M})$ is a semi-stable SETAF node labelling
of \mathfrak{S}	
. , ,	Cab is a semi-stable SETAF node labelling of SF then NLab2Args(NLab) is a semi-stable
	sion of $\mathfrak{S}\mathfrak{F}$
	is a stable extension of \mathfrak{SF} then $\mathfrak{Args}_2\mathfrak{NLab}(\mathfrak{M})$ is a stable SETAF node labelling of \mathfrak{SF}
(10) if 50 SF	Lab is a stable SETAF node labelling of \mathfrak{SF} then $\mathfrak{NLab}_{\mathfrak{ARgs}}(\mathfrak{NLab})$ is a stable extension of
Uð	
Proof. Sh	own in [15]. \Box
Note that	t the following Lemma 59 and Theorem 60 are a straightforward generalisation of the respec-
	s of AFs [33].

1 2	Lemma 59. Let \mathfrak{NLab}_1 and \mathfrak{NLab}_2 be complete node labellings of SETAF $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$. It holds that:	1 2
3	(1) $in(\mathfrak{NLab}_1) \subseteq in(\mathfrak{NLab}_2)$ iff $out(\mathfrak{NLab}_1) \subseteq out(\mathfrak{NLab}_2)$	3
4	(2) $in(\mathfrak{NLab}_1) = in(\mathfrak{NLab}_2)$ iff $out(\mathfrak{NLab}_1) = out(\mathfrak{NLab}_2)$	4
5	(3) $in(\mathfrak{NLab}_1) \subseteq in(\mathfrak{NLab}_2)$ iff $out(\mathfrak{NLab}_1) \subseteq out(\mathfrak{NLab}_2)$	5
6		6
7 8	Proof. (1) " \Rightarrow ": Suppose $in(\mathfrak{NLab}_1) \subseteq in(\mathfrak{NLab}_2)$. Let $A \in out(\mathfrak{NLab}_1)$. This means that (Definition 17, second bullet point) there exists a $(\mathfrak{M}, A) \in \mathfrak{arr}$ such that $\forall B \in \mathfrak{M} : \mathfrak{NLab}_1(B) = in$.	7 8
9	The fact that $in(\mathfrak{NLab}_1) \subseteq in(\mathfrak{NLab}_2)$ then implies that $\forall B \in \mathfrak{M} : \mathfrak{NLab}_2(B) = in$. Then	9
10	$\mathfrak{NLab}_2(A)$ cannot be in (otherwise there would have to be a $B \in \mathfrak{M}$ such that $\mathfrak{NLab}_2(B) = \mathtt{out}$)	10
11	and cannot be undec (by Definition 17, third bullet point). Since $\mathfrak{NLab}_2(A)$ can only be in, out	11
12	or undec, it then follows that $\mathfrak{NLab}_2(A) = \mathtt{out}$.	12
13	" \Leftarrow ": Suppose $\operatorname{out}(\mathfrak{NLab}_1) \subseteq \operatorname{out}(\mathfrak{NLab}_2)$. Let $A \in \operatorname{in}(\mathfrak{NLab}_1)$. This means that (Definition	13
14	17, first bullet point) for each $\mathfrak{M} \subseteq \mathfrak{N}$ such that $(\mathfrak{M}, A) \in \mathfrak{arr}$ it holds that $\exists B \in \mathfrak{M} : \mathfrak{NLab}_1(B) =$	14
15	out. The fact that $\operatorname{out}(\mathfrak{NLab}_1) \subseteq \operatorname{out}(\mathfrak{NLab}_2)$ then implies that for each $\mathfrak{M} \subseteq \mathfrak{N}$ such that	15
16	$(\mathfrak{M}, A) \in \mathfrak{arr}$ it holds that $\exists B \in \mathfrak{M} : \mathfrak{NLab}_2(B) = \text{out. Then } \mathfrak{NLab}_2(A)$ cannot be out (other-	16
17	wise there would have to be a $(\mathfrak{M}, A) \in \mathfrak{arr}$ such that $\forall B \in \mathfrak{M} : \mathfrak{NLab}_2(B) = in)$ and cannot be	17
18	under (by Definition 17, third bullet point). Since $\mathfrak{NLab}_2(A)$ can only be in, out or under, it then follows that $\mathfrak{NCab}_2(A)$ in	18
19 20	then follows that $\mathfrak{NLab}_2(A) = in$.	19 20
20	(2) This follows directly from point 1.	20
22	(3) This follows directly from point 1 and point 2.	22
23	(3) This follows directly from point 1 and point 2.	23
24		24
25 26	Theorem 60. Let $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF, and let \mathfrak{NLab} be a SETAF node labelling of \mathfrak{SF} . The following two statements are equivalent:	25 26
27 28	(1) $in(\mathfrak{NLab})$ is maximal (w.r.t. set inclusion) among all complete SETAF node labellings of \mathfrak{SF} (2) $out(\mathfrak{NLab})$ is maximal (w.r.t. set inclusion) among all complete SETAF node labellings of \mathfrak{SF}	27 28
29 30	The following three statements are also equivalent:	29 30
31 32	3. $in(\mathfrak{NLab})$ is minimal (w.r.t. set inclusion) among all complete SETAF node labellings of \mathfrak{SF} 4. $out(\mathfrak{NLab})$ is minimal (w.r.t. set inclusion) among all complete SETAF node labellings of \mathfrak{SF}	31 32
33	5. undec(MLab) is maximal (w.r.t. set inclusion) among all complete SETAF node labellings of $\mathfrak{S}\mathfrak{F}$	33
34		34
35	Furthermore, it holds that the complete SETAF node labelling with minimal in is unique.	35
36	Proof. from 1 to 2 Let \mathfrak{NLab} be a complete labelling where $out(\mathfrak{NLab})$ is not maximal. Then there	36
37	exists a complete labelling \mathfrak{NLab}' with $\operatorname{out}(\mathfrak{NLab}) \subseteq \operatorname{out}(\mathfrak{NLab}')$. From Lemma 59 it then	37
38	follows that $in(\mathfrak{NLab}) \subseteq in(\mathfrak{NLab}')$, so \mathfrak{NLab} is a labelling where $in(\mathfrak{NLab})$ is not maximal.	38
39	from 2 to 1 Let \mathfrak{NLab} be a complete labelling where $\operatorname{in}(\mathfrak{NLab})$ is not maximal. Then there exists a	39
40	complete labelling \mathfrak{NLab}' with $\operatorname{in}(\mathfrak{NLab}) \subseteq \operatorname{in}(\mathfrak{NLab}')$. From Lemma 59 it then follows that	40
41	$\operatorname{out}(\mathfrak{NLab}) \subseteq \operatorname{out}(\mathfrak{NLab}')$, so \mathfrak{NLab} is a labelling where $\operatorname{out}(\mathfrak{NLab})$ is not maximal.	41
42	from 3 to 4 Note that this result is mentioned in [17] in the context of extensions. Let \mathfrak{NLab} be a	42
43	complete labelling where $out(\mathfrak{NLab})$ is not minimal. Then there exists a complete labelling	43
44	\mathfrak{NLab}' with $\operatorname{out}(\mathfrak{NLab}') \subseteq \operatorname{out}(\mathfrak{NLab})$. From Lemma 59 it then follows that $\operatorname{in}(\mathfrak{NLab}') \subseteq \operatorname{out}(\mathfrak{NLab})$.	44
45	$in(\mathfrak{NLab})$, so \mathfrak{NLab} is a labelling where $in(\mathfrak{NLab})$ is not minimal.	45
46		46

1	from 4 to 3 Note that this result is mentioned in [17] in the context of extensions. Let NLab be a	1
2	complete labelling where $in(\mathfrak{NLab})$ is not minimal. Then there exists a complete labelling	2
3	\mathfrak{NLab}' with $\operatorname{in}(\mathfrak{NLab}') \subsetneq \operatorname{in}(\mathfrak{NLab})$. From Lemma 59 it then follows that $\operatorname{out}(\mathfrak{NLab}') \subsetneq$	3
4	$out(\mathfrak{NLab})$, so \mathfrak{NLab} is a labelling where $out(\mathfrak{NLab})$ is not minimal.	4
5	from 3 to 5 Let \mathfrak{NLab} be a complete labelling where $in(\mathfrak{NLab})$ is minimal. Then by Theorem 58	5
6	$\mathfrak{NLab2Args}(\mathfrak{NLab})$ is the grounded extension. Now suppose that $undec(\mathfrak{NLab})$ is not maximal.	6
7	Then there exists a complete labelling \mathfrak{NLab}' with $undec(\mathfrak{NLab}) \subseteq undec(\mathfrak{NLab}')$. It holds	7
8	that $\mathfrak{NLab}_{\mathfrak{A}\mathfrak{gs}}(\mathfrak{NLab}')$ is a complete extension, and from the fact that the grounded extension is	8
9	a subset of each complete extension, it follows that $\mathfrak{NLab}_{abs}(\mathfrak{NLab}) \subseteq \mathfrak{NLab}_{abs}(\mathfrak{NLab}')$,	9
10	so $\operatorname{in}(\mathfrak{NLab}) \subseteq \operatorname{in}(\mathfrak{NLab}')$. From Lemma 59 it then follows that $\operatorname{out}(\mathfrak{NLab}) \subseteq \operatorname{out}(\mathfrak{NLab}')$.	10
11	From the fact that $in(\mathfrak{NLab}) \subseteq in(\mathfrak{NLab}')$ and $out(\mathfrak{NLab}) \subseteq out(\mathfrak{NLab}')$ it follows that	11
12	undec $(\mathfrak{NLab}') \subseteq$ undec (\mathfrak{NLab}) . Contradiction.	12
13	from 5 to 3 Let \mathfrak{NLab} be a complete labelling where $in(\mathfrak{NLab})$ is not minimal. Then there exists a	13
14	complete labelling \mathfrak{NLab}' with $\operatorname{in}(\mathfrak{NLab}') \subsetneq \operatorname{in}(\mathfrak{NLab})$. It then follows from Lemma 59 that	14
15	$\operatorname{out}(\mathfrak{NLab}') \subsetneq \operatorname{out}(\mathfrak{NLab})$, so $\operatorname{undec}(\mathfrak{NLab}) \subsetneq \operatorname{undec}(\mathfrak{NLab}')$.	15
16	uniqueness grounded node labelling Shown in [15].	16
17		17
18		18
19		19
20	Appendix E. Properties of Arrow Labellings for SETAF	20
21		21
22	We show that for SETAF arrow labellings the same properties hold as for AF arrow labellings, as	22
23	shown in Appendix A. In particular, we show that the complete arrow labellings with maximal in are	23
24	equal to the complete arrow labellings with maximal out, and that the complete arrow labelling where	24
25	in is minimal is unique and equal to both the complete arrow labelling where out is minimal and the	25
26	complete arrow labelling where undec is maximal (Theorem 64).	26
27	We start with an alternative definition for the conditions of complete arrow labellings for SETAF.	27
28	Theorem (1 $I \neq \mathcal{C}\mathcal{C}$ (\mathcal{O} run) by a SETAE and let $\mathcal{O}(\Omega = h, $	28
29	Theorem 61. Let $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF and let \mathfrak{ALab} be an arrow labelling of \mathfrak{SF} . \mathfrak{ALab} is a	29
30	<i>complete arrow labelling of</i> \mathfrak{SF} <i>iff for every</i> $(\mathfrak{M}, A) \in \mathfrak{arr}$ <i>it holds that:</i>	30
31	(1) $\mathfrak{ALab}((\mathfrak{M}, A)) = \operatorname{in} iff for each (\mathfrak{M}', B) \in \mathfrak{arr} with B \in \mathfrak{M} it holds that \mathfrak{ALab}((\mathfrak{M}', B)) = \operatorname{out}$	31
32	(2) $\mathfrak{ALab}((\mathfrak{M}, A)) = $ out iff there exists $a(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ such that $\mathfrak{ALab}((\mathfrak{M}', B)) = $ in	32
33		33
34	Proof. " \Rightarrow ": Let \mathfrak{ALab} be a complete arrow labelling of \mathfrak{SF} . Point 1 LTR follows directly from the	34
35	first bullet of Definition 20. As for point 1 RTL, suppose that for each $(\mathfrak{M}', B) \in arr$ with $B \in \mathfrak{M}$ it	35
36	holds that $\mathfrak{ALab}((\mathfrak{M}', B)) = \text{out}$. Then $\mathfrak{ALab}((\mathfrak{M}, A))$ cannot be out (otherwise there would have to	36
37	be a $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ such that $\mathfrak{ALab}((\mathfrak{M}', B)) = in)$ and cannot be under (otherwise not	37
38	for each $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ it holds that $\mathfrak{ALab}((\mathfrak{M}', B)) = \text{out}$). Since $\mathfrak{ALab}((\mathfrak{M}, A))$ can	38
39	only be in, out or undec, it then follows that $\mathfrak{ALab}((\mathfrak{M}, A)) = in$.	39
40	Point 2 LTR follows directly from the second bullet of Definition 20. As for point 2 RTL, suppose that $(200, 100, 100, 100, 100, 100, 100, 100, $	40
41	there exists a $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ such that $\mathfrak{ALab}((\mathfrak{M}', B)) = \mathrm{in}$. Then $\mathfrak{ALab}((\mathfrak{M}, A))$ cannot	41
42	be in (otherwise for each $(\mathfrak{M}', B) \in arr$ with $B \in \mathfrak{M}$ it holds that $\mathfrak{ALab}((\mathfrak{M}', B)) = \operatorname{out})$ and cannot	42
43	be under (otherwise there does not exist a $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ such that $\mathfrak{ALab}((\mathfrak{M}', B)) = \mathfrak{in}$).	43
44 45	Since $\mathfrak{ALab}((\mathfrak{M}', B))$ can only be in, out or under, it follows that $\mathfrak{ALab}((\mathfrak{M}, A)) = $ out.	44 45
45 46	" \Leftarrow ": Let \mathfrak{ALab} be an arrow labelling satisfying points 1 and 2. We now need to show that \mathfrak{ALab}	45
- U		-0

also satisfies the first three bullets of Definition 20. The first bullet follows directly from point 1. The second bullet follows directly from point 2. As for the third bullet, take an arbitrary $(\mathfrak{M}, A) \in \mathfrak{arr}$ such that $\mathfrak{ALab}((\mathfrak{M}, A)) =$ undec. The fact that $\mathfrak{ALab}((\mathfrak{M}, A)) \neq$ in, together with point 1, then implies that not for each $(\mathfrak{M}', B) \in arr$ with $B \in \mathfrak{M}$ it holds that $\mathfrak{ALab}((\mathfrak{M}', B)) = out$. The fact that $\mathfrak{ALab}((\mathfrak{M}, A)) \neq \mathsf{out}$, together with point 2, then implies that there does not exist a $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ such that $\mathfrak{ALab}((\mathfrak{M}', B)) =$ in. \Box We now proceed to prove a number of lemmas on how arrow labellings relate to each other, and how arrow labellings relate to node labellings. **Lemma 62.** Let \mathfrak{ALab}_1 and \mathfrak{ALab}_2 be complete arrow labellings of SETAF $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$. It holds that: (1) $\operatorname{in}(\mathfrak{ALab}_1) \subseteq \operatorname{in}(\mathfrak{ALab}_2)$ iff $\operatorname{out}(\mathfrak{ALab}_1) \subseteq \operatorname{out}(\mathfrak{ALab}_2)$ (2) $\operatorname{in}(\mathfrak{ALab}_1) = \operatorname{in}(\mathfrak{ALab}_2)$ iff $\operatorname{out}(\mathfrak{ALab}_1) = \operatorname{out}(\mathfrak{ALab}_2)$ (3) $in(\mathfrak{ALab}_1) \subseteq in(\mathfrak{ALab}_2)$ iff $out(\mathfrak{ALab}_1) \subseteq out(\mathfrak{ALab}_2)$ **Proof.** (1) " \Rightarrow ": Suppose $in(\mathfrak{ALab}_1) \subseteq in(\mathfrak{ALab}_2)$. Let $(\mathfrak{M}, A) \in out(\mathfrak{ALab}_1)$. This means that (Definition 20, second bullet point) there exists a $(\mathfrak{M}', B) \in \mathfrak{arr}$ such that $B \in \mathfrak{M}$ and $\mathfrak{ALab}_1((\mathfrak{M}', B)) = \text{in. That is, } (\mathfrak{M}', B) \in \text{in}(\mathfrak{ALab}_1).$ The fact that $\text{in}(\mathfrak{ALab}_1) \subseteq \text{in}(\mathfrak{ALab}_2)$ then implies that $(\mathfrak{M}', B) \in in(\mathfrak{ALab}_2)$. This, together with the fact that \mathfrak{ALab}_2 is a complete arrow labelling implies (by point 2 of Theorem 61) that $(\mathfrak{M}, A) \in \operatorname{out}(\mathfrak{ALab}_2)$. " \leftarrow ": Suppose $\operatorname{out}(\mathfrak{ALab}_1) \subseteq \operatorname{out}(\mathfrak{ALab}_2)$. Let $(\mathfrak{M}, A) \in \operatorname{in}(\mathfrak{ALab}_1)$. This means that (Definition 20, first bullet point) that for each $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ it holds that $(\mathfrak{M}', B) \in \operatorname{out}(\mathfrak{ALab}_1)$. The fact that $\operatorname{out}(\mathfrak{ALab}_1) \subseteq \operatorname{out}(\mathfrak{ALab}_2)$ then implies that $(\mathfrak{M}', B) \in$ $out(\mathfrak{ALab}_2)$. This, together with the fact that \mathfrak{ALab}_2 is a complete arrow labelling implies (by point 1 of Theorem 61) that $(\mathfrak{M}, A) \in in(\mathfrak{ALab}_2)$. (2) This follows directly from point 1. (3) This follows directly from point 1 and point 2. **Lemma 63.** Let \mathfrak{ALab}_1 and \mathfrak{ALab}_2 be complete arrow labellings of SETAF $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$. It holds that: (1) if $in(\mathfrak{ALab}_1) \subseteq in(\mathfrak{ALab}_2)$ then $undec(\mathfrak{ALab}_1) \supseteq undec(\mathfrak{ALab}_2)$ (2) if $in(\mathfrak{ALab}_1) = in(\mathfrak{ALab}_2)$ then $undec(\mathfrak{ALab}_1) = undec(\mathfrak{ALab}_2)$ (3) if $in(\mathfrak{ALab}_1) \subsetneq in(\mathfrak{ALab}_2)$ then $undec(\mathfrak{ALab}_1) \supseteq undec(\mathfrak{ALab}_2)$ (4) if $\operatorname{out}(\mathfrak{ALab}_1) \subseteq \operatorname{out}(\mathfrak{ALab}_2)$ then $\operatorname{undec}(\mathfrak{ALab}_1) \supseteq \operatorname{undec}(\mathfrak{ALab}_2)$ (5) if $\operatorname{out}(\mathfrak{ALab}_1) = \operatorname{out}(\mathfrak{ALab}_2)$ then $\operatorname{undec}(\mathfrak{ALab}_1) = \operatorname{undec}(\mathfrak{ALab}_2)$ (6) if $\operatorname{out}(\mathfrak{ALab}_1) \subsetneq \operatorname{out}(\mathfrak{ALab}_2)$ then $\operatorname{undec}(\mathfrak{ALab}_1) \supsetneq \operatorname{undec}(\mathfrak{ALab}_2)$ **Proof.** (1) Suppose $in(\mathfrak{ALab}_1) \subseteq in(\mathfrak{ALab}_2)$. Then (Lemma 62, point 1) it follows that $\operatorname{out}(\mathfrak{ALab}_1) \subseteq \operatorname{out}(\mathfrak{ALab}_2)$. Let $(\mathfrak{M}, A) \in \operatorname{undec}(\mathfrak{ALab}_2)$. Then $(\mathfrak{M}, A) \notin \operatorname{in}(\mathfrak{ALab}_2)$ so $(\mathfrak{M}, A) \notin \operatorname{in}(\mathfrak{ALab}_1)$. Also, $(\mathfrak{M}, A) \notin \operatorname{out}(\mathfrak{ALab}_2)$ so $(\mathfrak{M}, A) \notin \operatorname{out}(\mathfrak{ALab}_1)$. From the fact that (\mathfrak{M}, A) is labelled either in, out or under by \mathfrak{ALab}_1 , it follows that $(\mathfrak{M}, A) \in$

⁴⁵ undec(\mathfrak{ALab}_1).

1	(2) This follows directly from point 1. (2) the following $(2^{2} + 1)^{2} = 1$	1
2	(3) Assume $in(\mathfrak{ALab}_1) \subsetneq in(\mathfrak{ALab}_2)$. From point 1 of this lemma it follows $undec(\mathfrak{ALab}_1) \supseteq$	2
3	undec (\mathfrak{ALab}_2) . From Lemma 62 (point 3) it follows $\operatorname{out}(\mathfrak{ALab}_1) \subsetneq \operatorname{out}(\mathfrak{ALab}_2)$. But	3
4	since every arrow is labelled either in, out, or undec, this means that $in(\mathfrak{ALab}_2) \setminus (\mathfrak{AL}) = (\mathfrak{AL}) = (\mathfrak{AL}) = \mathfrak{ALab}_2$	4
5	$\operatorname{in}(\mathfrak{ALab}_1) \subseteq \operatorname{undec}(\mathfrak{ALab}_1) \text{ and } \operatorname{out}(\mathfrak{ALab}_2) \setminus \operatorname{out}(\mathfrak{ALab}_1) \subseteq \operatorname{undec}(\mathfrak{ALab}_1), \text{ which gives}$	5
6	us undec $(\mathfrak{ALab}_1) \supseteq$ undec (\mathfrak{ALab}_2) .	6
7	(4) This follows directly from Lemma 62 (point 1) and point 1 of this lemma.	7
8	(5) This follows directly from point 4.	8
9	(6) Assume $\operatorname{out}(\mathfrak{ALab}_1) \subsetneq \operatorname{out}(\mathfrak{ALab}_2)$. From Lemma 62 (point 3) it follows $\operatorname{in}(\mathfrak{ALab}_1) \subsetneq$	9
10	$in(\mathfrak{ALab}_2)$. Then $undec(\mathfrak{ALab}_1) \supseteq undec(\mathfrak{ALab}_2)$ follows from point 3 of this lemma.	10
11		11
12	The following theorem states that minimising (near maximising) particular labels comptimes yields	12
13	The following theorem states that minimising (resp. maximising) particular labels sometimes yields	13
14	the same outcome.	14
15	Theorem 64. Let $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF, and let \mathfrak{ALab} be a complete arrow labelling of \mathfrak{SF} . The	15
16	following two statements are equivalent:	16
17		17
18	1. $in(\mathfrak{ALab})$ is maximal (w.r.t. set inclusion) among all complete arrow labellings of \mathfrak{SF}	18
19	2. $out(\mathfrak{ALab})$ is maximal (w.r.t. set inclusion) among all complete arrow labellings of \mathfrak{SF}	19
20	The fellening dama statements and also equivalent.	20
21	The following three statements are also equivalent:	21
22	3. $in(\mathfrak{ALab})$ is minimal (w.r.t. set inclusion) among all complete arrow labellings of \mathfrak{SF}	22
23	4. $out(\mathfrak{ALab})$ is minimal (w.r.t. set inclusion) among all complete arrow labellings of \mathfrak{SF}	23
24 25	5. undec(\mathfrak{ALab}) is maximal (w.r.t. set inclusion) among all complete arrow labellings of \mathfrak{SF}	24 25
		25 26
26 27	Furthermore, it holds that the complete arrow labelling with minimal in is unique.	26 27
28	Dreaf from 1.4.2 Surgeon in $O(0, t_1)$ is maximal enoughly complete enoughly health as of $\mathcal{C}^{\mathcal{C}}$. That is	28
29	Proof. from 1 to 2 Suppose $in(\mathfrak{ALab})$ is maximal among all complete arrow labellings of $\mathfrak{S}\mathfrak{F}$. That is,	29
30	there is no complete arrow labelling \mathfrak{ALab}' of \mathfrak{SF} such that $\operatorname{in}(\mathfrak{ALab}) \subsetneq \operatorname{in}(\mathfrak{ALab}')$. Suppose,	30
31	towards a contradiction, that $out(\mathfrak{ALab})$ is not maximal among all complete arrow labellings of \mathfrak{SF} . Then there exists a complete arrow labelling \mathfrak{ALab}' such that $out(\mathfrak{ALab}) \subseteq out(\mathfrak{ALab}')$.	31
32	It then follows from Lemma 62 (point 3) that $in(\mathfrak{ALab}) \subsetneq in(\mathfrak{ALab})$. Contradiction.	32
33	from 2 to 1 Similar to the previous point.	33
34	from 3 to 4 Suppose $in(\mathfrak{ALab})$ is minimal among all complete arrow labellings of \mathfrak{SF} . That is, there is	34
35	no complete arrow labelling \mathfrak{ALab}' of \mathfrak{SF} such that $\operatorname{in}(\mathfrak{ALab}') \subsetneq \operatorname{in}(\mathfrak{ALab})$. Suppose, towards	35
36	a contradiction, that $out(\mathfrak{ALab})$ is not minimal among all complete arrow labellings of \mathfrak{SF} .	36
37	Then there exists a complete arrow labelling \mathfrak{ALab}' such that $\operatorname{out}(\mathfrak{ALab}') \subseteq \operatorname{out}(\mathfrak{ALab})$. It	37
38	then follows from Lemma 62 (point 3) that $in(\mathfrak{ALab}) \subsetneq in(\mathfrak{ALab})$. Contradiction.	38
39	from 4 to 3 Similar to the previous point.	39
40		40
41	from 5 to 3 Suppose undec(\mathfrak{ALab}) is maximal among all complete arrow labellings of \mathfrak{SF} . That is, there is no complete arrow labelling \mathfrak{ALab}' of \mathfrak{SF} such that $undec(\mathfrak{ALab}) \subseteq undec(\mathfrak{ALab}')$.	41
42	Suppose, towards a contradiction, that $in(\mathfrak{ALab})$ is not maximal among all complete arrow la-	42
43	bellings of $\mathfrak{S}\mathfrak{F}$. Then there exists a complete arrow labelling \mathfrak{ALab}' such that $\operatorname{in}(\mathfrak{ALab}) \subsetneq$	43
44	$in(\mathfrak{ALab}')$. It then follows from Lemma 63 (point 3) that $undec(\mathfrak{ALab}') \subseteq undec(\mathfrak{ALab})$.	44
45	Contradiction.	45
46		46

t we cannot just use the of Lemma 63 only goes te use of the uniqueness
lete arrow labellings of From Theorem 21 (point $ab_2 \mathfrak{NLab}(\mathfrak{ALab}_2)$ are ing is unique [15] it fol- $ab(\mathfrak{NLab}_2)$. However, ab_2 (Theorem 21 point
now that point 3 implies
in. That is, \mathfrak{ALab}_1 is a lying an ordering based l element is unique, it is t of the set. That is, for \mathfrak{ab}' . From Lemma len follows that there is \mathfrak{ab}) \subsetneq undec(\mathfrak{ALab}').
row labellings cover all el (among the complete
ſAFs
ing of SF then $\mathfrak{ALab}=$
l. Let $(\mathfrak{M}, A) \in \mathfrak{arr}$. We
that $\mathfrak{NLab}(B) = \operatorname{in}$ for n follows that for every . From the definition of

	As for the last point to be proved (from 3 to 5), a particular difficulty is that we cannot just use the ame proof strategy as the previous point (from 5 to 3). This is because point 3 of Lemma 63 only goes
	ne-way (it's an "if" instead of an "iff"). To overcome this, we will need to make use of the uniqueness
	f the grounded arrow labelling.
U.	The grounded arrow labelling.
u	niqueness grounded arrow labelling Suppose \mathfrak{ALab}_1 and \mathfrak{ALab}_2 are complete arrow labellings of
	$\mathfrak{S}\mathfrak{F}$ with minimal in. That is, they are grounded arrow labellings of $\mathfrak{S}\mathfrak{F}$. From Theorem 21 (point
	$3)^{12}$ it follows that $\mathfrak{NLab}_1 = \mathfrak{ALab}_2\mathfrak{NLab}(\mathfrak{ALab}_1)$ and $\mathfrak{NLab}_2 = \mathfrak{ALab}_2\mathfrak{NLab}(\mathfrak{ALab}_2)$ are
	grounded node labellings of $\mathfrak{S}\mathfrak{F}$. However, since the grounded node labelling is unique [15] it fol-
	lows that $\mathfrak{NLab}_1 = \mathfrak{NLab}_2$, so also $\mathfrak{NLab}_2\mathfrak{ALab}(\mathfrak{NLab}_1) = \mathfrak{NLab}_2\mathfrak{ALab}(\mathfrak{NLab}_2)$. However,
	since $\mathfrak{NLab}_2\mathfrak{ALab}(\mathfrak{NLab}_1) = \mathfrak{ALab}_1$ and $\mathfrak{NLab}_2\mathfrak{ALab}(\mathfrak{NLab}_2) = \mathfrak{ALab}_2$ (Theorem 21 point
	2) it follows that $\mathfrak{ALab}_1 = \mathfrak{ALab}_2$.
T	Ising the uniqueness of the grounded errow lebelling, we can then proceed to show that point 2 implies
	Using the uniqueness of the grounded arrow labelling, we can then proceed to show that point 3 implies oint 5.
P	Vint J.
fı	rom 3 to 5 Suppose \mathfrak{ALab}_1 is a complete arrow labelling of \mathfrak{SF} with minimal in. That is, \mathfrak{ALab}_1 is a
	minimal element of the set of complete arrow labellings of $\mathfrak{S}\mathfrak{F}$ (when applying an ordering based
	on set-inclusion on the in-labelled part of the labellings). As this minimal element is unique, it is
	also the smallest element, meaning that it is less or equal to each element of the set. That is, for
	each complete arrow labelling \mathfrak{ALab}' of \mathfrak{SF} , it holds that $\operatorname{in}(\mathfrak{ALab}) \subseteq \operatorname{in}(\mathfrak{ALab}')$. From Lemma
	63 (point 1) it then follows that $undec(\mathfrak{ALab}') \subseteq undec(\mathfrak{ALab})$. It then follows that there is
	there is no complete arrow labelling \mathfrak{ALab}' of $\mathfrak{S}\mathfrak{F}$ such that $undec(\mathfrak{ALab}) \subseteq undec(\mathfrak{ALab}')$
	That is, ALab is a complete arrow labelling with maximal undec.
	From Theorem 64 it follows that the grounded, preferred and semi-stable arrow labellings cover all
n	ossibilities regarding the maximisation and minimisation of a particular label (among the complete
_	rrow labellings).
A	ppendix F. Equivalence of Node Labellings and Arrow Labellings for SETAFs
	Let $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF. If \mathfrak{NLab} is a complete node labelling of \mathfrak{SF} then $\mathfrak{ALab} = \mathfrak{SF}$
Ŋ	ILab2ALab(NLab) is a complete arrow labelling of SF.
_	
	Proof. We need to prove that the three bullet points of Definition 20 are satisfied. Let $(\mathfrak{M}, A) \in \mathfrak{arr}$. We
d	istinguish three cases:
((1) $\mathfrak{ALab}((\mathfrak{M}, A)) = \text{in}$. From the definition of $\mathfrak{NLab2ALab}$ it then follows that $\mathfrak{NLab}(B) = \text{in}$ for
	each $B \in \mathfrak{M}$. From the fact that \mathfrak{NLab} is a complete node labelling, it then follows that for every
	$(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ there is a $C \in \mathfrak{M}'$ such that $\mathfrak{NLab}(C) = \text{out}$. From the definition of
	$\mathfrak{NLab}_{2\mathfrak{A}\mathfrak{L}\mathfrak{ab}}$ it then follows that $\mathfrak{ALab}((\mathfrak{M}', B)) = \text{out}.$
_	

1 2 3 4 5 6 7 8 9 10 11	 (2) ALab((M, A)) = out. From the definition of NLab2ALab it then follows that NLab(B) = out for some B ∈ M. From the fact that NLab is a complete node labelling, it then follows that there is an (M', B) ∈ arr such that NLab(C) = in for each C ∈ M'. From the definition of NLab2ALab it then follows that ALab((M', B)) = in. (3) ALab((M, A)) = undec. From the definition of NLab2ALab it then follows that not for all B ∈ M : NLab(B) = in and there is no B ∈ M : NLab(B) = out. Since for each B ∈ M the label NLab(B) can only be in, out or undec, there is some B ∈ M such that NLab(B) = undec. From the fact that NLab is a complete node labelling, it then follows that not for each M' ⊆ N such that (M', B) ∈ arr it holds that there is a C ∈ M' : NLab(C) = out and there does not exist an M' ⊆ N such that (M', B) ∈ arr and ∀C ∈ M' : NLab(C) = in. From the definition of NLab2ALab it then follows that not for each (M', B) ∈ arr with B ∈ M it holds that ALab((M', B)) = out. From the fact that there is a C ∈ M' : NLab(C) = in. From the definition of NLab2ALab it then follows that not for each M' ⊆ M such that (M', B) ∈ arr and ∀C ∈ M' : NLab(C) = in. From the definition of NLab2ALab it then follows that ALab((M', B)) = out. From the fact that there is a C ∈ M' : NLab(C) = in. 	1 2 3 4 5 6 7 8 9 10 11 12
13 14 15	is $B \in \mathfrak{M} : \mathfrak{NLab}(B) = \text{out}$ and the fact that \mathfrak{NLab} is a complete node labelling it follows that there is no $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ such that $\mathfrak{ALab}((\mathfrak{M}', B)) = \text{in}$.	13 14 15
16 17 18 19	Lemma 66. Let $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF. If \mathfrak{ALab} is a complete arrow labelling of \mathfrak{SF} then $\mathfrak{NLab} = \mathfrak{ALab}_2\mathfrak{NLab}(\mathfrak{ALab})$ is a complete node labelling of \mathfrak{SF} .	16 17 18 19
20 21	Proof. We need to prove that the three bullet points of Definition 17 are satisfied. Let $A \in \mathfrak{N}$. We distinguish three cases:	20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	 (1) 𝔑𝔅åb(A) = in. We need to show that for every (𝔅, A) ∈ arr it holds that ∃B ∈ 𝔅 : 𝔅𝔅åb(B) = out. Let (𝔅, A) ∈ arr be an arbitrary arrow towards A. From the definition of 𝔅𝔅åbab𝔅𝔅𝔅 and the fact that 𝔅𝔅åb(A) = in it follows that 𝔅𝔅åb(𝔅, A)) = out. From the fact that 𝔅𝔅åb(A) = in it follows that 𝔅𝔅åb(𝔅, A)) = out. From the fact that 𝔅𝔅åb(A) = in it follows that 𝔅𝔅åb(𝔅, A)) = out. From the fact that 𝔅𝔅åb(B) = out. (2) 𝔅𝔅åb(A) = out. We need to show that there exists a (𝔅, A) ∈ arr such that ∀B ∈ 𝔅 : 𝔅𝔅åb(B) = out. (2) 𝔅𝔅åb(A) = out. We need to show that there exists a (𝔅, A) ∈ arr such that ∀B ∈ 𝔅 : 𝔅𝔅åb(B) = in. From the definition of 𝔅𝔅åb2𝔅åb and the fact that 𝔅𝔅åb(A) = out it follows that there is a (𝔅, A) ∈ arr such that 𝔅𝔅b(𝔅, A)) = in. From the definition of 𝔅𝔅åb²𝔅åb and the fact that 𝔅𝔅b(A) = out it follows that there is a (𝔅, A) ∈ arr such that 𝔅𝔅b(𝔅, A)) = in. From the definition of 𝔅𝔅åb²𝔅b and the fact that 𝔅𝔅b(A) = out it follows that there is a (𝔅, A) ∈ arr such that 𝔅𝔅b(𝔅, A)) = in. From the fact that 𝔅𝔅b(B) = in. (3) 𝔅𝔅åb(A) = undec. We need to show that not for all (𝔅, A) ∈ arr it holds that ∃B ∈ 𝔅 : 𝔅𝔅b(B) = in. From the definition of 𝔅𝔅åb²𝔅b and the fact that 𝔅𝔅b(A) = undec it follows that (i) not for all (𝔅, A) ∈ arr it holds that 𝔅𝔅b(𝔅, A)) = out, and (ii) there is no (𝔅, A) ∈ arr such that 𝔅𝔅b(B) = in. From the definition of 𝔅𝔅bb²𝔅𝔅𝔅𝔅 at such that 𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅𝔅	22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
43 44 45 46	that there is a $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ such that $\mathfrak{ALab}((\mathfrak{M}', B)) \neq out$. From the definition of $\mathfrak{ALab}_2\mathfrak{NLab}$, it then follows that $\mathfrak{NLab}(B) \neq in$.	43 44 45 46

	of. Let $\mathfrak{ALab} = \mathfrak{NLab2ALab}(\mathfrak{NLab})$. It suffices to prove the following three properties, for a trary $A \in \mathfrak{N}$.
(1)	If $\mathfrak{NLab}(A) = \operatorname{in} \operatorname{then} \mathfrak{ALab}_2\mathfrak{NLab}(\mathfrak{ALab})(A) = \operatorname{in}$. Suppose $\mathfrak{NLab}(A) = \operatorname{in}$. Then from \mathfrak{NLab} being a complete node labelling, it follows that ff each $(\mathfrak{M}, A) \in \operatorname{arr}$ it holds that $\mathfrak{NLab}(B) = \operatorname{out}$ for some $B \in \mathfrak{M}$, which from the definition of $\mathfrak{NLab}_2\mathfrak{ALab}$ implies that $\mathfrak{ALab}((\mathfrak{M}, A)) = \operatorname{out}$. From the definition of $\mathfrak{ALab}_2\mathfrak{NLab}$ it the follows that $\mathfrak{ALab}_2\mathfrak{NLab}(\mathfrak{ALab})(A) = \operatorname{in}$. If $\mathfrak{NLab}(A) = \operatorname{out}$ then $\mathfrak{ALab}_2\mathfrak{NLab}(\mathfrak{ALab})(A) = \operatorname{out}$. Suppose $\mathfrak{NLab}(A) = \operatorname{out}$. Then from \mathfrak{NLab} being a complete node labelling, it follows the there is a $(\mathfrak{M}, A) \in \operatorname{arr}$ such that $\forall B \in \mathfrak{M} : \mathfrak{NLab}(B) = \operatorname{in}$, which from the definition $\mathfrak{NLab}_2\mathfrak{ALab}$ implies that $\mathfrak{ALab}((\mathfrak{M}, A)) = \operatorname{in}$. From the definition of $\mathfrak{ALab}_2\mathfrak{NLab}$ it then for lows that $\mathfrak{ALab}_2\mathfrak{NLab}(\mathfrak{ALab})(A) = \operatorname{out}$. If $\mathfrak{NLab}(A) = \operatorname{undec}$ then $\mathfrak{ALab}_2\mathfrak{NLab}(\mathfrak{ALab})(A) = \operatorname{undec}$. Suppose $\mathfrak{NLab}(A) = \operatorname{undec}$. Then from \mathfrak{NLab} being a complete node labelling, it follows the (i) not for each $(\mathfrak{M}, A) \in \operatorname{arr}$ it holds that $\mathfrak{NLab}(B) = \operatorname{out}$ for some $B \in \mathfrak{M}$, and (ii) there no $(\mathfrak{M}, A) \in \operatorname{arr}$ such that $\forall B \in \mathfrak{M} : \mathfrak{NLab}(B) = \operatorname{in}$. From (i) it directly follows that the exists a $(\mathfrak{M}, A) \in \operatorname{arr}$ such that $\mathfrak{NLab}(B) \neq \operatorname{out}$ for some $B \in \mathfrak{M}$, thus $\mathfrak{ALab}((\mathfrak{M}, A)) \neq \operatorname{ou}$. Then, from the definition of $\mathfrak{ALab}_2\mathfrak{NLab}$ it follows that $\mathfrak{ALab}_2\mathfrak{NLab}(\mathfrak{ALab})(A) \neq \operatorname{in}$. Then, from (i) it directly follows that for each $(\mathfrak{M}, A) \in \operatorname{arr}$ it holds that $\mathfrak{NLab}(\mathfrak{LAb})(\mathfrak{M}, A) \neq \operatorname{in}$. Then, from the definition of $\mathfrak{ALab}_2\mathfrak{NLab}$ it follows that $\mathfrak{ALab}_2\mathfrak{NLab}(\mathfrak{ALab})(\mathfrak{M}, A) \neq \operatorname{out}$. This, together with the earlied obtained fact that $\mathfrak{ALab}_2\mathfrak{NLab}(\mathfrak{ALab})(A) \neq \operatorname{in}$ in implies that $\mathfrak{ALab}_2\mathfrak{NLab}(\mathfrak{NLab})(A) = \operatorname{undec}$.
Len	mma 68. Let ALab be a complete arrow labelling of SETAF $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$. It holds th ab2ALab(ALab2ALab(ALab)) = ALab.
	of. Let $\mathfrak{NLab} = \mathfrak{ALab2}\mathfrak{NLab}(\mathfrak{ALab})$. It suffices to prove the following three properties, for a trary $(\mathfrak{M}, A) \in \mathfrak{arr}$.
	If $\mathfrak{ALab}((\mathfrak{M}, A)) = \operatorname{in}$ then $\mathfrak{NLab}_{2\mathfrak{ALab}}(\mathfrak{NLab})((\mathfrak{M}, A)) = \operatorname{in}$. Suppose $\mathfrak{ALab}((\mathfrak{M}, A)) = \operatorname{in}$. Then from the fact that \mathfrak{ALab} is a complete arrow labelling, follows that for each $(\mathfrak{M}', B) \in \operatorname{arr}$ with $B \in \mathfrak{M}$, $\mathfrak{ALab}((\mathfrak{M}', B)) = \operatorname{out}$. From the definition of $\mathfrak{ALab}_{2\mathfrak{ALab}}(\mathfrak{NLab})(\mathfrak{MLab}) = \operatorname{in}$. From the definition of $\mathfrak{NLab}_{2\mathfrak{ALab}}(\mathfrak{NLab})(\mathfrak{MLab})(\mathfrak{MLab}) = \operatorname{in}$. If $\mathfrak{ALab}((\mathfrak{M}, A)) = \operatorname{out}$ then $\mathfrak{NLab}_{2\mathfrak{ALab}}(\mathfrak{NLab})((\mathfrak{M}, A)) = \operatorname{out}$. Suppose $\mathfrak{ALab}((\mathfrak{M}, A)) = \operatorname{out}$. Then, from the fact that \mathfrak{ALab} is a complete arrow labelling, it follows that there exists a $(\mathfrak{M}', B) \in \operatorname{arr}$ with $B \in \mathfrak{M}$ such that $\mathfrak{ALab}((\mathfrak{M}', B)) = \operatorname{in}$. From the definition of $\mathfrak{ALab}_{2\mathfrak{ALab}}(\mathfrak{MLab})(\mathfrak{M}, A) = \operatorname{out}$. Then, from the fact that $\mathfrak{ALab}((\mathfrak{M}', B)) = \operatorname{in}$. From the definition of $\mathfrak{ALab}_{2\mathfrak{ALab}}(\mathfrak{MLab})(\mathfrak{M}, A) = \operatorname{out}$. Then, from the fact that $\mathfrak{ALab}(\mathfrak{M}', B) = \operatorname{in}$. From the definition of $\mathfrak{ALab}_{2\mathfrak{ALab}}(\mathfrak{MLab})(\mathfrak{MLab}) = \operatorname{out}$. From the definition of $\mathfrak{ALab}_{2\mathfrak{ALab}}(\mathfrak{MLab}) = \operatorname{out}$. From the definition of $\mathfrak{ALab}_{2\mathfrak{ALab}}(\mathfrak{MLab}) = \operatorname{out}$. From the definition of $\mathfrak{ALab}_{2\mathfrak{ALab}}(\mathfrak{MLab})(\mathfrak{MLab}) = \operatorname{out}$.

Lemma 69. Let $\Re \mathfrak{Lab}_1$ and $\Re \mathfrak{Lab}_2$ be complete node labellings of a SETAF $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$. Let $\mathfrak{ALGab}_1 = \mathfrak{N}\mathfrak{Lab}\mathfrak{LA}\mathfrak{Lab}(\mathfrak{N}\mathfrak{Lab}_1)$ and $\mathfrak{ALGab}_2 = \mathfrak{N}\mathfrak{Lab}\mathfrak{LA}\mathfrak{Lab}(\mathfrak{N}\mathfrak{Lab}_2)$. It holds that: (1) $\operatorname{in}(\mathfrak{N}\mathfrak{Lab}_1) \subseteq \operatorname{in}(\mathfrak{N}\mathfrak{Lab}_2)$ iff $\operatorname{in}(\mathfrak{ALGab}_1) \subseteq \operatorname{in}(\mathfrak{N}\mathfrak{Lab}_2)$. It (2) $\operatorname{in}(\mathfrak{N}\mathfrak{Lab}_1) \subseteq \operatorname{in}(\mathfrak{N}\mathfrak{Lab}_2)$ iff $\operatorname{in}(\mathfrak{ALGab}_1) \subseteq \operatorname{in}(\mathfrak{N}\mathfrak{Lab}_2)$. (3) $\operatorname{in}(\mathfrak{N}\mathfrak{Lab}_1) \subseteq \operatorname{in}(\mathfrak{N}\mathfrak{Lab}_2)$ iff $\operatorname{in}(\mathfrak{ALGab}_1) \subseteq \operatorname{out}(\mathfrak{ALGab}_2)$. (4) $\operatorname{out}(\mathfrak{N}\mathfrak{Lab}_1) \subseteq \operatorname{out}(\mathfrak{N}\mathfrak{Lab}_2)$ iff $\operatorname{out}(\mathfrak{ALGab}_1) \subseteq \operatorname{out}(\mathfrak{ALGab}_2)$. (5) $\operatorname{out}(\mathfrak{N}\mathfrak{Lab}_1) \subseteq \operatorname{out}(\mathfrak{N}\mathfrak{Lab}_2)$ iff $\operatorname{out}(\mathfrak{ALGab}_1) \subseteq \operatorname{out}(\mathfrak{ALGab}_2)$. (6) $\operatorname{out}(\mathfrak{N}\mathfrak{Lab}_2)$ then implies that $\forall B \in \mathfrak{M}$: $B \in \operatorname{in}(\mathfrak{N}\mathfrak{Lab}_1)$. Then, from the definition of $\mathfrak{N}\mathfrak{Lab}\mathfrak{A}\mathfrak{A}\mathfrak{Lab} \tot def \mathfrak{A} \in \mathfrak{M}$: $B \in \operatorname{in}(\mathfrak{N}\mathfrak{Lab}_1)$. The fact that $\operatorname{in}(\mathfrak{N}\mathfrak{Lab}_1) \subseteq$ $\operatorname{in}(\mathfrak{N}\mathfrak{Lab}_2)$ then implies that $\forall B \in \mathfrak{M}$: $B \in \mathfrak{M}$: $\mathfrak{M}\mathfrak{Lab}_2$. (7) $\operatorname{in}(\mathfrak{N}\mathfrak{Lab}_2)$ then inglies that $\forall B \in \mathfrak{M}$: $\mathfrak{M}\mathfrak{Lab}_2$. (8) $\operatorname{in}(\mathfrak{N}\mathfrak{Lab}_2)$ then inglies that $\forall B \in \mathfrak{M}$: $\mathfrak{M}\mathfrak{Cab}_1$. First assume that there is a set of nodes $\mathfrak{M} \subseteq \operatorname{in}(\mathfrak{N}\mathfrak{Lab}_1) \subseteq \mathfrak{N}$ and a node $B \in \mathfrak{N}$ such that $(\mathfrak{M}, B) \in \operatorname{arr}$ i.e., A is involved in an outgoing arrow that is "in". Then, from the definition of $\mathfrak{N}\mathfrak{Lab}\mathfrak{La}\mathfrak{La}\mathfrak{La}$ and $\mathfrak{M}\mathfrak{M}\mathfrak{M}\mathfrak{M}\mathfrak{M}\mathfrak{M}\mathfrak{M}\mathfrak{M}\mathfrak{M}\mathfrak{M}$	1 2 3 4 5 6 7 8 9 10 11	it follows that (i) not for each $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ it holds that $\mathfrak{ALab}((\mathfrak{M}', B)) = \mathfrak{out}$, and (ii) there is no $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ such that $\mathfrak{ALab}((\mathfrak{M}', B)) = \mathfrak{in}$. From (i) it directly follows that there is a $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ such that $\mathfrak{ALab}((\mathfrak{M}', B)) \neq \mathfrak{out}$. From the definition of $\mathfrak{ALab2}\mathfrak{ALab}\mathfrak{ALab2}\mathfrak{ALab}$ it then follows that $\mathfrak{NLab}(B) \neq \mathfrak{in}$. From the definition of $\mathfrak{NLab2}\mathfrak{ALab}$ it then follows that $\mathfrak{NLab2}\mathfrak{ALab}(\mathfrak{NLab})((\mathfrak{M}, A)) \neq \mathfrak{in}$. From (ii) it directly follows that for each $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ it holds that $\mathfrak{ALab}((\mathfrak{M}', B)) \neq \mathfrak{in}$. From the definition of $\mathfrak{ALab2}\mathfrak{ALab}$ it then follows that $\mathfrak{NLab}(B) \neq \mathfrak{out}$. From the definition of $\mathfrak{NLab2}\mathfrak{ALab}$ it then follows that $\mathfrak{NLab2}\mathfrak{ALab}(\mathfrak{NLab})((\mathfrak{M}, A)) \neq \mathfrak{out}$. From this, together with the earlier observed fact that $\mathfrak{NLab2}\mathfrak{ALab}(\mathfrak{NLab})((\mathfrak{M}, A)) \neq \mathfrak{in}$, it follows that $\mathfrak{NLab2}\mathfrak{ALab}(\mathfrak{NLab})((\mathfrak{M}, A)) =$ undec.	1 2 3 4 5 6 7 8 9 10 11
14Refinition of NEW State 1 and State 2 we complete node state (State) of a SERIA Cop = (State). It is state 114Refinition of NEW State 2 allow (State 2) we complete node state (State 2). It holds that:1415(1) in (State 1) \subseteq in (State 2) iff in (Rtate 2) iff in (Rtate 2).1616(2) in (State 1) \subseteq in (State 2) iff in (Rtate 2).1717(3) in (State 1) \subseteq in (State 2) iff in (Rtate 2).1718(4) out (State 1) \subseteq out (State 2) iff out (Rtate 2).1819(5) out (State 1) \subseteq out (State 2) iff out (Rtate 2).1820(6) out (State 1) \subseteq out (State 2) iff out (Rtate 2).2021(6) out (State 1) \subseteq out (State 2) iff out (Rtate 2).2022(7) out (State 2) iff out (Rtate 2).2123in (State 2) cut (State 2) iff out (Rtate 2).2124in (State 2) then implies that $\forall B \in \mathfrak{M} : B \in$ in (State 2).2125in (State 2) then implies that $\forall B \in \mathfrak{M} : B \in$ in (State 1). The fact that in (State 1) in (State 2).2326in (State 2) then implies that $\forall B \in \mathfrak{M} : B \in$ in (State 1). First assume that there is a2627set of nodes $\mathfrak{M} \subseteq$ in (State 1) \subseteq in (State 2).2528involved in an outgoing arrow that is "in". Then, from the definition of State 23 and it follows2629in (State 3).in (State 3).2720in (State 3).in (State 3).2821in (State 3).in (State 3).2822in (State 3).in (State 3).2823in (State 3). <td>12 13</td> <td></td> <td></td>	12 13		
15(1) $in(\mathfrak{N}\mathfrak{L}\mathfrak{ab}_1) \subseteq in(\mathfrak{N}\mathfrak{L}\mathfrak{ab}_2)$ iff $in(\mathfrak{A}\mathfrak{L}\mathfrak{a}_1) \subseteq in(\mathfrak{N}\mathfrak{L}\mathfrak{ab}_2)$.1516(2) $in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_1) \subseteq in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_2)$ iff $in(\mathfrak{A}\mathfrak{L}\mathfrak{a}_1) \subseteq in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_2)$.1617(3) $in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_1) \subseteq in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_2)$ iff $in(\mathfrak{A}\mathfrak{L}\mathfrak{a}_1) \subseteq in(\mathfrak{A}\mathfrak{L}\mathfrak{a}_2)$.1718(4) $out(\mathfrak{N}\mathfrak{L}\mathfrak{a}_1) \subseteq out(\mathfrak{N}\mathfrak{L}\mathfrak{a}_2)$ iff $out(\mathfrak{A}\mathfrak{L}\mathfrak{a}_1) \subseteq out(\mathfrak{A}\mathfrak{L}\mathfrak{a}_2)$.1820(5) $out(\mathfrak{N}\mathfrak{L}\mathfrak{a}_1) = out(\mathfrak{N}\mathfrak{L}\mathfrak{a}_2)$ iff $out(\mathfrak{A}\mathfrak{L}\mathfrak{a}_1) \subseteq out(\mathfrak{A}\mathfrak{L}\mathfrak{a}_2)$.1921(6) $out(\mathfrak{N}\mathfrak{L}\mathfrak{a}_1) \subseteq out(\mathfrak{N}\mathfrak{L}\mathfrak{a}_2)$ iff $out(\mathfrak{A}\mathfrak{L}\mathfrak{a}_1) \subseteq out(\mathfrak{A}\mathfrak{L}\mathfrak{a}_2)$.2022(1) " \Rightarrow ": Suppose $in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_1) \subseteq in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_2)$. Let $(\mathfrak{M}, A) \in in(\mathfrak{A}\mathfrak{L}\mathfrak{a}_1)$. Then, from the definition of $\mathfrak{N}\mathfrak{L}\mathfrak{a}_2\mathfrak{A}\mathfrak{L}\mathfrak{a}_3$ it follows that $\forall B \in \mathfrak{M} : B \in in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_1)$. The fact that $in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_1) \subseteq in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_2)$.2124 $in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_2)$ then implies that $\forall B \in \mathfrak{M} : B \in in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_1)$. First assume that there is a set of nodes $\mathfrak{M} \subseteq in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_2)$. Let $A \in in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_1)$. First assume that there is a set of nodes $\mathfrak{M} \subseteq in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_1) \subseteq \mathfrak{N}$ and a node $B \in \mathfrak{N}$ such that $(\mathfrak{M}, B) \in \mathfrak{arr}, i.e., A$ is involved in an outgoing arrow that is "in". Then, from the definition of $\mathfrak{N}\mathfrak{L}\mathfrak{a}_2\mathfrak{A}\mathfrak{L}\mathfrak{a}_1$ it follows that $(\mathfrak{M}, B) \in in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_1) \subseteq in(\mathfrak{A}\mathfrak{L}\mathfrak{a}_1) \subseteq in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_2)$ and we are done. Now on the other hand assume that there is no arrow $(\mathfrak{M}, B) \in arr with A \in \mathfrak{M} \subseteq \mathfrak{A}in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_2). This means either A is not defended by in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_1) and \mathfrak{N}\mathfrak{L}\mathfrak{a}_1 is complete weknow that for each (\mathfrak{M}, A) \in arr. Since we assume A \in in(\mathfrak{N}\mathfrak{L}\mathfrak{a}_1) and \mathfrak{N}\mathfrak{L}\mathfrak{a}_1 is complete weknow$	13		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	15		15
17(3) $in(\mathfrak{N}\mathfrak{L}ab_1) \subseteq in(\mathfrak{N}\mathfrak{L}ab_2)$ iff $in(\mathfrak{A}\mathfrak{L}ab_1) \subseteq in(\mathfrak{A}\mathfrak{L}ab_2)$.1718(4) $out(\mathfrak{N}\mathfrak{L}ab_1) \subseteq out(\mathfrak{N}\mathfrak{L}ab_2)$ iff $out(\mathfrak{A}\mathfrak{L}ab_1) \subseteq out(\mathfrak{A}\mathfrak{L}ab_2)$.1819(5) $out(\mathfrak{N}\mathfrak{L}ab_1) \equiv out(\mathfrak{N}\mathfrak{L}ab_2)$ iff $out(\mathfrak{A}\mathfrak{L}ab_1) \equiv out(\mathfrak{A}\mathfrak{L}ab_2)$.1920(6) $out(\mathfrak{N}\mathfrak{L}ab_1) \subseteq out(\mathfrak{N}\mathfrak{L}ab_2)$ iff $out(\mathfrak{A}\mathfrak{L}ab_1) \subseteq out(\mathfrak{A}\mathfrak{L}ab_2)$.2021(6) $out(\mathfrak{N}\mathfrak{L}ab_1) \subseteq out(\mathfrak{N}\mathfrak{L}ab_2)$ iff $out(\mathfrak{A}\mathfrak{L}ab_1) \subseteq out(\mathfrak{A}\mathfrak{L}ab_2)$.2122 Proof. (1) " \Rightarrow ": Suppose $in(\mathfrak{N}\mathfrak{L}ab_1) \subseteq in(\mathfrak{N}\mathfrak{L}ab_2)$. Let $(\mathfrak{M}, A) \in in(\mathfrak{A}\mathfrak{L}ab_1)$. The fact that $in(\mathfrak{N}\mathfrak{L}ab_1) \subseteq$ 2323 $in(\mathfrak{N}\mathfrak{L}ab_2)$ then implies that $\forall B \in \mathfrak{M} : B \in in(\mathfrak{N}\mathfrak{L}ab_1)$. The fact that $in(\mathfrak{N}\mathfrak{L}ab_1) \subseteq$ 2424 $in(\mathfrak{N}\mathfrak{L}ab_2)$ then implies that $\forall B \in \mathfrak{M} : B \in in(\mathfrak{N}\mathfrak{L}ab_1)$. First assume that there is a2525" \Leftarrow ": Suppose $in(\mathfrak{A}\mathfrak{L}ab_1) \subseteq in(\mathfrak{A}\mathfrak{L}ab_2)$. Let $A \in in(\mathfrak{N}\mathfrak{L}ab_1)$. First assume that there is a2626" \Leftarrow ": Suppose $in(\mathfrak{A}\mathfrak{L}ab_1) \subseteq \mathfrak{N}$ and a node $B \in \mathfrak{N}$ such that $(\mathfrak{M}, B) \in arr, i.e., A$ is2728involved in an outgoing arrow that is "in". Then, from the definition of $\mathfrak{N}\mathfrak{L}ab\mathfrak{L}\mathfrak{A}\mathfrak{L}\mathfrak{A}ab$ it follows2829 $in(\mathfrak{A}\mathfrak{L}ab_2)$. From the definition of $\mathfrak{N}\mathfrak{L}ab\mathfrak{L}\mathfrak{A}\mathfrak{A}ab$ it in $(\mathfrak{N}\mathfrak{L}ab_2)$. From the definition of $\mathfrak{N}\mathfrak{L}ab\mathfrak{L}ab_2$ and we3030 $in(\mathfrak{A}\mathfrak{L}ab_2)$. From the definition of $\mathfrak{N}\mathfrak{L}ab\mathfrak{L}aba_2$ and we3131 $in(\mathfrak{N}\mathfrak{L}ab_2)$. This means either A is not defended by $in(\mathfrak{N}\mathfrak{L}ab_2)$ or there is some $\mathfrak{M} \subseteq \mathfrak{M}$ 3132 $in(\mathfrak{N}\mathfrak{L}ab_2)$. This m	16		
19(4) $\operatorname{out}(\mathfrak{NLab}_1) \subseteq \operatorname{out}(\mathfrak{NLab}_2)$ iff $\operatorname{out}(\mathfrak{ALab}_1) \subseteq \operatorname{out}(\mathfrak{ALab}_2)$.1920(5) $\operatorname{out}(\mathfrak{NLab}_1) = \operatorname{out}(\mathfrak{NLab}_2)$ iff $\operatorname{out}(\mathfrak{ALab}_1) = \operatorname{out}(\mathfrak{ALab}_2)$.2021(6) $\operatorname{out}(\mathfrak{NLab}_1) \subseteq \operatorname{out}(\mathfrak{NLab}_2)$ iff $\operatorname{out}(\mathfrak{ALab}_1) \subseteq \operatorname{out}(\mathfrak{ALab}_2)$.2122 Proof. (1) " \Rightarrow ": Suppose $\operatorname{in}(\mathfrak{NLab}_1) \subseteq \operatorname{in}(\mathfrak{NLab}_2)$. Let $(\mathfrak{M}, A) \in \operatorname{in}(\mathfrak{ALab}_1)$. Then, from the2223 $\operatorname{in}(\mathfrak{NLab}_2\mathfrak{ALab})$ then implies that $\forall B \in \mathfrak{M} : B \in \operatorname{in}(\mathfrak{NLab}_1)$. The fact that $\operatorname{in}(\mathfrak{NLab}_1) \subseteq$ 2324 $\operatorname{in}(\mathfrak{NLab}_2)$ then implies that $\forall B \in \mathfrak{M} : B \in \operatorname{in}(\mathfrak{NLab}_2)$. From the definition of $\mathfrak{NLab}2\mathfrak{ALab}$ it2425 $\operatorname{in}(\mathfrak{NLab}_2)$ then implies that $\forall B \in \mathfrak{M} : B \in \operatorname{in}(\mathfrak{NLab}_1)$. First assume that there is a2626" \leftarrow ": Suppose $\operatorname{in}(\mathfrak{ALab}_1) \subseteq \operatorname{in}(\mathfrak{ALab}_2)$. Let $A \in \operatorname{in}(\mathfrak{NLab}_1)$. First assume that there is a2728 $\operatorname{involved}$ in an outgoing arrow that is "in". Then, from the definition of $\mathfrak{NLab}2\mathfrak{ALab}$ it follows2829 $\operatorname{that}(\mathfrak{M}, B) \in \operatorname{in}(\mathfrak{ALab}_1)$. The fact that $\operatorname{in}(\mathfrak{ALab}_1) \subseteq \operatorname{in}(\mathfrak{ALab}_2)$ and we3031 $\operatorname{in}(\mathfrak{ALab}_2)$. From the definition of $\mathfrak{NLab}2\mathfrak{ALab}$ it then follows that $A \in \operatorname{in}(\mathfrak{NLab}_2)$ and we3132 $\operatorname{in}(\mathfrak{NLab}_2)$. This means either A is not defended by $\operatorname{in}(\mathfrak{NLab}_2)$ or there is some $\mathfrak{M} \subseteq$ 3133 $\operatorname{that} A \notin \operatorname{in}(\mathfrak{NLab}_2)$. This means either A is not defended by $\operatorname{in}(\mathfrak{NLab}_2)$ or there is some $\mathfrak{M} \subseteq$ 3334 $\operatorname{in}(\mathfrak{NLab}_2)$. This means either A is not defended by $\operatorname{in}(\mathfrak{NLab}_2)$ or there is some $\mathfrak{M} \subseteq$ 3334 <t< td=""><td></td><td></td><td></td></t<>			
21Proof. (1) "=>": Suppose $in(\mathfrak{NLab}_1) \subseteq in(\mathfrak{NLab}_2)$. Let $(\mathfrak{M}, A) \in in(\mathfrak{NLab}_1)$. Then, from the2223in(\mathfrak{NLab}_2\mathfrak{ALab} it follows that $\forall B \in \mathfrak{M} : B \in in(\mathfrak{NLab}_1)$. The fact that $in(\mathfrak{NLab}_1) \subseteq$ 2324 $in(\mathfrak{NLab}_2)$ then implies that $\forall B \in \mathfrak{M} : B \in in(\mathfrak{NLab}_2)$. From the definition of $\mathfrak{NLab}_2\mathfrak{ALab}$ it2425 $in(\mathfrak{NLab}_2)$ then implies that $\forall B \in \mathfrak{M} : B \in in(\mathfrak{NLab}_2)$. From the definition of $\mathfrak{NLab}_2\mathfrak{ALab}$ it2426" \leftarrow ": Suppose $in(\mathfrak{ALab}_1) \subseteq in(\mathfrak{ALab}_2)$. Let $A \in in(\mathfrak{NLab}_1)$. First assume that there is a2627set of nodes $\mathfrak{M} \subseteq in(\mathfrak{NLab}_1) \subseteq \mathfrak{N}$ and a node $B \in \mathfrak{N}$ such that $(\mathfrak{M}, B) \in arr, i.e., A$ is2728involved in an outgoing arrow that is "in". Then, from the definition of $\mathfrak{NLab}_2\mathfrak{ALab}$ it follows2829that $(\mathfrak{M}, B) \in in(\mathfrak{ALab}_1)$. The fact that $in(\mathfrak{ALab}_1) \subseteq in(\mathfrak{ALab}_2)$ then implies that $(\mathfrak{M}, B) \in$ 2930 $in(\mathfrak{ALab}_2)$. From the definition of $\mathfrak{NLab}_2\mathfrak{ALab}$ it then follows that $A \in in(\mathfrak{NLab}_2)$ and we3031are done. Now on the other hand assume that there is no arrow $(\mathfrak{M}, B) \in arr$ with $A \in \mathfrak{M} \subseteq$ 3133that $A \notin in(\mathfrak{NLab}_2)$. This means either A is not defended by $in(\mathfrak{NLab}_2)$ or there is some $\mathfrak{M} \subseteq$ 3334 $in(\mathfrak{NLab}_2)$ such that $(\mathfrak{M}, A) \in arr$. Since we assume $A \in in(\mathfrak{NLab}_1)$ and \mathfrak{NLab}_1 is complete we3435know that for each $(\mathfrak{M}', A) \in arr$ towards A there is a counter-attack $(\mathfrak{M}'', C) \in arr$ with $C \in \mathfrak{M}'$ 3536and $\mathfrak{M}'' \subseteq in(\mathfrak{NLab}_1)$. From the definition of $\mathfrak{NLab}_2\mathfrak{ALab}$ it then follows that $(\mathfrak{M}'', C) \in$ 36<	20		
23232323232324definition of $\mathfrak{N}\mathfrak{Lab}_2\mathfrak{A}\mathfrak{Lab}$ it follows that $\forall B \in \mathfrak{M} : B \in in(\mathfrak{N}\mathfrak{Lab}_1)$. The fact that $in(\mathfrak{N}\mathfrak{Lab}_1) \subseteq$ 2325 $in(\mathfrak{N}\mathfrak{Lab}_2)$ then implies that $\forall B \in \mathfrak{M} : B \in in(\mathfrak{N}\mathfrak{Lab}_2)$. From the definition of $\mathfrak{N}\mathfrak{Lab}_2\mathfrak{A}\mathfrak{Lab}$ it2425 $in(\mathfrak{N}\mathfrak{Lab}_2)$ then implies that $\forall B \in \mathfrak{M} : B \in in(\mathfrak{N}\mathfrak{Lab}_2)$. From the definition of $\mathfrak{N}\mathfrak{Lab}_2\mathfrak{A}\mathfrak{Lab}$ it2426" \leftarrow ": Suppose $in(\mathfrak{A}\mathfrak{Lab}_1) \subseteq in(\mathfrak{A}\mathfrak{Lab}_2)$. Let $A \in in(\mathfrak{N}\mathfrak{Lab}_1)$. First assume that there is a2627set of nodes $\mathfrak{M} \subseteq in(\mathfrak{N}\mathfrak{Lab}_1) \subseteq \mathfrak{N}$ and a node $B \in \mathfrak{N}$ such that $(\mathfrak{M}, B) \in arr$, i.e., A is2728involved in an outgoing arrow that is "in". Then, from the definition of $\mathfrak{N}\mathfrak{Lab}\mathfrak{A}\mathfrak{Lab}_2\mathfrak{A}\mathfrak{Lab}$ it follows2829that $(\mathfrak{M}, B) \in in(\mathfrak{A}\mathfrak{Lab}_1)$. The fact that $in(\mathfrak{A}\mathfrak{Lab}_1) \subseteq in(\mathfrak{A}\mathfrak{Lab}_2)$ then implies that $(\mathfrak{M}, B) \in$ 2930 $in(\mathfrak{A}\mathfrak{Lab}_2)$. From the definition of $\mathfrak{N}\mathfrak{Lab}\mathfrak{A}\mathfrak{A}\mathfrak{Lab}$ it then follows that $A \in in(\mathfrak{N}\mathfrak{Lab}_2)$ and we3031are done. Now on the other hand assume that there is no arrow $(\mathfrak{M}, B) \in arr with A \in \mathfrak{M} \subseteq3132in(\mathfrak{N}\mathfrak{Lab}_1), i.e., A is not involved in an outgoing arrow that is "in". Towards contradiction assume3233that A \notin in(\mathfrak{N}\mathfrak{Lab}_2). This means either A is not defended by in(\mathfrak{N}\mathfrak{Lab}_2) or there is some \mathfrak{M} \subseteq3334in(\mathfrak{N}\mathfrak{Lab}_2) such that (\mathfrak{M}, A) \in arr. Since we assume A \in in(\mathfrak{N}\mathfrak{Lab}_1) and \mathfrak{N}\mathfrak{Lab}_1 is complete we3435in(\mathfrak{N}\mathfrak{Lab}_1). From the definition of \mathfrak{N}\mathfrak{Lab}\mathfrak{La}\mathfrak{Lab}_2 and,$	21	(6) $\operatorname{out}(\mathfrak{NLab}_1) \subsetneq \operatorname{out}(\mathfrak{NLab}_2)$ iff $\operatorname{out}(\mathfrak{ALab}_1) \subsetneq \operatorname{out}(\mathfrak{ALab}_2)$.	21
arbitrary attacker \mathfrak{M}' of A , we know that A is defended by $\operatorname{in}(\mathfrak{NLab}_2)$. It remains to handle the case where there is some $\mathfrak{M} \subseteq \operatorname{in}(\mathfrak{NLab}_2)$ such that $(\mathfrak{M}, A) \in \operatorname{arr}$, i.e., A is not in $\operatorname{in}(\mathfrak{NLab}_2)$ due to a conflict. However, since \mathfrak{NLab}_1 is complete this means that there is some $B \in \mathfrak{M}$ such that $B \in$ out (\mathfrak{NLab}_1) , and therefore $(\mathfrak{M}, A) \in \operatorname{out}(\mathfrak{ALab}_1)$. From this and the fact that $\operatorname{in}(\mathfrak{ALab}_1) \subseteq$ 42	23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	definition of $\mathfrak{NLab}\mathfrak{Lab}$ it follows that $\forall B \in \mathfrak{M} : B \in \operatorname{in}(\mathfrak{NLab}_1)$. The fact that $\operatorname{in}(\mathfrak{NLab}_1) \subseteq \operatorname{in}(\mathfrak{NLab}_2)$ then implies that $\forall B \in \mathfrak{M} : B \in \operatorname{in}(\mathfrak{NLab}_2)$. From the definition of $\mathfrak{NLab}\mathfrak{Lab}\mathfrak{Lab}$ it then follows that $(\mathfrak{M}, A) \in \operatorname{in}(\mathfrak{ALab}_2)$. " \leftarrow ": Suppose $\operatorname{in}(\mathfrak{ALab}_1) \subseteq \operatorname{in}(\mathfrak{ALab}_2)$. Let $A \in \operatorname{in}(\mathfrak{NLab}_1)$. First assume that there is a set of nodes $\mathfrak{M} \subseteq \operatorname{in}(\mathfrak{NLab}_1) \subseteq \mathfrak{N}$ and a node $B \in \mathfrak{N}$ such that $(\mathfrak{M}, B) \in \operatorname{arr}$, i.e., A is involved in an outgoing arrow that is "in". Then, from the definition of $\mathfrak{NLab}\mathfrak{LaLab}_2$ and we are done. Now on the definition of $\mathfrak{NLab}\mathfrak{Lab}\mathfrak{Lab}_2$ then implies that $(\mathfrak{M}, B) \in \operatorname{in}(\mathfrak{ALab}_1)$. The fact that $\operatorname{in}(\mathfrak{ALab}_1) \subseteq \operatorname{in}(\mathfrak{ALab}_2)$ then implies that $(\mathfrak{M}, B) \in \operatorname{in}(\mathfrak{ALab}_2)$. From the definition of $\mathfrak{NLab}\mathfrak{Lab}\mathfrak{Lab}\mathfrak{Lab}\mathfrak{Lab}_2$ then indicated by $\operatorname{in}(\mathfrak{NLab}_2)$ and we are done. Now on the other hand assume that there is no arrow $(\mathfrak{M}, B) \in \operatorname{arr}$ with $A \in \mathfrak{M} \subseteq \operatorname{in}(\mathfrak{NLab}_1)$. This means either A is not defended by $\operatorname{in}(\mathfrak{NLab}_1)$ or there is some $\mathfrak{M} \subseteq \operatorname{in}(\mathfrak{NLab}_2)$ such that $(\mathfrak{M}, A) \in \operatorname{arr}$. Since we assume $A \in \operatorname{in}(\mathfrak{NLab}_1)$ and \mathfrak{NLab}_1 is complete we know that for each $(\mathfrak{M}', A) \in \operatorname{arr}$ towards A there is a counter-attack $(\mathfrak{M}'', C) \in \operatorname{arr}$ with $C \in \mathfrak{M}'$ and $\mathfrak{M}'' \subseteq \operatorname{in}(\mathfrak{NLab}_1)$. From the definition of $\mathfrak{NLab}\mathfrak{Lab}Lab$	23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
$11(\alpha 2\alpha b_2)$ and from Lemma 02 (point 1) we get $(m, A) \in Out(\alpha 2\alpha b_2)$, which gives us from	45	our assumption $\mathfrak{M} \subseteq \operatorname{in}(\mathfrak{NLab}_2)$.	45
the definition of $\mathfrak{NLab}_2\mathfrak{ALab}$ that for some $B \in \mathfrak{M}$ it holds $B \in \operatorname{out}(\mathfrak{NLab}_2)$, a contradiction to	46		46

- (2) This follows directly from point 1.
- (3) This follows directly from point 1 and point 2.

(4) " \Rightarrow ": Suppose out(\mathfrak{NLab}_1) \subseteq out(\mathfrak{NLab}_2). Let (\mathfrak{M}, A) \in out(\mathfrak{NLab}_1). Then, from the definition of $\mathfrak{NLab2ALab}$ it follows that $B \in \mathsf{out}(\mathfrak{NLab}_1)$ for some $B \in \mathfrak{M}$. The fact that $\operatorname{out}(\mathfrak{NLab}_1) \subseteq \operatorname{out}(\mathfrak{NLab}_2)$ then implies that $B \in \operatorname{out}(\mathfrak{NLab}_2)$. From the definition of $\mathfrak{NLab}_{2\mathfrak{A}\mathfrak{L}\mathfrak{ab}}$ it then follows that $(\mathfrak{M}, A) \in \mathsf{out}(\mathfrak{ALab}_{2})$. "⇐": Suppose $out(\mathfrak{ALab}_1) \subseteq out(\mathfrak{ALab}_2)$. Let $A \in out(\mathfrak{NLab}_1)$. Then, since \mathfrak{NLab}_1 is com-plete, there is a $(\mathfrak{M}, A) \in \mathfrak{arr}$ such that $\mathfrak{M} \subseteq \operatorname{in}(\mathfrak{NLab}_1)$. From the definition of $\mathfrak{NLab}_2\mathfrak{ALab}$

- it follows that $(\mathfrak{M}, A) \in in(\mathfrak{ALab}_1)$. From our assumption $out(\mathfrak{ALab}_1) \subseteq out(\mathfrak{ALab}_2)$ and Lemma 62 (point 1) we get $in(\mathfrak{ALab}_1) \subseteq in(\mathfrak{ALab}_2)$, and therefore $(\mathfrak{M}, A) \in in(\mathfrak{ALab}_2)$. From the definition of $\mathfrak{NLab2ALab}$ it follows that $\mathfrak{M} \subseteq in(\mathfrak{NLab}_2)$, and since \mathfrak{NLab}_2 is com-plete we get $A \in \text{out}(\mathfrak{NLab}_2)$.
 - (5) This follows directly from point 4.
 - (6) This follows directly from point 4 and point 5.

Note that the following similar statements do not hold. While properties 7', 8', 9, and 9' already do not hold for AFs (the same counter-example applies in this case), the properties 7 and 8 do hold for AFs, but do not hold for SETAFs.

- 7 If $undec(\mathfrak{NLab}_1) \subseteq undec(\mathfrak{NLab}_2)$ then $undec(\mathfrak{ALab}_1) \subseteq undec(\mathfrak{ALab}_2)$. A counter ex-ample is \mathfrak{SF} in Example 70: We have $undec(\mathfrak{NLab}_2) \subseteq undec(\mathfrak{NLab}_3)$ but $undec(\mathfrak{ALab}_2) \not\subseteq$ undec(\mathfrak{ALab}_3).
- 7' If $undec(\mathfrak{ALab}_1) \subseteq undec(\mathfrak{ALab}_2)$ then $undec(\mathfrak{NLab}_1) \subseteq undec(\mathfrak{NLab}_2)$. A counter example is AF in Example 9: We have $undec(ALab_2) \subseteq undec(ALab_3)$ but $undec(NLab_2) \not\subseteq$ undec($NLab_3$).
- 8 If $undec(\mathfrak{NLab}_1) = undec(\mathfrak{NLab}_2)$ then $undec(\mathfrak{ALab}_1) = undec(\mathfrak{ALab}_2)$. A counter example is $\mathfrak{S}_{\mathfrak{T}}$ in Example 70: We have $undec(\mathfrak{NLab}_2) = undec(\mathfrak{NLab}_3)$ but $undec(\mathfrak{ALab}_2) \neq 2$ undec(\mathfrak{ALab}_3).
 - 8' If $undec(\mathfrak{ALab}_1) = undec(\mathfrak{ALab}_2)$ then $undec(\mathfrak{NLab}_1) = undec(\mathfrak{NLab}_2)$. A counter example is AF in Example 9: We have $undec(ALab_2) = undec(ALab_3)$ but $undec(NLab_2) \neq dec(ALab_3)$ undec($NLab_3$).
 - 9 If $undec(\mathfrak{NLab}_1) \subsetneq undec(\mathfrak{NLab}_2)$ then $undec(\mathfrak{ALab}_1) \subsetneq undec(\mathfrak{ALab}_2)$. A counter example is AF in Example 9: We have $undec(NLab_3) \subsetneq undec(NLab_2)$ but $undec(NLab_3) \not\subseteq$ undec($NLab_2$).

9' If $undec(\mathfrak{ALab}_1) \subsetneq undec(\mathfrak{ALab}_2)$ then $undec(\mathfrak{NLab}_1) \subsetneq undec(\mathfrak{NLab}_2)$. A counter ex-ample is AF in Example 10: We have $undec(ALab_3) \subsetneq undec(ALab_2)$ but $undec(NLab_3) \not\subseteq$ undec($NLab_2$).

Example 70. Let $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF with $\mathfrak{N} = \{A, B, C, D, E\}$ and $\mathfrak{arr} = \{(\emptyset, A), (\{A\}, B), (\{B\}, B), (\{B, C\}, E), (\{C\}, D), (\{D\}, C), (\emptyset, E)\}.$

⊦

$\{D, C\}, L\}$	$,(\{C\},D)$	$\mathcal{D}_{\mathcal{T}}, (\mathcal{D}_{\mathcal{T}}), \mathcal{D}_{\mathcal{T}}$	C), (\emptyset ,
→(A)	$\rightarrow B$	(C)	
C	ป \		
			-

2.2

1	\mathfrak{SF} has three complete node labellings:	1
2 3	$\mathfrak{NLab}_1 = (\emptyset, \{A, E\}, \{B, C, D\})$	2 3
4	$\mathfrak{NLab}_2 = (\{C\}, \{A, D, E\}, \{B\})$	4
5		5
6 7	$\mathfrak{NLab}_3 = (\{D\}, \{A, C, E\}, \{B\})$	6 7
8	and three complete arrow labellings:	8
9		9
10	$\mathfrak{ALab}_1 = (\{(\emptyset, A), (\emptyset, E)\}, \{(\{A\}, B)\}, \{(\{B\}, B), (\{B, C\}, E), (\{C\}, D), (\{D\}, C)\})$	10
11 12	$\mathfrak{ALab}_2 = (\{(\emptyset, A), (\{C\}, D), (\emptyset, E)\}, \{(\{A\}, B), (\{D\}, C)\}, \{(\{B\}, B), (\{B, C\}, E)\})$	11 12
13	$\mathfrak{ALab}_3 = (\{(\emptyset, A), (\{D\}, C), (\emptyset, E)\}, \{(\{A\}, B), (\{B, C\}, E), (\{C\}, D)\}, \{(\{B\}, B)\})$	13
14	(((-), -), ((-), -), ((-), -)), (((-), -), ((-), -), ((-), -)), (((-), -)))	14
15	These node labellings and arrow labellings correspond to each other through the functions NLab2ALab	15
16 17	and ALab2NLab.	16 17
18	Lemma 71. Let \mathfrak{ALab}_1 and \mathfrak{ALab}_2 be complete arrow labellings of SETAF $\mathfrak{S}\mathfrak{F} = (\mathfrak{N},\mathfrak{arr})$. Let	18
19	$\mathfrak{NLab}_1 = \mathfrak{ALab}_2\mathfrak{NLab}(\mathfrak{ALab}_1)$ and $\mathfrak{NLab}_2 = \mathfrak{ALab}_2\mathfrak{NLab}(\mathfrak{ALab}_2)$. It holds that:	19
20	(1) $\operatorname{in}(\mathfrak{ALab}_1) \subseteq \operatorname{in}(\mathfrak{ALab}_2)$ iff $\operatorname{in}(\mathfrak{NLab}_1) \subseteq \operatorname{in}(\mathfrak{NLab}_2)$.	20
21 22	(1) $\operatorname{In}(\mathfrak{ALab}_1) \subseteq \operatorname{In}(\mathfrak{ALab}_2)$ iff $\operatorname{In}(\mathfrak{NLab}_1) \subseteq \operatorname{In}(\mathfrak{NLab}_2)$. (2) $\operatorname{In}(\mathfrak{ALab}_1) = \operatorname{In}(\mathfrak{ALab}_2)$ iff $\operatorname{In}(\mathfrak{NLab}_1) = \operatorname{In}(\mathfrak{NLab}_2)$.	21 22
23	(3) $\operatorname{in}(\mathfrak{ALab}_1) \subsetneq \operatorname{in}(\mathfrak{ALab}_2) \operatorname{iff} \operatorname{in}(\mathfrak{NLab}_1) \subsetneq \operatorname{in}(\mathfrak{NLab}_2).$	23
24	(4) $\operatorname{out}(\mathfrak{ALab}_1) \subseteq \operatorname{out}(\mathfrak{ALab}_2)$ iff $\operatorname{out}(\mathfrak{NLab}_1) \subseteq \operatorname{out}(\mathfrak{NLab}_2)$.	24
25	(5) $\operatorname{out}(\mathfrak{ALab}_1) = \operatorname{out}(\mathfrak{ALab}_2)$ iff $\operatorname{out}(\mathfrak{NLab}_1) = \operatorname{out}(\mathfrak{NLab}_2)$.	25
26 27	(6) $\operatorname{out}(\mathfrak{ALab}_1) \subsetneq \operatorname{out}(\mathfrak{ALab}_2)$ iff $\operatorname{out}(\mathfrak{NLab}_1) \subsetneq \operatorname{out}(\mathfrak{NLab}_2)$.	26 27
28	Proof. (1) " \Rightarrow ": Suppose in(\mathfrak{ALab}_1) \subseteq in(\mathfrak{ALab}_2). Let $A \in$ in(\mathfrak{NLab}_1). Then, from the definition	27
29	of $\mathfrak{ALab2MLab}$ it follows that for every $(\mathfrak{M}, A) \in \mathfrak{arr}, (\mathfrak{M}, A) \in \mathfrak{out}(\mathfrak{ALab}_1)$. From the fact	29
30	that $in(\mathfrak{ALab}_1) \subseteq in(\mathfrak{ALab}_2)$ it follows that (Lemma 62) $out(\mathfrak{ALab}_1) \subseteq out(\mathfrak{ALab}_2)$, so	30
31	$(\mathfrak{M}, A) \in \operatorname{out}(\mathfrak{ALab}_2)$. From the definition of $\mathfrak{ALab}_2\mathfrak{NLab}$ it then follows that $\mathfrak{NLab}_2(A) = \operatorname{in}$.	31
32 33	That is, $A \in in(\mathfrak{NLab}_2)$. " \Leftarrow ": Suppose $in(\mathfrak{NLab}_1) \subseteq in(\mathfrak{NLab}_2)$. Let $(\mathfrak{M}, A) \in in(\mathfrak{ALab}_1)$. Since we assume that	32 33
34	\mathfrak{Lab}_1 is complete, it follows that for every $(\mathfrak{M}', B) \in \mathfrak{arr}$ towards some $B \in \mathfrak{M}$ it holds $(\mathfrak{M}', B) \in \mathfrak{arr}$	34
35	out (\mathfrak{ALab}_1) , which in turn means for each of these $(\mathfrak{M}', B) \in \mathfrak{arr}$ there is some $(\mathfrak{M}', C) \in \mathfrak{arr}$	35
36	with $C \in \mathfrak{M}'$ and $(\mathfrak{M}'', C) \in in(\mathfrak{ALab}_1)$. Then, from the definition of $\mathfrak{ALab}_2\mathfrak{NLab}$ it then follows	36
37	that $C \in out(\mathfrak{NLab}_1)$. From $in(\mathfrak{NLab}_1) \subseteq in(\mathfrak{NLab}_2)$ and Lemma 59 (point 1) we then get	37
38 39	out $(\mathfrak{NLab}_1) \subseteq \operatorname{out}(\mathfrak{NLab}_2)$. From this and $C \in \operatorname{out}(\mathfrak{NLab}_1)$ we get $C \in \operatorname{out}(\mathfrak{NLab}_2)$. Then	38 39
40	from the definition of $\mathfrak{ALab_2MLab}$ it follows $(\mathfrak{M}'', C) \in in(\mathfrak{ALab}_2)$, and then since \mathfrak{ALab}_2 is complete we get $(\mathfrak{M}', B) \in out(\mathfrak{ALab}_2)$ and consequently $(\mathfrak{M}, A) \in in(\mathfrak{ALab}_2)$.	40
41	(2) This follows directly from point 1.	41
42	(3) This follows directly from point 1 and point 2.	42
43	(4) " \Rightarrow ": Suppose $\operatorname{out}(\mathfrak{ALab}_1) \subseteq \operatorname{out}(\mathfrak{ALab}_2)$. Let $A \in \operatorname{out}(\mathfrak{NLab}_1)$. Then, from the definition of	43
44 45	$\mathfrak{ALab}_{\mathfrak{MLab}}$ it follows that there exists a $(\mathfrak{M}, A) \in \mathfrak{arr}$ such that $(\mathfrak{M}, A) \in \mathfrak{in}(\mathfrak{ALab}_1)$. From the	44 45
45 46	fact that $\operatorname{out}(\mathfrak{ALab}_1) \subseteq \operatorname{out}(\mathfrak{ALab}_2)$ it follows that (Lemma 62) $\operatorname{in}(\mathfrak{ALab}_1) \subseteq \operatorname{in}(\mathfrak{ALab}_2)$, so	45 46
		-

1	$(\mathfrak{M}, A) \in in(\mathfrak{ALab}_2)$. From the definition of $\mathfrak{ALab}_2\mathfrak{NLab}$ it then follows that $\mathfrak{NLab}_2(A) = out$.
2	That is, $A \in \text{out}(\mathfrak{NLab}_2)$.
3	"⇐": Suppose $out(\mathfrak{NLab}_1) \subseteq out(\mathfrak{NLab}_2)$. Let $(\mathfrak{M}, A) \in out(\mathfrak{ALab}_1)$. Since we assume
4	that \mathfrak{ALab}_1 is complete, it follows that there exists a (\mathfrak{M}', B) towards some $B \in \mathfrak{M}$ such that
5	$(\mathfrak{M}', B) \in in(\mathfrak{ALab}_1)$. By completeness this means that for every $(\mathfrak{M}'', C) \in \mathfrak{arr}$ towards some
6	$C \in \mathfrak{M}'$ it holds $(\mathfrak{M}'', C) \in \operatorname{out}(\mathfrak{ALab}_1)$. Then, from the definition of $\mathfrak{ALab}_2\mathfrak{NLab}$ it follows
7	that $C \in in(\mathfrak{NLab}_1)$, and since this is the case for every $C \in \mathfrak{M}'$ we get $\mathfrak{M}' \subseteq in(\mathfrak{NLab}_1)$. From
8	$\operatorname{out}(\mathfrak{NLab}_1) \subseteq \operatorname{out}(\mathfrak{NLab}_2)$ and Lemma 62 we then get $\operatorname{in}(\mathfrak{NLab}_1) \subseteq \operatorname{in}(\mathfrak{NLab}_2)$. From this and $\mathfrak{M}' \subseteq \operatorname{in}(\mathfrak{NLab}_2)$ we get $\mathfrak{M}' \subseteq \operatorname{in}(\mathfrak{NLab}_2)$.
9	and $\mathfrak{M}' \subseteq \operatorname{in}(\mathfrak{NLab}_1)$ we get $\mathfrak{M}' \subseteq \operatorname{in}(\mathfrak{NLab}_2)$. Then from the definition of $\mathfrak{ALab}_2\mathfrak{NLab}$ it follows that for each $B \in \mathfrak{M}$ there is a $C \in \mathfrak{M}'$ such that $(\mathfrak{M}'', C) \in \operatorname{out}(\mathfrak{ALab}_2)$ and hence
10	$(\mathfrak{M}', B) \in \operatorname{in}(\mathfrak{ALab}_2)$, and then since \mathfrak{ALab}_2 is complete we get $(\mathfrak{M}, A) \in \operatorname{out}(\mathfrak{ALab}_2)$.
11 12	(5) This follows directly from point 4.
13	(6) This follows directly from point 4 and point 5.
14	(b) This follows directly from point 4 and point 5. \Box
15	
16	Notice that the respective missing cases do not hold-analogous to Lemma 69 (the same counter
17	examples apply in this case). In fact, the similarities between Lemma 69 and Lemma 71 are no coinci-
18	dence, they are a direct consequence of the fact that the functions MLab2ALab and ALab2MLab are
19	each others inverses (see Theorem 21, point 2).
20	
21	Lemma 72. Let $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF.
22	(1) If NLab is a grounded node labelling of SF then NLab2ALab(NLab) is a grounded arrow la-
23	belling of SF.
24	(2) If ALab is a grounded arrow labelling of SF then ALab2MLab(ALab) is a grounded node la-
25	belling of \mathfrak{SF} .
26	
27	Proof. (1) Let \mathfrak{NLab} be a grounded node labelling of \mathfrak{SF} . Since a grounded node labelling is also a
28 29	complete node labelling, it follows (Lemma 65) that $\mathfrak{ALab} = \mathfrak{NLab}_{2\mathfrak{ALab}}(\mathfrak{NLab})$ is a complete
30	arrow labelling. Suppose, towards a contradiction, that \mathfrak{ALab} does not have minimal in. That is,
31	there exists a complete arrow labelling \mathfrak{ALab}' such that $\operatorname{in}(\mathfrak{ALab}') \subsetneq \operatorname{in}(\mathfrak{ALab})$. From point 3 of Lemma 71 it then follows that $\operatorname{in}(\mathfrak{ALab}\mathfrak{ABab}(\mathfrak{ALab}')) \subsetneq \operatorname{in}(\mathfrak{ALab}\mathfrak{ABab}(\mathfrak{ALab}))$. Let
32	$\mathfrak{NLab}' = \mathfrak{ALab}\mathfrak{NLab}(\mathfrak{ALab}')$. It follows (Lemma 66) that \mathfrak{NLab}' is a complete node labelling.
33	Furthermore, it follows from Lemma 67 that $\mathfrak{ALab} \mathfrak{ALab} (\mathfrak{ALab}) = \mathfrak{NLab}$. Hence, we obtain
34	$in(\mathfrak{NLab}') \subseteq in(\mathfrak{NLab})$. But this is impossible since \mathfrak{NLab} is a grounded node labelling and
35	therefore has minimal in among all complete node labellings.
36	(2) Let \mathfrak{ALab} be a grounded arrow labelling of \mathfrak{SF} . Since a grounded arrow labelling is also a com-
37	plete arrow labelling, it follows (Lemma 66) that $\mathfrak{NLab} = \mathfrak{ALab}\mathfrak{Lab}(\mathfrak{ALab})$ is a complete
38	node labelling. Suppose, towards a contradiction, that \mathfrak{NLab} does not have minimal in. That is,
39	there exists a complete node labelling \mathfrak{NLab}' such that $\operatorname{in}(\mathfrak{NLab}') \subsetneq \operatorname{in}(\mathfrak{NLab})$. From point 3
40	of Lemma 69 it then follows that $in(\mathfrak{NLab2ALab}(\mathfrak{NLab}')) \subsetneq in(\mathfrak{NLab2ALab}(\mathfrak{NLab}))$. Let
41	$\mathfrak{ALab}' = \mathfrak{NLab}_{2}\mathfrak{ALab}(\mathfrak{NLab}')$. It follows (Lemma 65) that \mathfrak{ALab}' is a complete arrow labelling.
42	Furthermore, it follows from lemma 68 that $\mathfrak{NLab}_2\mathfrak{ALab}(\mathfrak{NLab}) = \mathfrak{ALab}$. Hence, we obtain
43	$in(\mathfrak{ALab}') \subsetneq in(\mathfrak{ALab})$. But this is impossible since \mathfrak{ALab} is a grounded arrow labelling and
44	therefore has minimal in among all complete arrow labellings.
45 46	
τu	

2.0

2.2

Lemma 73. Let $\mathfrak{S}\mathfrak{F} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF. (1) If NLab is a preferred node labelling of SF then NLab2ALab(NLab) is a preferred arrow la-belling of $\mathfrak{S}\mathfrak{F}$. (2) If ALab is a preferred arrow labelling of SF then ALab2MLab(ALab) is a preferred node la-belling of $\mathfrak{S}\mathfrak{F}$. **Proof.** Similar to the proof of Lemma 72 \Box **Lemma 74.** Let $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF. (1) If NLab is a stable node labelling of SF then NLab2ALab(NLab) is a stable arrow labelling of SF. (2) If \mathfrak{ALab} is a stable arrow labelling of \mathfrak{SF} then $\mathfrak{ALab}\mathfrak{ABb}(\mathfrak{ALab})$ is a stable node labelling of SF. **Proof.** (1) Let \mathfrak{NLab} be a stable node labelling of \mathfrak{SF} . Since a stable node labelling is also a complete node labelling, it follows (Lemma 65) that $\mathfrak{ALab} = \mathfrak{NLab}\mathfrak{ALab}(\mathfrak{NLab})$ is a complete arrow labelling. In order to prove that \mathfrak{ALab} is also a stable arrow labelling, we need to show that no arrow is labelled undec. Let $(\mathfrak{M}, A) \in \mathfrak{arr}$. The fact that \mathfrak{NLab} is a stable node labelling implies that all $B \in \mathfrak{M}$ are labelled either in or out. We distinguish two cases (i) and (ii). (i) In case for all $B \in \mathfrak{M}$ it holds $\mathfrak{NLab}(B) = in$, it follows from the definition of $\mathfrak{NLab2}\mathfrak{ALab}(\mathfrak{M}, A) = in$. (ii) In case $\mathfrak{NLab}(B) = \mathsf{out}$ for at least one $B \in \mathfrak{M}$, it follows from the definition of $\mathfrak{NLab2ALab}$ that $\mathfrak{ALab}((\mathfrak{M}, A)) =$ out. In both cases, $\mathfrak{ALab}((\mathfrak{M}, A)) \neq$ undec. (2) Let \mathfrak{ALab} be a stable arrow labelling of $\mathfrak{S}_{\mathfrak{F}}$. Since a stable arrow labelling is also a complete arrow labelling, it follows (Lemma 66) that $\mathfrak{NLab} = \mathfrak{ALab} \mathfrak{Lab}(\mathfrak{ALab})$ is a complete node labelling. In order to prove that \mathfrak{NLab} is also a stable node labelling, we need to show that no node is labelled undec. Let $A \in \mathfrak{N}$ and let a be the set of arrows towards A. The fact that \mathfrak{ALab} is a stable arrow labelling means that for every $(\mathfrak{M}, A) \in \mathfrak{a}$ it holds that $\mathfrak{ALab}((\mathfrak{M}, A))$ is either in or out. This implies that either (i) there exists a $(\mathfrak{M}, A) \in \mathfrak{a}$ such that $\mathfrak{ALab}((\mathfrak{M}, A)) = in$, or (ii) for each $(\mathfrak{M}, A) \in \mathfrak{a}$ it holds that $\mathfrak{ALab}((\mathfrak{M}, A)) = \mathsf{out}$. In the case (i), it follows from the definition of $\mathfrak{ALab2NLab}$ that $\mathfrak{NLab}(A) = \text{out}$. In case (ii), it follows from the definition of $\mathfrak{ALab2NLab}$ that $\mathfrak{NLab}(A) = in$. In both cases it holds that $\mathfrak{NLab}(A) \neq undec$. **Remark 75.** Notice that it does not hold that if \mathfrak{NLab} is a semi-stable node labelling of \mathfrak{SF} then $\mathfrak{MLab}_{2\mathfrak{A}Lab}(\mathfrak{MLab})$ is a semi-stable arrow labelling of $\mathfrak{S}_{\mathfrak{F}}$. Example 10 provides a counter example:

³⁶ Mcmark 75. Nonce that it does not note that if 5.2do is a semi-stable node tabelling of 0.5 then
 ³⁷ MLab2ALab(MLab) is a semi-stable arrow labelling of S. Example 10 provides a counter example:
 ³⁸ other direction hold (i.e., if ALab is a semi-stable arrow labelling of S. then ALab2MLab(ALab) is a
 ³⁹ semi-stable node labelling of S. Example 9 provides a counter example: while ALab2 is a semi-stable
 ⁴⁰ arrow labelling, NLab2 is not a semi-stable node labelling. As SETAFs generalise AFs and the functions
 ⁴¹ MLab2ALab and ALab2MLab generalise the functions NLab2ALab and ALab2NLab respectively, the
 ⁴² same counter examples apply in the case of SETAFs as with AFs.

We recall the following Theorem 21 from Section 3 that sums up our findings regarding the connections between arrow labellings and node labellings on SETAFs.

1	Theorem 21. Let $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF and let \mathfrak{NLab} and \mathfrak{ALab} be a node labelling and an	1
2	arrow labelling of $\mathfrak{S}\mathfrak{F}$, respectively. It holds that:	2
3	(1) If NLab is a complete node labelling, then NLab2ALab(NLab) is a complete arrow labelling.	3
4	If ALab is a complete arrow labelling, then ALab2MLab(ALab) is a complete node labelling.	4
5	(2) When restricted to complete node labellings and complete arrow labellings, the functions	5
6	ALab2NLab and NLab2ALab become bijections and each other's inverses.	6
7	(3) If NLab is a grounded node labelling, then NLab2ALab(NLab) is a grounded arrow labelling.	7
8	If ALab is a grounded arrow labelling, then ALab2NLab(ALab) is a grounded node labelling.	8
9	(4) If MLab is a preferred node labelling, then MLab2MLab(MLab) is a preferred arrow labelling.	9
10	If ALab is a preferred arrow labelling, then ALab2ALab(ALab) is a preferred unow labelling.	10
11	(5) If MLab is a stable node labelling, then MLab2MLab(MLab) is a stable arrow labelling.	11
12	If ALab is a stable arrow labelling, then ALab2MLab(ALab) is a stable node labelling.	12
13	If add is a stable arrow tabetting, then addoddddadd (addo) is a stable node tabetting.	13
14	Proof. (1) This follows from Lemma 65 and Lemma 66.	14
15	(2) This follows from Lemma 67 and Lemma 68.	15
16	(2) This follows from Lemma 07 and Lemma 08.(3) This follows from Lemma 72.	16
17	(4) This follows from Lemma 73.	17
18		18
19	(5) This follows from Lemma 74.	19
20		20
21		21
22	Appendix G. AFs with collective attacks vs. SETAFs	22
23	Appendix G. Ars with conective attacks vs. SETArs	23
24	The concept of a SETAF (Definition 11) is very close to that of an Argumentation System in the sense	24
25	of [14], which allows for collective attacks. However, where the SETAF arrows (arr) are a subset of	25
26	$2^{\mathfrak{N}} \times \mathfrak{N}$ in Definition 11, they are a subset of $(2^{\mathfrak{N}} \setminus \emptyset) \times \mathfrak{N}$ in [14, Definition 1]. It is not completely	26
27	$2^{-1} \times 50^{-1}$ m Definition 11, they are a subset of $(2^{-1} \sqrt{9}) \times 50^{-1}$ m [14, Definition 1]. It is not completely clear why Nielsen and Parsons decided to rule out the empty set as a basis of an attack, since the well-	27
28	definedness and correctness of their work does not seem to depend on it. An argument that is attacked	28
29		29
30	by the empty set is always rejected (in labelling terms: it is always out) and has the same effects	30
31	regarding the complete, grounded, preferred, semi-stable and stable extensions as if it does not exist at	31
32	all. However, it can still have advantages to be able to represent such attacks, especially when it comes	32
33	to the ability to model ABA. It is perfectly possible for an ABA-derivation not to use any assumptions	33
34	at all, but still attack another ABA-derivation. Hence, if we want SETAFs to be abstractions of ABA, we	34
35	need to be able to take into account attacks originating from the empty set.	35
36	In the following, we show that the difference between AFs with collective attacks and SETAFs is	36
37	marginal. We show that each SETAF can be represented as AF with collective attacks without affecting	37
38	the semantics. First, let us recall both definitions.	38
50		00

³⁹ **Definition 11.** An argumentation framework with set attacks (SETAF) is a tuple $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ where ⁴⁰ \mathfrak{N} is a finite set of nodes, whose structure can be left implicit, and $\mathfrak{arr} \subseteq 2^{\mathfrak{N}} \times \mathfrak{N}$.

⁴² **Definition 76** ([14]). An argumentation framework with collective attacks is a tuple $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ ⁴³ where \mathfrak{N} is a finite set of nodes, whose structure can be left implicit, and $\mathfrak{arr} \subseteq (2^{\mathfrak{N}} \setminus \emptyset) \times \mathfrak{N}$.

By definition, each AF with collective attacks is a SETAF.

To map each SETAF to an AF with collective attacks, we simply delete all nodes that are attacked by the empty set (and all attacks they were involved in).

2.2

Definition 77. Let SETAF2collAF: $\{\mathfrak{SF} \mid \mathfrak{SF} \text{ is a SETAF}\} \rightarrow \{\mathfrak{SF} \mid \mathfrak{SF} \text{ is a AF with collective attacks}\}$ be defined as follows: for a SETAF $\mathfrak{S}_{\mathfrak{T}} = (\mathfrak{N}, \mathfrak{arr})$, we obtain the corresponding AF with collective attacks SETAF2collAF($\mathfrak{S}\mathfrak{F}$) = ($\mathfrak{N}', \mathfrak{arr}'$) with

 $\mathfrak{N}' = \{ A \in \mathfrak{N} \mid \nexists(\emptyset, A) \in \mathfrak{arr} \},\$

 $\mathfrak{arr}' = \{(\mathfrak{M}, A) \in \mathfrak{arr} \mid \mathfrak{M} \neq \emptyset, A \in \mathfrak{N}', \mathfrak{M} \subseteq \mathfrak{N}'\} = \mathfrak{arr}|_{(2^{\mathfrak{N}'} \setminus \emptyset) \times \mathfrak{N}'}.$

The translation partitions the class of all SETAF into equivalence classes where each corresponds to a single AF with collective attacks.

Definition 78. Two SETAFs $\mathfrak{S}\mathfrak{F}_1, \mathfrak{S}\mathfrak{F}_2$ are equivalent to each other ($\mathfrak{S}\mathfrak{F}_1 \equiv \mathfrak{S}\mathfrak{F}_2$) iff

 $SETAF2collAF(\mathfrak{S}_{1}) = SETAF2collAF(\mathfrak{S}_{2}).$

By $C_{SETAF2collAF(\mathfrak{S}\mathfrak{F})} = \{\mathfrak{S}\mathfrak{F}' \mid \mathfrak{S}\mathfrak{F} \equiv \mathfrak{S}\mathfrak{F}'\}$, we denote the equivalence class of SETAF $\mathfrak{S}\mathfrak{F}$.

Each AF with collective attacks \mathfrak{SF} corresponds to an equivalence class $C_{\mathfrak{SF}}$ that contains each SETAF with additional arguments that are attacked by the empty set and additional attacks that involve arguments attacked by the empty set. Note that $\mathfrak{S}\mathfrak{F}$ is contained in the equivalence class $C_{\mathfrak{S}\mathfrak{F}}$ (it is the smallest SETAF contained in the class). For instance, the empty AF with collective attacks (\emptyset, \emptyset) is the minimal representative of the equivalence class

$$C_{(\emptyset,\emptyset)} = \{(\mathfrak{N},\mathfrak{arr}) \mid \forall A \in \mathfrak{N} : (\emptyset,A) \in \mathfrak{arr}\}.$$

Interestingly, it can be the case that the empty set is stable in a given SETAF $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ although it contains nodes, i.e., $\mathfrak{N} \neq \emptyset$. For instance, the SETAF $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ with $\mathfrak{N} = \{A, B\}$ and arrows $\mathfrak{arr} = \{(\emptyset, A), (\emptyset, B), (\{A, B\}, A)\}$ admits an empty stable extension. We observe that the considered SETAF belongs to the equivalence class $C_{(\emptyset,\emptyset)}$ which gets mapped to the empty AF with collective attacks (it is well known that the empty set is stable in the empty framework).

We show that AF with collective attacks and SETAF semantics coincide.

Below, we make use of the following notation. For a SETAF $\mathfrak{S}\mathfrak{F} = (\mathfrak{N}, \mathfrak{arr})$, we write

$$cf(\mathfrak{SF}) = \{\mathfrak{M} \subseteq \mathfrak{N} \mid \mathfrak{N} \text{ is conflict-free in } \mathfrak{SF}\}.$$

Proposition 79. Let $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF and let SETAF2collAF(\mathfrak{SF}) = $\mathfrak{SF}' = (\mathfrak{N}', \mathfrak{arr}')$ be its corresponding AF with collective attacks. Then

40	(1) $cf(\mathfrak{SF}) = cf(\mathfrak{SF}');$	40
41	(2) $\mathfrak{M}_{\mathfrak{S}\mathfrak{F}}^+ _{\mathfrak{N}'} = \mathfrak{M}_{\mathfrak{S}\mathfrak{F}'}^+ _{\mathfrak{N}'}$ for all $\mathfrak{M} \in cf(\mathfrak{S}\mathfrak{F}) = cf(\mathfrak{S}\mathfrak{F}');$	41
42	(3) $F_{\mathfrak{S}\mathfrak{F}}(\mathfrak{M}) = F_{\mathfrak{S}\mathfrak{F}'}(\mathfrak{M})$ for all $\mathfrak{M} \in cf(\mathfrak{S}\mathfrak{F}) = cf(\mathfrak{S}\mathfrak{F}')$.	42
43	$(5) T \mathcal{G}_{\mathfrak{G}}(\mathfrak{M}) = T \mathcal{G}_{\mathfrak{G}}(\mathfrak{M}) for all \mathfrak{M} \subset \mathfrak{G}(\mathfrak{G}) = \mathfrak{G}(\mathfrak{G}).$	43
44	Proof By definition we have $\mathfrak{M}' \subset Nh$ and $\mathfrak{arr}' \subset \mathfrak{arr}$. Let $\Lambda_{\mathfrak{A}} = \mathfrak{M} \setminus \mathfrak{M}'$ denote all nodes that are	44

Proof. By definition, we have $\mathfrak{N}' \subseteq Nh$ and $\mathfrak{arr}' \subseteq \mathfrak{arr}$. Let $\mathcal{A}_{\emptyset} = \mathfrak{N} \setminus \mathfrak{N}'$ denote all nodes that are attacked by the empty set in \mathfrak{SF} .

1	(1) We show $cf(\mathfrak{SF}) = cf(\mathfrak{SF}')$. First, consider a conflict-free set $\mathfrak{M} \in cf(\mathfrak{SF})$. By definition, \mathfrak{M} is
2	not attacked by any subset of \mathfrak{M} ; therefore, $(\emptyset, A) \notin \mathfrak{arr}$ for any $A \in \mathfrak{M}$. Hence $\mathfrak{M} \subseteq \mathfrak{N}'$. Since
3	$\mathfrak{arr}' \subseteq \mathfrak{arr}$, i.e., we do not add new attacks in the corresponding AF with collective attacks, we
4	conclude that \mathfrak{M} is conflict-free in \mathfrak{SF}' , that is, $\mathfrak{M} \in cf(\mathfrak{SF}')$.
5	Now, consider a set $\mathfrak{M} \in cf(\mathfrak{S}\mathfrak{F}')$. We have $\mathfrak{M} \in \mathfrak{N}'$, hence $(\emptyset, A) \notin \mathfrak{arr}$ for all $A \in \mathfrak{M}$, moreover,
6	for all attacks $(b, A) \in \mathfrak{arr} \setminus \mathfrak{arr}'$ it holds that $b \cap \mathcal{A}_{\emptyset} \neq \emptyset$ (in the translation, we delete only attacks
7	that involve arguments that are attacked by the empty set). Therefore, $\mathfrak{M} \in cf(\mathfrak{SF})$.
8	(2) Consider a conflict-free set $\mathfrak{M} \in cf(\mathfrak{S}\mathfrak{F}) = cf(\mathfrak{S}\mathfrak{F}')$. We show that $\mathfrak{M}^+_{\mathfrak{S}\mathfrak{F}} _{\mathfrak{N}'} = \mathfrak{M}^+_{\mathfrak{S}\mathfrak{F}'} _{\mathfrak{N}'}$, i.e.,
9	(2) Consider a connect new set $\mathfrak{M}' \subset \mathfrak{G}(\mathfrak{S}_0) = \mathfrak{G}(\mathfrak{S}_0)$. We show that $\mathfrak{M}_{\mathfrak{S}_0}\mathfrak{g}_{\mathfrak{R}_0} = \mathfrak{M}_{\mathfrak{S}_0}\mathfrak{g}_{\mathfrak{R}_0}\mathfrak{g}_{\mathfrak{R}_0}$, i.e.,
10	\mathfrak{M} attacks the same nodes in \mathfrak{N}' in both $\mathfrak{S}\mathfrak{F}$ and $\mathfrak{S}\mathfrak{F}'$. From $\mathfrak{arr}' \subseteq \mathfrak{arr}$ we obtain $\mathfrak{M}_{\mathfrak{S}\mathfrak{F}'}^+ _{\mathfrak{N}'} \subseteq \mathfrak{M}_{\mathfrak{S}\mathfrak{F}'}^+ _{\mathfrak{N}'}$
11	$\mathfrak{M}^+_{\mathfrak{S}\mathfrak{F}} _{\mathfrak{N}'}$. For the other direction, consider a node $A \in \mathfrak{M}^+_{\mathfrak{S}\mathfrak{F}} _{\mathfrak{N}'}$. Then there is $(\mathfrak{M}', A) \in \mathfrak{arr}$ with
12	$\mathfrak{M}' \subseteq \mathfrak{M}$. It holds that $\mathfrak{M}' \in \mathfrak{N}'$ since $\mathfrak{M} \in \mathfrak{N}'$, therefore $(\mathfrak{M}', A) \in \mathfrak{arr}'$. Hence $A \in \mathfrak{M}^+_{\mathfrak{S}\mathfrak{T}'} _{\mathfrak{N}'}$.
13	We obtain $\mathfrak{M}^+_{\mathfrak{S}\mathfrak{F}} _{\mathfrak{N}'} = \mathfrak{M}^+_{\mathfrak{S}\mathfrak{S}'} _{\mathfrak{N}'}$, as desired.
14	(3) Consider a conflict-free set $\mathfrak{M} \in cf(\mathfrak{S}\mathfrak{F}) = cf(\mathfrak{S}\mathfrak{F}')$. We show that \mathfrak{M} defends the same nodes in
15	\mathfrak{SF} and \mathfrak{SF}' .
16	First, we observe that \mathfrak{M} can only defend nodes in $\mathfrak{N} \setminus \mathcal{A}_{\emptyset} = \mathfrak{N}'$ since the empty set cannot be
17	counter-attacked.
18	Now, consider a node $A \in \mathfrak{N}'$. As shown above (cf. 2.), \mathfrak{M} attacks the same nodes in \mathfrak{N}' in both
19	frameworks $\mathfrak{S}\mathfrak{F}$ and $\mathfrak{S}\mathfrak{F}'$. Hence, A is defended against the same attacks (b, A) with $b \subseteq Nh'$ in
20	both $\mathfrak{S}\mathfrak{F}$ and $\mathfrak{S}\mathfrak{F}'$. It remains to argue that A is defended against all attacks in $\mathfrak{arr} \setminus \mathfrak{arr}'$: consider
21	an attack (b, A) with $b \not\subseteq \mathfrak{N}'$. That is, b contains some argument $B \in \mathcal{A}_{\emptyset}$ that is attacked by the
22	empty set. Since each set contains the empty set, A is defended against this attack in \mathfrak{SF} .
23	
24	We obtain the following.
25	
26	Theorem 80. Let $\mathfrak{S}\mathfrak{F} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF and let SETAF2collAF($\mathfrak{S}\mathfrak{F}) = \mathfrak{S}\mathfrak{F}' = (\mathfrak{N}', \mathfrak{arr}')$ be its
27	corresponding AF with collective attacks. Then $cf(\mathfrak{SF}) = cf(\mathfrak{SF}')$, moreover, for all $\mathfrak{M} \in cf(\mathfrak{SF})$,
28	
29	• \mathfrak{M} is admissible in $\mathfrak{S}\mathfrak{F}$ iff \mathfrak{M} is admissible in $\mathfrak{S}\mathfrak{F}'$;
30	• \mathfrak{M} is complete in \mathfrak{SF} iff \mathfrak{M} is complete in \mathfrak{SF}' ;
31	• \mathfrak{M} is grounded in \mathfrak{SF} iff \mathfrak{M} is grounded in \mathfrak{SF}' ;
32	• \mathfrak{M} is preferred in \mathfrak{SF} iff \mathfrak{M} is preferred in \mathfrak{SF}' ;
33	• \mathfrak{M} is stable in $\mathfrak{S}\mathfrak{F}$ iff \mathfrak{M} is stable in $\mathfrak{S}\mathfrak{F}'$;
34	• \mathfrak{M} is semi-stable in \mathfrak{SF} iff \mathfrak{M} is semi-stable in \mathfrak{SF}' .
35	
36	Proof. As shown above, the conflict-free sets coincide, and the characteristic function restricted to the
37	conflict-free sets yields the same output. Hence, by definition, the statement follows for admissible,
38	complete, preferred, grounded semantics. Regarding range-based semantics, it suffices to observe that $f = \frac{1}{2} $
39	for all sets $\mathfrak{M} \subseteq \mathfrak{N}$, it holds that $\mathfrak{N} \setminus \mathfrak{N}' \subseteq Mh^+_{\mathfrak{S}\mathfrak{F}}$ (since $\emptyset \subseteq \mathfrak{M}$). That is, all arguments attacked by the
40	empty set are contained in the range of \mathfrak{M} . We obtain that semi-stable and stable semantics coincide. \Box
40	D'élemente d'all CETA Es la des serves service la la la la la desta
42	Differently phrased, all SETAFs in the same equivalence class coincide on the semantics.

Corollary 81. Let \mathfrak{SF} be a SETAF and let $C_{SETAF2collAF(\mathfrak{SF})}$ be its corresponding equivalence class. Then $\sigma(\mathfrak{SF}_1) = \sigma(\mathfrak{SF}_2)$ for any two SETAFs $\mathfrak{SF}_1, \mathfrak{SF}_2 \in C_{SETAF2collAF(\mathfrak{SF})}$, for any semantics σ considered in this paper.

	From the one-to-one correspondence between extension semantics and labellings (cf. Theorem 58) and from Theorem 80, we obtain the following result.
T	heorem 82. Let $\mathfrak{S}\mathfrak{F} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF, let SETAF2collAF($\mathfrak{S}\mathfrak{F}$) = $\mathfrak{S}\mathfrak{F}' = (\mathfrak{N}', \mathfrak{arr}')$ be its
	Derived in 32. Let $\mathfrak{S}_{\mathfrak{S}} = (\mathfrak{K},\mathfrak{att})$ be a SETAF, let SETAF 2 couAF $(\mathfrak{S}_{\mathfrak{S}}) = \mathfrak{S}_{\mathfrak{S}} = (\mathfrak{K},\mathfrak{att})$ be its prresponding AF with collective attacks, and let $\mathcal{A}_{\emptyset} = \mathfrak{N} \setminus \mathfrak{N}'$ denote all nodes that are attacked by the
	npty set in $\mathfrak{S}\mathfrak{F}$. Then,
en	
	• for each SETAF node labelling \mathfrak{NLab} for \mathfrak{SF} , let $\mathfrak{NLab}' = \mathfrak{NLab} _{Nh'}$ denote the SETAF node
	labelling restricted to \mathfrak{SF}' . It holds that
	$* \mathfrak{NLab}$ is complete on \mathfrak{SF} iff \mathfrak{NLab}' is complete on \mathfrak{SF}' ;
	* Stad is complete on OS iff Stado is complete on OS; * Stad is grounded on SF iff Stado' is grounded on SF';
	* Stad is grounded on CS iff Stad is grounded on CS; * Stad is preferred on CS iff Stad' is preferred on CS;
	* NLab is stable on SF iff NLab' is stable on SF';
	* NLab is semi-stable on SF iff NLab' is semi-stable on SF.
	• for each SETAF node labelling \mathfrak{NLab}' for \mathfrak{GF}' , let $\mathfrak{NLab} = \mathfrak{NLab} \cup \{(A, \mathtt{out}) \mid A \in \mathcal{A}_{\emptyset}\}$ denote
	the extension of \mathfrak{NLab}' to the set of nodes in \mathcal{A}_{\emptyset} (observe that each such node is assigned out). It
	holds that
	$* \mathfrak{NLab}'$ is complete on \mathfrak{SF}' iff \mathfrak{NLab} is complete on \mathfrak{SF} ;
	* NLab' is grounded on SF' iff NLab is grounded on SF;
	* NLab' is preferred on SF' iff NLab is preferred on SF;
	* NLab' is stable on SF' iff NLab is stable on SF;
	* NLab' is semi-stable on GF' iff NLab is semi-stable on GF.
P	roof. We provide a proof for complete semantics. The remaining proofs are analogous.
	First, let \mathfrak{NLab} be a complete labelling for \mathfrak{SF} , and let $\mathfrak{NLab}' = \mathfrak{NLab} _{Nh'}$ denote the SETAF node
	belling restricted to \mathfrak{SF}' . We show that \mathfrak{NLab} is complete on \mathfrak{SF} iff \mathfrak{NLab}' is complete on \mathfrak{SF}' :
fr	om left to right By Theorem 58, $in(\mathfrak{NLab})$ is a complete node extension of \mathfrak{SF} . Moreover, by The-
	orem 80, $in(\mathfrak{NLab})$ is a complete node extension of \mathfrak{M}' . Applying Theorem 58 again, we obtain
	that $in(\mathfrak{NLab})$ induces a complete node labelling of \mathfrak{SS}' .
fr	om right to left Analogous to the other direction.
	Now, let \mathfrak{NLab}' be a complete node labelling for \mathfrak{SF}' and let $\mathfrak{NLab} = \mathfrak{NLab} \cup \{(A, \mathtt{out}) \mid A \in \mathcal{A}_{\emptyset}\}$
	enote the extension of \mathfrak{NLab}' to the set of nodes in \mathcal{A}_{\emptyset} . We show that \mathfrak{NLab}' is complete on \mathfrak{SF}' iff
N	Lab is complete on SF:
c	
Ir	om left to right By Theorem 58, $in(\mathfrak{NLab}')$ is a complete node extension of \mathfrak{SF}' . By Theorem 80, $in(\mathfrak{NLab}')$ is a complete node extension of \mathfrak{SF}' .
	$in(\mathfrak{NLab}')$ is a complete node extension of \mathfrak{M} . Applying Theorem 58 again, we obtain that $in(\mathfrak{NLab}')$ induces a complete node labelling of $\mathfrak{S}^{\mathfrak{T}}$. Moreover, since each node $A \in \mathcal{A}$ is
	$in(\mathfrak{NLab}')$ induces a complete node labelling of $\mathfrak{S}\mathfrak{F}$. Moreover, since each node $A \in \mathcal{A}_{\emptyset}$ is
	attacked (by the empty set), we obtain that A is labelled out, as desired.
fr	om right to left Analogous to the first case above (the restriction of a complete node labelling of $\mathfrak{S}\mathfrak{F}$
	to \mathfrak{SF}' is complete).

Appendix H. Equivalence of Arrow Extensions and Arrow Labellings for Argumentation Frameworks **Definition 83.** Let (N, arr) be an argumentation framework and let $a \subseteq arr$ be conflict-free. We define *the function a2ALab*(a) = (a, a^+ , $arr \setminus (a \cup a^+)$). **Definition 84.** Let (N, arr) be an argumentation framework and let ALab be an arrow labelling. We define the function ALab2a(ALab) = in(ALab). **Theorem 85.** Let (N, arr) be an argumentation framework. (1) If $a \subseteq arr$ is a complete extension then a2ALab(a) is a complete labelling. (2) If ALab is a complete labelling then ALab2a(ALab) is a complete extension. **Proof.** (1) Let a2ALab(a) = ALab. Let a be a complete extension. We show that a2ALab(a) = ALabis a complete labelling: • We show that ALab((A, B)) = in implies ALab((C, A)) = out for each arrow $(C, A) \in arr$. Let $(A, B) \in in(ALab)$ and consider an arrow $(C, A) \in arr$. By Definition 84, in(ALab) = a. Since a is complete, the arrow (A, B) is defended by a (by Definition 6). Hence, $(C, A) \in a^+$. By Definition 84, we obtain that $(C, A) \in \text{out}(ALab)$. • We show that ALab((A, B)) = out implies ALab((C, A)) = in for some $(C, A) \in arr$. Let $(A, B) \in \text{out}(ALab)$. By Definition 84, $(A, B) \in a^+$. That is, (A, B) is attacked by a. Hence, 2.2 there is some arrow $(C,A) \in arr$ such that $(C,A) \in a$. By Definition 83, we obtain $(C,A) \in arr$ in(ALab). • We show that if ALab((A,B)) = undec then not for each $(C,A) \in arr$ it holds that ALab((C,A)) = out, and there does not exist a $(C,A) \in arr$ such that ALab((C,A)) = in. Let $(A, B) \in undec(ALab)$. We provide a proof by contradiction. First assume for each $(C,A) \in arr$ it holds that ALab((C,A)) = out. By Definition 83, for each $(C,A) \in arr$ it holds that $(C,A) \in a^+$. Hence, each attacker of (A,B) is attacked. By Definition 5, we obtain that $(A, B) \in F(a)$. By the fundamental lemma and by definition of complete extension semantics, we obtain that $(A, B) \in a$. Therefore, by definition of a2ALab, we obtain ALab((A, B)) = in, contradiction to the assumption $(A, B) \in undec(ALab)$. Hence, we obtain that not for each $(C, A) \in arr$ it holds that ALab((C, A)) = out. Now assume that there exists $(C,A) \in arr$ such that ALab((C,A)) = in. By Definition 83, $(C,A) \in a$. Since (C,A) attacks (A,B) it furthermore holds that $(A,B) \in a^+$. Hence, ALab((A, B)) = out, contradiction to our initial assumption. Hence we obtain that there does not exist a $(C,A) \in arr$ such that ALab((C,A)) = in. (2) Let ALab2a(ALab) = a. Let ALab be a complete labelling. We show that ALab2a(ALab) = a is a complete extension. • We show that a is conflict-free. Let $(A, B), (C, D) \in a$. By Definition 84, $(A, B), (C, D) \in a$ in(ALab). Towards a contradiction, assume (A, B) attacks (C, D), that is, B = C. By defini-tion of a complete labelling, we obtain ALab((A, B)) = out. Hence we obtain a contradiction. • We show that a = F(a). First, let $(A, B) \in a$. By Definition 84, ALab((A, B)) = in. By definition of a complete labelling, for all $(C,A) \in arr$ it holds that ALab((C,A)) = out. Hence, there exists $(D,C) \in arr$ such

1	that $ALab((D, C)) = in$. Hence, (A, B) is defended by a against each attack. We obtain $(A, B) \in$	1
2	F(a).	2
3	For the other direction, let $(A, B) \in F(a)$. Hence, each attacker of (A, B) is attacked by <i>a</i> : for all	3
4	$(C,A) \in arr$ it holds that $(C,A) \in a^+$. Towards a contradiction, we assume $ALab((A,B)) \neq in$.	4
5	Then $ALab((A, B)) \in \{\text{out, undec}\}$. We proceed by case distinction.	5
6	First assume, $ALab((A, B)) = out$. By Definition 7, there exists a $(C, A) \in arr$ such that	6
7	$ALab((C, A)) = in$. By Definition 84, $(C, A) \in a$. We obtain a contradiction since <i>a</i> is conflict-	7
8	free.	8
9	Now assume, $ALab((A, B)) =$ undec. By Definition 7, there is some $(C, A) \in arr$ such that	9
10	$ALab((C,A)) \neq \text{out}$, and there does not exist a $(C,A) \in arr$ such that $ALab((C,A)) = \text{in}$.	10
11	By the first condition, there is some $(C,A) \in arr$ such that $ALab((C,A)) \in \{in, undec\}$.	11
12 13	By the second condition, $ALab((C, A)) \neq in$. Hence, there is some $(C, A) \in arr$ such that $ALab((C, A)) = arr black (C, A) \in arr$ such that $ALab((C, A)) = arr black (C, A) \in arr$	12 13
14	that $ALab((C, A)) =$ undec. Since $(C, A) \in a^+$ (by our initial assumption), there is some $(D, C) \in a$. By Definition 34, $ALab((D, C)) = a^+$, By Definition 7, each energy which is at	14
15	$(D,C) \in a$. By Definition 84, $ALab((D,C)) = in$. By Definition 7, each arrow which is attacked by (D,C) is labelled out. Hence $ALab((C,A)) = out$. Contradiction to the assumption	15
16	that $ALab((C, A)) =$ undec.	16
17	We obtain $ALab((A, B)) = in$ and therefore, $(A, B) \in a$, as desired.	17
18		18
19		19
20		20
21	Theorem 86. Let (N, arr) be an argumentation framework and let $a \subseteq arr$. Then	21
22	(1) if a is a grounded extension then $a2ALab(a)$ is a grounded labelling;	22
23	(2) if a is a preferred extension then $a2ALab(a)$ is a preferred labelling;	23
24	(3) if a is a semi-stable extension then $a2ALab(a)$ is a semi-stable labelling;	24
25	(4) if a is a stable extension then $a2ALab(a)$ is a stable labelling.	25
26		26
27 28	Proof. Let $a2ALab(a) = ALab$.	27 28
29	(1) Let <i>a</i> be the grounded extension. By Theorem 85, it holds that <i>ALab</i> is a complete labelling. We	29
30	show that $in(ALab)$ is \subseteq -minimal among all complete arrow labellings. Towards a contradiction,	30
31	assume there is a complete labelling AbLab' such that $in(ALab') \subseteq in(ALab)$. By Theorem 85,	31
32	a' = in(ALab') is a complete extension. By Definition 83, $in(ALab) = a$, hence there is a	32
33	complete extension a' such that $a' \subsetneq a$, contradiction to \subseteq -minimality of a. We obtain that ALab is	33
34	the grounded labelling.	34
35	(2) Let a be a preferred extension. By Theorem 85, it holds that $ALab$ is a complete labelling. We	35
36	show that $in(ALab)$ is \subseteq -maximal among all complete arrow labellings. Towards a contradiction,	36
37	assume there is a complete labelling $AbLab'$ such that $in(ALab) \subsetneq in(ALab')$. By Theorem 85,	37
38	$a' = in(ALab')$ is a complete extension, contradiction to \subseteq -maximality of a . We obtain that $ALab$	38
39	is a preferred labelling.	39
40	(3) Let <i>a</i> be a semi-stable extension. By Theorem 85, it holds that <i>ALab</i> is a complete labelling. More-	40
41	over, by definition of semi-stable semantics, $a \cup a^+$ is \subseteq -maximal among all complete extensions.	41
42 43	We show that $undec(ALab)$ is \subseteq -minimal among all complete labellings.	42 43
43 44	Towards a contradiction, suppose there is a complete labelling $ALab'$ such that undec $(ALab') \subsetneq$	43 44
45	undec(ALab). By Theorem 85, $a' = in(ALab')$ is a complete extension. By Definition 83,	45
46	$undec(ALab') = arr \setminus (a' \cup (a')^+)$. Hence, $arr \setminus (a' \cup (a')^+) \subsetneq arr \setminus (a \cup a^+)$, therefore,	46
		-

1 2 3	 a' ∪ (a')⁺ ⊋ a ∪ a⁺, that is, we have found a complete extension a' showing that a is not semi-stable, contradiction to our initial assumption. We obtain that ALab is a semi-stable labelling. (4) Let a be a stable extension. By Theorem 85, it holds that ALab is a complete labelling. Moreover,
4 5	by definition of stable semantics, $a \cup a^+ = arr$. Hence, by Definition 83, $undec(ALab) = \emptyset$. We obtain that <i>ALab</i> is a stable labelling. \Box
6 7	Theorem 87. Let (N, arr) be an argumentation framework and let ALab be an arrow labelling. Then
8 9 10 11 12	 (1) if ALab is a grounded labelling then ALab2a(ALab) is a grounded extension; (2) if ALab is a preferred labelling then ALab2a(ALab) is a preferred extension; (3) if ALab is a semi-stable labelling then ALab2a(ALab) is a semi-stable extension; (4) if ALab is a stable labelling then ALab2a(ALab) is a stable extension.
13	Proof. Let $ALab2a(ALab) = a$.
14 15 16 17 18 19	 (1) Let ALab be the grounded labelling. By Theorem 85, it holds that a is a complete extension. We show that a is ⊆-minimal among all complete extensions. Towards a contradiction, assume there is a complete extension a' such that a' ⊊ a. By Theorem 85, a2ALab(a') is a complete arrow labelling. By Definition 83, a = in(ALab) and a' = in(a2ALab(a')). Therefore, in(a2ALab(a')) ⊊ in(ALab), contradiction to the assumption that ALab is the grounded labelling. We abtain that a is the grounded automain.
20 21 22 23 24 25	 We obtain that a is the grounded extension. (2) Let ALab be a preferred labelling. By Theorem 85, it holds that a is a complete extension. We show that a is ⊆-maximal among all complete extensions. Towards a contradiction, assume there is a complete extension a' such that a' ⊋ a. By Theorem 85, a2ALab(a') is a complete arrow labelling. By Definition 83, a = in(ALab) and a' = in(a2ALab(a')). Therefore, in(a2ALab(a')) ⊋ in(ALab), contradiction to the assumption that ALab is ⊆-maximal. We obtain that a is a preferred extension.
26 27 28 29 30 31 32 33	 (3) Let ALab be a semi-stable labelling. By Theorem 85, it holds that a is a complete extension. Moreover, by definition of semi-stable semantics, undec(ALab) is ⊆-minimal among all complete labellings. We show that a ∪ a⁺ is ⊆-maximal among all complete extensions. Towards a contradiction, suppose there is a complete extension a' such that a' ∪ (a')⁺ ⊋ a ∪ a⁺. By Theorem 85, ALab' = a2ALab(a') is a complete labelling. By Definition 83, undec(ALab') = arr \ (a' ∪ (a')⁺). Hence, arr \ (a' ∪ (a')⁺) ⊊ arr \ (a ∪ a⁺), and therefore, undec(ALab') ⊊ undec(ALab). Consequently, ALab cannot be a semi-stable labelling; hence, we conclude that a is a semi-stable extension.
34 35 36 37 38 39	(4) Let <i>ALab</i> be a stable labelling. By Theorem 85, it holds that <i>a</i> is a complete extension. By definition of stable labellings, $undec(ALab) = \emptyset$. Hence, each attack is either labelled in or labelled out. By Definition 84, $in(ALab) = a$. By Definition 7, if an attack (A, B) is labelled out then there is $(C, A) \in arr$ such that $ALab((C, A)) = in$. Hence, $a^+ = arr \setminus a$. We obtain that <i>a</i> is a stable labelling. \Box
40	Lemma 88. Let $AF = (N, arr)$ be an argumentation framework.
41 42 43	 (1) For a complete arrow labelling ALab it holds that a2ALab(ALab2a(ALab)) = ALab. (2) For a complete arrow extension a it holds that ALab2a(a2ALab(a)) = a.
44 45 46	Proof. (1) Let $ALab2a(ALab) = a$. We prove the following three properties, for an arbitrary arrow $(A, B) \in arr$.

64	M. Caminada et al. / Attack Semantics and Collective Attacks Revisited
	• If $AbLab((A, B)) = in$ then $a2ALab(a)((A, B)) = in$.
	Suppose $AbLab((A, B)) = in$. By Definition 84, $(A, B) \in a$. By Definition 83, we obtain
	a2ALab(a)((A,B)) = in.
	• If $ALab((A, B)) = \text{out then } a2ALab(a)((A, B)) = \text{out.}$
	Suppose $ALab((A, B)) = out$. Then by Definition of a complete arrow labelling, it follows that
	there exists a $(C,A) \in arr$ such that $ALab((C,A)) = in$. By Definition 84 $(C,A) \in a$. By
	Definition 83, we obtain $a2ALab(a)((C, A)) = in$. We proceed by case distinction.
	First assume $a2ALab(a)((A, B)) = in$. Then $a2ALab(a)((C, A)) = out$, by definition of a
	complete arrow labelling. Hence we obtain a contradiction.
	Next assume $a2ALab(a)((A, B)) =$ undec. By definition of a complete arrow labelling, there is
	some $(C, A) \in arr$ such that $a2ALab(a)((C, A)) \neq out$, and there does not exist a $(C, A) \in arr$
	such that $a2ALab(a)((C,A)) = in$. The latter condition contradicts our assumption.
	We obtain $a2ALab(a)((A, B)) = out$, as desired.
	• If $ALab((A, B)) =$ undec then $a2ALab(a)((A, B)) =$ undec.
	Suppose $AbLab((A, B)) =$ undec. By definition of a complete arrow labelling, there is some
	$(C,A) \in arr$ such that $ALab((C,A)) \neq out$, and there does not exist a $(C,A) \in arr$ such that
	ALab((C,A)) = in.
	To show that $a2ALab(a)((A, B)) =$ undec we provide a proof by contradiction. Towards a
	contradiction, assume $a2ALab(a)((A, B)) \neq$ undec. Then either $a2ALab(a)((A, B)) =$ in or
	a2ALab(a)((A,B)) = out. We proceed by case distinction.
	First assume $a2ALab(a)((A, B)) = in$. By Definition 83, $(A, B) \in a$. By Definition 84, we
	obtain $ALab((A, B)) = in$. This is a contradiction to $ALab((A, B)) = undec$.
	Next assume $a2ALab(a)((A, B)) = \text{out. By Definition 83, } (A, B) \in a^+$. By definition of a
	complete arrow extension, there is some $(C, A) \in arr$ with $(C, A) \in a$. By Definition 84,
	ALab((C,A)) = in. This is a contradiction to the assumption that there does not exist a
	$(C, A) \in arr$ such that $ALab((C, A)) = in$.
	Hence we can conclude $a2ALab(a)((A, B)) = undec$.
$\langle 0 \rangle$	
(2)	Consider a complete extension a. By Definition 83, $in(a2ALab(a)) = a$. By Definition 84, we
	obtain $ALab2a(a2ALab(a)) = in(a2ALab(a)) = a.$
T L.	
	orem 89. When restricted to complete node labellings and complete arrow labellings, the functions
ALa	b2a and a2ALab become bijections and each other's inverses.
р	
Pro	of. This follows directly from Lemma 88. \Box
	endix I. Equivalence of Node Extensions and Arrow Extensions for Argumentation
Fra	neworks
W	e define the functions
	$Args2a = ALab2a \circ NLab2ALab \circ Args2NLab$

and	
	$a2Args = Args2NLab \circ ALab2NLab \circ ALab2a.$
	$u_{2A}r_{SS} = Ar_{SS}r_{1}u_{2}u_{2} \cup ALu_{2}u_{1}u_{2}u_{2}u_{2}u_{2}u_{2}u_{2}u_{2}u_{2$
Theo that:	rem 90. Let $AF = (N, arr)$ be an argumentation framework and let $M \subseteq N$ and $a \subseteq arr$. It holds
(1)	f M is complete node extension then then $\operatorname{Args2a}(M)$ is a complete arrow extension.
	If a is a complete arrow extension, then $a2Args(a)$ is a complete node extension.
	When restricted to complete node labellings and complete arrow labellings, the functions
	ALab2NLab and NLab2ALab become bijections and each other's inverses.
	f M is a grounded node extension, then $Args2a(M)$ is a grounded arrow extension.
	f a is a grounded arrow extension, then $a2Args(a)$ is a grounded node extension.
	If M is a preferred node extension, then $\operatorname{Args2a}(M)$ is a preferred arrow extension.
	f a is a preferred arrow extension, then $a2Args(a)$ is a preferred node extension.
	If M is a stable node extension, then $\operatorname{Args2a}(M)$ is a stable arrow extension.
	f a is a stable arrow extension, then $a2Args(a)$ is a stable node extension.
Proof	(1) First, let <i>M</i> is complete node extension. By results from [33] and as summarised in Table
	2, $Args2NLab(M)$ is a complete node labelling. By Theorem 8, $NLab2ALab(Args2NLab(M))$ is
	a complete arrow labelling. Finally, by Theorem 87, $ALab2a(NLab2ALab(Args2NLab(M))) =$
	Args2a(M) is a complete arrow extension.
	Now, let <i>a</i> a complete arrow extension. By Theorem 86, $a2ALab(a)$ is a complete arrow labelling.
	By Theorem 8, $ALab2NLab(a2ALab(a))$ is a complete node labelling. Finally, by results from [33]
	and as summarised in Table 2, $NLab2Args(ALab2NLab(a2ALab(a))) = a2Args(a)$ is a complete
	node extensions.
(2)	By results from [33], Theorem 8, and Theorem 89.
	Analogous to point 1.
	Analogous to point 1.
	Analogous to point 1. \Box
For	semi-stable semantics, we consider the following counter-example:
Exam	ple 91. Let us recall the $AF = (N, arr)$ from Example 10 with $N = \{A, B, C, D, E, F\}$ and $arr =$
	$(C, B), (C, C), (A, D), (D, A), (D, E), (E, E), (E, F)\}.$
	$(A) \longrightarrow (B) \longleftarrow (C) \not \supseteq$
	$(A) \longrightarrow (B) \leftarrow (C) \supseteq$
	$(\stackrel{\bullet}{D}) \longrightarrow (\stackrel{\bullet}{F}) \longrightarrow (F)$
The A	<i>F</i> has three complete node extensions $M_1 = \emptyset$, $M_2 = \{A\}$, and $M_3 = \{D, F\}$ that are one-to-one
	<i>I</i> has three complete node extensions $M_1 = \emptyset$, $M_2 = \{A\}$, and $M_3 = \{D, F\}$ that the one-to-one <i>d</i> to the complete arrow extensions $a_1 = \emptyset$, $a_2 = \{(A, B), (A, D)\}$, and $a_3 = \{(D, A), (D, E)\}$ via
101010	$u_1 = u_1 $

Let us see the function $Args2a = ALab2a \circ NLab2ALab \circ Args2NLab$ at work. Let us compute $Args2a(M_2)$ in three steps: $Args2NLab(M_2) = (\{A\}, \{B, D\}, \{C, E, F\})$ $NLab2ALab(Args2NLab(M_2)) = (\{(A, B), (A, D)\}, \{(D, A), (D, E)\}, \{(C, B), (C, C), (C, C)\}, \{(C, B), (C, C), (C, C), (C, C)\}$ $(E, E), (E, F)\})$ $ALab2a(NLab2ALab(Args2NLab(M_2))) = \{(A, B), (A, D)\}$ Hence, we obtain $Args2a(M_2) = a_2$. The set M_2 is the only semi-stable node extension of AF. However, the set a_2 is not a semi-stable arrow extension since $a_3 \cup a_3^+ \supset a_2 \cup a_2^+$. Indeed, a_3 is the unique semi-stable arrow extension of AF. On the other hand, $M_3 = a2Args(a_3)$ is not a semi-stable node extension. Appendix J. Equivalence of Arrow Extensions and Arrow Labellings for SETAFs **Definition 92.** Let $(\mathfrak{N}, \mathfrak{arr})$ be a SETAF and let $\mathfrak{a} \subseteq \mathfrak{arr}$. We define the function $\mathfrak{a2ALab}(\mathfrak{a}) =$ $(\mathfrak{a}, \mathfrak{a}^+, \mathfrak{arr} \setminus (\mathfrak{a} \cup \mathfrak{a}^+)).$ **Definition 93.** Let $(\mathfrak{N}, \mathfrak{arr})$ be a SETAF and let \mathfrak{ALab} be an arrow labelling. We define the function 2.2 $\mathfrak{ALab2a}(\mathfrak{ALab}) = \operatorname{in}(\mathfrak{ALab}).$ **Theorem 94.** Let $(\mathfrak{N}, \mathfrak{arr})$ be a SETAF. (1) If $\mathfrak{a} \subseteq \mathfrak{arr}$ is a complete extension then $\mathfrak{a2ALab}(\mathfrak{a})$ is a complete labelling. (2) If ALab is a complete labelling then ALab2a(ALab) is a complete extension. **Proof.** (1) Let a be a complete extension and let $a_2\mathfrak{ABab}(\mathfrak{a}) = \mathfrak{ABab}$. We show that $a_2\mathfrak{ABab}(\mathfrak{a}) =$ ALab is a complete labelling: • We show that if $\mathfrak{ALab}((\mathfrak{M}, A)) = in$ then for each $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ it holds that $\mathfrak{ALab}((\mathfrak{M}',B)) =$ out. Let $(\mathfrak{M},A) \in in(\mathfrak{ALab})$ and consider an arrow $(\mathfrak{M}',B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$. By Definition 93, $\mathfrak{M} \in \mathfrak{a}$. Since \mathfrak{a} is complete, the arrow (\mathfrak{M}, A) is defended by \mathfrak{a} . Hence, $(\mathfrak{M}', B) \in \mathfrak{a}^+$. By Definition 93, we obtain that $(\mathfrak{M}', B) \in \operatorname{out}(\mathfrak{ALab})$. • We show that if $\mathfrak{ALab}((\mathfrak{M}, A)) = \mathsf{out}$ then there exists an $(\mathfrak{M}', B) \in \mathfrak{arr}$ such that $B \in \mathfrak{M}$ and $\mathfrak{ALab}((\mathfrak{M}', B)) = \text{in. Let } (Mh, A) \in \text{out}(\mathfrak{ALab})$. By Definition 93, $(\mathfrak{M}, A) \in \mathfrak{a}^+$. Hence, there is some arrow $(\mathfrak{M}', B) \in \mathfrak{a}$ such that $B \in \mathfrak{M}$. By Definition 92, we obtain $(\mathfrak{M}', B) \in \mathfrak{M}$ in(ALab). • We show that if $\mathfrak{ALab}((\mathfrak{M}, A)) =$ undec then not for each $(\mathfrak{M}', B) \in \mathfrak{arr}$ such that $B \in \mathfrak{M}$ it holds that $\mathfrak{ALab}((\mathfrak{M}', B)) = \text{out}$ and there does not exist an $(\mathfrak{M}', B) \in \mathfrak{arr}$ such that $B \in \mathfrak{M}$ and $\mathfrak{ALab}((\mathfrak{M}', B)) = in$. Let $(\mathfrak{M}, A) \in \text{undec}(\mathfrak{ALab})$. We provide a proof by contradiction. First assume for each $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ it holds that $\mathfrak{ALab}((\mathfrak{M}', B)) = \mathsf{out}$. By Defi-nition 92, for each $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ it holds that $(\mathfrak{M}', B) \in \mathfrak{a}^+$. By Definition 18, we obtain that $(\mathfrak{M}, A) \in F(\mathfrak{a})$. By the fundamental lemma and by definition of complete semantics,

1	we obtain that $(\mathfrak{M}, A) \in \mathfrak{a}$. Therefore, by definition of $\mathfrak{a2}\mathfrak{ALab}$, we obtain $\mathfrak{ALab}((\mathfrak{M}, A)) = in$,	1
2	contradiction to the assumption $(\mathfrak{M}, A) \in \text{undec}(\mathfrak{ALab})$.	2
3	Now assume that there exists $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ such that $\mathfrak{ALab}((\mathfrak{M}', B)) = in$. By	3
4	Definition 92, $(\mathfrak{M}', B) \in \mathfrak{a}$. Hence $(\mathfrak{M}, A) \in \mathfrak{a}^+$. Therefore we obtain $\mathfrak{ALab}((\mathfrak{M}, A)) = \operatorname{out}$,	4
5	contradiction to our initial assumption. This concludes the proof of the statement.	5
6	(2) Let \mathfrak{ALab} be a complete labelling and let $\mathfrak{ALab}_{2\mathfrak{a}}(\mathfrak{ALab}) = \mathfrak{a}$. We show that $\mathfrak{ALab}_{2\mathfrak{a}}(\mathfrak{ALab}) = \mathfrak{a}$	6
7	is a complete extension.	7
8	We show that z is conflict fine Let (\mathfrak{M}, Λ) $(\mathfrak{M}', \mathcal{D}) \subset \mathfrak{T}$ By Definition 02 (\mathfrak{M}, Λ) $(\mathcal{C}, \mathcal{D}) \subset \mathfrak{T}$	8
9	• We show that a is conflict-free. Let $(\mathfrak{M}, A), (\mathfrak{M}', B) \in \mathfrak{a}$. By Definition 93, $(\mathfrak{M}, A), (C, D) \in \mathfrak{M}$	9
10	in (\mathfrak{ALab}) . Towards a contradiction, assume (\mathfrak{M}, A) attacks (\mathfrak{M}', B) , that is, $B \in \mathfrak{M}$. By defini-	10
11	tion of a complete labelling, we obtain $\mathfrak{ALab}((\mathfrak{M}, A)) = \text{out}$. Hence we obtain a contradiction.	11
12	• We show that $\mathfrak{a} = F(\mathfrak{a})$.	12
13	First, let $(\mathfrak{M}, A) \in \mathfrak{a}$. By Definition 93, $\mathfrak{ALab}((\mathfrak{M}, A)) = in$. By definition of a complete	13
14	labelling, for all $(\mathfrak{M}', B) \in arr$ with $B \in \mathfrak{M}$ it holds that $\mathfrak{ALab}((\mathfrak{M}', B)) = $ out. Hence, there	14
15	exists $(\mathfrak{M}'', C) \in \mathfrak{arr}$ with $C \in \mathfrak{M}'$ such that $\mathfrak{ALab}((\mathfrak{M}'', C)) = \mathrm{in}$. Hence, (\mathfrak{M}, A) is defended	15
16	by a against each attack. We obtain $(\mathfrak{M}, A) \in F(\mathfrak{a})$.	16
17	For the other direction, let $(\mathfrak{M}, A) \in F(\mathfrak{a})$. Each attacker of (\mathfrak{M}, A) is attacked by \mathfrak{a} : for all (\mathfrak{M}, P)	17
18	$(\mathfrak{M}', B) \in arr$ with $B \in \mathfrak{M}$ it holds that $(\mathfrak{M}', B) \in \mathfrak{a}^+$. Towards a contradiction, we assume	18
19	$\mathfrak{ALab}((\mathfrak{M},A)) \neq \text{in. Then } \mathfrak{ALab}((\mathfrak{M},A)) \in \{\text{out, undec}\}.$ We proceed by case distinction.	19
20	First assume, $\mathfrak{ALab}((\mathfrak{M}, A)) = \text{out. By Definition 17, there exists a } (\mathfrak{M}', B) \in \mathfrak{arr with } B \in \mathfrak{M}$	20
21	such that $\mathfrak{ALab}((\mathfrak{M}', B)) = in$. By Definition 93, $(\mathfrak{M}', B) \in \mathfrak{a}$. We obtain a contradiction since	21
22	a is conflict-free.	22
23	Now assume, $\mathfrak{ALab}((\mathfrak{M}, A)) =$ undec. By Definition 17, there is some $(\mathfrak{M}', B) \in \mathfrak{arr}$ with	23
24	$B \in \mathfrak{M}$ such that $\mathfrak{ALab}((\mathfrak{M}', B)) \neq \text{out}$, and there does not exist a $(\mathfrak{M}', B) \in \mathfrak{arr}$ with	24
25	$B \in \mathfrak{M}$ such that $\mathfrak{ALab}((\mathfrak{M}', B)) = in$. By the first condition, there is some $(\mathfrak{M}', B) \in \mathfrak{arr}$	25
26	such that $\mathfrak{ALab}((\mathfrak{M}', B)) \in \{ in, undec \}$. By the second condition, $\mathfrak{ALab}((\mathfrak{M}', B)) \neq in$.	26
27	Hence, there is some $(\mathfrak{M}', B) \in \mathfrak{arr}$ such that $\mathfrak{ALab}((\mathfrak{M}', B)) =$ undec. Since $(\mathfrak{M}', B) \in$	27
28	\mathfrak{a}^+ (by our initial assumption), there is some $(\mathfrak{M}'', C) \in \mathfrak{a}$ with $C \in \mathfrak{M}$. By Definition 93,	28
29	$\mathfrak{ALab}((\mathfrak{M}'', C)) = in$. By Definition 17, each arrow which is attacked by (\mathfrak{M}'', C) is labelled	29
30	out. Hence $\mathfrak{ALab}((\mathfrak{M}', B)) = $ out. Contradiction to the assumption that $\mathfrak{ALab}((\mathfrak{M}', B)) =$	30
31	undec.	31
32	We obtain $\mathfrak{ALab}((\mathfrak{M}, A)) = in$ and therefore, $(\mathfrak{M}, A) \in \mathfrak{a}$, as desired.	32
33	П	33
34		34
35	Theorem 95. Let $(\mathfrak{N}, \mathfrak{arr})$ be a SETAF and let $\mathfrak{a} \subseteq \mathfrak{arr}$. Then	35
36		36
37	(1) if a is a grounded extension then $a2\mathfrak{ALab}(a)$ is a grounded labelling;	37
38	(2) if a is a preferred extension then $a2\mathfrak{ALab}(a)$ is a preferred labelling;	38
39	(3) if a is a semi-stable extension then $a2\mathfrak{ALab}(a)$ is a semi-stable labelling;	39
40	(4) if a is a stable extension then $a2\mathfrak{ALab}(\mathfrak{a})$ is a stable labelling.	40
41		41
42	Proof. Let $\mathfrak{a2ALab}(\mathfrak{a}) = \mathfrak{ALab}$.	42
43	(1) Let a be the grounded extension. By Theorem 94, it holds that ALab is a complete labelling. We	43
44	show that $in(\mathfrak{ALab})$ is \subseteq -minimal among all complete arrow labellings. Towards a contradiction,	44
45	assume there is a complete labelling $AbLab'$ such that $in(\mathfrak{ALab'}) \subseteq in(\mathfrak{ALab})$. By Theorem 94,	45
46	$\frac{1}{2} = \frac{1}{2} + \frac{1}$	46

1	$\mathfrak{a}' = \operatorname{in}(\mathfrak{ALab}')$ is a complete extension. By Definition 92, $\operatorname{in}(\mathfrak{ALab}) = \mathfrak{a}$, hence there is a	1
2	complete extension \mathfrak{a}' such that $\mathfrak{a}' \subsetneq \mathfrak{a}$, contradiction to \subseteq -minimality of \mathfrak{a} . We obtain that \mathfrak{ALab}	2
3	is the grounded labelling.	3
4	(2) Let a be a preferred extension. By Theorem 94, it holds that ALab is a complete labelling. We	4
5	show that $in(\mathfrak{ALab})$ is \subseteq -maximal among all complete arrow labellings. Towards a contradiction,	5
6	assume there is a complete labelling $AbLab'$ such that $in(\mathfrak{ALab}) \subsetneq in(\mathfrak{ALab}')$. By Theorem 94,	6
7	$\mathfrak{a}' = \operatorname{in}(\mathfrak{ALab}')$ is a complete extension, contradiction to \subseteq -maximality of \mathfrak{a} . We obtain that \mathfrak{ALab}	7
8	is a preferred labelling.	8
9	(3) Let \mathfrak{a} be a semi-stable extension. By Theorem 94, it holds that \mathfrak{ALab} is a complete labelling. More-	9
10	over, by definition of semi-stable semantics, $\mathfrak{a} \cup \mathfrak{a}^+$ is \subseteq -maximal among all complete extensions.	10
11	We show that $undec(\mathfrak{ALab})$ is \subseteq -minimal among all complete labellings.	11
12	Towards a contradiction, suppose there is a complete labelling \mathfrak{ALab}' such that $undec(\mathfrak{ALab}') \subsetneq$	12
13	undec(\mathfrak{ALab}). By Theorem 94, $\mathfrak{a}' = \operatorname{in}(\mathfrak{ALab}')$ is a complete extension. By Definition 92,	13
14	undec(\mathfrak{ALab}') = $\mathfrak{arr} \setminus (\mathfrak{a}' \cup (\mathfrak{a}')^+)$. Hence, $\mathfrak{arr} \setminus (\mathfrak{a}' \cup (\mathfrak{a}')^+) \subsetneq \mathfrak{arr} \setminus (\mathfrak{a} \cup \mathfrak{a}^+)$, therefore,	14 15
15 16	$\mathfrak{a}' \cup (\mathfrak{a}')^+ \supseteq \mathfrak{a} \cup \mathfrak{a}^+$, that is, we have found a complete extension \mathfrak{a}' showing that \mathfrak{a} is not semi- stable contradiction to our initial assumption. We obtain that $\mathfrak{A}(\mathfrak{S}_{\mathcal{A}})$ is a semi-stable labelling	15
17	 stable, contradiction to our initial assumption. We obtain that ALab is a semi-stable labelling. (4) Let a be a stable extension. By Theorem 94, it holds that ALab is a complete labelling. Moreover, 	17
18	by definition of stable semantics, $\mathfrak{a} \cup \mathfrak{a}^+ = \mathfrak{arr}$. Hence, by Definition 92, $\operatorname{undec}(\mathfrak{ALab}) = \emptyset$. We	18
19	obtain that \mathfrak{ALab} is a stable labelling. \Box	19
20		20
21	Theorem 96. Let $(\mathfrak{N}, \mathfrak{arr})$ be a SETAF and let \mathfrak{ALab} be an arrow labelling. Then	21
22		22
23	(1) if \mathfrak{ALab} is a grounded labelling then $\mathfrak{ALab}\mathfrak{Lab}(\mathfrak{ALab})$ is a grounded extension;	23
24	 (2) if ALab is a preferred labelling then ALab2a(ALab) is a preferred extension; (2) if Alach is a gravit stable labelling then Alacha (ALab) is a gravit stable systematical stable stable	24
25	 (3) if ALab is a semi-stable labelling then ALab2a(ALab) is a semi-stable extension; (4) if ALab is a stable labelling then ALab2a(ALab) is a stable extension. 	25
26	(4) If $\alpha z \alpha \theta$ is a stable tabelling then $\alpha z \alpha \theta z \alpha (\alpha z \alpha \theta)$ is a stable extension.	26
27	Proof. Let $\mathfrak{ALab2a}(\mathfrak{ALab}) = \mathfrak{a}$.	27
28		28
29	(1) Let \mathfrak{ALab} be the grounded labelling. By Theorem 94, it holds that a is a complete extension.	29
30	We show that a is \subseteq -minimal among all complete extensions. Towards a contradiction, assume	30
31 32	there is a complete extension \mathfrak{a}' such that $\mathfrak{a}' \subsetneq \mathfrak{a}$. By Theorem 95, Theorem 94, $\mathfrak{a2ALab}(\mathfrak{a}')$ is a	31 32
33	complete arrow labelling. By Definition 92, $\mathfrak{a} = in(\mathfrak{ALab})$ and $\mathfrak{a}' = in(\mathfrak{a2ALab}(\mathfrak{a}'))$. There-	33
33 34	fore, $in(a2\mathfrak{ALab}(a')) \subsetneq in(\mathfrak{ALab})$, contradiction to the assumption that \mathfrak{ALab} is the grounded labelling. We obtain that a is grounded.	33 34
35	(2) Let ALCab be a preferred labelling. By Theorem 94, it holds that a is a complete extension. We	35
36	show that \mathfrak{a} is \subseteq -maximal among all complete extensions. Towards a contradiction, assume there	36
37	is a complete extension \mathfrak{a}' such that $\mathfrak{a}' \supseteq \mathfrak{a}$. By Theorem 95, Theorem 94, $\mathfrak{a}_2\mathfrak{A}\mathfrak{L}\mathfrak{a}\mathfrak{b}(\mathfrak{a}')$ is a com-	37
38	plete arrow labelling. By Definition 92, $a = in(\mathfrak{ALab})$ and $a' = in(\mathfrak{a2ALab}(a'))$. Therefore,	38
39	$in(\mathfrak{a}_{2}\mathfrak{A}_{\mathfrak{a}\mathfrak{b}}(\mathfrak{a}')) \supseteq in(\mathfrak{A}_{\mathfrak{a}\mathfrak{b}})$, contradiction to the assumption that $\mathfrak{A}_{\mathfrak{a}\mathfrak{b}}$ is \subseteq -maximal. We	39
40	obtain that a is preferred.	40
41	(3) Let ALab be a semi-stable labelling. By Theorem 94, it holds that ALab is a complete exten-	41
42	sion. Moreover, by definition of semi-stable semantics, $undec(\mathfrak{ALab})$ is \subseteq -minimal among all	42
43	complete labellings. We show that $\mathfrak{a} \cup \mathfrak{a}^+$ is \subseteq -maximal among all complete extensions.	43
44	Towards a contradiction, suppose there is a complete extension \mathfrak{a}' such that $\mathfrak{a}' \cup (\mathfrak{a}')^+ \supseteq \mathfrak{a} \cup \mathfrak{a}^+$.	44
45	By Theorem 95, Theorem 94, $\mathfrak{ALab}' = \mathfrak{a2ALab}(\mathfrak{a}')$ is a complete labelling. By Definition 92,	45
46		46

1	$undec(\mathfrak{ALab}') = \mathfrak{arr} \setminus (\mathfrak{a}' \cup (\mathfrak{a}')^+)$. Hence, $\mathfrak{arr} \setminus (\mathfrak{a}' \cup (\mathfrak{a}')^+) \subsetneq \mathfrak{arr} \setminus (\mathfrak{a} \cup \mathfrak{a}^+)$, and therefore,	1
2	undec $(\mathfrak{ALab}') \subsetneq$ undec (\mathfrak{ALab}) . That is, \mathfrak{ALab} is not a semi-stable labelling, contradiction to	2
3	our initial assumption. We conclude that \mathfrak{a} is semi-stable.	3
4	(4) Let ALab be a stable labelling. By Theorem 94, it holds that a is a complete extension. By definition	4
5	of stable labellings, $undec(\mathfrak{ALab}) = \emptyset$. Hence, each attack is either labelled \in or labelled out.	5
6	By Definition 93, $in(\mathfrak{ALab}) = \mathfrak{a}$. By Definition 17, if an attack (\mathfrak{M}, A) is labelled out then there	6
7	is $(\mathfrak{M}', B) \in \mathfrak{arr}$ such that $\mathfrak{ALab}((\mathfrak{M}', B)) = in$. Hence, $\mathfrak{a}^+ = \mathfrak{arr} \setminus \mathfrak{a}$. Consequently, $\mathfrak{a} \cup \mathfrak{a}^+ = \mathfrak{arr}$.	7
8	We obtain that \mathfrak{a} is stable. \Box	8
9		9
10	Lemma 97. Let $(\mathfrak{N}, \mathfrak{arr})$ be a SETAF.	10
11	(1) For a complete arrow labelling \mathfrak{ALab} it holds that $\mathfrak{a2ALab}(\mathfrak{ALab2a}(\mathfrak{ALab})) = \mathfrak{ALab}$.	11
12	(1) For a complete arrow extension a it holds that $\mathfrak{ALab2a}(\mathfrak{aLab2a}(\mathfrak{aLab2a}(\mathfrak{aLab2a})) = \mathfrak{a}$.	12
13	(2) For a complete arrow extension a it notas that $x \ge ao (a) (a \ge ao (a)) = a$.	13
14	Proof. (1) Let $\mathfrak{ALab2a}(\mathfrak{ALab}) = \mathfrak{a}$. We prove the following three properties, for an arbitrary arrow	14
15	$(\mathfrak{M}, A) \in \mathfrak{arr}.$	15
16		16
17	• If $AbLab((\mathfrak{M}, A)) = in$ then $\mathfrak{a2ALab}(\mathfrak{a})((\mathfrak{M}, A)) = in$.	17
18	Suppose $AbLab((\mathfrak{M}, A)) = in$. By Definition 93, $(\mathfrak{M}, A) \in \mathfrak{a}$. By Definition 92, we obtain	18
19	$\mathfrak{a2ALab}(\mathfrak{a})((\mathfrak{M},A)) = in.$	19
20	• If $\mathfrak{ALab}((\mathfrak{M}, A)) = $ out then $\mathfrak{a2ALab}(\mathfrak{a})((\mathfrak{M}, A)) = $ out.	20
21	Suppose $\mathfrak{ALab}((\mathfrak{M}, A)) = \text{out}$. Then by Definition of a complete arrow labelling, it follows	21
22	that there exists a $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ such that $\mathfrak{ALab}((\mathfrak{M}', B)) = in$. By Definition 93	22
23	$(\mathfrak{M}', B) \in \mathfrak{a}$. By Definition 92, we obtain $\mathfrak{a2ALab}(\mathfrak{a})((\mathfrak{M}', B)) = in$. We proceed by case	23
24	distinction.	24
25	First assume $\mathfrak{a2ALab}(\mathfrak{a})((\mathfrak{M}, A)) = in$. Then $\mathfrak{a2ALab}(\mathfrak{a})((\mathfrak{M}', B)) = out$, by definition of a	25
26	complete arrow labelling. Hence we obtain a contradiction.	26
27	Next assume $\mathfrak{a2ALab}(\mathfrak{a})((\mathfrak{M}, A)) = undec$. By definition of a complete arrow labelling, there	27
28	is some $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ such that $\mathfrak{a2ALab}(\mathfrak{a})((\mathfrak{M}', B)) \neq \text{out}$, and there does not	28
29	exist a $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ such that $\mathfrak{a2ALab}(\mathfrak{a})((Mh', B)) = in$. The latter condition	29
30	contradicts our assumption.	30
31	We obtain $\mathfrak{a2ALab}(\mathfrak{a})((\mathfrak{M}, A)) = \text{out}$, as desired.	31
32	• If $\mathfrak{ALab}((\mathfrak{M}, A)) =$ under then $\mathfrak{a2ALab}(\mathfrak{a})((\mathfrak{M}, A)) =$ under.	32
33	Suppose $AbLab((\mathfrak{M}, A)) = undec$. By definition of a complete arrow labelling, there is some	33
34	$(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ such that $\mathfrak{a2}\mathfrak{ALab}(\mathfrak{a})((\mathfrak{M}', B)) \neq out$, and there does not exist a	34
35	$(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ such that $\mathfrak{a2ALab}(\mathfrak{a})((Mh', B)) = in$.	35
36	To show that $\mathfrak{a2ALab}(\mathfrak{a})((\mathfrak{M}, A)) = undec$ we provide a proof by contradiction. Towards a	36
37	contradiction, assume $\mathfrak{a2ALab}(\mathfrak{a})((\mathfrak{M}, A)) \neq undec$. Then either $\mathfrak{a2ALab}(\mathfrak{a})((\mathfrak{M}, A)) = in$	37
38	or $\mathfrak{a2ALab}(\mathfrak{a})((\mathfrak{M}, A)) = \text{out}$. We proceed by case distinction.	38
39	First assume $\mathfrak{a2RLab}(\mathfrak{a})((\mathfrak{M}, A)) = in$. By Definition 92, $(\mathfrak{M}, A) \in \mathfrak{a}$. By Definition 93, we	39
40	obtain $\mathfrak{ALab}((\mathfrak{M}, A)) = \text{in.}$ This is a contradiction to $\mathfrak{ALab}((\mathfrak{M}, A)) = \text{undec.}$	40
41	Next assume $\mathfrak{a2ALab}(\mathfrak{a})((\mathfrak{M}, A)) = \text{out. By Definition 92, } (\mathfrak{M}, A) \in \mathfrak{a}^+$. By definition of	41
42	a complete arrow extension, there is some $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ and $(\mathfrak{M}', B) \in \mathfrak{a}$. By	42
43	Definition 93, $\mathfrak{ALab}((\mathfrak{M}', B)) = in$. This is a contradiction to the assumption that there does	43
44 45	not exist a $(\mathfrak{M}', B) \in \mathfrak{arr}$ with $B \in \mathfrak{M}$ such that $\mathfrak{ALab}(\mathfrak{M}', B)) = in$.	44 45
45 46	Hence we can conclude $\mathfrak{a2RLab}(\mathfrak{a})((\mathfrak{M}, A)) = undec.$	45 46
40		40

M. Caminada et al. / Attack Semantics and Collective Attacks Revisited

	Consider a complete arrow extension a. By Definition 92, $in(a2\mathfrak{ALab}(\mathfrak{a})) = \mathfrak{a}$. By Definition 93, $\mathfrak{ALab2a}(a2\mathfrak{ALab}(\mathfrak{a})) = in(\mathfrak{a2ALab}(\mathfrak{a}))$. Therefore, we obtain $\mathfrak{ALab2a}(\mathfrak{a2ALab}(\mathfrak{a})) = \mathfrak{a}$. \Box	
	rem 98. When restricted to complete node labellings and complete arrow labellings, the functions 2a and a2ALab become bijections and each other's inverses.	
Proof	f. This follows directly from Lemma 97. \Box	
Appe	endix K. Equivalence of Node Extensions and Arrow Extensions for SETAFs	
	this section, we will provide proofs regarding the equivalence of node and arrow extensions. We the functions	
	$\mathfrak{Args2a} = \mathfrak{ALab2a} \circ \mathfrak{NLab2ALab} \circ \mathfrak{Args2NLab}$	
and		
	$\mathfrak{a2Args} = \mathfrak{Args2NLab} \circ \mathfrak{ALab2NLab} \circ \mathfrak{ALab2a}.$	
Theo	rem 99. Let $(\mathfrak{N}, \mathfrak{arr})$ be a SETAF and let $\mathfrak{M} \subseteq \mathfrak{N}$ and $\mathfrak{a} \subseteq \mathfrak{arr}$. It holds that:	
	If \mathfrak{M} is complete node extension then then $\mathfrak{Args2a}(\mathfrak{M})$ is a complete arrow extension. If \mathfrak{a} is a complete arrow extension, then $\mathfrak{a2Args}(\mathfrak{a})$ is a complete node extension.	
(2)	When restricted to complete node labellings and complete arrow labellings, the functions $\mathfrak{Arg52a}$ and $\mathfrak{a}_2\mathfrak{Arg5}$ become bijections and each other's inverses.	
(3)	If \mathfrak{M} is a grounded node extension, then $\mathfrak{Args2a}(\mathfrak{M})$ is a grounded arrow extension.	
	If a is a grounded arrow extension, then $a2\mathfrak{Args}(\mathfrak{a})$ is a grounded node extension. If \mathfrak{M} is a preferred node extension, then $\mathfrak{Args2a}(\mathfrak{M})$ is a preferred arrow extension.	
	If a is a preferred arrow extension, then $\mathfrak{acgsza}(\mathfrak{M})$ is a preferred arrow extension. If a is a preferred arrow extension, then $\mathfrak{acggsg}(\mathfrak{a})$ is a preferred node extension.	
	If \mathfrak{M} is a stable node extension, then $\mathfrak{Args2a}(\mathfrak{M})$ is a stable arrow extension.	
	If \mathfrak{a} is a stable arrow extension, then $\mathfrak{a}_2\mathfrak{Args}(\mathfrak{a})$ is a stable node extension.	
Proof	f. (1) First, let \mathfrak{M} is complete node extension. By [15, Theorem 5.10, Theorem 5.11] (and	
	as summarised in Table 8), $\mathfrak{Args2MLab}(\mathfrak{M})$ is a complete node labelling. By Theorem 21,	
	$\mathfrak{NLab}_{2\mathfrak{ALab}}(\mathfrak{Args}_{2\mathfrak{NLab}}(\mathfrak{M}))$ is a complete arrow labelling.	
	Finally, by Theorem 96, $\mathfrak{ALab2a}(\mathfrak{NLab2ALab}(\mathfrak{Args2NLab}(\mathfrak{M}))) = \mathfrak{Args2a}(\mathfrak{M})$ is a complete	
	arrow extension.	
	Now, let a a complete arrow extension. By Theorem 95, $a2\mathfrak{ALab}(a)$ is a complete arrow labelling.	
	By Theorem 21, $\mathfrak{ALab2MLab}(\mathfrak{a2ALab}(\mathfrak{a}))$ is a complete node labelling. Finally, by [15, Theorem	
	5.10, Theorem 5.11], $\mathfrak{NLab}_{\mathfrak{A}\mathfrak{B}\mathfrak{C}\mathfrak{A}\mathfrak{B}\mathfrak{C}\mathfrak{A}\mathfrak{B}\mathfrak{C}\mathfrak{A}\mathfrak{B}\mathfrak{L}\mathfrak{a}\mathfrak{b}(\mathfrak{a}\mathfrak{A}\mathfrak{L}\mathfrak{a}\mathfrak{b}(\mathfrak{a}))) = \mathfrak{a}\mathfrak{A}\mathfrak{rgs}(\mathfrak{a})$ is a complete node	
	extension.	
	By [15, Theorem 5.10, Theorem 5.11], Theorem 21, and Theorem 98.	
	Analogous to point 1.	
	Analogous to point 1.	
(5)	Analogous to point 1.	

2.0

2.2

We note that the above result does not apply to semi-stable semantics. As a counter-example, we refer to Example 91.

Appendix L. Connection Between Argumentation Frameworks and SETAFs

Recall Definition 22. As with AFs (see Definition 43), we can turn SETAF "inside out" as well. We want to emphasise that the resulting framework is still an AF, even if we turn a SETAF inside out. Moreover, note that the following result subsumes Theorem 44, as every AF can be seen as a SETAF. The following theorem is a slightly reformulated version of Theorem 23 from Section 4, i.e., the

following proof establishes Theorem 23.

Theorem 100. Let $\mathfrak{SF} = (\mathfrak{N}, \mathfrak{arr})$ be a SETAF and $AF_{\mathfrak{SF}} = (N, arr)$ be its inside-out framework.

- (1) If \mathfrak{ALab} is a complete arrow labelling of $\mathfrak{S}\mathfrak{F}$, then \mathfrak{ALab} is a complete node labelling of $AF_{\mathfrak{S}\mathfrak{F}}$. If NLab is a complete node labelling of $AF_{\mathfrak{SF}}$, then NLab is a complete arrow labelling of \mathfrak{SF} .
- (2) If ALab is a preferred (resp. grounded or stable) arrow labelling of SF, then ALab is a preferred (resp. grounded or stable) node labelling of $AF_{\mathfrak{S}\mathfrak{F}}$. If NLab is a preferred (resp. grounded, stable or semi-stable) node labelling of $AF_{\mathfrak{S}\mathfrak{F}}$, then NLab
 - is a preferred (resp. grounded, stable or semi-stable) arrow labelling of \mathfrak{SS} .

Proof. (1) This follows directly from the definition of a complete node labelling (Definition 17, first three bullet points), the definition of a complete arrow labelling (Definition 20, first three bullet points) and the definition of an inside out argumentation framework (Definition 22).

(2) This follows directly from point 1, together with the definition of a preferred (resp. grounded, stable or semi-stable) node labelling (Definition 17) and the definition of a preferred (resp. grounded, stable or semi-stable) arrow labelling (Definition 20).

Because of Theorem 100 (point 3) the well-behavedness of arrow labellings carries over from argumentation frameworks to SETAF: as arrow labellings are essentially node labellings (of the inside out argumentation framework) they satisfy the standard properties of node labellings described in the literature. Hence, Theorem 61 follows from [33, Definition 5, Definition 6 and Theorem 1], Lemma 62 follows from [33, Lemma 1], Lemma 63 follows from [11, Lemma 2] and Theorem 64 follows from [33, Theorem 6, Theorem 7].

Appendix M. ABA semantics reformulated

The way arguments are defined in Definition 27 is slightly different from the original definition in [30]. This means that even though the definition of a set of assumptions attacking an assumption (Definition 30 is the same as the notion of attack in the ABA literature [30], our definition of attack refers to a different kind of argument and is therefore slightly different. We now show that nevertheless the two notions of attack coincide and that therefore the derived concepts of defence and semantics are equivalent no matter which notion of argument is used.

Since arguments in [30] are derivation trees as given in Definition 26, the equivalence results will be given in terms of arguments and derivations as given in Definitions 27 and 26, respectively.

Len	nma 101. Let $D = (\mathcal{L}, \mathcal{R}, \mathcal{A},)$ be an ABAF.
(1)	<i>The notion of a set of assumptions Asms</i> $\subseteq A$ <i>attacking an assumption</i> $\alpha \in A$ <i>is equivalent when</i>
	using arguments or derivations in Definition 30.
(2)	The notion of a set of assumptions $Asms_1 \subseteq A$ attacking a set of assumption $Asms_2 \subseteq A$ is
	equivalent when using arguments or derivations in Definition 30.
(3)	The set $Asms^+$ of a set of assumptions $Asms \subseteq A$ is equivalent when using arguments or deriva-
	tions in Definition 30.
(4)	The notion of a set of assumptions Asms $\subseteq A$ being conflict-free is equivalent when using arguments or derivations in Definition 30.
(5)	The notion of a set of assumptions Asms $\subseteq A$ defending an assumption $\alpha \in A$ is equivalent when using arguments or derivations in Definition 30.
(6)	The set $F(Asms)$ of a set of assumption $Asms \subseteq A$ is equivalent when using arguments or derivations in Definition 30.
Pro	of. We prove all items.
(1)	There exists an ABA-argument $(Asms', \bar{\alpha})$ iff there exists at least one ABA-derivation for $\bar{\alpha}$ supported by <i>Asms'</i> . Thus, <i>Asms</i> attacks α no matter whether the notion of argument or derivation is used in the definition.
(2)	As $ms_1 \subseteq A$ attacks $Asms_2 \subseteq A$ iff $Asms_1$ attacks some $\alpha \in Asms_2$. Thus, the claim follows by the first item.
(3)	For a set of assumptions $Asms \subseteq A$, $Asms^+ = \{ \alpha \in A \mid Asms \text{ attacks } \alpha \}$. Thus, the claim follows
(4)	by the first item. \Box
	By the third item a set of assumptions $Asms \subseteq A$ is conflict-free no matter whether the notion of argument or derivation is used in the definition.
(5)	Asms $\subseteq A$ defends $\alpha \in A$ iff each Asms' attacking α is attacked by Asms. Thus, the claim follows by the first three items.
(6)	For a set of assumptions $Asms \subseteq A$, $F(Asms) = \{ \alpha \in A \mid \alpha \text{ is defended by } Asms \}$. Thus, the claim follows by the fourth item. \Box
W	e now proceed to prove that the semantics in ABA are equivalent no matter whether the notion of
	A arguments or derivation trees is used in the definition.
1101	arguments of derivation trees is used in the definition.
The	orem 102. Let $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{})$ be an ABAF.
(1)	The notion of a set of assumptions Asms $\subseteq \mathcal{A}$ being an admissible assumption set is equivalent when using arguments on derivations in Definition 21
(\mathbf{n})	when using arguments or derivations in Definition 31. The notion of a set of assumptions Asms $\subseteq A$ being a complete (resp. grounded, preferred, semi-
(2)	stable, stable) assumption extension is equivalent when using arguments or derivations in Defini-
	tion 31.
Pro	of. We prove both statements
(1)	admissible: By Lemma 101.
	• complete: By Lemma 101.
.)	• grounded: By the equivalence of complete assumption extensions.
	• preferred: By the equivalence of complete assumption extensions.
	• preferred. By the equivalence of complete assumption extensions.

M. Caminada et al. / Attack Semantics and Collective Attacks Revisited

Asms⁺ is equivalent independent of the underlying notion.

• stable: Same as semi-stable. \Box

uniformity with the rest of the paper.

• semi-stable: By the equivalence of complete assumption extensions and because by Lemma 101 As mentioned in Section 5, the way preferred and stable semantics in the context of ABAFs were defined in Definition 31 is slightly different from the way these were originally defined in [12, 30]. We have chosen to describe all ABA semantics in a uniform way, based on the notion of complete semantics. This has been done to allow for easy conversion between extensions and labellings, as well as to provide

We will now proceed to show that our description of the ABA semantics in Definition 31 is equivalent to the original description in [12, 30]. Since the notion of admissible sets and complete extensions are simply reformulations of the definitions in [12, 30] in terms of the function F introduced here, we start with proving equivalence for the preferred semantics. **Theorem 103.** Let $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{})$ be an ABAF and Asms $\subseteq \mathcal{A}$. The following two statements are *equivalent*: (1) The set Asms is a maximal admissible assumption set of D (2) The set Asms is a maximal complete assumption extension of D**Proof.** (From 1 to 2) Let Asms be a maximal admissible assumption set. From [12, Corollary 5.8] it follows that Asms is a complete assumption extension. Suppose Asms is not maximal complete. Then there exists a complete assumption extension Asms' with Asms \subseteq Asms'. However, since by definition, every complete assumption extension is also an admissible assumption set, it holds that Asms' is an admissible assumption set. But this would mean that Asms is not a maximal admissible assumption set; contradiction. (From 2 to 1) Let Asms be a maximal complete assumption extension. Then by definition, Asms is also an admissible assumption set. We now need to prove that it is also a maximal admissible assumption set. Suppose this is not the case, then there exists a maximal admissible assumption set Asms' with Asms \subseteq Asms'. It follows from [12, Corollary 5.8] that Asms' is also a complete assumption extension. But this would mean that *Asms* is not a *maximal* complete assumption extension; contradiction. The next thing to show is that our description of stable semantics (Definition 31) is equivalent with the way stable semantics was originally defined in [12]. **Theorem 104.** Let $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{})$ be an ABAF and Asms $\subseteq \mathcal{A}$. The following two statements are *equivalent*: (1) Asms is a conflict-free assumption set that attacks every assumption in $A \setminus Asms$ (2) Asms is a complete assumption extension with $Asms \cup Asms^+ = A$ **Proof.** (From 1 to 2) Let Asms is a conflict-free assumption set attacking every assumption in $\mathcal{A} \setminus Asms$. Thus, if $\alpha \notin Asms$, then $\alpha \in Asms^+$. Since Asms is conflict-free, if $\alpha \in Asms$, then $\alpha \notin Asms^+$. It

follows that if $\alpha \in A$, then $\alpha \in Asms$ or $\alpha \in Asms^+$, i.e. $\mathcal{A} = Asms \cup Asms^+$. Clearly, if Asms' attacks Asms, then Asms counter-attacks Asms', so Asms is admissible. Since no superset of Asms is conflict-free,

it even be complete.

2.2

2.0

2.2

(From 2 to 1) Let Asms is a complete assumption extension with $Asms \cup Asms^+ = A$. Thus, if $\alpha \in A$, then $\alpha \in Asms$ or $\alpha \in Asms^+$. It follows that for every assumption $\alpha \in A \setminus Asms$, it holds that $\alpha \in Asms^+$, so α is attacked by Asms. Since Asms is complete, it is conflict-free. \Box

2.0

2.2

Using the lemmas and theorems provided in this section, we will now prove Theorem 32 from Section 5.

Theorem 32. Let $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{})$ be an ABAF.

- (1) The set Asms $\subseteq A$ is an admissible assumption set according to Definitions 26-31 iff Asms is an admissible assumption set according to the definitions in [12, 30].
- (2) The set Asms $\subseteq A$ is a complete (resp. grounded, preferred, semi-stable or stable) assumption extension according to Definitions 26-31 iff Asms is a complete (resp. grounded, preferred, semi-stable or stable) assumption extension according to the definitions in [12, 29, 30]

Proof. We prove both items.

- (1) By Theorem 102 and because the notion of admissible assumption set used here is a simple reformulation of the one in [12, 30]: In [30], a set of assumption Asms is defined as an admissible assumption set iff it does not attack itself and it attacks every set of assumptions Asms' that attacks Asms. However, by definition, Asms attacks every set of assumptions Asms' that attacks Asms iff Asms ⊆ F(Asms).
 - (2) By Theorems 102, 103, and 104 and because by the same reasoning as for the first item, the notion of complete assumption extension is a reformulation of the definitions in [12, 30] in terms of the function *F*. □

In the following, we investigate how the slightly altered notion of ABA-arguments (Definition 27 influences the associated AF as compared to [30]. Since arguments in [30] are equivalent to derivation trees in Definition 26, we will prove the results in terms of derivation trees. However, exactly the same results hold with respect to arguments as defined in [30].

Definition 105. Given an ABAF $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{})$, we say that a derivation tree for c_1 supported by $Asms_1$ derivation-attacks a derivation tree for c_2 supported by $Asms_2$ iff $c_1 = \bar{\gamma}$ for some $\gamma \in Asms_2$.

Note that Definition 105 is equivalent to the notion of attack in [30].

Definition 106. Given an ABAF $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{})$, the associated derivation AF AF_{derD} is defined as (N_{der}, arr_{der}) with N_{der} being the set of derivation trees, and arr_{der} being the derivation-attack relation among derivation trees.

Definition 106 is equivalent to the associated AF as defined in [30].

Lemma 107. Let $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{})$ be an ABAF, AF_D the associated AF, and AF_{derD} the associated derivation AF. The following are equivalent:

- (1) There exists an ABA-argument (Asms, c) in AF_D .
- (2) There exists a derivation tree for c supported by Asms in AF_{derD} .

2.2

set of all derivation trees supported by the set Asms of assumptions and having conclusion c. \Box **Lemma 108.** Let $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{})$ be an ABAF, $AF_D = (N, arr)$ the associated AF, and AF_{derD} the associated derivation AF. The following are equivalent: (1) The ABA-argument (Asms₁, c_1) attacks the ABA-argument (Asms₂, c_2) in AF_D. (2) A derivation tree for c_1 supported by Asms₁ derivation-attacks a derivation tree for c_2 supported by $Asms_2$ in AF_{derD} . (3) All ABA-derivations for c_1 supported by Asms₁ derivation-attack all derivation trees for c_2 supported by $Asms_2$ in AF_{derD} . **Proof.** (1 to 2) Assume that the ABA-argument $(Asms_1, c_1)$ attacks the ABA-argument $(Asms_2, c_2)$ in AF_D . By Lemma 107 there exists a derivation tree for c_1 supported by $Asms_1$ and a derivation tree for c_2 supported by Asms₂ in AF_{derD}. Since (Asms₁, c_1) attacks (Asms₂, c_2), by Definition 27 $c_1 = \bar{\gamma}$ for some $\gamma \in Asms_2$. Thus, by Definition 105 the derivation tree for c_1 supported by $Asms_1$ derivation-attacks the derivation tree for c_2 supported by Asms₂. (2 to 1) Analogously. (2 to 3) Assume that a derivation tree for c_1 supported by $Asms_1$ derivation-attacks a derivation tree for c_2 supported by Asms₂. By Definition 105, $c_1 = \bar{\gamma}$ for some $\gamma \in Asms_2$. Since this holds for all derivation trees for c_1 supported by Asms₁ and all derivation tree for c_2 supported by Asms₂, by Definition 105 all derivation trees for c_1 supported by Asms₁ derivation-attack all derivation trees for c_2 supported by Asms₂. (3 to 2) Analogously. \Box **Theorem 109.** Let $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{})$ be an ABAF, $AF_D = (N, arr)$ the associated AF, and $AF_{derD} =$ (N_{der}, arr_{der}) the associated derivation AF. Let $M \subseteq N$ be a set of ABA-arguments and let $Mder \subseteq N_{der}$ be a set of derivations such that all derivations for c supported by Asms are in Mder iff (Asms, $c) \in M$. Then M is an admissible set of AF_D iff Mder is an admissible set of AF_{derD} . **Proof.** (left to right) Assume M is an admissible set of AF_D and assume that Mder is not an admissible set of AF_{derD} . Then either *Mder* is not conflict-free or $F(Mder) \not\subseteq Mder$. Assume first that *Mder* is not conflict-free, i.e. there exists some ABA-derivation for c_2 supported by $Asms_2$ contained in *Mder* and contained in *Mder*⁺. This means that there exists some derivation tree for c_1 supported by Asms₁ in Mder which derivation-attacks the derivation tree for c_2 supported by Asms₂ in Mder. By the definition of M and by Lemma 107, there exist ABA-arguments (Asms₁, c_1) and $(Asms_2, c_2)$ in M, and by Lemma 108 $(Asms_1, c_1)$ attacks $(Asms_2, c_2)$. Thus, M is not conflict free; contradiction. Assume now that $F(Mder) \not\subseteq Mder$, i.e. there exists some derivation tree for c_3 from Asms₃ in *Mder* which is not defended by *Mder*. This means that there exists a derivation tree for c_4 from Asms₄

derivation-attacking the derivation tree for c_3 from Asms₃ and the derivation tree for c_4 from Asms₄ is not derivation-attacked by any derivation tree in *Mder*. By the definition of *M* and by Lemma 107 there exists an ABA-argument (Asms₃, c_3) in M and there exists an ABA-argument (Asms₄, c_4) which

by Lemma 108 attacks ($Asms_3, c_3$) and ($Asms_4, c_4$) is not attacked by any argument in *Mder*. Thus,

 $(Asms_3, c_3)$ is not defended by M and therefore $(Asms_3, c_3) \notin F(M)$; contradiction.

1	(right to left) Assume that <i>Mder</i> is an admissible set of AF_{derD} and that M is not an admissible set	1
2	of AF_D . Then either M is not conflict-free or $F(M) \not\subseteq M$. Assume first that M is not conflict-free,	2
3	i.e. there exists some ABA-argument $(Asms_1, c_1)$ contained in M and contained in M^+ . Consequently,	3
4	$(Asms_1, c_1)$ is attacked by some ABA-argument $(Asms_2, c_2) \in M$. By Lemma 108, all derivation trees	4
5	for c_1 supported by $Asms_1$ are derivation-attacked by all derivation trees for c_2 supported by $Asms_2$. By	5
6	definition of <i>Mder</i> , all derivation trees for c_1 supported by $Asms_1$ and all derivation trees for c_2 supported	6
7	by Asms ₂ are contained in Mder. Thus, $Mder \cap Mder^+ \neq \emptyset$ which contradicts the assumption that Mder	7
8	is an admissible set.	8
9	Assume now that $F(M) \not\subseteq M$, i.e. there exists some ABA-argument for $(Asms_3, c_3) \in M$ which is not	9
10	defended by M. This means that there exists an ABA-argument $(Asms_4, c_4)$ attacking $(Asms_3, c_3)$ which	10
11	is not attacked by any argument in M. By Lemma 108, all derivation trees for c_4 from Asms ₄ derivation-	11
12	attack all derivation trees for c_3 from Asms ₃ . Furthermore, by the definition of Mder all derivation trees	12
13	for c_4 from $Asms_4$ are not derivation-attacked by any derivation tree in <i>Mder</i> and all derivation trees for	13
14	c_3 from Asms ₃ are contained in Mder. This means that all derivation trees for c_3 from Asms ₃ are not	14
15	defended by <i>Mder</i> ; contradiction. \Box	15
16		16
17	Theorem 110. Let $D = (\mathcal{L}, \mathcal{R}, \mathcal{A},)$ be an ABAF, $AF_D = (N, arr)$ the associated AF, and $AF_{derD} =$	17
18	(N_{der}, arr_{der}) the associated derivation AF. Let $M \subseteq N$ be a set of ABA-arguments and let $Mder \subseteq N_{der}$	18
19	be a set of derivations such that all derivations for c supported by Asms are in Mder iff (Asms, $c) \in M$.	19
20	Then M is a complete (resp. grounded, preferred, semi-stable, stable) extension of AF_D iff M der is a	20
21	complete (resp. grounded, preferred, stable) extension of AF_{derD} .	21
22		22
23	Proof. We prove the statement for all listed semantics.	23
24 25	• complete: Analogue to the proof of Theorem 109.	24 25
25	• grounded: Follows from complete.	25
20 27	• preferred: Follows from complete.	20
28	• semi-stable:	28
29	(left to right) Assume M is a semi-stable extension of AF_D and assume that Mder is not a semi-	29
30	stable extension of AF_{derD} , i.e. there exists some <i>Mder'</i> such that	30
31		31
32	$Mder \cup Mder^+ \subsetneq Mder' \cup Mder'^+.$	32
33	7	33
34	Thus, there exists some derivation tree for some c supported by some Asms in Mder' or in $Mder'^+$	34
35	which is not contained in <i>Mder</i> and is not contained in <i>Mder</i> ⁺ . By the definition of <i>Mder</i> , the	35
36	argument $(Asms, c)$ it not contained in M. By Lemma 108 since the derivation tree for c sup-	36
37	ported by Asms is not in $Mder^+$, there is no ABA-argument in M attacking (Asms, c) and therefore	37
38	$(Asms, c) \notin M^+$. Since $M \cup M^+$ is maximal, there exists no M' such that $(Asms, c)$ is contained	38
39	in M' or M' ⁺ . Consequently by the definition of Mder and by Lemma 107, there exists no Mder'	39
40	such that <i>Mder'</i> contains an derivation tree for <i>c</i> supported by <i>Asms</i> . Furthermore, by Lemma 108,	40
41	no derivation tree for c supported by Asms is contained in $Mder'^+$; contradiction.	41
42	(right to left) Assume <i>Mder</i> is a semi-stable extension of AF_{derD} and assume that <i>M</i> is not a semi-	42
43	stable extension of AF_D , i.e. there exists some M' such that	43
44		44
45	$M\cup M^+ \subsetneq M'\cup M'^+.$	45
46		46

is not contained in M^+ . By the definition of <i>Mder</i> , no derivation tree for <i>c</i> supported by <i>Asms</i> is contained in <i>Mder</i> . However, by Lemma 107 there exists at least one derivation tree for <i>c</i> supported
by Asms in N_{der} . By Lemma 108 since $(Asms, c) \notin M^+$ there is no derivation tree in <i>Mder</i> which
derivation attacks the derivation tree for c supported by Asms and therefore the derivation tree for c
supported by Asms is not in $Mder^+$. Since $Mder \cup Mder^+$ is maximal, there exists no $Mder'$ such
that the derivation tree for c supported by Asms is contained in $Mder'$ or $Mder'^+$. Consequently
by the definition of <i>Mder</i> and by Lemma 107, there exists no M' such that M' contains (Asms, c).
Furthermore, by Lemma 108, (Asms, c) is not contained in M'^+ ; contradiction.
• stable:
(left to right) Assume M is a stable extension of AF_D and assume that Mder is not a stable extension
of AF_{derD} , i.e. $Mder \cup Mder^+ \neq N_{der}$. This means there exists some derivation tree for some
conclusion c supported by some Asms in N_{der} which is not contained in Mder and not contained
in $Mder^+$. By definition of $Mder$, the ABA-argument $(Asms, c)$ is not contained in M . Since M is
a stable extension, $(Asms, c) \in M^+$. This means that $(Asms, c)$ is attacked by an ABA-argument
$(Asms_1, c_1) \in M$. By Lemma 107 there is at least one derivation tree for c_1 supported by $(Asms_1)$ in
N_{der} . By definition of <i>Mder</i> , all derivation trees for c_1 supported by $(Asms_1)$ are contained in <i>Mder</i>
and by Lemma 108 they all attack the derivation of c supported by Asms. Thus, the derivation of c
supported by Asms is contained in $Mder^+$; contradiction.
(right to left) Assume <i>Mder</i> is a stable extension of AF_{derD} and assume that <i>M</i> is not a stable extension of AF_D , i.e. $M \cup M^+ \neq N_{der}$. This means that there exists some ABA-argument (<i>Asms</i> , c) $\in N$
which is not contained in M and not contained in M^+ . By definition of <i>Mder</i> , no derivation tree
for c supported by Asms is contained in Mder, but by Lemma 107 there exists at least one deriva-
tion for c supported by Asms in AF_{derD} . Since Mder is a stable extension, all derivation trees for c
supported by Asms are contained in $Mder^+$. This means that there exist some derivation trees for
some c_1 supported by some Asms ₁ which attack all derivation trees for c supported by Asms. By
definition of <i>Mder</i> , the argument ($Asms_1, c_1$ is contained in <i>Mder</i> and by Lemma 108 ($Asms_1, c_1$)
attacks (Asms, c). Thus, (Asms, c) $\in M^+$; contradiction. \Box
Theorem 35. Let $D = (\mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{})$ be an ABAF, \mathfrak{SF}_D be the associated SETAF, and Asms $\subseteq \mathcal{A}$. It holds
that
(1) Asms is a complete extension of $\mathfrak{S}_{\mathfrak{F}_D}$ iff Asms is a complete extension of D in the sense of [12, 30];
(2) Asms is a grounded extension of $\mathfrak{S}_{\mathfrak{F}_D}$ iff Asms is a grounded extension of D in the sense of [12, 30];
(3) Asms is a preferred extension of \mathfrak{S}_D iff Asms is a preferred extension of D in the sense of [12, 30];
(4) Asms is a semi-stable extension of \mathfrak{S}_D iff Asms is a semi-stable extension of D in the sense of
[35];
(5) Asms is a stable extension of \mathfrak{SF}_D iff Asms is a stable extension of D in the sense of [12, 30].
Droof This follows directly from definitions 20, 21, 15, 16 and 22.
Proof. This follows directly from definitions 30, 31, 15, 16 and 33. \Box
Proposition 36. Let $AF_1 = (N_1, arr_1)$ and $AF_2 = (N_2, arr_2)$ be two AFs such that conditions (1) and
(2) are met.
(i) If $NLab_1$ is a complete (resp. grounded, preferred or stable) node labelling of AF_1 , then
$NLab_2 = NLab_1 \cup \{(A, in) \mid A \in N_2 \setminus N_1, \ \forall (B, A) \in arr_2 : NLab_1(B) = out\}$

M. Caminada et al. / Attack Semantics and Collective Attacks Revisited

$$\cup \{ (A, \texttt{out}) \mid A \in N_2 \setminus N_1, \exists (B, A) \in arr_2 : NLab_1(B) = \texttt{in} \}$$

$$\cup \{ (A, undec) \mid A \in N_2 \setminus N_1, \ \neg \forall (B, A) \in arr_2 : NLab_1(B) = \text{out},$$

$$\neg \exists (B,A) \in arr_2 : NLab_1(B) = in \}$$

is a complete (resp. grounded, preferred or stable) node labelling of AF₂.

(ii) If $NLab_2$ is a complete (resp. grounded, preferred or stable) node labelling of AF_2 , then $NLab_1$ is a complete (resp. grounded, preferred or stable) node labelling of AF_1 .

Proof. Let $AF_1 = (N_1, arr_1)$ and $AF_2 = (N_2, arr_2)$ be two AFs such that conditions (1) and (2) are met. For complete, grounded, and preferred semantics, the result is an immediate consequence of the directionality principle. It remains to prove the proposition for stable semantics.

- (i) Let $NLab_1$ be stable, i.e., $NLab_1$ is a complete labelling such that $undec(NLab_1) = \emptyset$. By directionality, it holds that $NLab_2$ is a complete node labelling of AF_2 . To show that $NLab_2$ is a stable node labelling it suffices to prove that $undec(NLab_2) = \emptyset$.
- Let $A \in N_2$. In case $A \in N_1$, we have either $NLab_2(A) = in$ or $NLab_2(A) = out$ since $NLab_1$ is stable. Therefore, $NLab_2(A) \neq undec$ in this case.
- ¹⁸ Now, let $A \in N_2 \setminus N_1$. By condition (2), A receives no incoming attacks from nodes in $N_2 \setminus N_1$. ¹⁹ Therefore, all attackers of A are either labelled in or out. We proceed by case distinction: (a) all ²⁰ incoming attackers of A are labelled out. Then A is labelled in, by definition of $NLab_2$. (b) there ²¹ is an incoming attacker of A that is labelled in. Then A is labelled out, by definition of $NLab_2$. ²² Since no node in N_1 is labelled undec, the case distinction is exhaustive. This proves that $NLab_2$ ²³ is a stable node labelling of AF_2 .
- (ii) Let $NLab_2$ be a stable node labelling of AF_2 . It holds that $NLab_1$ is a complete node labelling of AF_1 (by directionality); moreover, undec $(NLab_1) = \emptyset$. Therefore, we obtain that $NLab_1$ is a stable node labelling of AF_1 . \Box

Proposition 37. Let *D* be an ABAF. Let \mathfrak{SF}_D be the associated SETAF and let $AF_{\mathfrak{SF}_D}$ be its inside-out AF. Let AF_D be the AF associated with *D*. Then the relation between $AF_1 := AF_{\mathfrak{SF}_D}$ and $AF_2 := AF_D$ is as described in (1) and (2) (up to argument names).

Proof. Let $AF_D = AF_2 = (N_2, arr_2)$ be the AF associated with D. Suppose A is an node that has some out-going arrow. Then, by definition, A is some ABA-argument of the form $A = (Asms, \overline{\gamma})$ where γ is some assumption in D. Again by definition the SETAF \mathfrak{S}_D contains some arrow (Asms, γ) and consequently the inside-out AF $AF_{\mathfrak{S}} = AF_1 = (N_1, arr_1)$ contains an argument $B = (Asms, \gamma)$ corresponding to this arrow. Thus we can assign to any node A in AF_D with an out-going arrow a corresponding node B in $AF_{\mathfrak{S}\mathfrak{F}_D}$. In the same vein, the arrow relation is preserved: If there is an arrow from $A_1 = (Asms_1, \overline{\gamma_1})$ to $A_2 = (Asms_2, \overline{\gamma_2})$ in AF_D , then there is an arrow from $B_1 = (Asms_1, \gamma_1)$ to $B_2 = (Asms_2, \gamma_2) \text{ in } AF_{\mathfrak{S}\mathfrak{F}_D}.$

⁴⁰ Vice versa, if $B = (Asms, \gamma)$ is a node in the inside-out AF $AF_{\mathfrak{SF}_D}$, then we can similarly argue that ⁴¹ there is some ABA-argument of the form $A = (Asms, \overline{\gamma})$ in AF_D . This node must have at least one out-⁴² going arrow in AF_D since it entails the contrary of γ . The arrow relation is preserved analogously. \Box