A Hierarchical Evolutionary Approach to Multi-Objective Optimization

Christine L. Mumford

christine@cs.cardiff.ac.uk

Cardiff University

A hierarchical evolutionary approach to MO

- A hierarchical evolutionary approach to MO
- Based on the SEAMO algorithm (a simple evolutionary algorithm for multi-objective optimization)

- A hierarchical evolutionary approach to MO
- Based on the SEAMO algorithm (a simple evolutionary algorithm for multi-objective optimization)
- A better spread of solutions are obtained if subpopulations of various sizes are used

- A hierarchical evolutionary approach to MO
- Based on the SEAMO algorithm (a simple evolutionary algorithm for multi-objective optimization)
- A better spread of solutions are obtained if subpopulations of various sizes are used
- Three alternative hierarchical models are tried and the results compared

Evolutionary algorithms (EAs) that utilize subpopulations are popular for two reasons:

Evolutionary algorithms (EAs) that utilize subpopulations are popular for two reasons:

They adapt readily to parallel hardware, leading to faster execution

Evolutionary algorithms (EAs) that utilize subpopulations are popular for two reasons:

- They adapt readily to parallel hardware, leading to faster execution
- Isolated populations encourage genetic diversity and discourage premature convergence

Evolutionary algorithms (EAs) that utilize subpopulations are popular for two reasons:

- They adapt readily to parallel hardware, leading to faster execution
- Isolated populations encourage genetic diversity and discourage premature convergence

Premature convergence is a serious problem with EAs, and is encountered with single and multi-objective problems alike.

The SEAMO algorithms would appear to be particularly good candidates for hierarchical/parallel implementation for the following reasons:

The SEAMO algorithms would appear to be particularly good candidates for hierarchical/parallel implementation for the following reasons:

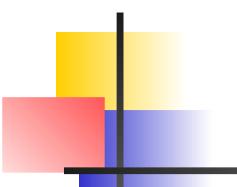
They perform well in comparison with other state-of-the-art multi-objective EAs

The SEAMO algorithms would appear to be particularly good candidates for hierarchical/parallel implementation for the following reasons:

- They perform well in comparison with other state-of-the-art multi-objective EAs
- They are particularly simple to implement

The SEAMO algorithms would appear to be particularly good candidates for hierarchical/parallel implementation for the following reasons:

- They perform well in comparison with other state-of-the-art multi-objective EAs
- They are particularly simple to implement
- No complex global calculations are required for fitness or dominance



Test problems

Test problems

Multiple knapsack problems (MKPs)

Test problems

- Multiple knapsack problems (MKPs)
- Continuous functions, SPH-2, ZDT6, QV and KUR

The SEAMO Framework

Procedure **SEAMO**

Begin

Generate N random individuals {N is the population size}

Evaluate the objective vector for each population member and store it

Repeat

For each member of the population

This individual becomes the first parent

Select a second parent at random

Apply crossover to produce single offspring

Apply a single mutation to the offspring

Evaluate the objective vector produced by the offspring

if offspring qualifies

Then the offspring replaces a member of the population else it dies

Endfor

Until stopping condition satisfied

Print all non-dominated solutions in the final population

End

Replacement Strategy for SEAMO2

- 1. if offspring harbors a new best-so-far Pareto component
 - (a) it replaces a parent, if possible
 - (b) **else** it replaces another individual at random
- 2. else if offspring dominates either parent it replaces it
- 3. **else if** offspring is neither dominated by nor dominates either parent it replaces another individual that it dominates at random
- 4. otherwise it dies

Note: phenotypic duplicates are deleted

Order-based representation with a first fit decoder

- Order-based representation with a first fit decoder
- Cycle Crossover (CX)

- Order-based representation with a first fit decoder
- Cycle Crossover (CX)
- A simple mutation operator swaps two arbitrarily selected objects within a single permutation list

Solutions are coded as real vectors of length 100

Solutions are coded as real vectors of length 100

One-point crossover

- Solutions are coded as real vectors of length 100
- One-point crossover
- A non-uniform mutation

- Solutions are coded as real vectors of length 100
- One-point crossover
- A non-uniform mutation
- Deletion of duplicates: component objective functions x_i and x'_i of x and x', are equal if and only if

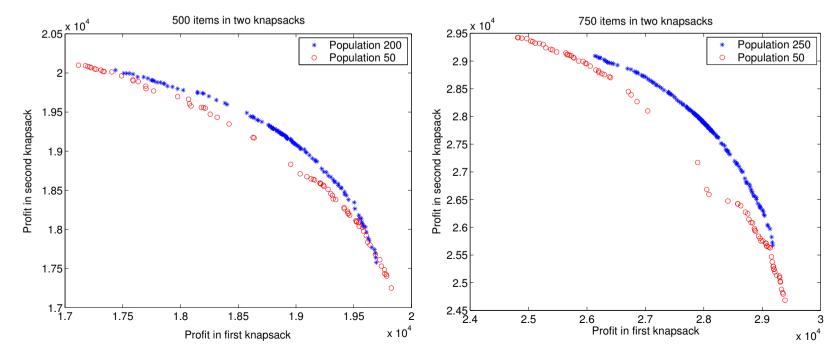
 $x_i - \epsilon \le x'_i \le x_i + \epsilon,$

where ϵ is an error term (0.00001 × x_i)

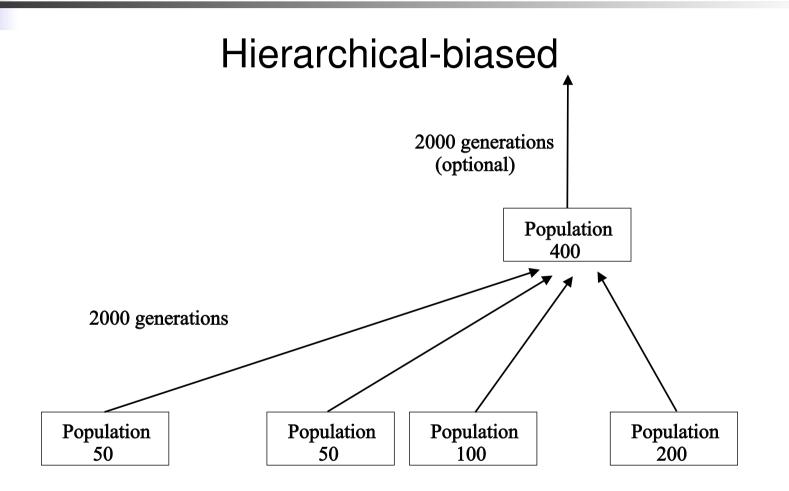
Small populations gave a wider spread of results

- Small populations gave a wider spread of results
- Large populations gave higher quality results in the center of the range

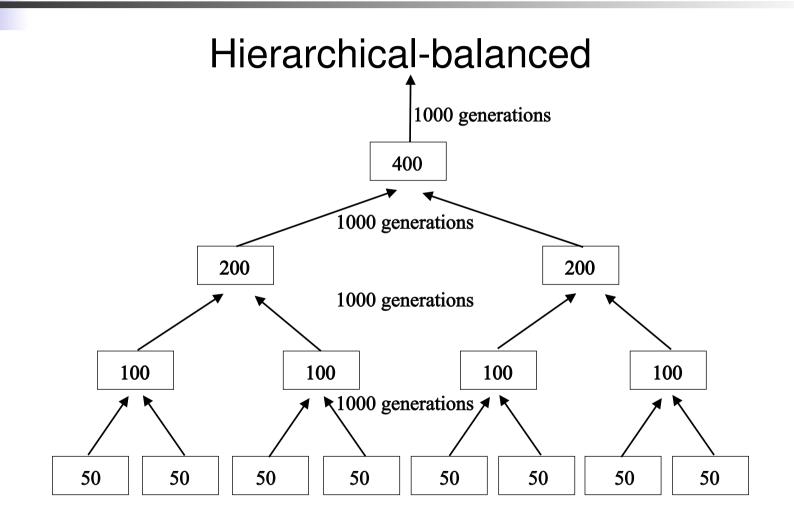
- Small populations gave a wider spread of results
- Large populations gave higher quality results in the center of the range



The Hierarchical Algorithms



The Hierarchical Algorithms



Hierarchical Biased Algorithms

Procedure *Hierarchical-biased* (*population*) **Begin**

if (populationsize > threshold)
 split population into leftpop and rightpop
 Hierarchical-biased (leftpop)
 Run evolutionary algorithm on rightpop

else

Run evolutionary algorithm on (unsplit) *population* **End**

The Hierarchical Balanced Algorithm

Procedure *Hierarchical-balanced* (*population*) **Begin**

if (populationsize > threshold)
 split population into leftpop and rightpop
 Hierarchical-balanced (leftpop)
 Hierarchical-balanced (rightpop)
 Recombine leftpop and rightpop into population
 Run evolutionary algorithm on population
else

Run evolutionary algorithm on (unsplit) *population*

End

Hierarchical-Biased Algorithms

Hierarchical-Biased Algorithms

hierarchical-biased-2layer algorithm (HBI2)

Hierarchical-Biased Algorithms

hierarchical-biased-2layer algorithm (HBI2)
 hierarchical-biased-flat algorithm (HBIF)

The three hierarchical algorithms are compared with the standard SEAMO2 algorithm on the the MKP

- The three hierarchical algorithms are compared with the standard SEAMO2 algorithm on the the MKP
- Experiments are then extended to some continuous functions

- The three hierarchical algorithms are compared with the standard SEAMO2 algorithm on the the MKP
- Experiments are then extended to some continuous functions
- 30 replicate runs carried out for each set of experiments, and all algorithms use the same total population size and number of generations

Comparisons with other EAs?

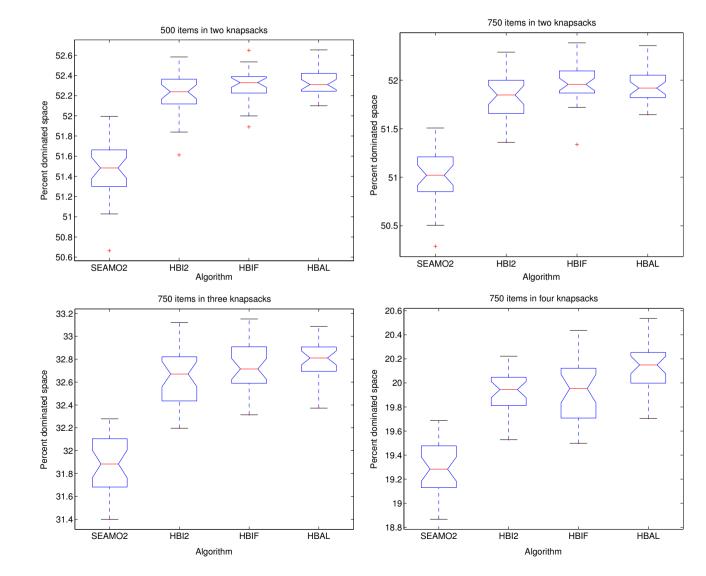
Comparisons with other EAs?

The hierarchical algorithms are compared only with SEAMO2, and not with any other MOEAs

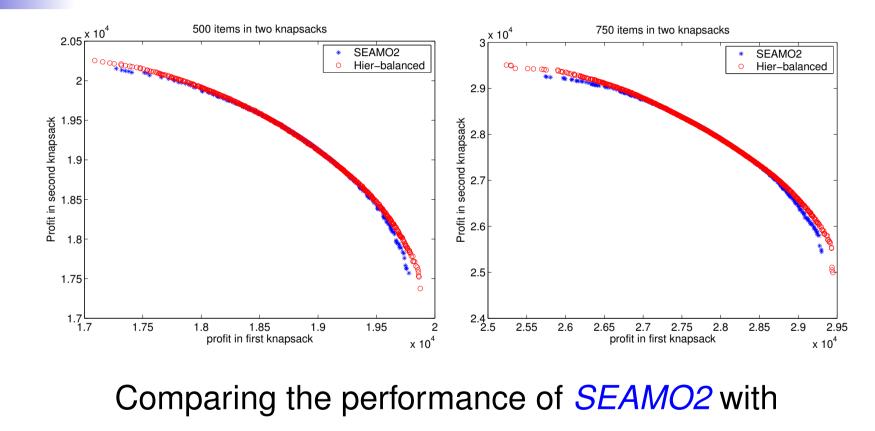
Comparisons with other EAs?

- The hierarchical algorithms are compared only with SEAMO2, and not with any other MOEAs
- SEAMO2 has demonstrated its strength in relation to other EAs elsewhere in a forthcoming GECCO 2004 paper

Results for the MKP, Dominate space, S



Results for Multiple Knapsack Problems

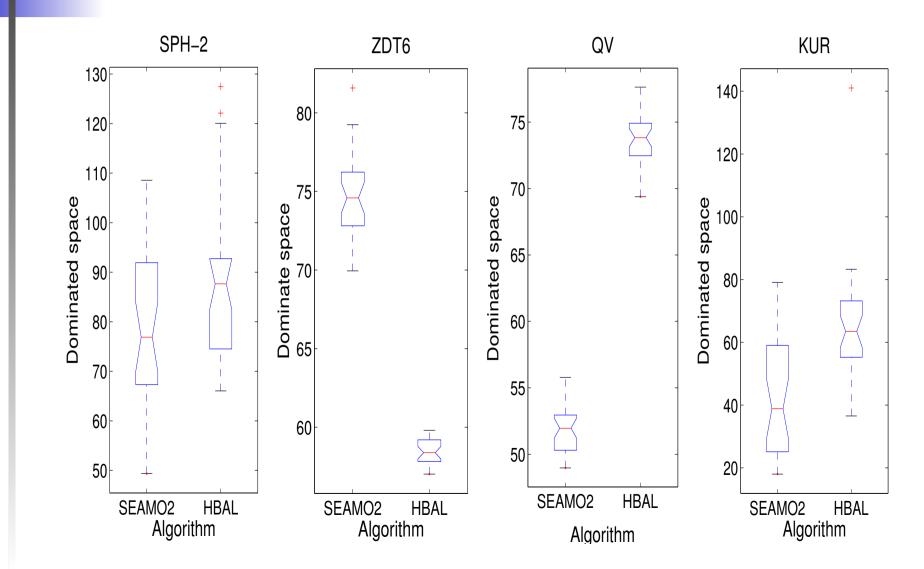


Hierarchical-balanced

Average Coverage, $(A \succeq B)$, on the MKP

Algorithm		Test problems					
A	В	kn500.2	kn750.2	kn750.3	kn750.4		
SEAMO2	HBI2	37.6	50.1	46.4	46.9		
	HBIF	64.9	70.8	61.4	60.1		
	HBAL	22.2	32.8	19.1	21.9		
HBI2	SEAMO2	25.4	15.0	5.2	4.4		
	HBIF	75.4	68.1	50.1	37.2		
	HBAL	20.0	14.8	4.0	6.8		
HBIF	SEAMO2	5.8	2.8	0.8	1.1		
	HBI2	7,7	14.9	7.3	4.9		
	HBAL	5.4	6.1	1.5	2.3		
HBAL	SEAMO2	28.9	21.8	12.8	6.4		
	HBI2	54.7	72.0	44.4	25.2		
	HBIF	72.4	77.1	60.6	50.8		

Continuous Function Results, S



Continuous Functions (cont)

$Coverage\;(A \succeq B)$								
Algorithm		Test problems						
А	В	SPH-2	ZDT6	QV	KUR			
SEAMO2	HBAL	4.4	98.9	20.8	10.1			
HBAL	SEAMO2	5.4	0	21.6	66.2			

Conclusions

Better solutions are achieved using large populations and long running times

Conclusions

- Better solutions are achieved using large populations and long running times
- Given large computational resources, how do we make best use of them?

Conclusions

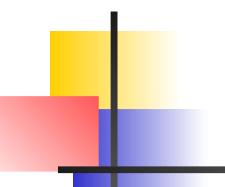
- Better solutions are achieved using large populations and long running times
- Given large computational resources, how do we make best use of them?
- Do we use large single populations or utilize subpopulations?

3 Hierarchical algorithms based on SEAMO have been presented

- 3 Hierarchical algorithms based on SEAMO have been presented
- Incorporating runs on small and large populations

- 3 Hierarchical algorithms based on SEAMO have been presented
- Incorporating runs on small and large populations
- Improving the range of solutions, while maintaining their quality

- 3 Hierarchical algorithms based on SEAMO have been presented
- Incorporating runs on small and large populations
- Improving the range of solutions, while maintaining their quality
- The hierarchical balanced algorithm performed best



Focus subpopulations on different regions of the Pareto space

- Focus subpopulations on different regions of the Pareto space
- Try ternary, quadtree etc structures for the hierarchical balanced algorithm

- Focus subpopulations on different regions of the Pareto space
- Try ternary, quadtree etc structures for the hierarchical balanced algorithm
- Implement a massively parallel version of SEAMO