ON THE DIFFERENCE BETWEEN ASSUMPTION-BASED ARGUMENTATION AND ABSTRACT ARGUMENTATION

MARTIN CAMINADA University of Aberdeen

SAMY SÁ Universidade Federal do Ceará

JOÃO ALCÂNTARA Universidade Federal do Ceará

> WOLFGANG DVOŘÁK Universität Wien

Abstract

In the current paper, we re-examine the connection between abstract argumentation and assumption-based argumentation. These two formalisms are often claimed to be equivalent in the sense that (a) evaluating an assumption based argumentation framework directly with the dedicated semantics, and (b) first constructing the corresponding abstract argumentation framework and then applying the corresponding abstract argumentation semantics, produce the same outcome. Although this holds for several semantics, in this work we show that there exist well-studied admissibility-based semantics (semi-stable and eager) under which equivalence does not hold.

1 Introduction

The 1990s saw some of the foundational work in argumentation theory. This includes the work of Simari and Loui [20] that later evolved into Defeasible Logic Programming (DeLP) [15] as well as the ground-breaking work of Vreeswijk [23] whose way of constructing arguments has subsequently been applied in the various versions of the ASPIC formalism [7, 18, 17]. Two approaches, however, stand out for their ability to model a wide range of

Parts of the current paper were presented at BNAIC 2013, but have not been published in formal proceedings.

existing formalisms for non-monotonic inference. First of all, there is the abstract argumentation approach of Dung [11], which is shown to be able to model formalisms like default logic, logic programming under stable and well-founded model semantics [11], as well as Nute's defeasible logic [16] and logic programming under the 3-valued stable model semantics [24]. Secondly, there is the assumption-based argumentation approach of Bondarenko, Dung, Kowalski and Toni [4], which is shown to model formalisms like default logic, logic programming under stable model semantics, auto epistemic logic and circumscription [4].

One of the essential differences between these two approaches is that abstract argumentation is argument-based. One uses the information in the knowledge base to construct arguments and to examine how these arguments attack each other. The different semantics are then defined on the resulting argumentation framework (the directed graph in which the nodes represent arguments and the arrows represent the attack relation). In assumptionbased argumentation, on the other hand, the definitions of the different semantics are based not on arguments but on sets of assumptions that attack each other based on their possible inferences.

One claim that occurs several times in the literature is that abstract argumentation and assumption-based argumentation are somehow equivalent. That is, the outcome (in terms of conclusions) of abstract argumentation would be the same as the outcome of assumption-based argumentation [12, 18]. In the current paper, we argue that although this equivalence does hold under *some* semantics, it definitely does not hold under *every* semantics. In particular, we show that under two well-known and well-studied admissibility-based semantics (semi-stable [22, 5, 8] and eager [6, 1, 13]) the outcome of assumption-based argumentation is fundamentally different from the outcome of abstract argumentation.

2 Preliminaries

Over the years, different versions of the assumption-based argumentation framework have become available [4, 10, 12] and these versions give slightly different formalizations. For current purposes, we apply the formalization described in [12] which not only is the most recent, but is also relatively easy to explain.

Definition 1 ([12]). Given a deductive system $\langle \mathcal{L}, \mathcal{R} \rangle$ where \mathcal{L} is a logical language and \mathcal{R} is a set of inference rules on this language, and a set of assumptions $\mathcal{A} \subseteq \mathcal{L}$, an argument for $c \in \mathcal{L}$ (the conclusion or claim) supported by $S \subseteq \mathcal{A}$ is a tree with nodes labelled by formulas in \mathcal{L} or by the special symbol \top such that:

- the root is labelled c
- for every node N
 - if N is a leaf then N is labelled either by an assumption (in S)or by \top

- if N is not a leaf and b is the label of N, then there exists an inference rule $b \leftarrow b_1, \ldots, b_m \ (m \ge 0)$ and either m = 0 and the child of N is labelled by \top , or m > 0 and N has m children, labelled by b_1, \ldots, b_m respectively
- S is the set of all assumptions labelling the leaves

We say that a set of assumptions $Asms \subseteq A$ enables the construction of an argument A (or alternatively, that A can be constructed based on Asms) if A is supported by a subset of Asms.

Notice that each assumption $\alpha \in \mathcal{A}$ enables an argument A_{α} with claim α supported by $\{\alpha\}$. That is, the corresponding tree has just one node that is labeled α .

Definition 2 ([12]). An ABA framework is a tuple $\langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{\rangle}$ where:

- $\langle \mathcal{L}, \mathcal{R} \rangle$ is a deductive system
- $\mathcal{A} \subseteq \mathcal{L}$ is a (non-empty) set, whose elements are referred to as assumptions
- *is a total mapping from* A *into* L*, where* $\overline{\alpha}$ *is called the contrary of* α

For current purposes, we restrict ourselves to ABA-frameworks that are *flat* [4], meaning that no assumption is the head of an inference rule. Furthermore, we follow [12] in that each assumption has a unique contrary.

We are now ready to define the various abstract argumentation semantics (in the context of an ABA-framework). We say that an argument A_1 attacks an argument A_2 iff the conclusion of A_1 is the contrary of an assumption in A_2 . Also, if Args is a set of arguments, then we write $Args^+$ for $\{A \mid \text{there exists an argument in } Args$ that attacks $A\}$. We say that a set of arguments Args is conflict-free iff $Args \cap Args^+ = \emptyset$. We say that a set of arguments Args defends an argument A iff each argument that attacks A is attacked by an argument in Args.

Definition 3. Let $\langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{} \rangle$ be an ABA framework, and let Ar be the set of arguments that can be constructed from this ABA framework. We say that $Args \subseteq Ar$ is:

- a complete argument extension iff Args is conflict-free and $Args = \{A \in Ar \mid Args defends A\}$
- a grounded argument extension *iff it is the (subset-)minimal complete argument extension*
- *a* preferred argument extension *iff it is a (subset-)maximal complete argument extension*

- a semi-stable argument extension *iff it is a complete argument extension where* $Args \cup Args^+$ *is (subset-)maximal among all complete argument extensions*
- a stable argument extension iff it is a complete argument extension where $Args \cup Args^+ = Ar$
- an ideal argument extension *iff it is the (subset-)maximal complete argument extension that is contained in each preferred argument extension*
- an eager argument extension *iff it is the (subset-)maximal complete argument extension that is contained in each semi-stable argument extension*

It should be noticed that the grounded argument extension is unique, just like the ideal argument extension and the eager argument extension are unique [6]. Also, every stable argument extension is a semi-stable argument extension, and every semi-stable argument extension is a preferred argument extension [5]. Furthermore, if there exists at least one stable argument extension, then every semi-stable argument extension is a stable argument extension [5]. It also holds that the grounded argument extension is a subset of the ideal argument extension, which in its turn is a subset of the eager argument extension [6].

The next step is to describe the various ABA semantics. These are defined not in terms of sets of arguments (as is the case for abstract argumentation) but in terms of sets of assumptions. A set of assumptions $Asms_1$ is said to *attack* an assumption α iff $Asms_1$ enables the construction of an argument for conclusion $\overline{\alpha}$. A set of assumptions $Asms_1$ is said to *attack* a set of assumptions $Asms_2$ iff $Asms_1$ attacks some assumption $\alpha \in Asms_2$. Also, if Asms is a set of assumptions, then we write $Asms^+$ for { $\alpha \in A \mid Asms$ attacks α }. We say that a set of assumptions Asms is *conflict-free* iff $Asms \cap Asms^+ = \emptyset$. We say that a set of assumptions defends an assumption α iff each set of assumptions that attacks α is attacked by Asms.

Apart from the ABA-semantics defined in [10], we also define semi-stable and eager semantics in the context of ABA.¹

Definition 4. Let $\langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{} \rangle$ be an ABA framework, and let $Asms \subseteq \mathcal{A}$. We say that Asms *is:*

- a complete assumption extension iff Asms ∩ Asms⁺ = Ø and Asms = {α | Asms defends α}
- a grounded assumption extension *iff it is the (subset-)minimal complete assumption extension*

¹Please notice that our definitions are slightly different from the ones in [10] (as we define all semantics in terms of complete assumption extensions) but equivalence is proved in the appendix.

- a preferred assumption extension *iff it is a (subset-)maximal complete assumption extension*
- a semi-stable assumption extension *iff it is a complete assumption extension where* $Asms \cup Asms^+$ is (subset-)maximal among all complete assumption extensions
- *a* stable assumption extension *iff it is a complete assumption extension where Asms* ∪ *Asms*⁺ = *A*
- an ideal assumption extension iff it is the (subset-)maximal complete assumption extension that is contained in each preferred assumption extension
- an eager assumption extension *iff it is the (subset-)maximal complete assumption extension that is contained in each semi-stable assumption extension*

It should be noticed that the grounded assumption extension is unique, just like the ideal assumption extension and the eager assumption extension are unique. Also, every stable assumption extension is a semi-stable assumption extension, and every semi-stable assumption extension is a preferred assumption extension (Theorem 12 in the appendix, points 1 and 2). Furthermore, if there exists at least one stable assumption extension, then every semi-stable assumption extension is a stable assumption extension (Theorem 12 in the appendix, point 3). It also holds that the grounded assumption extension is a subset of the ideal assumption extension, which in its turn is a subset of the eager assumption extension (Theorem 16 in the appendix). Overall, we observe that in the context of ABA, semi-stable and eager semantics are well-defined and have properties that are similar to their abstract argumentation variants (as described in [5, 6]).²

3 Equivalence and Inequivalence

As can be observed from Definition 4 and Definition 3, the way assumption-based argumentation works is very similar to the way abstract argumentation works. In fact, there is a clear correspondence between these approaches, that allows one to convert ABA-extensions to abstract argumentation extensions, and vice versa. To formalise this correspondence we

²In essence, a semi-stable extension is a complete extension with maximal range (with *range* [22] being the union of the extension itself and what it attacks). These consist of arguments when applied to abstract argumentation, and of assumptions when applied to assumption-based argumentation. Although Definition 4 newly defines semi-stable semantics in the context of ABA, it does so in a very natural way following the already established concept of semi-stable semantics for abstract argumentation. Our interest in defining semi-stable semantics for ABA can further be justified by the recent research interest it has received [22, 5, 8, 2, 3, 1, 14] making it an important path to be explored.

first define a function Asms2Args that maps assumptions extensions to argument extensions and a function Args2Asms that maps argument extensions to assumptions extensions.

Definition 5. Let $\langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{} \rangle$ be an ABA framework, and let Ar be the set of all arguments that can be constructed using this ABA framework.

- We define Asms2Args: $2^{\mathcal{A}} \to 2^{\mathcal{A}r}$ to be a function such that Asms2Args($\mathcal{A}sms$) = $\{A \in Ar \mid A \text{ can be constructed based on } \mathcal{A}sms\}$
- We define $\operatorname{Args2Asms} : 2^{Ar} \to 2^{\mathcal{A}}$ to be a function such that $\operatorname{Args2Asms}(\mathcal{A}rgs) = \{\alpha \in \mathcal{A} \mid \alpha \text{ is an assumption occurring in an } A \in \mathcal{A}rgs\}$

The next theorem shows that for certain semantics these functions indeed map assumption extensions to the corresponding arguments extensions and vice versa.

Theorem 6 ([10]). Let $\langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{\rangle}$ be an ABA framework, and let Ar be the set of all arguments that can be constructed using this ABA framework.

- 1. If $Asms \subseteq A$ is a complete assumption extension, then Asms2Args(Asms) is a complete argument extension, and if $Args \subseteq Ar$ is a complete argument extension, then Args2Asms(Args) is a complete assumption extension.
- 2. If $Asms \subseteq A$ is the grounded assumption extension, then Asms2Args(Asms) is the grounded argument extension, and if $Args \subseteq Ar$ is the grounded argument extension, then Args2Asms(Args) is the grounded assumption extension.
- 3. If $Asms \subseteq A$ is a preferred assumption extension, then Asms2Args(Asms) is a preferred argument extension, and if $Args \subseteq Ar$ is a preferred argument extension, then Args2Asms(Args) is a preferred assumption extension.
- 4. If $Asms \subseteq A$ is the ideal assumption extension, then Asms2Args(Asms) is the ideal argument extension, and if $Args \subseteq Ar$ is the ideal argument extension, then Args2Asms(Args) is the ideal assumption extension.
- 5. If $Asms \subseteq A$ is a stable assumption extension, then Asms2Args(Asms) is a stable argument extension, and if $Args \subseteq Ar$ is a stable argument extension, then Args2Asms(Args) is a stable assumption extension.

Proof. Points 2 and 4 have been proved in [10], and point 5 has been proved in [21, Theorem 1],³ so we only need to prove points 1 and 3. In the following, we slightly broaden terminology and say that argument A attacks assumption α iff the conclusion of A is $\overline{\alpha}$. Similarly, we say that a set of assumptions Asms defends an argument A iff it defends each assumption in A, and we say that a set of arguments Args defends an assumption α iff for each argument B with conclusion $\overline{\alpha}$, there is an argument $C \in Args$ that attacks B.

³Please note that our definition of ideal and stable semantics is slightly different than in [10, 21] but equivalence is proved in the appendix.

• 1, first conjunct:

Let $Asms \subseteq A$ be a complete assumption extension and let Args=Asms2Args(Asms). The fact that Asms is conflict-free (that is $Asms \cap Asms^+ = \emptyset$) means one cannot construct an argument based on Asms that attacks any assumption in Asms. Therefore, one cannot construct an argument based on Asms that attacks any argument based on Asms. Hence, Args is conflict-free (that is, $Args \cap Args^+ = \emptyset$).

The fact that Asms defends itself means that Asms defends each assumption in Asms. Hence, Asms defends each argument based on Asms (each argument in Args). That is, Args defends itself.

The fact that each assumption defended by Asms is in Asms means that each argument whose assumptions are defended by Asms is in Args. Hence, each argument defended by Args is in Args.

Altogether, we have observed that Args is conflict-free and contains precisely the arguments it defends. That is, Args is a complete argument extension.

• 1, second conjunct:

Let $Args \subseteq Ar$ be a complete argument extension and let Asms = Args2Asms(Args). Suppose Asms is not conflict-free. Then it is possible to construct an argument based on Asms (say A) whose conclusion is the contrary of an assumption in Asms. Acannot be an element of Args (otherwise Args would not be conflict-free). From the thus obtained fact that $A \notin Args$, together with the fact that Args is a complete argument extension, it follows that Args does not defend A. But this is impossible, because Args does defend all assumptions in A. Contradiction. Therefore, Asms is conflict-free.

The fact that Args defends itself means that every $A \in Args$ is defended by Args, which implies that every assumption occurring in Args is defended by Args, so every $\alpha \in Asms$ is defended by Asms. Hence, Asms defends itself.

The final thing to be shown is that Asms contains every assumption it defends. Suppose Asms defends $\alpha \in A$. This means that for each argument B with conclusion $\overline{\alpha}$, Asms enables the construction of an argument C that attacks B. The fact that all assumptions in C are found in arguments from Args means that C is defended by Args (this is because Args defends all its arguments). The fact that Args is a complete argument extension then implies that $C \in Args$. This means that Args defends the argument (say, A) consisting of the single assumption α . Hence, $A \in Args$, so $\alpha \in Asms$.

Altogether, we have observed that Asms is conflict-free and contains precisely the assumptions it defends. That is, Asms is a complete assumption extension.

• 3, first conjunct:

Let $Asms \subseteq A$ be a preferred assumption extension and let Args = Asms 2Args(Asms).

From point 1, it then follows that Args is a complete assumption extension. Suppose, towards a contradiction, that Args is not a *maximal* complete argument extension. Then there exists a complete argument extension $Args' \supseteq Args$. Let Asms' =Args2Asms(Args'). It then follows that $Asms' \supseteq Asms$ and that $Asms' \neq Asms$,⁴ so $Asms' \supseteq Asms$. Moreover, from point 1 it follows that Asms' is a complete assumption extension. But this would mean that Asms is not a *maximal* complete assumption extension. Contradiction.

• 3, second conjunct:

Let $Args \subseteq Ar$ be a complete argument extension and let $Asms = \operatorname{Args2Asms}(Args)$. From point 1, it then follows that Asms is a complete assumption extension. Suppose, towards a contradiction, that Asms is not a maximal complete assumption extension. Then there exists a complete assumption extension $Asms' \supseteq Asms$. Let $Args' = \operatorname{Asms2Args}(Asms')$. It then holds that $Args' \supseteq Args$ and that $Args' \neq Args$,⁵ so $Args' \supseteq Args$. Moreover, from point 1 it follows that Args' is a complete argument extension. But this would mean that Args is not a maximal complete argument extension. Contradiction.

Next we show that for complete semantics the functions Asms2Args and Args2Asms are also bijections.

Proposition 1. When restricted to complete assumption extensions and complete argument extensions, the functions Asms2Args and Args2Asms become bijections and each other's inverses.

Proof. Let Asms be a complete assumption extension and let Args be a complete argument extension. It suffices to prove statements (1) and (2) below.

- 1. $\operatorname{Args2Asms}(\operatorname{Asms2Args}(\mathcal{A}sms)) = \mathcal{A}sms$
 - (a) Suppose $\alpha \in Asms$.

Then by definition there exists an argument A_{α} consisting of a single assumption α . As $\alpha \in Asms$ then also $A_{\alpha} \in Asms2Args(Asms)$. Therefore, $\alpha \in Args2Asms(Asms2Args(Asms))$.

⁴Suppose towards a contradiction that Asms' = Asms. From the fact that $Args' \supseteq Args$ it follows that there exists an argument $A' \in Args'$ such that $A' \notin Args$. From the fact that Asms' = Asms it follows that for each assumption $\alpha \in A'$ there exists an argument $A \in Args$ that contains α . Since each $A \in Args$ is defended by Args (as Args is a complete argument extension) it follows that A' is also defended by Args. From the fact that Args is a complete argument extension, it then follows that $A \in Args$. Contradiction.

⁵The fact that $Asms' \supseteq Asms$ implies there exists an assumption $\alpha' \in Asms'$ such that $\alpha' \notin Asms$. Let A' be the argument consisting of the single assumption α' . From the fact that $\alpha' \notin Asms$ it follows that $A' \notin Args$. However, from the definition of Asms2Args it does follow that $A' \in Args'$. Hence, $Args' \neq Args$.

- (b) Suppose an α ∈ A with α ∉ Asms. Then there exists no argument in Asms2Args(Asms) that contains α. Therefore, α ∉ Args2Asms (Asms2Args(Asms)).
- 2. Asms2Args(Args2Asms(Args)) = Args.
 - (a) Suppose $A \in Args$.

Then all assumptions used in A will be in $\operatorname{Args2Asms}(Args)$. This means that A can be constructed based on $\operatorname{Args2Asms}(Args)$. Therefore, $A \in \operatorname{Asms2Args}(\operatorname{Args2Asms}(Args))$.

(b) Suppose an $A \in Ar$ with $A \notin Args$.

The fact that Args is a complete argument extension implies that A is not defended by Args. Therefore, there exists an argument $B \in Ar$ that attacks A, such that Args contains no C that attacks B. Assume, without loss of generality, that B attacks A by having a conclusion $\overline{\beta}$, where β is an assumption used in A. Then Args cannot contain any argument that uses assumption β (otherwise, this argument would not be defended against B, so Args would not be a complete arguments extension). Therefore, $\beta \notin \text{Args2Asms}(Args)$. This means that A cannot be constructed based on Args2Asms(Args). Therefore, $A \notin \text{Asms2Args}(\text{Args2Asms}(Args))$

Now, as each preferred, grounded, stable, and ideal extension is also a complete extension, Proposition 1 also extends to these semantics. Combining Proposition 1 with Theorem 6 we obtain that under complete, grounded, preferred, stable and ideal semantics, argument extensions and assumption extensions are one-to-one related.

The above results might cause one to believe that similar observations can also be made for other semantics. Unfortunately, this is not always the case as we show next.

Theorem 7. Let $\langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{} \rangle$ be an ABA framework, and let Ar be the set of all arguments that can be constructed using this ABA framework.

- 1. It is not the case that if $Asms \subseteq A$ is a semi-stable assumption extension, then Asms2Args(Asms) is a semi-stable argument extension, and it is not the case that if $Args \subseteq Ar$ is a semi-stable argument extension, then Args2Asms(Args) is a semi-stable assumption extension.
- 2. It is not the case that if $Asms \subseteq A$ is an eager assumption extension, then Asms2Args(Asms) is an eager argument extension, and it is not the case that if $Args \subseteq Ar$ is an eager argument extension, then Args2Asms(Args) is an eager assumption extension.

Proof. Let $\mathcal{F}_{ex1} = \langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \overline{\gamma} \rangle$ be an ABA framework with $\mathcal{L} = \{a, b, c, e, \alpha, \beta, \gamma, \epsilon\}$, $\mathcal{A} = \{\alpha, \beta, \gamma, \epsilon\}$, $\overline{\alpha} = a, \overline{\beta} = b, \overline{\gamma} = c, \overline{\epsilon} = e$ and $\mathcal{R} = \{r_1, r_2, r_3, r_4, r_5\}$ as follows:

 $r_1: \ c \leftarrow \gamma \qquad r_2: \ a \leftarrow \beta \qquad r_3: \ b \leftarrow \alpha \qquad r_4: \ c \leftarrow \gamma, \alpha \qquad r_5: \ e \leftarrow \epsilon, \beta$

The following arguments can be constructed from this ABA framework.

- A_1 , using the single rule r_1 , with conclusion c and supported by $\{\gamma\}$
- A_2 , using the single rule r_2 , with conclusion a and supported by $\{\beta\}$
- A_3 , using the single rule r_3 , with conclusion b and supported by $\{\alpha\}$
- A_4 , using the single rule r_4 , with conclusion c and supported by $\{\gamma, \alpha\}$
- A_5 , using the single rule r_5 , with conclusion e and supported by $\{\epsilon, \beta\}$
- $A_{\alpha}, A_{\beta}, A_{\gamma}$ and A_{ϵ} , consisting of a single assumption α, β, γ and ϵ , respectively.

These arguments, as well as their attack relation, are shown in Figure 1. The complete

Figure 1: The argumentation framework AF_{ex1} associated with ABA framework \mathcal{F}_{ex1} .

argument extensions of AF_{ex1} are

$$\mathcal{A}rgs_1 = \emptyset, \ \mathcal{A}rgs_2 = \{A_2, A_\beta\}, \ \text{and} \ \mathcal{A}rgs_3 = \{A_3, A_\alpha, A_\epsilon\}.$$

The associated complete assumption extensions of \mathcal{F}_{ex1} are

$$\mathcal{A}sms_1 = \emptyset, \ \mathcal{A}sms_2 = \{\beta\}, \ \text{and} \ \mathcal{A}sms_3 = \{\alpha, \epsilon\}.$$

Notice that, as one would expect, $Args_i = Asms2Args(Asms_i)$ as well as $Asms_i = Args2Asms(Args_i)$ for all $i \in \{1, 2, 3\}$.

It holds that $Args_1 \cup Args_1^+ = \emptyset$, $Args_2 \cup Args_2^+ = \{A_2, A_3, A_4, A_\alpha, A_\beta\}$ and $Args_3 \cup Args_3^+ = \{A_2, A_3, A_5, A_\alpha, A_\beta, A_\epsilon\}$, as well as $Asms_1 \cup Asms_1^+ = \emptyset$, $Asms_2 \cup Asms_2^+ = \{\alpha, \beta\}$ and $Asms_3 \cup Asms_3^+ = \{\alpha, \beta, \epsilon\}$. Hence, $Args_2$ and $Args_3$ are semistable argument extensions, whereas only $Asms_3$ is a semi-stable assumption extension. We thus have a counterexample against the claim that if $Args(Args_2)$ is a semi-stable argument extension.

We also observe that the eager argument extension is $Args_1$ whereas the eager assumption extension is $Asms_3$. Hence, we have a counterexample against the claim that if Args is an eager argument extension then Asms = Args2Asms(Args) is an eager assumption extension, as well as against the claim that is Asms is an eager assumption extension then Args = Asms2Asms(Args) is an eager assumption extension then Args = Asms2Asms(Args) is an eager assumption extension then Args = Asms2Asms(Args) is an eager argument extension then Args = Asms2Asms(Args) is an eager argument extension.

The only thing left to be shown is that if Asms is a semi-stable assumption extension, then Args = Asms2Args(Asms) is not necessarily a semi-stable argument extension. For this, we slightly alter the ABA framework \mathcal{F}_{ex1} by removing rule r_5 and the assumption ϵ (call the resulting ABA framework \mathcal{F}_{ex2}). Thus the arguments A_5 and A_{ϵ} no longer exists and hence $Args_3 = \{A_3, A_{\alpha}\}$. As now $Args_3 \cup Args_3^+ = \{A_2, A_3, A_{\alpha}, A_{\beta}\}$ is a proper subset of $Args_2 \cup Args_2^+$ the set $Args_3$ is no longer semi-stable. On the other side both $Asms_2 = \{\beta\}$, and $Asms_3 = \{\alpha\}$ are semi-stable assumption extensions.

Figure 2: The argumentation framework AF_{ex2} associated with ABA framework \mathcal{F}_{ex2} .

4 Discussion

The connection between assumption-based argumentation and abstract argumentation has received quite some attention in the literature. Dung *et al.*, for instance, claim that "ABA is an instance of abstract argumentation (AA), and consequently it inherits its various notions of 'acceptable' sets of arguments" [12]. Similarly, Toni claims that "ABA can be seen as an instance of AA, and (...) AA is an instance of ABA" [21]. While we agree that this

holds for *some* of the admissibility-based semantics (like preferred and grounded), we have pointed out in the current paper that this certainly does not hold for *all* admissibility-based semantics (semi-stable and eager). One could argue that claims like those above are perhaps a bit too general.

Prakken claims that "assumption-based argumentation (ABA) is a special case of the present framework [ASPIC+] with only strict inference rules, only assumption-type premises and no preferences." [18]. This claim is later repeated in the work of Modgil and Prakken, who state that "A well-known and established framework is that of assumption-based argumentation (ABA) [4], which (...) is shown (in [18])) to be a special case of the ASPIC+ framework in which arguments are built from assumption premises and strict inference rules only and in which all arguments are equally strong" [17]. However, we observe that the argumentation frameworks of Figure 1 and Figure 2 are counterexamples against this claim, in the context of semi-stable and eager semantics. These semantics, being admissibility-based, should work perfectly fine in the context of ASPIC+ (the rationality postulates of [7] would for instance be satisfied). Nevertheless, correspondence with ABA does not hold.

A possible criticism against our counter example of Figure 1 is that it uses a rule (r_4) that is subsumed by another rule (r_1) . This raises the quesion of whether counter examples still exist when no rule subsumes another rule. Our answer is affirmative: simply add an assumption δ and an atom d such that $\overline{\delta} = d$, replace r_1 by $c \leftarrow \gamma, \delta$ and add another rule $(r_6) d \leftarrow \delta$. For the resulting ABA theory, the semi-stable assumption extensions still do not correspond to the semi-stable argument extensions. Hence, the difference between ABA semi-stable (resp. ABA eager) and AA semi-stable (resp. AA eager) can be seen as a general phenomenon, that does not depend on whether some rules are subsumed by others.

Appendix: ABA semantics revisited

As mentioned earlier, the way the various ABA-semantics are defined in Definition 4 is slightly different from the way these were originally defined in [4, 10]. We have chosen to describe all ABA-semantics in a uniform way, based on the notion of complete semantics. This has been done not only for theoretical elegance, but also with an eye to practical applicability. For instance, it brings the advantage that once a particular property has been proven for each complete assumption extension, it has also been proven for each preferred, grounded, stable, semi-stable, ideal and eager assumption extension,⁶ which can have benefits for future research. Furthermore, it paves the way for expressing ABA semantics in terms of assumption labellings, as is for instance done by Schulz and Toni, who define

⁶Similarly, in abstract argumentation, the fact that consistent outcome of argument-based entailment [7] has been proven under complete semantics implies that it has also been proven under preferred, grounded, stable, semi-stable, ideal and eager semantics.

the concept of a complete assumption labelling [19]. In a similar way, one could then subsequently define the concept of a preferred assumption labelling as a complete assumption labelling where the set of in-labelled arguments is maximal, a grounded assumption labelling as a complete assumption labelling where the set of in-labelled arguments is minimal, etc. The fact that the extension-based ABA semantics have already been stated in terms of complete extensions (as is done in the current appendix) can then assist the task of proving equivalence between assumption-based extensions and assumption-based labellings.⁷ The thus obtained theory of assumption labellings could then for instance be applied for examining the equivalence between ABA and logic programming (in the line of [19]), in a similar way as that the theory of argument labellings has been applied for examining the equivalence (and differences) between abstract argumentation and logic programming [9].

We will now proceed to show that our complete semantics based description of ABAsemantics in Definition 4 is equivalent to the original description of ABA-semantics in [4, 10]. We start with preferred semantics. Notice that a set of assumptions is called *admissible* iff it is conflict-free and defends each of its elements.

Theorem 8. Let $\mathcal{F} = \langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{} \rangle$ be an ABA framework. The following two statements are equivalent:

- 1. Asms is a maximal admissible assumption set of $\mathcal F$
- 2. Asms is preferred assumption extension of \mathcal{F}

Proof. From 1 to 2: Let Asms be a maximal admissible assumption set. It follows from [4, Corollary 5.8] that Asms is a complete assumption extension. Suppose Asms is not maximal complete. Then there exists a complete assumption extension Asms' with $Asms \subsetneq Asms'$. But since by definition, every complete assumption extension is also an admissible assumption set, it holds that Asms' is an admissible assumption set. But this would mean that Asms is not a maximal admissible assumption set. Contradiction.

From 2 to 1: Let Asms be a maximal complete assumption extension. Then by definition, Asms is also an admissible assumption set. We now need to prove that it is also a *maximal* admissible assumption set. Suppose this is not the case, then there exists a maximal admissible assumption set Asms' with $Asms \subsetneq Asms'$. It follows from [4, Corollary 5.8] that Asms' is also a complete assumption extension. But this would mean that Asms is not a *maximal* complete assumption extension. Contradiction.

The next thing to show is that our description of ideal semantics (Definition 4) coincides with that in [10]. More specifically, we will show that the notion of an ideal assumption extension is equivalent to that of a maximal ideal assumption set.

⁷This would be in line with abstract argumentation, where reformulating some of the most common argument-based semantics in terms of complete semantics has been of great assistance for proving the equivalence between argument-based extensions and argument-based labellings.

Definition 9. Let $\mathcal{F} = \langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{} \rangle$ be an ABA framework. An ideal assumption set is defined as an admissible assumption set that is a subset of each preferred assumption extension.

Lemma 1. Let $\mathcal{F} = \langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{} \rangle$ be an ABA framework, and let $\mathcal{A}sm_{s_{id}}$ be a maximal ideal assumption set. It holds that $\mathcal{A}sm_{s_{id}}$ is a complete extension.

Proof. Let $Asms_{id}$ be a maximal ideal assumption set. We only need to prove that if $Asms_{id}$ defends some $\alpha \in A$ then $\alpha \in Asms_{id}$. Suppose $Asms_{id}$ defends α . Then every preferred assumption extension $Asms_p$ also defends α (this follows from $Asms_{id} \subseteq Asms_p$). As $Asms_p$ is also a complete extension, it follows that $\alpha \in Asms_p$. Hence, α is an element of every preferred assumption extension. Therefore, $Asms_{id} \cup \{\alpha\}$ is a subset of every preferred assumption extension. According to [4, Theorem 5.7], $Asms_{id} \cup \{\alpha\}$ is also an admissible set. From the fact that $Asms_{id}$ is a maximal ideal assumption set, and the trivial observation that $Asms_{id} \subseteq Asms_{id} \cup \{\alpha\}$, it then follows that $Asms_{id} = Asms_{id} \cup \{\alpha\}$. Therefore, $\alpha \in Asms_{id}$.

Theorem 10. Let $\mathcal{F} = \langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{} \rangle$ be an ABA framework and let $\mathcal{A}sms \subseteq \mathcal{A}$. The following two statements are equivalent:

- 1. Asms is a maximal ideal assumption set of \mathcal{F}
- 2. Asms is an ideal assumption extension of \mathcal{F} (in the sense of Definition 4)

Proof. From 1 to 2: Let Asms be a maximal ideal assumption set. It follows from Lemma 1 that Asms is a complete assumption extension. Suppose Asms is not a *maximal* complete assumption extension that is contained in every preferred assumption extension. Then there exists a complete assumption extension Asms', with $Asms \subsetneq Asms'$, that is still contained in every preferred assumption, every complete assumption extension is also an admissible assumption set, it holds that Asms' is an admissible assumption extension. That is, Asms' is an ideal assumption set. But this would mean that Asms is not a *maximal* admissible assumption set. Contradiction.

From 2 to 1: Let Asms be an ideal assumption extension. Then, by definition, Asms is also an ideal assumption set. We now need to prove that it is also a *maximal* ideal assumption set. Suppose this is not the case, then there exists a maximal ideal assumption set Asms'with $Asms \subsetneq Asms'$. It follows from Lemma 1 that Asms' is also a complete assumption extension. But this would mean that Asms is not a *maximal* complete assumption extension that is contained in every preferred assumption extension. That is, Asms is not an ideal assumption extension. \Box We proceed to show that our notion of stable semantics (Definition 4) coincides with the notion of stable semantics in [4].

Theorem 11. Let $\mathcal{F} = \langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{} \rangle$ be an ABA framework, and let $\mathcal{A}sms \subseteq \mathcal{A}$. The following two statements are equivalent:

- *1.* Assume that $A \in A \setminus A$ and $A \in A$ and A and A
- 2. Asms is a stable assumption extension of \mathcal{F} (in the sense of Definition 4)

Proof. From 1 to 2: Suppose Asms does not attack itself and attacks each $\{\alpha\}$ with $\alpha \in A \setminus Asms$. Then, according to [4, Theorem 5.5], Asms is a complete extension. Moreover, the fact that Asms attacks every $\{\alpha\}$ with $\alpha \in A \setminus Asms$ means that $Asms \cup Asms^+ = A$, so Asms is a complete extension with $Asms \cup Asms^+ = A$. That is, Asms is a stable extension.

From 2 to 1: Suppose Asms is a stable assumption extension. That is, Asms is a complete assumption extension with $Asms \cup Asms^+ = A$. From the fact that Asms is a complete assumption extension, it follows that $Asms \cap Asms^+ = \emptyset$ so Asms does not attack itself. From the fact $Asms \cup Asms^+ = A$ it follows that $Asms^+ = A \setminus Asms$, so Asms attacks each $\{\alpha\}$ with $\alpha \in A \setminus Asms$.

So far, we have examined our characterization of existing ABA-semantics (stable, preferred and ideal semantics) and found them to be equivalent to what have been stated in the literature. The next step is to focus on the ABA-semantics that have not yet been stated in the literature⁸ (semi-stable and eager). Our aim is to show that, in the context of ABA, these semantics behave in a very similar way as they do in the context of abstract argumentation. We start with the relation between stable, semi-stable and preferred semantics.

Theorem 12. Let $\mathcal{F} = \langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{} \rangle$ be an ABA framework. It holds that:

- 1. every stable assumption extension is also a semi-stable assumption
- 2. every semi-stable assumption extension is also a preferred assumption extension
- 3. if there exists at least one stable assumption extension, then the stable assumption extensions and the semi-stable assumption extensions coincide
- *Proof.* 1. Let Asms be a stable assumption extension of \mathcal{F} . Then, by definition, Asms is a complete assumption extension with $Asms \cup Asms^+ = A$. The fact that $Asms \cup Asms^+$ is A implies that it is maximal (by definition, it cannot be a proper superset of A). Hence, Asms is a complete assumption extension where $Asms \cup Asms^+$ is maximal. That is, Asms is a semi-stable assumption extension.

⁸At least, not in the specific assumption-based ABA-context.

- 2. Let Asms be a semi-stable assumption extension of \mathcal{F} . Then, by definition, Asms is a complete assumption extension where $Asms \cup Asms^+$ is maximal. We now show that Asms itself is also maximal. Suppose there is a complete assumption extension Asms' with $Asms \subsetneq Asms'$. Then, from the fact that the +-operator is monotonic, it follows that $Asms^+ \subseteq Asms'^+$. This, together with the fact that $Asms \subsetneq Asms'$ implies that $Asms \cup Asms^+ \subsetneq Asms' \cup Asms'^+$. But that would mean that Asms is not a semi-stable assumption extension. Contradiction. Therefore, Asms is a maximal complete assumption extension. That is, Asms is a preferred assumption extension.
- 3. Suppose there exists at least one stable assumption extension $(Asms_{st})$. The fact that every stable assumption extension is also a semi-stable assumption extension has already been proven by point 1, so the only thing left to prove is that every semi-stable assumption extension is also a stable assumption extension. Let Asms be a semi-stable assumption extension. Then, by definition, Asms is a complete assumption extension where $Asms \cup Asms^+$ is maximal. From the fact that $Asms_{st}$ is a complete assumption extension with $Asms_{st} \cup Asms_{st}^+ = A$, it follows that for $Asms \cup Asms^+$ to be maximal, it has to be A as well. This implies that Asms is a stable assumption extension.

We proceed to examine the concept of eager semantics in the context of ABA. Our aim is to show that the eager assumption extension is unique. In order to do so, we first need to define the concept of an eager assumption set. Notice that an eager assumption set relates to the eager assumption extension in the same way as an ideal assumption set relates to the ideal assumption extension.

Definition 13. Let $\mathcal{F} = \langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{} \rangle$ be an ABA framework. An eager assumption set is defined as an admissible assumption set that is a subset of each semi-stable assumption extension.

Theorem 14. Let $\mathcal{F} = \langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{} \rangle$ be an ABA framework. There exists precisely one maximal eager assumption set.

Proof. We first prove that there exists at least one maximal eager assumption set. This is relatively straightforward, because there exists at least one eager assumption set (the empty set), which together with the fact that there are only finitely many eager assumption sets (which follows from the fact that \mathcal{A} is finite) implies that there exists at least one maximal eager assumption set.

The next thing to prove is that there exists at most one maximal eager assumption set. Let

Asms₁ and Asms₂ be maximal eager assumption sets. From the fact that for each semistable assumption extension $Asms_{sem}$, it holds that $Asms_1 \subseteq Asms_{sem}$ and $Asms_2 \subseteq Asms_{sem}$ it follows that $Asms_1$ and $Asms_2$ do not attack each other (otherwise $Asms_{sem}$ would attack itself). Hence, $Asms_3 = Asms_1 \cup Asms_2$ does not attack itself. Also, $Asms_3$ defends itself, as $Asms_1$ and $Asms_2$ defend themselves. Hence, $Asms_3$ is an admissible assumption set that is a subset of each semi-stable assumption extension. That is, $Args_3$ is an eager assumption set. Also, from the fact that $Asms_3 = Asms_1 \cup Asms_2$, it follows that $Asms_1 \subseteq Asms_3$ and $Asms_2 \subseteq Asms_3$. From the fact that $Asms_1$ and $Asms_2$ are maximal eager assumption sets, it then follows that $Asms_1 = Asms_3$ and $Asms_2 =$ $Asms_3$. Therefore, $Asms_1 = Asms_2$.

Lemma 2. Let $\mathcal{F} = \langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{} \rangle$ be an ABA framework, and let $Asms_{eag}$ be the maximal eager assumption set. It holds that Asms is a complete assumption extension.

Proof. Let $Asms_{eag}$ be a maximal eager assumption set. We only need to prove that if $Asms_{eag}$ defends some $\alpha \in A$ then $\alpha \in Asms_{eag}$. Suppose $Asms_{eag}$ defends α . Then every semi-stable assumption extension $Asms_{sem}$ also defends α (this follows from $Asms_{eag} \subseteq Asms_{sem}$). As $Asms_{sem}$ is also a complete assumption extension, it follows that $\alpha \in Asms_{sem}$. Hence, α is an element of every semi-stable assumption extension. Therefore, $Asms_{eag} \cup \{\alpha\}$ is a subset of every semi-stable assumption extension. According to [4, Theorem 5.7], $Asms_{eag} \cup \{\alpha\}$ is also an admissible assumption set. Hence, $Asms_{eag} \cup \{\alpha\}$ is an eager assumption set. From the fact that $Asms_{eag}$ is a maximal eager assumption set, and the trivial observation that $Asms_{eag} \subseteq Asms_{eag} \cup \{\alpha\}$, it then follows that $Asms_{eag} = Asms_{eag} \cup \{\alpha\}$. Therefore, $\alpha \in Asms_{eag}$.

Theorem 15. Let $\mathcal{F} = \langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{} \rangle$ be an ABA framework and let $\mathcal{A}sms \subseteq \mathcal{A}$. The following two statements are equivalent:

- 1. Asms is a maximal eager assumption set of \mathcal{F}
- 2. Asms is an eager assumption extension of \mathcal{F} (in the sense of Definition 4)

Proof. From 1 to 2: Let Asms be a maximal eager assumption set. It follows from Lemma 2 that Asms is a complete assumption extension. Suppose Asms is not a *maximal* complete assumption extension that is contained in every semi-stable assumption extension. Then there exists a complete assumption extension Asms', with $Asms \subsetneq Asms'$, that is still contained in every semi-stable assumption extension. But since by definition, every complete assumption extension is also an admissible assumption set, it holds that Asms' is an admissible assumption set that is contained in every semi-stable assumption extension. That is, Asms' is an eager assumption set. But this would mean that Asms is not a *maximal* eager assumption set. Contradiction.

From 2 to 1: Let Asms be an eager assumption extension. Then, by definition, Asms is also an eager assumption set. We now need to prove that it is also a *maximal* eager assumption set. Suppose this is not the case, then there exists a maximal eager assumption set Asms'with $Asms \subsetneq Asms'$. It follows from Lemma 2 that Asms' is also a complete assumption extension. But this would mean that Asms is not a *maximal* complete assumption extension that is contained in every semi-stable assumption extension. That is, Asms is not an eager assumption extension. \Box

Theorem 16. Let $\mathcal{F} = \langle \mathcal{L}, \mathcal{R}, \mathcal{A}, \bar{} \rangle$ be an ABA framework. It holds that:

- 1. the ideal assumption extension is a superset of the grounded assumption extension
- 2. the eager assumption extension is a superset of the ideal assumption extension
- *Proof.* 1. This follows from the fact that the ideal assumption extension is a complete assumption extension, together with the fact that the grounded assumption extension is the unique minimal (w.r.t. set inclusion) complete assumption extension.
 - 2. This follows from the fact that every semi-stable assumption extension is also a preferred assumption extension, together with the definitions of the ideal (resp. eager) assumption extensions as the maximal complete assumption extension that is a subset of every preferred (resp. semi-stable) assumption extension.

Acknowledgements

The first author has been supported by the National Research Fund, Luxembourg (LAAMI project) and by the Engineering and Physical Sciences Research Council (EPSRC, UK), grant ref. EP/J012084/1 (SAsSy project). The second and third authors have been supported by CNPq (Universal 2012 - Proc. no. 473110/2012-1), CAPES (PROCAD 2009) and CNPq/CAPES (Casadinho/PROCAD 2011).

References

- [1] P. Baroni, M.W.A. Caminada, and M. Giacomin. An introduction to argumentation semantics. *Knowledge Engineering Review*, 26(4):365–410, 2011.
- [2] P. Baroni and M. Giacomin. On principle-based evaluation of extension-based argumentation semantics. *Artificial Intelligence*, 171(10-15):675–700, 2007.
- [3] P. Baroni and M. Giacomin. Skepticism relations for comparing argumentation semantics. *Int. J. Approx. Reasoning*, 50(6):854–866, 2009.

- [4] A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. An abstract, argumentation-theoretic approach to default reasoning. *Artificial Intelligence*, 93:63–101, 1997.
- [5] M.W.A. Caminada. Semi-stable semantics. In P.E. Dunne and TJ.M. Bench-Capon, editors, *Computational Models of Argument; Proceedings of COMMA 2006*, pages 121–130. IOS Press, 2006.
- [6] M.W.A. Caminada. Comparing two unique extension semantics for formal argumentation: ideal and eager. In Mohammad Mehdi Dastani and Edwin de Jong, editors, *Proceedings of the* 19th Belgian-Dutch Conference on Artificial Intelligence (BNAIC 2007), pages 81–87, 2007.
- [7] M.W.A. Caminada and L. Amgoud. On the evaluation of argumentation formalisms. *Artificial Intelligence*, 171(5-6):286–310, 2007.
- [8] M.W.A. Caminada, W.A. Carnielli, and P.E. Dunne. Semi-stable semantics. *Journal of Logic and Computation*, 22(5):1207–1254, 2012.
- [9] M.W.A. Caminada, S. Sá, and J. Alcântara. On the equivalence between logic programming semantics and argumentation semantics. In Linda C. van der Gaag, editor, *Symbolic and Quantitative Approaches to Reasoning with Uncertainty; Proceedings of ECSQARU 2013*, pages 97–108, 2013.
- [10] P. M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation. Artificial Intelligence, 171(10-15):642–674, 2007.
- [11] P.M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.
- [12] P.M. Dung, R.A. Kowalski, and F. Toni. Assumption-based argumentation. In Guillermo Simari and Iyad Rahwan, editors, *Argumentation in Artificial Intelligence*, pages 199–218. Springer US, 2009.
- [13] W. Dvořák, P.E. Dunne, and S. Woltran. Parametric properties of ideal semantics. In *Proceedings IJCAI 2011*, pages 851–856, 2011.
- [14] W. Dvořák and S. Woltran. Complexity of semi-stable and stage semantics in argumentation frameworks. *Information Processing Letters*, 110:425–430, 2010.
- [15] A.J. García, J. Dix, and G.R. Simari. Argument-based logic programming. In Guillermo Simari and Iyad Rahwan, editors, *Argumentation in Artificial Intelligence*, pages 153–171. Springer US, 2009.
- [16] G. Governatori, M.J. Maher, G. Antoniou, and D. Billington. Argumentation semantics for defeasible logic. *Journal of Logic and Computation*, 14(5):675–702, 2004.
- [17] S.J. Modgil and H. Prakken. A general account of argumentation with preferences. *Artificial Intellligence*, 195:361–397, 2013.
- [18] H. Prakken. An abstract framework for argumentation with structured arguments. *Argument* and *Computation*, 1(2):93–124, 2010.
- [19] C. Schulz and F. Toni. Logic programming in assumption-based argumentation revisited semantics and graphical representation. In *Proceedings of AAAI 2015*, 2015. in print.
- [20] G.R. Simari and R.P. Loui. A mathematical treatment of defeasible reasoning and its implementation. Artificial Intelligence, 53:125–157, 1992.
- [21] F. Toni. Reasoning on the web with assumption-based argumentation. In Thomas Eiter and

Thomas Krennwallner, editors, *Reasoning Web. Semantic Technologies for Advanced Query Answering*, pages 370–386, 2012.

- [22] B. Verheij. Two approaches to dialectical argumentation: admissible sets and argumentation stages. In J.-J.Ch. Meyer and L.C. van der Gaag, editors, *Proceedings of the Eighth Dutch Conference on Artificial Intelligence (NAIC'96)*, pages 357–368, 1996.
- [23] G.A.W. Vreeswijk. Abstract argumentation systems. Artificial Intelligence, 90:225–279, 1997.
- [24] Y. Wu, M.W.A. Caminada, and D.M. Gabbay. Complete extensions in argumentation coincide with 3-valued stable models in logic programming. *Studia Logica*, 93(1-2):383–403, 2009. Special issue: new ideas in argumentation theory.