On the Difference between Assumption-Based Argumentation and Abstract Argumentation

Martin Caminada a Samy Sá b João Alcântara b Wolfgang Dvořák c

a University of Aberdeen b Universidade Federal do Ceará c Universität Wien

Abstract

In the current paper, we re-examine the connection between abstract argumentation and assumption-based argumentation. Although these are often claimed to be equivalent, we observe that there exist well-studied admissibility-based semantics (semi-stable and eager) under which equivalence does not hold.

1 Introduction

The 1990s saw some of the foundational work in argumentation theory. This includes the work of Simari and Loui [16] that later evolved into Defeasible Logic Programming (DeLP) [12] as well as the groundbreaking work of Vreeswijk [19] whose way of constructing arguments has subsequently been applied in the various versions of the ASPIC formalism [5, 15, 14]. Two approaches, however, stand out for their ability to model a wide range of existing formalisms for non-monotonic inference. First of all, there is the abstract argumentation approach of Dung [10], which is shown to be able to model formalisms like Default Logic, logic programming under stable and well-founded model semantics [10], as well as Nute’s Defeasible Logic [13] and logic programming under the 3-valued stable model semantics [20]. Secondly, there is the assumption-based argumentation approach of Bondarenko, Dung, Kowalski and Toni [2], which is shown to model formalisms like Default Logic, logic programming under stable model semantics, auto epistemic logic and circumscription [2].

One of the essential differences between these two approaches is that abstract argumentation is argument-based. One uses the information in the knowledge base to construct arguments and to examine how these arguments attack each other. Semantics is then defined on the resulting argumentation framework (the directed graph in which the nodes represent arguments and the arrows represent the attack relation). In assumption-based argumentation, on the other hand, semantics is defined based not on arguments but on sets of assumptions that attack each other based on their possible inferences.

One claim that occurs several times in the literature is that abstract argumentation and assumption-based argumentation are somehow equivalent. That is, the outcome (in terms of conclusions) of abstract argumentation would be the same as the outcome of assumption-based argumentation [9, 15]. In the current paper, we argue that although this equivalence does hold under some semantics, it definitely does not hold under every semantics. In particular, we show that under two well-known and well-studied admissibility-based semantics (semi-stable [18, 3, 6] and eager [4, 1, 11]) the outcome of assumption-based argumentation is fundamentally different from the outcome of abstract argumentation.

2 Preliminaries

Over the years, different versions of the assumption-based argumentation framework have become available [2, 8, 9] and these versions use slightly different ways of describing formal detail. For current purposes,
we apply the formalization described in [9] which not only is the most recent, but is also relatively easy to explain.

Definition 1 ([9]). Given a deductive system \(\langle L, R \rangle \) where \(L \) is a logical language and \(R \) is a set of inference rules on this language, and a set of assumptions \(A \subseteq L \), an argument for \(c \in L \) (the conclusion or claim) supported by \(S \subseteq A \) is a tree with nodes labelled by formulas in \(L \) or by the special symbol \(\top \) such that:

- the root is labelled \(c \)
- for every node \(N \):
 - if \(N \) is a leaf then \(N \) is labelled either by an assumption or by \(\top \)
 - if \(N \) is not a leaf and \(b \) is the label of \(N \), then there exists an inference rule \(b \leftarrow b_1, \ldots, b_m \) (\(m \geq 0 \)) and either \(m = 0 \) and the child of \(N \) is labelled by \(\top \), or \(m > 0 \) and \(N \) has \(m \) children, labelled by \(b_1, \ldots, b_m \) respectively
- \(S \) is the set of all assumptions labelling the leaves

We say that a set of assumptions \(Asms \subseteq A \) enables the construction of an argument \(A \) (or alternatively, that \(A \) can be constructed based on \(Asms \)) if \(A \) is supported by a subset of \(Asms \).

Definition 2 ([9]). An ABA framework is a tuple \(\langle L, R, A, \top \rangle \) where:

- \(\langle L, R \rangle \) is a deductive system
- \(A \subseteq L \) is a (non-empty) set, whose elements are referred to as assumptions
- \(\top \) is a total mapping from \(A \) into \(L \), where \(\top \) is called the contrary of \(\alpha \)

For current purposes, we restrict ourselves to ABA-frameworks that are flat [2], meaning that no assumption is the head of an inference rule. Furthermore, we follow [9] in that each assumption has a unique contrary.

We are now ready to define the various abstract argumentation semantics (in the context of an ABA-framework). We say that an argument \(A_1 \) attacks an argument \(A_2 \) iff the conclusion of \(A_1 \) is the contrary of an assumption in \(A_2 \). Also, if \(Arg \) is a set of arguments, then we write \(Arg^+ \) for \(\{ A \mid \text{there exists an argument in } Arg \text{ that attacks } A \} \). We say that a set of arguments \(Arg \) is conflict-free iff \(Arg \cap Arg^+ = \emptyset \). We say that a set of arguments \(Arg \) defends an argument \(A \) iff each argument that attacks \(A \) is attacked by an argument in \(Arg \).

Definition 3. Let \(\langle L, R, A, \top \rangle \) be an ABA framework, and let \(Ar \) be the associated set of arguments. We say that \(Arg \subseteq Ar \) is:

- a complete argument extension iff \(Arg \) is conflict-free and \(Arg = \{ A \in Ar \mid Arg \text{ defends } A \} \)
- a grounded argument extension iff it is the minimal complete argument extension
- a preferred argument extension iff it is a maximal complete argument extension
- a semi-stable argument extension iff it is a complete argument extension where \(Arg \cup Arg^+ \) is maximal among all complete argument extensions
- a stable argument extension iff it is a complete argument extension where \(Arg \cup Arg^+ = Ar \)
- an ideal argument extension iff it is the maximal complete argument extension that is contained in each preferred argument extension
- an eager argument extension iff it is the maximal complete argument extension that is contained in each semi-stable argument extension

It should be noticed that the grounded argument extension is unique, just like the ideal argument extension and the eager argument extension are unique [4]. Also, every stable argument extension is a semi-stable argument extension, and every semi-stable argument extension is a preferred argument extension [3]. Furthermore, if there exists at least one stable argument extension, then every semi-stable argument extension is a stable argument extension [3]. It also holds that the grounded argument extension is a subset of the ideal argument extension, which in its turn is a subset of the eager argument extension [4].

The next step is to describe the various ABA semantics. These are defined not in terms of sets of arguments (as is the case for abstract argumentation) but in terms of sets of assumptions. A set of assumptions
Let A be an ABA framework, and let A be the set of all arguments that can be constructed using this ABA framework. We define $Asms2Args : 2^A \rightarrow 2^{Ar}$ to be a function such that $Asms2Args(Asms) = \{ A \in Ar \mid A$ can be constructed based on $Asms$}.

We define $Args2Asms : 2^{Ar} \rightarrow 2^A$ to be a function such that $Args2Asms(Args) = \{ \alpha \in A \mid \alpha$ is an assumption occurring in an $A \in Args}$.

Theorem 6 ([8]). Let $\langle L, R, A, ^_ \rangle$ be an ABA framework, and let Ar be the set of all arguments that can be constructed using this ABA framework.

1. If $Asms \subseteq A$ is a complete assumption extension, then $Asms2Args(Asms)$ is a complete argument extension, and if $Args \subseteq Ar$ is a complete argument extension, then $Args2Asms(Args)$ is a complete assumption extension.

Please notice that our definitions are slightly different from the ones in [8] (as we define all semantics in terms of complete extensions) but equivalence is proved in [7].
2. If $\text{Asms} \subseteq A$ is the grounded assumption extension, then $\text{Asms2Args}(\text{Asms})$ is the grounded argument extension, and if $\text{Args} \subseteq Ar$ is the grounded argument extension, then $\text{Args2Asms}(\text{Args})$ is the grounded assumption extension.

3. If $\text{Asms} \subseteq A$ is a preferred assumption extension, then $\text{Asms2Args}(\text{Asms})$ is a preferred argument extension, and if $\text{Args} \subseteq Ar$ is a preferred argument extension, then $\text{Args2Asms}(\text{Args})$ is a preferred assumption extension.

4. If $\text{Asms} \subseteq A$ is the ideal assumption extension, then $\text{Asms2Args}(\text{Asms})$ is the ideal argument extension, and if $\text{Args} \subseteq Ar$ is the ideal argument extension, then $\text{Args2Asms}(\text{Args})$ is the ideal assumption extension.

5. If $\text{Asms} \subseteq A$ is a stable assumption extension, then $\text{Asms2Args}(\text{Asms})$ is a stable argument extension, and if $\text{Args} \subseteq Ar$ is a stable argument extension, then $\text{Args2Asms}(\text{Args})$ is a stable assumption extension.

Proof. Points 2 and 4 have been proved in [8], and point 5 has been proved in [17, Theorem 1].\(^2\) So we only need to prove points 1 and 3.

1. first conjunct: Let $\text{Asms} \subseteq A$ be a complete assumption extension and let $\text{Args} = \text{Asms2Args}(\text{Asms})$. The fact that $\text{Asms} \subseteq A$ is conflict-free (that is, $\text{Asms} \cap \text{Asms}^+ = 0$) means one cannot construct an argument based on Asms that attacks any assumption in Asms.\(^3\) Therefore, one cannot construct an argument based on Asms that attacks any argument based on Asms. Hence, $\text{Args} \subseteq A$ is conflict-free (that is, $\text{Args} \cap \text{Args}^+ = 0$).

The fact that Asms defends itself means that Asms defends each assumption in Asms. Hence, Asms defends each argument based on Asms (each argument in Args). That is, Args defends itself.

The fact that each assumption defended by Asms is in Asms means that each argument whose assumptions are defended by Asms is in Asms. Hence, each argument defended by Args is in Asms. Altogether, we have observed that $\text{Asms} \subseteq A$ is conflict-free and contains precisely the arguments it defends. That is, $\text{Args} \subseteq A$ is a complete argument extension.

1. second conjunct: Let $\text{Args} \subseteq Ar$ be a complete argument extension and let $\text{Asms} = \text{Args2Asms}(\text{Args})$. Suppose Asms is not conflict-free. Then it is possible to construct an argument based on Asms (say $\text{Args} = \text{Asms}$) whose conclusion is the contrary of an assumption in Asms. Args cannot be an element of Asms (otherwise Asms would not be conflict-free). From the thus obtained fact that $\text{Asms} \cap \text{Asms}^+ = 0$, together with the fact that Asms is a complete argument extension, it follows that Asms does not defend Args. But this is impossible, because Asms does defend all assumptions in Asms. Contradiction. Therefore, $\text{Asms} \subseteq A$ is conflict-free.

The fact that Asms defends itself means that every $\alpha \in \text{Asms} \subseteq A$ is defended by Asms, which implies that every assumption occurring in $\text{Asms} \subseteq A$ is defended by Asms, so every $\alpha \in \text{Asms}$ is defended by Asms. Hence, Asms defends itself.

The final thing to be shown is that Asms contains every assumption it defends. Suppose Asms defends $\alpha \in \text{Asms}$. That means that for each argument $\text{Args} = \text{Asms}$ with conclusion α, Asms enables the construction of an argument C that attacks Args. The fact that all assumptions in Asms are found in arguments from Asms means that C is defended by Asms (this is because Asms defends all its arguments). The fact that Asms is a complete argument extension then implies that $\text{Asms} \subseteq A$. This means that Asms defends the argument (say, α) consisting of the single assumption α. Hence, $\alpha \in \text{Asms}$, so $\alpha \in \text{Asms}$.

Altogether, we have observed that $\text{Asms} \subseteq A$ is conflict-free and contains precisely the assumptions it defends. That is, $\text{Asms} \subseteq A$ is a complete assumption extension.

3. first conjunct: Let $\text{Asms} \subseteq A$ be a preferred assumption extension and let $\text{Args} = \text{Asms2Args}(\text{Asms})$. From point 1, it then follows that $\text{Asms} \subseteq A$ is a complete assumption extension. Suppose, towards a contradiction, that $\text{Asms} \subseteq A$ is not a maximal complete assumption extension. Then there exists a complete argument extension $\text{Args}' \supseteq \text{Args}$, let $\text{Asms}' = \text{Args2Asms}(\text{Args}')$. It then holds that $\text{Asms}' \subseteq A$.

\(^2\)Please note that our definition of ideal and stable semantics is slightly different than in [8, 17] but equivalence is proven in [7].

\(^3\)We abuse terminology a bit and say that argument A attacks assumption α iff the conclusion of A is α. Similarly, we say that a set of assumptions Asms defends an argument A iff it defends each assumption in Asms. And we say that a set of arguments Args defends an assumption α iff for each argument B with conclusion α, there is an argument $C \in \text{Args}$ that attacks B.

\(A_{sms}\). Moreover, from point 1 it follows that \(A_{sms}'\) is a complete assumption extension. But this would mean that \(A_{sms}\) is not a maximal complete assumption extension. Contradiction.

3, second conjunct: Let \(\mathcal{A}_{args} \subseteq A_r\) be a complete argument extension and let \(A_{sms} = \mathcal{A}_{args}2A_{sms}(\mathcal{A}_{args})\). From point 1, it then follows that \(A_{sms}\) is a complete assumption extension. Suppose, towards a contradiction, that \(A_{sms}\) is not a maximal complete assumption extension. Then there exists a complete assumption extension \(A_{sms}' \nsubseteq A_{sms}\). Let \(\mathcal{A}_{args}' = \mathcal{A}_{args}2A_{sms}(A_{sms}')\). It then holds that \(\mathcal{A}_{args}' \nsubseteq \mathcal{A}_{args}\). Moreover, from point 1 it follows that \(\mathcal{A}_{args}'\) is a complete argument extension. But this would mean that \(\mathcal{A}_{args}\) is not a maximal complete argument extension. Contradiction.

\[\square\]

Proposition 1. When restricted to complete assumption extensions and complete argument extensions, the functions \(A_{sms}2A_{args} \) and \(A_{args}2A_{sms}\) become bijections and each other’s inverses.

Proof. Let \(A_{sms}\) be a complete assumption extension and let \(A_{args}\) be a complete argument extension. It suffices to prove that \(A_{args}2A_{sms}(A_{sms}2A_{args}(A_{sms})) = A_{sms}\) and that \(A_{args}2A_{sms}(A_{args}2A_{sms}(A_{args})) = A_{args}\).

1. Suppose \(\alpha \in A_{sms}\). Then there exists an argument in \(A \in A_{sms}2A_{args}(A_{sms})\) consisting of a single assumption \(\alpha\). Therefore, \(\alpha \in A_{args}2A_{sms}(A_{sms}2A_{args}(A_{sms}))\).
2. Suppose \(\alpha \notin A_{sms}\) (assume without loss of generality that \(\alpha \in A\)). Then there exists no argument in \(A_{sms}2A_{args}(A_{sms})\) that contains \(\alpha\). Therefore, \(\alpha \notin A_{args}2A_{sms}(A_{sms}2A_{args}(A_{sms}))\).
3. Suppose \(A \in A_{args}\). Then all assumptions used in \(A\) will be in \(A_{args}2A_{sms}(A_{args})\). This means that \(A\) can be constructed based on \(A_{args}2A_{sms}(A_{args})\). Therefore, \(A \in A_{sms}2A_{args}(A_{args}2A_{sms}(A_{args}))\).
4. Suppose \(A \notin A_{args}\) (assume without loss of generality that \(A \in A_{args}\)). The fact that \(A_{args}\) is a complete argument extension implies that \(A\) is not defended by \(A_{args}\). Therefore, there exists an argument \(B \in A_{args}\) that attacks \(A\), such that \(A_{args}\) contains no \(C\) that attacks \(B\). Assume, without loss of generality, that \(B\) attacks \(A\) by having a conclusion \(\beta\), where \(\beta\) is an assumption used in \(A\). Then \(A_{args}\) cannot contain any argument that uses assumption \(\beta\) (otherwise, this argument would not be defended against \(B\), so \(A_{args}\) would not be a complete arguments extension). Therefore, \(\beta \notin A_{args}2A_{sms}(A_{args})\). This means that \(A\) cannot be constructed based on \(A_{args}2A_{sms}(A_{args})\). Therefore, \(A \notin A_{sms}2A_{args}(A_{args}2A_{sms}(A_{args}))\)

\[\square\]

From Proposition 1, together with Theorem 6 and the fact that each preferred, grounded, stable, or ideal extension is also a complete extension, it follows that under complete, grounded, preferred, stable or ideal semantics, argument extensions and assumption extensions are one-to-one related.

The above results might cause one to believe that similar observations can also be made for other semantics. Unfortunately, this is not always the case.

Theorem 7. Let \(\langle \mathcal{L}, \mathcal{R}, A, \gamma \rangle\) be an ABA framework, and let \(A_r\) be the set of all arguments that can be constructed using this ABA framework.

1. It is not the case that if \(A_{sms} \subseteq A\) is a semi-stable assumption extension, then \(A_{args}2A_{sms}(A_{sms})\) is a semi-stable argument extension, and it is not the case that if \(A_{args} \subseteq A_r\) is a semi-stable argument extension, then \(A_{args}2A_{sms}(A_{args})\) is a semi-stable assumption extension.
2. It is not the case that if \(A_{sms} \subseteq A\) is an eager assumption extension, then \(A_{args}2A_{sms}(A_{sms})\) is an eager argument extension, and it is not the case that if \(A_{args} \subseteq A_r\) is an eager argument extension, then \(A_{args}2A_{sms}(A_{args})\) is an eager assumption extension.

Proof. Let \(\mathcal{F}_{ex1} = \langle \mathcal{L}, \mathcal{R}, A, \gamma \rangle\) be an ABA framework with \(\mathcal{L} = \{a, b, c, e, \alpha, \beta, \gamma, \epsilon\}, \mathcal{A} = \{\alpha, \beta, \gamma, \epsilon\}, \overline{a} = a, \overline{b} = b, \overline{c} = c, \overline{e} = e\) and \(\mathcal{R} = \{r_1, r_2, r_3, r_4, r_5\}\) as follows:

\[
\begin{align*}
 r_1 : & \quad c \leftarrow \gamma \\
 r_2 : & \quad a \leftarrow \beta \\
 r_3 : & \quad b \leftarrow \alpha \\
 r_4 : & \quad c \leftarrow \gamma, \alpha \\
 r_5 : & \quad e \leftarrow \epsilon, \beta
\end{align*}
\]

The following arguments can be constructed from this ABA framework.

- \(A_1\), using the single rule \(r_1\), with conclusion \(c\) and supported by \(\{\gamma\}\)
• A_2, using the single rule r_2, with conclusion a and supported by $\{\beta\}$
• A_3, using the single rule r_3, with conclusion b and supported by $\{\alpha\}$
• A_4, using the single rule r_4, with conclusion c and supported by $\{\gamma, \alpha\}$
• A_5, using the single rule r_5, with conclusion e and supported by $\{\epsilon, \beta\}$

$A_1, A_3, A_5, \text{ and } A_4$, consisting of a single assumption α, β, γ and ϵ, respectively.

These arguments, as well as their attack relation, are shown in Figure 1.

Figure 1: The argumentation framework AF_{ex1} associated with ABA framework F_{ex1}.

The complete argument extensions of AF_{ex1} are $\text{Arg}_s = \emptyset$, $\text{Arg}_s = \{A_2, A_3\}$, and $\text{Arg}_s = \{A_3, A_4, A_5\}$. The associated complete argument extensions of F_{ex1} are $\text{Asms}_s = \emptyset$, $\text{Asms}_s = \{\beta\}$, and $\text{Asms}_s = \{\alpha, \epsilon\}$. Notice that, as one would expect, $\text{Arg}_s = \text{Asms}_s\text{Asms}_s(A(\text{Asms}_s))$, $\text{Arg}_s = \text{Asms}_s\text{Asms}_s(A(\text{Asms}_s))$, and $\text{Asms}_s = \text{Arg}_s\text{Asms}_s(A(\text{Arg}_s))$, $\text{Asms}_s = \text{Arg}_s\text{Asms}_s(A(\text{Arg}_s))$, and $\text{Asms}_s = \text{Arg}_s\text{Asms}_s(A(\text{Arg}_s))$.

It holds that $\text{Arg}_s \cup \text{Arg}_s = \emptyset$, $\text{Arg}_s \cup \text{Arg}_s = \{A_2, A_3, A_4, A_5, A_6\}$ and $\text{Arg}_s \cup \text{Arg}_s = \{A_2, A_3, A_4, A_5, A_6\}$, as well as $\text{Asms}_s \cup \text{Asms}_s = \emptyset$, $\text{Asms}_s \cup \text{Asms}_s = \{\alpha, \beta\}$ and $\text{Asms}_s \cup \text{Asms}_s = \{\alpha, \beta, \epsilon\}$. Hence, Arg_s and Arg_s are semi-stable argument extensions, whereas only Asms_s is a semi-stable assumption extension. We thus have a counterexample against the claim that if Arg_s (or Arg_s) is a semi-stable argument extension, $\text{Asms}_s = \text{Arg}_s\text{Asms}_s(A(\text{Arg}_s))(\text{Asms}_s)$ is a semi-stable assumption extension.

We also observe that the eager argument extension is Arg_s whereas the eager assumption extension is Asms_s. Hence, we have a counterexample against the claim that if Arg_s is an eager argument extension then $\text{Asms}_s = \text{Arg}_s\text{Asms}_s(A(\text{Arg}_s))$ is an eager assumption extension, as well as against the claim that if Asms_s is an eager assumption extension then $\text{Arg}_s = \text{Asms}_s\text{Asms}_s(A(\text{Arg}_s))$ is an eager argument extension.

The only thing left to be shown is that if Asms_s is a semi-stable assumption extension, then $\text{Arg}_s = \text{Asms}_s\text{Asms}_s(A(\text{Arg}_s))$ is not necessarily a semi-stable assumption extension. For this, we slightly alter the ABA framework F_{ex1} by removing rule r_5 and the assumption ϵ (call the resulting ABA framework F_{ex2}). Thus the arguments A_4 and A_5 no longer exist, and hence $\text{Arg}_s = \{A_3, A_6\}$. As now $\text{Arg}_s \cup \text{Arg}_s = \{A_2, A_3, A_4, A_5\}$ is a proper subset of $\text{Arg}_s \cup \text{Arg}_s$ the set Arg_s is no longer semi-stable. On the other side both $\text{Asms}_s = \{\beta\}$, and $\text{Asms}_s = \{\alpha\}$ are semi-stable assumption extensions.

4 Discussion

The connection between assumption-based argumentation and abstract argumentation has received quite some attention in the literature. Dung et al., for instance, claim that “ABA is an instance of abstract argumentation (AA), and consequently it inherits its various notions of ‘acceptable’ sets of arguments” [9]. Similarly, Toni claims that “ABA can be seen as an instance of AA, and (...) AA is an instance of ABA” [17]. While we agree that this holds for some of the admissibility-based semantics (like preferred and grounded), we have pointed out in the current paper that this certainly does not hold for all admissibility-based semantics (semi-stable and eager). One could argue that claims like those above are perhaps a bit too general.
Figure 2: The argumentation framework AF_{ex2} associated with ABA framework F_{ex2}.

Prakken claims that “assumption-based argumentation (ABA) is a special case of the present framework [ASPIC+] with only strict inference rules, only assumption-type premises and no preferences.” [15]. This claim is later repeated in the work of Modgil and Prakken, who state that “A well-known and established framework is that of assumption-based argumentation (ABA) [2], which (...) is shown (in [15]) to be a special case of the ASPIC+ framework in which arguments are built from assumption premises and strict inference rules only and in which all arguments are equally strong” [14]. However, we observe that the argumentation frameworks of Figure 1 and Figure 2 are counterexamples against this claim, in the context of semi-stable and eager semantics. These semantics, being admissibility-based, should work perfectly fine in the context of ASPIC+ (the rationality postulates of [5] would be satisfied). Nevertheless, correspondence with ABA does not hold.

A possible criticism against our counter example of Figure 1 is that it uses a rule (r_4) that is subsumed by another rule (r_1). This raises the question of whether counter examples still exist when no rule subsumes another rule. Our answer is affirmative: simply add an assumption δ and an atom d such that $\overline{\delta} = d$, replace r_1 by $c \leftarrow \gamma, \delta$ and add another rule (r_6) $d \leftarrow \delta$. For the resulting ABA theory, the semi-stable assumption extensions still do not correspond to the semi-stable argument extensions. Hence, the difference between ABA semi-stable (resp. ABA eager) and AA semi-stable (resp. AA eager) can be seen as a general phenomenon, that does not depend on whether some rules are subsumed by others.

Acknowledgements

The first author has been supported by the National Research Fund, Luxembourg (LAAMI project) and by the Engineering and Physical Sciences Research Council (EPSRC, UK), grant ref. EP/J012084/1 (SAsSy project). The second and third authors have been supported by CNPq (Universal 2012 - Proc. n 473110/2012-1), CAPES (PROCAD 2009) and CNPq/CAPES (Casadinho/PROCAD 2011).

References

