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Why
Subpopulations?

Evolutionary algorithms (EAs) that utilize
subpopulations are popular for two reasons:

They adapt readily to parallel hardware,
leading to faster execution

Isolated populations encourage genetic
diversity and discourage premature
convergence

Premature convergence is a serious problem
with EAs, and is encountered with single and
multi-objective problems alike.
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Why SEAMO?

The SEAMO algorithms would appear to be
particularly good candidates for
hierarchical/parallel implementation for the
following reasons:

They perform well in comparison with other
state-of-the-art multi-objective EAs

They are particularly simple to implement

No complex global calculations are required
for fitness or dominance
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Test problems

Multiple knapsack problems (MKPs)

Continuous functions, SPH-2, ZDT6, QV and KUR
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The SEAMO
Framework

Procedure SEAMO
Begin

Generate N random individuals {N is the population size}
Evaluate the objective vector for each population member and store it
Repeat

For each member of the population
This individual becomes the first parent
Select a second parent at random
Apply crossover to produce single offspring
Apply a single mutation to the offspring
Evaluate the objective vector produced by the offspring
if offspring qualifies

Then the offspring replaces a member of the population
else it dies

Endfor
Until stopping condition satisfied
Print all non-dominated solutions in the final population

End
CEC 2004 – p. 6/25



Replacement
Strategy for SEAMO2

1. if offspring harbors a new best-so-far Pareto component

(a) it replaces a parent, if possible

(b) else it replaces another individual at random

2. else if offspring dominates either parent it replaces it

3. else if offspring is neither dominated by nor dominates
either parent it replaces another individual that it dominates
at random

4. otherwise it dies

Note: phenotypic duplicates are deleted

CEC 2004 – p. 7/25



Representation for
the MKP

Order-based representation with a first fit
decoder

Cycle Crossover (CX)

A simple mutation operator swaps two
arbitrarily selected objects within a single
permutation list
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The Continuous
Functions

Solutions are coded as real vectors of length 100

One-point crossover

A non-uniform mutation

Deletion of duplicates: component objective functions
xi and x′

i
of x and x

′, are equal if and only if

xi − ε ≤ x′

i
≤ xi + ε,

where ε is an error term (0.00001× xi)
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The Effect of
Population Size

Small populations gave a wider spread of results

Large populations gave higher quality results in the
center of the range
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The Hierarchical
Algorithms

Hierarchical-biased

Population
400

Population
50

Population
50

Population
100

Population
200

2000 generations

2000 generations
(optional)

CEC 2004 – p. 11/25



The Hierarchical
Algorithms
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Hierarchical Biased
Algorithms

Procedure Hierarchical-biased (population)
Begin

if (populationsize > threshold)
split population into leftpop and rightpop

Hierarchical-biased (leftpop)
Run evolutionary algorithm on rightpop

else
Run evolutionary algorithm on (unsplit) population

End
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The Hierarchical
Balanced Algorithm

Procedure Hierarchical-balanced (population)
Begin

if (populationsize > threshold)
split population into leftpop and rightpop

Hierarchical-balanced (leftpop)
Hierarchical-balanced (rightpop)
Recombine leftpop and rightpop into population

Run evolutionary algorithm on population

else
Run evolutionary algorithm on (unsplit) population

End
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Hierarchical-Biased
Algorithms

hierarchical-biased-2layer algorithm (HBI2)

hierarchical-biased-flat algorithm (HBIF)
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Experimental Method

The three hierarchical algorithms are compared with the
standard SEAMO2 algorithm on the the MKP

Experiments are then extended to some continuous
functions

30 replicate runs carried out for each set of experiments,
and all algorithms use the same total population size and
number of generations
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Comparisons with
other EAs?

The hierarchical algorithms are compared
only with SEAMO2, and not with any other
MOEAs

SEAMO2 has demonstrated its strength in
relation to other EAs elsewhere in a
forthcoming GECCO 2004 paper
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Results for the MKP,
Dominate space, S
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Results for Multiple
Knapsack Problems
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Average Coverage,
(A º B), on the MKP

Algorithm Test problems

A B kn500.2 kn750.2 kn750.3 kn750.4

SEAMO2 HBI2 37.6 50.1 46.4 46.9

HBIF 64.9 70.8 61.4 60.1

HBAL 22.2 32.8 19.1 21.9

HBI2 SEAMO2 25.4 15.0 5.2 4.4

HBIF 75.4 68.1 50.1 37.2

HBAL 20.0 14.8 4.0 6.8

HBIF SEAMO2 5.8 2.8 0.8 1.1

HBI2 7,7 14.9 7.3 4.9

HBAL 5.4 6.1 1.5 2.3

HBAL SEAMO2 28.9 21.8 12.8 6.4

HBI2 54.7 72.0 44.4 25.2

HBIF 72.4 77.1 60.6 50.8
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Continuous Function
Results, S
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Continuous
Functions (cont)

Coverage (A º B)

Algorithm Test problems

A B SPH-2 ZDT6 QV KUR

SEAMO2 HBAL 4.4 98.9 20.8 10.1

HBAL SEAMO2 5.4 0 21.6 66.2
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Conclusions

Better solutions are achieved using large
populations and long running times

Given large computational resources, how do
we make best use of them?

Do we use large single populations or utilize
subpopulations?
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Conclusions (cont)

3 Hierarchical algorithms based on SEAMO
have been presented

Incorporating runs on small and large
populations

Improving the range of solutions, while
maintaining their quality

The hierarchical balanced algorithm
performed best
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Future Work

Focus subpopulations on different regions of the
Pareto space

Try ternary, quadtree etc structures for the hierarchical
balanced algorithm

Implement a massively parallel version of SEAMO
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