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Abstract. In the current paper, we re-examine the relationship between Assumption-Based Argu-
mentation (ABA) and logic programming (LP). For this, we specify a procedure that, given a flat
ABA frameworks with unique non-assumption contraries, yields an associated logic program such
that the 3-valued stable (resp. well-founded, regular, (2-valued) stable, and ideal) models of the
logic program coincide with the complete (resp. grounded, preferred, stable, and ideal) assumption
labellings of the ABA framework. Moreover, we show how our results on the translation from ABA
to LP can be reapplied for a reverse translation from LP to ABA, and observe that some of the exist-
ing results in the literature are in fact special cases of our work. Overall, we show that a frequently
used fragment of ABA (flat ABA frameworks with unique non-assumption contraries under com-
plete, grounded, preferred, stable, or ideal semantics) can be seen as a form of logic programming.

1. Introduction

Assumption-Based Argumentation (ABA) [2, 7, 23] has become one of the leading approaches for formal
argumentation. On the one hand, it is an instance of Abstract Argumentation under many well-studied
semantics [8, 23], on the other it generalizes logic programming, default logic and other non-monotonic
reasoning systems [2, 20] and has as such proven useful for explaining [19] as well as visualizing [17]
logic programs under certain semantics. In addition to the “normal” notion of acceptability used in many
argumentation formalism, ABA is equipped with a dialectical notion of acceptability [22] which has for
instance been applied in agent dialogues [11]. ABA has also proven useful in various application domains
ranging from medicine [6] over decision making [13] and negotiation [15] to legal reasoning [9].
∗Supported by the Engineering and Physical Sciences Research Council (EPSRC, UK), grant ref. EP/J012084/1 (SAsSy
project).
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Although ABA was originally specified in a very general way [2], some of the more recent work (like
[7, 23, 20]) has focused on flat ABA frameworks (meaning that no assumption can occur in the head of
a rule) with a unique contrary for every assumption. Here, we will study a fragment of this type of ABA
framework, to be referred to as normal ABA framework, where in addition the contraries of assumptions
are non-assumptions. We will focus on some of the most commonly studied ABA semantics (complete,
grounded, preferred, stable, and ideal) which we will refer to as common ABA semantics.

One particular question that has been studied in the literature is how ABA relates to logic program-
ming (LP). Usually, this is done in the form of a translation from LP to ABA [2, 20, 19] and showing
that ABA is powerful enough to capture LP. In the current paper, we go the other way around. That is,
we provide a translation from ABA to LP and show that LP is powerful enough to capture a frequently
studied fragment of ABA, i.e. normal ABA frameworks under common ABA semantics.

2. Formal Preliminaries

In the current section, we provide a number of key definitions on Assumption-Based Argumentation
(ABA) and Logic Programming (LP).

Definition 2.1. An Assumption-Based Argumentation (ABA) Framework is a tuple 〈L,R,A, 〉̄ where L
is a set of atoms1, R is a set of inference rules based on this language, A ⊆ L is a set of assumptions,
and¯ : A → L is a function that maps each assumption χ ∈ A to what is called its contrary χ.

We say that an ABA framework is flat [2] iff assumptions only occur in the body of the inference
rules, and not in the head. Furthermore, we notice that each assumption has a unique contrary. Although
this deviates from some generalized work on ABA, where an assumption has a set of possible contraries
[14, 11, 12], or where a set of sentences (containing at least one assumption) is associated with a set of
sentences which together form the contrary [21], in a lot of work on ABA [8, 7, 23, 18] it is common
for the authors to restrict themselves to assumptions with unique contraries as originally defined [2]. In
addition, we will here often restrict ourselves to a fragment of ABA where the contrary of an assumption
cannot be an assumption, but only a non-assumption, i.e. where ¯ : A → L \ A. In [5] it is shown
that this does not affect the expressiveness of ABA. In the current paper, we will use the term normal
ABA frameworks for flat ABA frameworks where assumptions have unique contraries which are non-
assumptions.

Definition 2.2. Let F = 〈L,R,A, 〉̄ be an ABA framework. An ABA argument Asms ` x for conclu-
sion x ∈ L supported by assumptions Asms ⊆ A is a finite tree with nodes labelled with sentences in L
or with the special symbol TRUE2, such that:

• the root is labelled with x

• for every node N:

1This is to ensure that no formula contains strong negation or disjunction, which do not have a semantic meaning in ABA but
do in a logic program, which could cause problems when translating an ABA framework to a logic program.
2We assume that the special symbol TRUE, just like the special symbols FALSE and UNDEFINED do not occur in any ABA
framework. So TRUE, FALSE, UNDEFINED 6∈ L.
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– if N is a leaf node, then N is labelled with an assumption or with TRUE

– if N is not a leaf node and z ∈ L is the label of N, then there exists a rule in R of the form
z ← y1, . . . , yn and either n = 0 and N has just a single child that is labelled with TRUE, or
n > 0 and N has n children, labelled with y1, . . . , yn respectively

– Asms is the set of all assumptions labelling leaf nodes

Based on the definition of an ABA argument, we proceed to introduce ABA semantics. For this, we
apply the notion of assumption labellings [18].

Definition 2.3. Let F = 〈L,R,A, 〉̄ be an ABA framework. An assumption labelling of F is a total
function Lab : A → {IN, OUT, UNDEC}. We denote by IN(Lab) the set of all assumptions labelled IN

by Lab, and similarly by OUT(Lab) and UNDEC(Lab) the sets of assumptions labelled OUT and UNDEC,
respectively. An assumption labelling Lab is called a complete assumption labelling of F iff for each
χ ∈ A it holds that:

1. if Lab(χ) = IN then for each argument Asms ` χ it holds that Asms ∩ OUT(Lab) 6= ∅

2. if Lab(χ) = OUT then there exists an argument Asms ` χ such that Asms ⊆ IN(Lab)

3. if Lab(χ) = UNDEC then there exists an argument Asms ` χ such that Asms ∩ OUT(Lab) = ∅,
and for each argument Asms ` χ it holds that Asms 6⊆ IN(Lab)

We now introduce some new results and definitions which will be needed for the comparison of ABA
and LP semantics. Firstly, we observe that the set of IN assumptions of a complete assumption labelling
Lab1 is a subset of or equal to the set of IN assumptions of another complete assumption labelling Lab2
if and only if the set of OUT assumptions of Lab1 is a subset of or equal to the set of OUT assumptions
of Lab2.

Lemma 2.4. Let F = 〈L,R,A, 〉̄ be an ABA framework, and let Lab1 and Lab2 be complete assump-
tion labellings of F . It holds that IN(Lab1) ⊆ IN(Lab2) iff OUT(Lab1) ⊆ OUT(Lab2).

Proof:
“⇒”: Assume that IN(Lab1) ⊆ IN(Lab2). Let χ ∈ OUT(Lab1). Then, by the definition of a complete
assumption labelling (Definition 2.3) there exists an ABA argument Asms ` χ with Asms ⊆ IN(Lab1).
Since IN(Lab1) ⊆ IN(Lab2) it follows that Asms ⊆ IN(Lab2). So by Lemma 1 in [18], χ ∈ OUT(Lab2).
“⇐”: Assume that OUT(Lab1) ⊆ OUT(Lab2). Let χ ∈ IN(Lab1). Then, by the definition of a com-
plete assumption labelling (Definition 2.3) it holds that each ABA argument Asms ` χ has Asms ∩
OUT(Lab1) 6= ∅. Since OUT(Lab1) ⊆ OUT(Lab2) it follows that Asms ∩ OUT(Lab2) 6= ∅. So by
Lemma 1 in [18], χ ∈ IN(Lab2). ut

We now extend the notion of assumption labellings from the complete semantics as introduced in [18]
to other well-known ABA semantics, which were previously defined in terms of extensions rather than
labellings [2, 23]. Note that there exists a one-to-one correspondence between the assumption labellings
and the assumption extensions of an ABA framework. In essence, the set of IN-labelled assumptions of a
complete (resp. grounded, preferred, stable, or ideal) assumption labelling constitutes a complete (resp.
grounded, preferred, stable, or (maximal) ideal) assumption extension.
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Definition 2.5. Let F = 〈L,R,A, 〉̄ be an ABA framework. A complete assumption labelling Lab of
F is called:

1. a grounded assumption labelling iff IN(Lab) is minimal (w.r.t. ⊆) among all complete assumption
labellings of F

2. a preferred assumption labelling iff IN(Lab) is maximal (w.r.t. ⊆) among all complete assumption
labellings of F

3. a stable assumption labelling iff UNDEC(Lab) = ∅

4. an ideal assumption labelling iff IN(Lab) is maximal (w.r.t. ⊆) among all complete assumption
labellings of F with IN(Lab) ⊆

⋂
{IN(Labpref ) | Labpref is a preferred assumption labelling of

F}

As complete, grounded, preferred, stable, and ideal semantics are well-studied within ABA, we refer
to these as the common ABA semantics.

Now that we have introduced the preliminaries of Assumption-Based Argumentation, we shift our
attention to logic programming. We start with formally introducing the notion of a logic program.

Definition 2.6. A logic programming rule is an expression x← y1, . . . , yn, not z1, . . . , not zm (n ≥ 0,
m ≥ 0) where x, each yi (1 ≤ i ≤ n) and each zj (1 ≤ j ≤ m) is an atom, and not represents negation
as failure. We say that x is the head of the rule, and y1, . . . , yn, not z1, . . . , not zm the body of the rule.
Moreover, we say that y1, . . . , yn is the strong part of the body, and not z1, . . . , not zm is the weak part
of the body. We assume the presence of three special atoms TRUE, FALSE and UNDEFINED that can only
occur in the strong part of the body. A NAF-literal is an expression not w, where w is an atom. We say a
rule is NAF-free iff it does not contain any NAF-literal (that is, iff m = 0). A logic program P is a finite
set of logic programming rules. A logic program is NAF-free iff each of its rules is NAF-free. A logic
program is called normal3 iff none of its rules contains the special atoms TRUE, FALSE or UNDEFINED.
The Herbrand Base of a logic program P (written as HBP ) is the set of all atoms in P .

In the following, we recall the definitions of LP semantics.

Definition 2.7. A 3-valued interpretation of a logic program P is a pair 〈T, F 〉 where T, F ⊆ HBP and
T ∩ F = ∅.

When P is a NAF-free logic program (possibly containing TRUE, FALSE or UNDEFINED), we write
Φ(P ) for its unique minimal 3-valued model 〈TΦ, FΦ〉 in the sense of [16] (with minimal TΦ and max-
imal FΦ). We proceed to define the well-known Gelfond-Lifschitz reduct in the context of a 3-valued
interpretation as done in [16].

Definition 2.8. The reduct of a logic program P w.r.t. a 3-valued interpretationMod = 〈T, F 〉, written
as PMod is obtained by replacing each NAF literal not x by TRUE if x ∈ F , by FALSE if x ∈ T , and by
UNDEFINED otherwise.
3In general the term “normal” is used for logic programs without strong negation, which is the case for the logic programs
considered here. The notion of “normal logic program” used here is thus a special case of its general usage.
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Since PMod is a NAF-free program, it has a unique minimal 3-valued model, written as Φ(PMod).
We now recall different logic programming semantics which are based on 3-valued models [16]. Notice
that although our definition of well-founded and regular models is slightly different from what is in
the literature, equivalence is shown in [4]. We also define a new semantics based on 3-valued models,
namely ideal models, inspired by the idea of ideal scenarios for logic programs [1]. In fact our ideal
models coincide with ideal scenarios [5].

Definition 2.9. Let P be a logic program andMod = 〈T, F 〉 a 3-valued interpretation of P . We say
thatMod is:

• a 3-valued stable model iff Φ(PMod) =Mod

• a well-founded model iffMod is a 3-valued stable model where T is minimal (w.r.t. ⊆) among all
3-valued stable models of P

• a regular model [25] iffMod is a 3-valued stable model where T is maximal (w.r.t. ⊆) among all
3-valued stable models of P

• a (2-valued) stable model iffMod is a 3-valued stable model where T ∪ F = HBP

• an ideal model iff Mod is a 3-valued stable model where T is maximal (w.r.t. ⊆) among all
3-valued stable models of P with T ⊆

⋂
{Treg | 〈Treg, Freg〉 is a regular model of P}

We sometimes refer to 3-valued stable, well-founded, regular, (2-valued) stable, and ideal semantics
as the common LP semantics.

3. Translating ABA Theories to Logic Programs

In order to compare ABA to logic programming, we first introduce a translation from a normal ABA
framework to a logic program. The idea is to take the rules of the ABA framework and substitute each
assumption by the NAF literal of its contrary. This means that different assumptions might be substituted
by the same NAF literal if they have the same contrary.

Definition 3.1. Let F = 〈L,R,A, 〉̄ be a normal ABA framework. We define the associated logic
program PF as {x ← y1, . . . , yn, not z1, . . . , not zm | x ← y1, . . . , yn, ζ1, . . . , ζm ∈ R and
∀i ∈ {1 . . .m} : ζi = zi}, where HBPF = {w | w or not w occurs in a rule of PF}.

As we assume that no ABA framework contains the special symbols TRUE, FALSE or UNDEFINED, the
associated logic program will not contain any of these symbols, so PF is a normal logic program. Note
also that since F is a normal ABA framework, i.e. the contrary of assumptions are non-assumptions,
HBPF contains no atoms which are assumptions in F .

Example 3.2. LetF = 〈L,R,A, 〉̄ be an ABA framework withA = {α, β, γ, δ},L = A∪{a, b, c, d, e},
α = a, β = b, γ = e, δ = a, andR = {a← β; b← α; b← δ; c← ; d← b, c}.
The associated logic program PF is: {a ← not b; b ← not a; c ← ; d ← b, c}, which comprises one
rule less than the ABA framework, with HBPF = {a, b, c, d}.
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One of the main aims of the current paper is to examine how ABA semantics are related to logic
programming semantics. For this, we introduce the functions Lab2Mod and Mod2Lab to convert between
ABA assumption labellings and logic programming models.

To convert an assumption labelling to a 3-valued interpretation, we start by “inverting” the labelling.
That is, we construct an interpretation 〈T ′, F ′〉 where T ′ contains the contraries of the assumptions that
are OUT, whereas F ′ contains the contraries of the assumptions that are IN. However, since we started
with assumptions, this will only yield the status of atoms which are contraries of assumptions. In order
to obtain the status of all atoms in the logic program (including those that are not the contrary of any
assumption in the ABA framework) we perform a simple trick: apply the Gelfond-Lifschitz reduct.

To convert a 3-valued interpretation to an assumption labelling, the idea is again to “invert” the
interpretation. The assumptions whose contrary is in F will be labelled IN. The assumptions whose
contrary is in T will be labelled OUT. The assumptions whose contrary is in the Herbrand Base, but not
in T or F will be labelled UNDEC. The only remaining case is what to do with the assumptions whose
contrary is not even in the Herbrand Base. This case occurs if there exists an assumption in the ABA
framework which is not part of any inference rule itself and nor is its contrary. As these assumptions
cannot have any attackers, they will simply be labelled IN.

Definition 3.3. Let F = 〈L,R,A, 〉̄ be a normal ABA framework and let PF be the associated logic
program. We define a function Lab2Mod that, given an assumption labelling Lab of F , yields the 3-
valued interpretation Φ(P

〈T ′,F ′〉
F ) where T ′ = {χ | χ ∈ OUT(Lab)} ∩ HBPF and F ′ = {χ | χ ∈

IN(Lab)} ∩ HBPF . We also define a function Mod2Lab that, given a 3-valued interpretation 〈T, F 〉 of
PF , yields an assumption labellingLab ofF with IN(Lab) = {χ ∈ A | χ ∈ F}∪{χ ∈ A | χ 6∈ HBPF},
OUT(Lab) = {χ ∈ A | χ ∈ T} and UNDEC(Lab) = {χ ∈ A | χ ∈ HBPF \ (T ∪ F )}

We observe that the functions Lab2Mod and Mod2Lab provide a one-to-one mapping between the
complete assumption labellings of F and the 3-valued stable models of PF .

Theorem 3.4. Let F = 〈L,R,A, 〉̄ be a normal ABA framework and let PF be the associated logic
program. It holds that

1. if Lab is a complete assumption labelling of F then Lab2Mod(Lab) is a 3-valued stable model of
PF

2. ifMod is a 3-valued stable model of PF then Mod2Lab(Mod) is a complete assumption labelling
of F

3. when restricted to complete assumption labellings and 3-valued stable models, Lab2Mod and
Mod2Lab become bijections which are each other’s inverses

Proof:

1. Let Lab be a complete assumption labelling of F and let 〈T, F 〉 be Lab2Mod(Lab). That is,
〈T, F 〉 = Φ(P

〈T ′,F ′〉
F ) where T ′ = {χ | χ ∈ OUT(Lab)} ∩HBPF and F ′ = {χ | χ ∈ IN(Lab)} ∩

HBPF . We first observe that 〈T ′, F ′〉 is a well-defined 3-valued interpretation of PF . This is
because T ′, F ′ ⊆ HBPF and T ′ ∩ F ′ = ∅, the latter following from the facts that IN(Lab) ∩
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OUT(Lab) = ∅ and that two assumptions that have the same contrary also have the same label in
Lab. From the fact that 〈T ′, F ′〉 is a well-defined 3-valued interpretation of PF , it follows that
also 〈T, F 〉 = Φ(P

〈T ′,F ′〉
F ) is a well-defined 3-valued interpretation of PF .

We also observe that applying the Gelfond-Lifschitz reduct (with 〈T ′, F ′〉) does not change the
status of the NAF-literals (see [5] for details). That is, for every NAF-literal not x occurring in
some rule of PF : if x ∈ T ′ then x ∈ T , if x ∈ F ′ then x ∈ F , and if x ∈ HBPF \ (T ′ ∪ F ′) then
x ∈ HBPF \ (T ∪ F ).
So 〈T ′, F ′〉 and 〈T, F 〉 agree on the NAF-literals of PF . It should be noted that whenever two
3-valued interpretations Mod1 and Mod2 of some logic program P agree on the NAF-literals
of P , the respective reducts PMod1 and PMod2 are equal (after all, for determining the Gelfond-
Lifschitz reduct, only the NAF literals are relevant). Hence, in our particular case, we have that
P
〈T ′,F ′〉
F = P

〈T,F 〉
F , so also Φ(P

〈T ′,F ′〉
F ) = Φ(P

〈T,F 〉
F ). From Φ(P

〈T ′,F ′〉
F ) = 〈T, F 〉 it then directly

follows that 〈T, F 〉 = Φ(P
〈T,F 〉
F ), so 〈T, F 〉 is a 3-valued stable model of PF . As by definition

〈T, F 〉 = Φ(P
〈T ′,F ′〉
F ) it directly follows that Φ(P

〈T ′,F ′〉
F ) is a 3-valued stable model of PF .

2. LetMod be a 3-valued stable model of PF , Lab = Mod2Lab(Mod), and χ ∈ A. It can be shown
[5] that:
if χ ∈ IN(Lab) then for each ABA argument Asms ` χ it holds that Asms ∩ OUT(Lab),
if χ ∈ OUT(Lab) then there exists an ABA argument Asms ` χ with Asms ⊆ IN(Lab), and
if χ ∈ UNDEC(Lab) then there is no ABA argument Asms ` χ with Asms ⊆ IN(Lab) and there
is an ABA argument Asms ` χ with Asms ∩ OUT(Lab) = ∅.
This means the conditions of Definition 2.3 are satisfied, so Lab is a complete assumption la-
belling.

3. It suffices to prove that ifLab is a complete assumption labelling then Mod2Lab(Lab2Mod(Lab)) =
Lab, and ifMod is is a 3-valued stable model then Lab2Mod(Mod2Lab(Mod)) =Mod.
As for the first equivalence that has to be proved, let Lab be a complete assumption labelling of
F , and let χ ∈ A. We distinguish four cases.

(a) χ ∈ IN(Lab) and χ ∈ HBPF . Then, by definition of F ′ (w.r.t. Lab2Mod(Lab)) it follows
that χ ∈ F ′. As we have observed earlier (in point 1 of the current theorem) it holds that
if the contrary of a particular assumption is in F ′, then it is also in F . Hence, χ ∈ F , with
〈T, F 〉 = Lab2Mod(Lab). From the definition of Mod2Lab it then follows that χ is labelled
IN by Mod2Lab(Lab2Mod(Lab)).

(b) χ ∈ IN(Lab) and χ 6∈ HBPF . We first observe that, χ does not occur in T or F of PF . From
the definition of Mod2Lab it then follows that χ is labelled IN by Mod2Lab(Lab2Mod(Lab)).

(c) χ ∈ OUT(Lab). From point 2 or Definition 2.3 it follows that there exists an ABA argument
for χ under F . This means that χ is the head of a rule, so χ ∈ HBPF . It then follows
that χ ∈ T ′. As we have observed earlier (in point 1 of the current theorem) it holds that
if the contrary of a particular assumption is in T ′ then it is also in T . Hence, χ ∈ T , with
〈T, F 〉 = Lab2Mod(Lab). From the definition of Mod2Lab it then follows that χ is labelled
OUT by Mod2Lab(Lab2Mod(Lab)).

(d) χ ∈ UNDEC(Lab). From point 3 of Definition 2.3 it follows that there exists an ABA ar-
gument for χ under F . This means that χ is the head of a rule, so χ ∈ HBPF . Fur-
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thermore, from the definition of T ′ and F ′ it follows that χ 6∈ T ′ and χ 6∈ F ′. Hence,
χ ∈ HBPF \ (T ′ ∪ F ′). As we have observed earlier (in point 1 of the current theorem) it
holds that if the contrary of a particular assumption is in HBPF \ (T ′ ∪ F ′) then it is also in
HBPF \ (T ∪ F ). Hence, χ ∈ HBPF \ (T ∪ F ), with 〈T, F 〉 = Lab2Mod(Lab). From the
definition of Mod2Lab it then follows that χ is labelled UNDEC by Mod2Lab(Lab2Mod(Lab)).

So overall, we observe that if χ is labelled IN (respectively OUT or UNDEC) by Lab then χ is la-
belled IN (respectively OUT or UNDEC) by Mod2Lab(Lab2Mod(Lab)), so Mod2Lab(Lab2Mod(Lab))
⊇ Lab. Furthermore, Mod2Lab(Lab2Mod(Lab)) does not assign any additional labels other than
the ones assigned by Lab: It can easily be verified that Lab and Mod2Lab(Lab2Mod(Lab)) label
the same set of assumptions A. Then, since IN(Lab)∪ OUT(Lab)∪ UNDEC(Lab) = A, it follows
that Mod2Lab(Lab2Mod(Lab)) = Lab.
Due to space limitations, we have to refer to [5] for the second equivalence.

ut

Example 3.5. Consider again F and PF from Example 3.2. F has three complete assumption la-
bellings: Lab1 = {(α, IN), (β, OUT), (γ, IN), (δ, IN)}, Lab2 = {(α, OUT), (β, IN), (γ, IN), (δ, OUT)},
and Lab3 = {(α, UNDEC), (β, UNDEC), (γ, IN), (δ, UNDEC)}. PF has three 3-valued stable models:
Mod1 = 〈{c, b, d}, {a}〉, Mod2 = 〈{c, a}, {b, d}〉, and Mod3 = 〈{c}, {}〉. It is easy to verify the
correspondences between complete assumption labellings and 3-valued stable models, e.g. Mod1 =
Lab2Mod(Lab1) and Lab1 = Mod2Lab(Mod1).

Theorem 3.4 is important, since in ABA complete semantics is the basis of various other semantics
(like grounded, preferred, ideal, and stable), just like in LP 3-valued stable models are the basis of various
other semantics (like well-founded, regular, ideal, and (2-valued) stable). For instance, where preferred
semantics takes the complete assumption labellings and selects those with maximal IN, regular semantics
takes the 3-valued stable models and selects those with maximal T . Hence, to prove equivalence between
preferred semantics in ABA and regular semantics in logic programming, we need to show that there’s an
equivalence (through the functions Lab2Mod and Mod2Lab) between the complete assumption labellings
with maximal IN and the 3-valued stable models with maximal T . For this purpose, we first introduce the
following lemma on the correspondence of the set of IN assumptions of a complete assumption labelling
and T of a 3-valued stable model.

Lemma 3.6. Let F = 〈L,R,A, 〉̄ be a normal ABA framework and PF the associated logic pro-
gram. Let Lab1 and Lab2 be complete assumption labellings of F , and let Mod1 = 〈T1, F1〉 =
Lab2Mod(Lab1) and Mod2 = 〈T2, F2〉 = Lab2Mod(Lab2). It holds that IN(Lab1) ⊆ IN(Lab2) iff
T1 ⊆ T2.

Proof:
“⇒”: Assume that IN(Lab1) ⊆ IN(Lab2). FromMod1 = Lab2Mod(Lab1) it follows that 〈T1, F1〉 =

Φ(P
〈T ′1,F ′1〉
F ) with T ′1 = {χ | χ ∈ OUT(Lab1)} ∩ HBPF and F ′1 = {χ | χ ∈ IN(Lab1)} ∩ HBPF . From

Mod2 = Lab2Mod(Lab2) it follows that 〈T2, F2〉 = Φ(P
〈T ′2,F ′2〉
F ) with T ′2 = {χ | χ ∈ OUT(Lab2)} ∩

HBPF and F ′2 = {χ | χ ∈ IN(Lab2)} ∩ HBPF . From the fact that IN(Lab1) ⊆ IN(Lab2) it follows
(Lemma 2.4) that OUT(Lab1) ⊆ OUT(Lab2), so we obtain that T ′1 ⊆ T ′2. It then follows that T1 ⊆ T2

(see [5] for details).
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“⇐”: Since Lab2Mod and Mod2Lab are each other’s inverses (point 3 of Theorem 3.4) it follows that
Lab1 = Mod2Lab(Mod1) and Lab2 = Mod2Lab(Mod2). From the definition of Mod2Lab it then
follows that OUT(Lab1) = {χ ∈ A | χ ∈ T1} and OUT(Lab2) = {χ ∈ A | χ ∈ T2}. From T1 ⊆ T2

it then follows that OUT(Lab1) ⊆ OUT(Lab2). From Lemma 2.4 it then follows that IN(Lab1) ⊆
IN(Lab2). ut

From the fact that for complete assumption labellings and 3-valued stable models Lab2Mod and
Mod2Lab are each other’s inverses, it follows that Lemma 3.6 can also be applied for two 3-valued stable
modelsMod1 andMod2 of PF and the associated assumption labellings Lab1 = Mod2Lab(Mod1) and
Lab2 = Mod2Lab(Mod2) of F . We will sometimes do so in the proof of the following theorem.

Theorem 3.7. Let F = 〈L,R,A, 〉̄ be a normal ABA framework and let PF be the associated logic
program. It holds that:

1. if Lab is a grounded assumption labelling of F then Lab2Mod(Lab) is a well-founded model of
PF

2. ifMod is a well-founded model of PF then Mod2Lab(Mod) is a grounded assumption labelling
of F

3. if Lab is a preferred assumption labelling of F then Lab2Mod(Lab) is a regular model of PF

4. ifMod is a regular model of PF then Mod2Lab(Mod) is a preferred assumption labelling of F

5. if Lab is a stable assumption labelling of F then Lab2Mod(Lab) is a (2-valued) stable model of
PF

6. ifMod is a (2-valued) stable model of PF then Mod2Lab(Mod) is a stable assumption labelling
of F

7. if Lab is an ideal assumption labelling of F then Lab2Mod(Lab) is an ideal model of PF

8. ifMod is an ideal model of PF then Mod2Lab(Mod) is an ideal assumption labelling of F

Proof:

1. Let Lab be a grounded assumption labelling of F , and letMod = Lab2Mod(Lab) withMod =
〈T, F 〉. Then, from Theorem 3.4 it follows thatMod is a 3-valued stable model of PF . In order to
show thatMod is also a well-founded model of PF we have to additionally prove that T is minimal
among all 3-valued stable models of PF . LetMod∗ = 〈T ∗, F ∗〉 be an arbitrary 3-valued stable
model of PF . We have to prove that if T ∗ ⊆ T then T ∗ = T . Suppose T ∗ ⊆ T . Then, according to
Lemma 3.6, IN(Lab∗) ⊆ IN(Lab), with Lab∗ = Mod2Lab(Mod∗). From Lab being a grounded
assumption labelling of F , it follows that IN(Lab) is minimal among all complete assumption
labellings of F . Hence, from IN(Lab∗) ⊆ IN(Lab) it follows that IN(Lab∗) = IN(Lab), so
IN(Lab∗) ⊇ IN(Lab). From Lemma 3.6 it then follows that T ∗ ⊇ T , which together with T ∗ ⊆ T
implies that T ∗ = T . Hence,Mod is a well-founded model of PF .
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2. Let Mod = 〈T, F 〉 be a well-founded model of PF , and let Lab = Mod2Lab(Mod). From
Theorem 3.4 it then follows that Lab is a complete assumption labelling of F . In order to
show that Mod is also a grounded assumption labelling of F we have to additionally prove
that IN(Lab) is minimal among all complete assumption labellings of F . Let Lab∗ be an arbi-
trary complete assumption labelling of F . We have to prove that if IN(Lab∗) ⊆ IN(Lab) then
IN(Lab∗) = IN(Lab). Suppose IN(Lab∗) ⊆ IN(Lab). Then, according to Lemma 3.6, T ∗ ⊆ T ,
with 〈T ∗, F ∗〉 = Mod∗ = Lab2Mod(Lab∗). FromMod being a well-founded model of PF , it
follows that T is minimal among all 3-valued stable models of PF . Hence, from T ∗ ⊆ T it fol-
lows that T ∗ = T , so T ∗ ⊇ T . From Lemma 3.6 it then follows that IN(Lab∗) ⊇ IN(Lab), which
together with IN(Lab∗) ⊆ IN(Lab) implies that IN(Lab∗) = IN(Lab). Hence, Lab is a grounded
assumption labelling of F .

3. Similar to 1, but assuming T ∗ ⊇ T to show that T is maximal.

4. Similar to 2, but assuming IN(Lab∗) ⊇ IN(Lab) to show that IN(Lab) is maximal.

5. Proof by contraposition. Suppose thatMod = 〈T, F 〉 = Lab2Mod(Lab) is not a (2-valued) stable
model of PF . In caseMod is not even a 3-valued stable model of PF , Theorem 3.4 implies that
Lab is not a complete assumption labelling of F , so Lab is also not a stable assumption labelling
of F . In the remainder of this proof, we will therefore treat the case thatMod is a 3-valued stable
model of PF . From the fact thatMod is not a (2-valued) stable model of PF it then follows that
T ∪F 6= HBPF , so there exists a x ∈ HBPF \ (T ∪F ). It follows that there exists some not z in
PF which is used in the “derivation” of x such that z ∈ HBPF , and z 6∈ T ′ and z 6∈ F ′ (see [5] for
details) whereMod = Lab2Mod(Lab) = Φ(P

〈T ′,F ′〉
F ) with T ′ = {χ | χ ∈ OUT(Lab)} ∩ HBPF

and F ′ = {χ | χ ∈ IN(Lab)} ∩ HBPF . Then there exists ζ ∈ A such that ζ = z. It then follows
from the definition of Lab2Mod that ζ 6∈ OUT(Lab) and ζ 6∈ IN(Lab), so ζ ∈ UNDEC(Lab). This
then implies that UNDEC(Lab) 6= ∅, so Lab is not a stable assumption labelling of F .

6. Proof by contraposition. Suppose that Lab = Mod2Lab(Mod) is not a stable assumption labelling
of F . In case Lab is not even a complete assumption labelling of F , Theorem 3.4 implies that
Mod is not a 3-valued stable model of PF , soMod is also not a (2-valued) stable model of PF .
In the remainder of this proof, we will therefore treat the case that Lab is a complete assumption
labelling of F . From the fact that Lab is not a stable assumption labelling of F it then follows that
UNDEC(Lab) 6= ∅, so there exists an χ ∈ UNDEC(Lab). That is, χ ∈ UNDEC(Mod2Lab(Mod)).
From the definition of Mod2Lab it then follows that χ ∈ HBPF \ (T ∪ F ), so T ∪ F 6= HBPF , so
Mod is not a (2-valued) stable model of PF .

7. Let Lab be an ideal assumption labelling of F , i.e. IN(Lab) is maximal among all complete
assumption labellings of F with IN(Lab) ⊆

⋂
{IN(Labpref ) | Labpref is a preferred assump-

tion labelling of F}. By Theorem 3.4 Mod = 〈T, F 〉 = Lab2Mod(Lab) is a 3-valued stable
model of PF . Since for all preferred assumption labellings Labpref of F it holds that IN(Lab) ⊆
IN(Labpref ), it follows by Lemma 3.6 that T ⊆ Treg for all Modreg = Lab2Mod(Labpref ) =
〈Treg, Freg〉. Furthermore, by Theorem 3.7 (point 3) all Modreg are regular models of PF .
Thus, Mod is a 3-valued stable model of PF with T ⊆

⋂
{Treg | 〈Treg, Freg〉 is a regular

model of PF}. To show that in addition T is maximal among all 3-valued stable models of
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PF with T ⊆
⋂
{Treg | 〈Treg, Freg〉 is a regular model of PF}, let Mod∗ = 〈T ∗, F ∗〉 be

a 3-valued stable model of PF with T ∗ ⊆
⋂
{Treg | 〈Treg, Freg〉 is a regular model of PF}.

We have to prove that if T ∗ ⊇ T then T ∗ = T . Suppose T ∗ ⊇ T . Since for every regular
model Modreg = 〈Treg, Freg〉 of PF it holds that T ∗ ⊆ Treg, it follows from Lemma 3.6 that
IN(Lab∗) ⊆ IN(Labpref ) where Lab∗ = Mod2Lab(Mod∗) and Labpref = Mod2Lab(Modreg).
Furthermore by Theorem 3.7 (point 4), allLabpref are preferred assumption labellings ofF . Thus,
IN(Lab∗) ⊆

⋂
{IN(Labpref ) | Labpref is a preferred assumption labelling of F}. But by Lemma

3.6 also IN(Lab∗) ⊇ IN(Lab). However, since IN(Lab) is also maximal among all complete as-
sumption labellings of F with IN(Lab) ⊆ {IN(Labpref is a preferred assumption labelling of F},
it follows that IN(Lab∗) = IN(Lab), so trivially IN(Lab∗) ⊆ IN(Lab). From Lemma 3.5 it then
follows that T ∗ ⊆ T , which together with T∗ ⊇ T implies that T ∗ = T Hence,Mod is an ideal
model of PF .

8. LetMod = 〈T, F 〉 be an ideal model of PF , i.e. T is maximal among all 3-valued stable models
of PF with T ⊆

⋂
{Treg | 〈Treg, Freg〉 is a regular model of PF}. By Theorem 3.4 Lab =

Mod2Lab(Mod) is a complete assumption labelling of F . Since for all regular modelsModreg =
〈Treg, Freg〉 of PF it holds that T ⊆ Treg, it follows by Lemma 3.6 that IN(Lab) ⊆ IN(Labpref )
with Labpref = Mod2Lab(Modreg). Furthermore, by Theorem 3.7 (point 4) all Labpref are
preferred assumption labellings of F . Thus, Lab is a complete assumption labelling of F with
IN(Lab) ⊆

⋂
{IN(Labpref ) | Labpref is a preferred assumption labelling of F}. To show that

in addition IN(Lab) is maximal among all complete assumption labellings of F with IN(Lab) ⊆⋂
{IN(Labpref ) | Labpref is a preferred assumption labelling of F}, let Lab∗ be a complete

assumption labelling of F with IN(Lab∗) ⊆
⋂
{IN(Labpref ) | Labpref is a preferred assumption

labelling ofF}. We have to prove that if IN(Lab∗) ⊇ IN(Lab) then IN(Lab∗) = IN(Lab). Suppose
IN(Lab∗) ⊇ IN(Lab). Since for every preferred assumption labelling Labpref of F it holds that
IN(Lab∗) ⊆ IN(Labpref ), it follows from Lemma 3.6 that T ∗ ⊆ Treg whereMod∗ = 〈T ∗, F ∗〉 =
Lab2Mod(Lab∗) andModreg = 〈Treg, Freg〉 = Lab2Mod(Labpref ). Furthermore by Theorem 3.7
(point 3), allModreg are regular models of PF . Thus, T ∗ ⊆

⋂
{Treg | 〈Treg, Freg〉 is a regular

model of PF}. But by Lemma 3.6 also T ∗ ⊇ T . However, since T is also maximal among all 3-
valued stable models of PF with T ⊆

⋂
{Treg | 〈Treg, Freg〉 is a regular model of PF}, it follows

that T ∗ = T , so trivially T ∗ ⊆ T . From Lemma 3.5 it then follows that IN(Lab∗) ⊆ IN(Lab),
which together with IN(Lab∗) ⊇ IN(Lab) implies that IN(Lab∗) = IN(Lab). Hence, Lab is an
ideal assumption labelling of F .

ut

4. Translating Logic Programs to ABA Theories

In the previous section, we have studied a translation from normal ABA to LP, and have observed that
the various types of labellings of an ABA framework coincide with the various types of models of the
associated logic program. In this section, we go the other way around. That is, we examine a translation
from LP to ABA.

Definition 4.1. Let P be a normal logic program. We define the associated ABA framework FP =
〈L,R,A, 〉̄ with A = {not w | w ∈ HBP }, L = HBP ∪ A,R = {x← y1, . . . , yn, not z1, . . . ,
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not zm | x← y1, . . . , yn, not z1, . . . , not zm ∈ P} and not w = w for every not w ∈ A.

We define LP2ABA to be the function that, given a logic program P , yields the associated ABA
framework FP (Definition 4.1). Similarly, we define ABA2LP to be the function that, given a normal
ABA framework F , yields the associated logic program PF (Definition 3.1).

Theorem 4.2. Let P be a normal logic program. It holds that ABA2LP(LP2ABA(P )) = P .

Proof:
Let FP = 〈LP ,RP ,AP , 〉̄ be LP2ABA(P ).
“⊆”: Let x ← y1, . . . , yn, not z1, . . . , not zm be a logic programming rule in ABA2LP(LP2ABA(P )).
Then from the definition of ABA2LP it follows that there exists an ABA rule x← y1, . . . , yn, ζ1, . . . , ζm
in RP with ζi ∈ AP and ζi = zi (1 ≤ i ≤ m). From the definition of LP2ABA it then follows that
ζi = not zi (because not zi is the only assumption in AP that has zi as its contrary (1 ≤ i ≤ m)) and
that there exists a rule x← y1, . . . , yn, not z1, . . . , not zm in P .
“⊇”: Let x← y1, . . . , yn, not z1, . . . , not zm be a logic programming rule in P . Then from the defini-
tion of LP2ABA it follows thatRP contains a rule x← y1, . . . , yn, not z1, . . . , not zm with not zi = zi
(1 ≤ i ≤ m). From the definition of ABA2LP this then implies that ABA2LP(LP2ABA(P )) contains a rule
x← y1, . . . , yn, not z1, . . . , not zm. ut

Theorem 4.3. Let P be a logic program and let FP = LP2ABA(P ) be its associated ABA framework. It
holds that:

1. ifMod is a 3-valued stable model of P , then Mod2Lab(Mod) is a complete assumption labelling
of FP

2. if Lab is a complete assumption labelling of FP , then Lab2Mod(Lab) is a 3-valued stable model
of P

Proof:
4 Let PFP

be the associated logic program of FP , i.e. PFP
= ABA2LP(FP ). From FP = LP2ABA(P ) it

then follows that PFP
= ABA2LP(LP2ABA(P )). It then follows from Theorem 4.2 that PFP

= P .

1. Let Mod be a 3-valued stable model of P . As P = PFP
, it directly follows that Mod is a 3-

valued stable model of PFP
. From Theorem 3.4 (point 2) it then follows that Mod2Lab(Mod) is a

complete assumption labelling of FP .

2. LetLab be a complete assumption labelling ofFP . From Theorem 3.4 (point 1) it then follows that
Lab2Mod(Lab) is a 3-valued stable model of PFP

. From the fact that PFP
= P , it then directly

follows that Lab2Mod(Lab) is also a 3-valued stable model of P .
ut

We now extend the correspondence results from Theorem 4.3 to common ABA and LP semantics.

Theorem 4.4. Let P be a logic program and let FP = LP2ABA(P ) be its associated ABA framework. It
holds that:
4This was proven in [20]. Here, we use a different proof which will serve as an illustration for the proofs of Theorem 4.4.
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1. ifMod is a well-founded model of P , then Mod2Lab(Mod) is a grounded assumption labelling
of FP

2. if Lab is a grounded assumption labelling of FP , then Lab2Mod(Lab) is a well-founded model of
P

3. ifMod is a regular model of P , then Mod2Lab(Mod) is a preferred assumption labelling of FP

4. if Lab is a preferred assumption labelling of FP , then Lab2Mod(Lab) is a regular model of P

5. ifMod is a (2-valued) stable model of P , then Mod2Lab(Mod) is a stable assumption labelling
of FP

6. if Lab is a stable assumption labelling of FP , then Lab2Mod(Lab) is a (2-valued) stable model of
P

7. ifMod is an ideal model of P , then Mod2Lab(Mod) is an ideal assumption labelling of FP

8. if Lab is an ideal assumption labelling of FP , then Lab2Mod(Lab) is an ideal model of P

Proof:
Similar to the proof of Theorem 4.3, but applying Theorem 3.7 instead of Theorem 3.4. ut

Theorem 4.3 and Theorem 4.4 point out that our results regarding the translation from ABA to LP,
as stated in the previous section, can be reused for the translation from LP to ABA. Hence, with respect
to normal logic programs, our work generalizes the work of [20, 2] where only the LP to ABA direction
is considered.

If it is possible to reuse the results from the ABA to LP translation for the LP to ABA translation,
then is the reverse also possible? That is, we ask ourselves whether it is possible to reuse some of the
existing work on the LP to ABA translation (like for instance stated in [20, 2]) to obtain similar results
for the ABA to LP translation (like for instance stated in the previous section). The short answer is no, at
least not in any obvious way. Our ability to reuse the results from the ABA to LP translation for the LP
to ABA translation (and therefore to write the sort of proofs of Theorem 4.3 and Theorem 4.4) critically
depends on the fact that ABA2LP(LP2ABA(P )) = P (Theorem 4.2). To be able to reuse the results of the
LP to ABA direction for the ABA to LP direction in a similar way as that is done in the current section
would require the property that for any ABA framework F , LP2ABA(ABA2LP(F)) = F . However, this
property does not hold, for the simple reason that when translating from ABA to LP some information
gets lost (like the precise set of assumptions, some of which may not occur in any rule) as in essence
only its set of rulesR gets translated.

5. Discussion

In the current paper we examined the relation between ABA and LP, and found that a frequently studied
fragment of ABA is subsumed by normal logic programming, and vice versa. That is, the kind of outcome
that is yielded by a normal ABA framework under common ABA semantics is essentially the same as
the outcome yielded by its associated normal logic program under common LP semantics. The only real
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difference is that whereas in ABA the outcome is defined in terms of assumptions (which correspond
to the NAF-literals in the associated logic program) in logic programming the outcome is defined in
terms of all the literals in the logic program (NAF as well as non-NAF). However, since the status of
the non-NAF literals is determined solely by the status of the NAF-literals (basically, by applying the
Gelfond-Lifschitz reduct, as is done by Lab2Mod) both approaches are equivalent.

The results of our paper enable researchers to switch freely between ABA syntax and semantics, and
LP syntax and semantics. For instance, when applying normal ABA for reasoning about a particular
domain, one could equally apply normal LP for the same reasoning. The advantage of doing so is
that, as more people are familiar with LP than with ABA, the results can be disseminated to a wider
audience. Similarly, the equivalence between ABA and LP allows some of the techniques developed
in the context of ABA to be carried over to the context of LP. For instance, the argument-based proof
procedures of [8, 22], when used in a normal ABA framework, can be carried over to logic programming
in a straightforward way. Of course, this would require the notion of an argument to be defined in the
context of a logic program, but this has already been done in [24, 4]. In fact, LP arguments have been
applied in some of the detailed proofs of the current paper’s technical results [5].

It should be emphasized that our results regarding the equivalence between ABA and LP are restricted
to normal ABA and normal LP. For instance, logic programming would struggle to model non-flat ABA
frameworks, as this would require NAF-literals to occur in the head of LP rules. Similarly, ABA would
struggle to model disjunctive logic programming (where the head of a rule can be a disjunction) as it is
not clear how arguments can be constructed in this context.

Another issue is how the ABA-LP equivalence is affected when applying non-common ABA and LP
semantics. Take for instance the case of semi-stable semantics for ABA [3, 20] and L-stable semantics
for LP [10, 4]. A semi-stable assumption labelling is defined as a complete assumption labelling Lab
where UNDEC(Lab) = A \ (IN(Lab) ∪ OUT(Lab)) is minimal, whereas an L-stable model is defined
as a 3-valued stable model 〈T, F 〉 where HBP \ (T ∪ F ) is minimal. Although one would expect these
semantics to coincide, this turns out not to be the case, although equivalence does hold for very restricted
types of ABA frameworks [5]. Overall, we hold the issue of how the results in the current paper can be
generalized beyond normal ABA frameworks, normal logic programs and common semantics to be an
interesting topic for further research.
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