
An Order Based Evolutionary Approach to Dual Objective

Examination Timetabling

Christine L. Mumford

Abstract— This paper explores a simple bi-objective evo-
lutionary approach to the examination timetabling problem.
The new algorithm handles two hard constraints: 1) avoiding
examination clashes and 2) respecting the given maximum
seating capacity; while simultaneously minimizing two objective
functions: 1) the overall length of the examination period and
2) the total proximity cost. An order based representation with
a greedy decoder ensures that neither of the hard constraints
is violated, and produces only feasible timetables. At the same
time the dual objectives are attacked and the multi-objective
evolutionary algorithm (MOEA) attempts to pack all the ex-
aminations into as short a period as possible while, at the same
time, favoring a good spread of examinations for individual
students. Most other published timetabling algorithms require
the number time slots to be fixed in advance of any optimization
for soft constraints, such as proximity costs. Smart genetic and
heuristic operators used in the present study ensure that a good
set of non-dominated results is produced by the new MOEA,
covering a range of timetable lengths.

I. INTRODUCTION

Examination timetabling belongs to a large group of

NP-hard problems collectively known as set partitioning

problems. The examination timetabling problem involves

scheduling a set of examinations into a number of time

slots in such a way that the resulting timetable complies

with any hard constraints and also gives due consideration

to other features considered desirable in a “good” timetable.

Many different variants exist for this important real-world

problem, and the choice of practical solution method will

depend on the types of constraints involved and also on

the objectives that need to be optimized (see [4] and [17]

for more details). In its most basic version, the examina-

tion timetabling problem is identical to the graph coloring

problem, with the colors representing time slots and vertices

representing examinations. In this model, an undirected edge

between vertices indicates that at least one student is taking

both exams. The goal is to schedule all the examinations

in the minimum number of time slots, so that there are no

clashes.

In practice, available resources are finite and additional

hard constraints may be imposed, over and above the re-

quirement to schedule examinations with no clashes. A

university has an upper limit on the number of candidates

it can seat in a time slot, for example. Interestingly, the

seat capacity limitation is identical to the weight capacity

constraint for the bin packing problem: the items of various

Christine Mumford is with the School of Computer Science,
Cardiff University, 5 The Parade, Cardiff, CF24 3AA, United King-
dom (phone: +44 (0)29 20875305; fax: +44 (0)29 20874598; email:
C.L.Mumford@cs.cardiff.ac.uk).

sizes (bin packing) being replaced with examinations having

various numbers of candidates (timetabling). Thus, a feasible

solution to the timetabling problem that avoids all clashes and

seats all students requires the simultaneous solution to the

underlying graph coloring and bin packing problems. Other

common constraints include requirements to schedule some

exams before others and restrictions limiting certain exams

to specific rooms, if special resources are required.

In addition to the various hard constraints imposed by

different institutions, universities have differing views as to

what constitutes a “good” timetable, as opposed to simply

a feasible one. Most commonly these desirable but not

essential properties (often referred to as soft constraints)

include some measure of a “fair spread” of examinations

for the students taking them. A schedule that requires stu-

dents to take two examinations in consecutive time slots

is usually avoided if possible, for example. Indeed, some

institutions will go much further than this to ensure that as

many students as possible have good revision gaps between

their examinations. Universities may also consider issues

that affect the staff involved in marking the scripts. For

example, examinations with large numbers of candidates may

be scheduled early to give more time for marking. In the

present study the following hard and soft constraints apply:

Hard Constraints:

1) Avoiding clashes

2) Keeping within the total seating capacity

Soft Constraints (dual objectives):

1) Minimizing the number of time slots

2) Minimizing near clashes - ensuring a good spread of

examinations for individual students

Two main encoding methods can be identified for

timetabling, and other set partitioning problems: direct en-

coding, and order based encoding. With direct encoding

arbitrary time slots are first assigned and then heuristics are

used to move some examinations in an attempt to improve

the solution. In contrast, order based approaches organize the

exams into permutation lists, and rely on a greedy decoder to

assign the time slots in a methodical way. Direct approaches

work to minimize and eventually eliminate conflicts but do

not guarantee legal solutions. With heavily and/or multiply

constrained problems, it can become increasingly difficult to

escape infeasibility when using directly encoded methods.

On the other hand, if an order based approach is used,

feasibility is usually guaranteed.

In this paper an order based approach is used which

builds on previous work on the graph coloring problem

by the same author, [16]. The earlier study introduced two

new crossover operators that are specially adapted for set

partitioning problems. A major contribution to the successful

operation of the new crossover operators is the incorpora-

tion of some grouping and reordering heuristics, originally

devised by Culberson and Luo [8]. These heuristics proved

very effective in preprocessing the permutation lists prior

to crossover, by grouping and reordering complete color

classes. The new crossover operators are specially honed

so that offspring inherit complete color classes from their

parents, wherever this is possible. Yet, at the same time, the

order based greedy assignment process ensures all solutions

remain feasible (i.e., that no hard constraint is violated). This

is in contrast to the crossovers used in other state-of-the-art

methods for set partitioning. The crossover used in the group-

ing genetic algorithm (GGA) [11], [12], for example, uses

repair and/or backtracking to reassign elements and correct

conflicts. Similarly, the very successful hybrid evolutionary

algorithm of Galinier and Hao, [13], relies on extensive tabu

search eliminate the conflicts.

In the present work a simple multi-objective evolutionary

algorithm (MOEA) is used to simultaneously minimize the

number of time slots and the total proximity cost for the

examination timetabling problem. The idea is to pack all the

examinations into as short a period as possible, while favor-

ing a good spread of examinations for individual students.

Most other published timetabling algorithms require the

number time slots to be fixed in advance of any optimization

for soft constraints, such as proximity costs. In contrast,

a MOEA approach produces results that cover a range of

timetable lengths. Although an earlier paper by Pascal Côté,

Tony Wong and Robert Sabourin [7] has also tackled the bi-

objective optimization of timetable length versus proximity

costs, obtaining excellent results, the present approach differs

from this ground-breaking work in a number of important

ways. The present work:

• adds seating capacity constraints,

• uses an order based representation,

• does not produce infeasible solutions, and thus needs

no repair heuristics

• uses a recombination (crossover) operator.

One clear advantage of the present approach is the ease

with which it can deal with multiple hard constraints by

incorporating appropriate tests for them within the greedy

decoder.

II. KEY HEURISTICS, GENETIC OPERATORS AND

PERFORMANCE MEASURES USED IN THE STUDY

A. Culberson and Luo’s grouping and reordering heuristics

The grouping and reordering heuristics of Culberson and

Luo (CL) [8] play a very important role in preprocessing the

chromosomes to make the crossover operator more effective

(see [16] for evidence of this). The CL heuristics, originally

devised to solve the graph coloring problem, belong to a

family of methods that use simple rules to produce orderings

of vertices. Once created, the orderings are presented to

a greedy decoder for transformation into legal colorings.

Successful heuristics of this type can be distinguished by

the production of high quality solutions. The simplest and

fastest ordering heuristics generate a solution in one go. For

the graph coloring problem probably the best known one-

shot techniques generate the orderings by placing the most

heavily constrained vertices (e.g., those with many edges

connecting them to other vertices) before those that are less

constrained. While most of these techniques can be described

as static, because the orderings remain unchanged during the

greedy color assignment process [14], [19], a somewhat more

sophisticated technique, known as DSatur, [10] operates

dynamically. by giving priority to vertices with the most

neighbors already colored. Similar one-shot ordering criteria

have been successfully applied to timetabling. Largest degree

(LD) and largest enrolment (LE) are popular static methods

for ordering examinations, while saturation degree (SD)

operates in a similar fashion to Desatur. Of particular note

is a recent paper by H. Asmuni and E.K. Burke and J.M

Garibaldi, [1], in which these three ordering criteria (LD, LE

and SD) are brought together in a fuzzy system, producing

very good results.

Despite their attractiveness in terms of speed and simplic-

ity, however, one shot ordering heuristics are not always very

effective in practice. In particular, with the possible exception

of fuzzy systems, they are not easy to adapt to problems

with multiple constraints or objectives. Nevertheless, such

algorithms are extremely useful in providing upper bounds

and starting points for more sophisticated methods.

The present author believes that the CL heuristics have

been rather overlooked in the past. These techniques operate

very differently from the one-shot heuristics, focussing their

procedures on whole groups of vertices (i.e., color classes),

rather than on sorting individual items. Furthermore, these

techniques are iterative, and can prove very effective if

used over a period of time. Of particular significance is a

rare property of the CL heuristics which ensures that it is

impossible to get a worse result by applying any of their

reordering techniques to the graph coloring problem, and it

is possible that a better result (using fewer colors) may be

produced (see [8] for details). Numerical measures associated

with each group or color class, such as its cardinality or

its total degree sum, are used as criteria for rearranging the

classes. Following each rearrangement, the greedy decoder

reassigns the colors. It is at this stage that better solutions

can arise, requiring less colors. Although the CL heuristics

were developed for the graph coloring problem, they can

be applied equally effectively to the bin packing problem,

and also to basic versions of the examination timetabling

problem. Culberson and Luo suggest a random mix of var-

ious reordering heuristics and call the composite algorithm

iterated greedy, IG.

Two main stages of IG can be identified:

1) grouping, and

2) reordering.

Figure 1 illustrates some key operations from IG applied

a) Graph with 12 vertices

Fig. 1. Various operations by Culberson and Luo, [8], used in the local search procedure

to a small graph with 12 vertices and 14 edges. Figure

1 (b) gives a typical random permutation of the vertices

from Figure 1 (a) and also the resulting greedy coloring.

Figure 1 (c) shows the grouping operation used to sort the

list in non-descending sequence of color label, and 1 (d)

gives the arrangement following the application of one of

the CL reordering heuristics called largest first. The largest

first heuristic rearranges the color classes in non-ascending

sequence of their size. Note that the positions of color classes

1 and 2 have been reversed in Figure 1 (d). This follows

advice in [8] to interchange positions of equal sized color

classes. In Figure 1 (f) vertices are randomly “shuffled”

within (but not between) the color classes. (Note: shuffle,

although mentioned, was not extensively used by Culberson

and Luo in the IG algorithm. However it is included here

because of its value in the present study). Finally, the greedy

algorithm is applied to the new arrangement, (f), and the

result is shown in Figure 1 (g). Interestingly, vertices 4 and

1 are reassigned lower color labels, leading to a reduction in

the size of color class 2. Thus, given an initial permutation

of vertices, the IG algorithm can be defined by the following

repeating sequence:

1) greedy assignment

2) grouping of color classes

3) reordering of complete color classes

4) shuffle within each color class (optional)

Various numerical properties of the color classes were tried

as criteria for reordering:

1) Reverse: Reverse the order of the color classes

2) Random: Place the color classes in random order

3) Largest first: Place the classes in order of decreasing

size (Figure 1 d))

4) Smallest first: Place the smallest classes first

5) Increasing total degree: Place the classes in increas-

ing order by the total degree of the group

6) Decreasing total degree: Place the classes in decreas-

ing order by the total degree of the group

The favored combination of Culberson and Luo was:

largest first, reverse and random used in the following ratio

50:50:30. We will use a slightly different regime, described

later.

B. The Genetic Operators

The crossover used in the study is the permutation order

based crossover (POP) introduced in [16]. POP was found to

work better than the other crossover (MIS) from the earlier

paper during some preliminary experiments. The operation

of POP is illustrated in Figure 2.

POP was inspired by the simple one point crossover

commonly applied to the “standard” bit string GA, which

simply selects two parents and a cut point. The first portion

of parent 1 up to the cut point becomes the first portion

of offspring 2. However, the remainder of offspring 2 is

obtained by copying the vertices absent from the first portion

of the offspring in the same sequence as they occur in parent

2.

5

0

2

0

9

0

12

0

4

0

6

1

11

1

1

0

3

0

5

0

8

0

11

0

2

1

4

1

$

1

0

3

0

5

0

8

0

11

0

2

1

9

1

5

0

2

0

9

0

12

0

4

0

6

1

1

1

Permutation One Point Crossover (POP)

a) Cut point selected.

Parent 1

Parent 2

b) First portion of strings swapped and remaining unused vertices
copied in sequence. Vertices recolored using greedy decoder.

Child 1

Child 2

Cut point

8

1

3

2

10

2

1

1

7

3

6

1

9

1

12

1

7

2

10

2

12

1

4

1

6

1

10

2

7

2

3

2

8

1

11

1

7

3

10

2

Fig. 2. POP Crossover

The mutation operator used is the position based mutation

by Davis, [9]. This operator, also known as insertion muta-

tion, simply involves selecting two values at random from a

permutation list, and placing the second before the first.

C. Performance Measures/Fitness Values used by the MOEA

Algorithm

The role of the MOEA is to simultaneously minimize

the timetable length and the proximity costs. We shall now

examine the performance measures used to measure the

progress of these two objectives during the execution of the

algorithm.

Minimizing the Time Slots: For many set partitioning

problems the objective function (i.e., the value we are trying

to optimize) is not always the best measure of progress

for an optimization algorithm to use. For example, if we

wish to minimize the number of colors or time slots used,

respectively, for graph coloring or timetabling, enormous

solution redundancy can make it difficult for an algorithm to

make any progress. It is important somehow to distinguish

between “good assignments” and “bad assignments”, for a

given number of colors or time slots. The progress measure

below, P1, was devised by Erben [11]. The goal is to

maximize P1.

P1 =
1

c

c∑

1

D2

j (1)

In Equation 1, Dj =
∑

i∈Sj
di represents the total degree

for group j with di denoting the vertex degree of the

ith node, and c the total number of classes (i.e., colors

or time slots). P1 favors solutions with large numbers of

highly constrained vertices concentrated in the same classes.

Under this regime it appears that the members of small

classes, consisting of weakly constrained vertices, tend to be

gradually reassigned to the larger classes, eventually driving

down the total number of classes. P1 has the added advantage

that it is insensitive to color (or time slot) labelling, unlike

TABLE I

CHARACTERISTICS OF TIMETABLING PROBLEMS

Instance # exams # students # edges # seats GCP slots BPP slots UBav Prox

car-f-92 543 18419 20305 2000 28 28 44
car-s-91 682 16926 29814 1550 28 37 54
kfu-s-93 461 5349 5893 1955 19 13 90
pur-s-93 2419 30032 86261 5000 30 25 71
tre-s-92 261 4362 6131 655 20 23 55
uta-s-92 622 21266 24249 2800 30 22 39

the measure devised by Culberson and Luo [8] and used in

[16].

Minimizing Near Clashes: The second performance

measure is based on the proximity costs, ws, described in

[6]. Cost, ws, is imposed whenever a student has to sit

two examinations scheduled s periods apart. The weights

imposed are as follows: w1 = 16, w2 = 8, w3 = 4, w4 = 2
and w5 = 1. Using these weights, cost values are evaluated

for each student and all of these are then added together to

give a total cost accumulated for all students. We will call

this accumulated cost our proximity cost. For convenience,

though, we will convert proximity cost, into a proximity

profit, P2, so that our MOEA will simultaneously maximize

the two objectives, P1 and P2. The conversion utilizes

a simple upper bound for proximity, UB, evaluated by

generating the worst possible examination schedule that is

possible for each individual student, and then adding together

the corresponding proximity costs. A pathological schedule

for an individual student would involve all exams occurring

in consecutive time slots, with no gaps. P2 is defined as:

P2 =
(UB − proximity)

UB
(2)

III. CHARACTERISTICS OF THE DATA SETS

Six data sets selected from Carter’s benchmarks [6] are

used in this paper. The chosen instances are the only ones

to be assigned seating capacity limitations in the original

data. Their characteristics are summarized in Table I. The

first five columns of the table are self explanatory. Column

6 lists the best known solutions to the underlying graph

coloring instances. The uta-s-92 best is taken from [5] and

the purs-s-92 best from [3]. All the other graph coloring

solutions can be found in [6]. Column 7 presents solutions

to the underlying bin packing instances, as calculated by

the present author using a simple first fit decreasing weight

algorithm (FFD). This involved sorting the examinations

in sequence according to the number of students taking

each one, with the most popular exam listed first. FFD

then placed the examinations in the earliest available time

slot, complying with the seating capacity constraint, but

ignoring any clashes. Interestingly, all the solutions obtained

using FFD matched the so-called “ideal solutions”. Ideal

solutions can be evaluated by counting the total number of

student examination events, then filling up all the seats in

consecutive time slots, ignoring any clashes, until all the

events are used up. Thus, all the solutions in column 7 are

optimal for the underlying bin packing problem. Assuming

the listed graph coloring solutions are also optimal, we can

say that for each instance the larger solution of GCP and

BPP gives a lower bound for the corresponding timetabling

problem.

Column 8 specifies an upper bound for the proximity

cost for each instance (as explained in Section II-C). This

time, however, UBav is quoted as an average for each

student. As explained previously, the UB measure assumes

that each student has all of his/her exams in one continuous

sequence. Instances with high values in column 8 (i.e.,

kfu-s-93 and pur-s-93) correspond to universities where, on

average, students have a lot of examinations to sit. We shall

use the results from columns 6, 7 and 8 to help assess

solution quality for our MOEA.

IV. THE MULTI-OBJECTIVE EVOLUTIONARY

FRAMEWORK

Multi-objective optimization problems are common in the

real world and involve the simultaneous optimization of

several (often competing) objectives. Problems such as these

are characterized by optimum sets of alternative solutions,

known as Pareto sets, rather than by a single optimum.

Pareto-optimal solutions are non-dominated solutions in the

sense that it is not possible to improve the value of any one

of the objectives, in such a solution, without simultaneously

degrading the quality of one or more of the other objectives in

the vector. The multi-objective algorithm used here is based

on ideas from the SEAMO algorithm (simple evolutionary

algorithm for multi-objective optimization) algorithm) [15],

[18].

In the present paper we are concerned with the simultane-

ous minimization of two objectives: the number of time slots

in the timetable, and the overall severity of near clashes.

Although these two objectives are well studied by other

researchers, they are normally optimized separately, with

the number of time slots being fixed prior to near clash

minimization. An exception is the work by Côté et al, as

discussed in Section I. As has already been mentioned, the

order based approach used in the present study makes it easy

to deal with more than one hard constraint, e.g., avoiding

clashes whilst respecting the seating capacity. In contrast,

Côté et al impose only clash avoidance using their direct

representation approach. On the other hand, Burke, Bykov

and Petrovic [2] express the number of students that cannot

be seated as one of their nine criteria to be optimized.

The multi-objective framework, outlined in Figure 1, il-

lustrates a simple steady-state approach, which sequentially

Algorithm 1 Simple MOEA

Generate N random strings {N is the population size}
Evaluate the objective vector for each string and store it

Set cr = 1 {crossover rate}
for (generation = 1; generation < totalGenerations; generations + +) do

for all strings in the population do

Select each string in turn, it becomes parent1
Choose either crossover (probability = cr) or mutation (probability = 1 − cr)

if Crossover is selected then

Select parent2 at random

Apply crossover to create a single offspring

Apply mutation followed by one iteration of iterated greedy

else if Mutation is selected then

Apply either mutation or iterated greedy in 50:50 ratio

Evaluate the objective vector for the offspring

if The offspring’s objective vector improves on any bestSoFar then

It replaces a parents in the population

else if Offspring is a duplicate then

It dies

else if Offspring dominates a parent then

It replaces it in the population

else if Offspring neither dominates nor is dominated by a parent then

it replaces another individual that it dominates at random

Otherwise it dies

cr = 1 − generation/totalGenerations

selects every individual in the population for breeding. Once

and individual is selected, crossover is applied at a rate, cr,

which begins at 100 % at the start of a run, but decreases

with each generation at a linear rate, finishing at 0 %. Pilot

studies indicated an important role for crossover at the start

of the run, but an increasing reliance on mutation later on.

Before crossover is applied, a second parent is selected at

random from the population. A single offspring results from

each reproduction. Following crossover, a single insertion

mutation is applied to the offspring and this is followed by

one iteration of the iterated greedy algorithm.

In situations where crossover is not applied, either inser-

tion mutation or a single application of iterated greedy is

applied in a 50:50 ratio.

Following the application of the genetic operators, the new

individual will replace a parent, replace another individual

or die, following the precise conditions stated in Algorithm

1. However, before any replacement takes place, the new

individual will be preprocessed and the time slots grouped

along the permutation list, as shown in Figure 1 (c), ready

for the next application of the POP crossover.

V. EXPERIMENTAL SETUP

As previously mentioned, the version of the timetabling

problem addressed here combines the bin packing problem

with the graph coloring problem, and adds proximity costs.

The maximum number of seats per time slot corresponds

to the bin packing constraint, and the avoidance of clashes

to the graph coloring constraint. Given a set of students to

be examined for different courses, we wish to schedule the

examinations so that all clashes are avoided and the seating

capacity is not exceeded in any time period. At the same

time, we wish to spread the examinations so that individual

students have sufficient revision time.

One potential problem with the approach used in this

paper for timetabling is that, while we can guarantee that

application of the CL reordering heuristics can never produce

a worse solution for the underlying graph coloring or bin

packing problems, in terms of the number of time slots

required, it is unfortunate that a similar guarantee does not

hold for the proximity costs. The time slot sequence does

not matter at all, if all that is required is to avoid clashes

and respect the seating capacity. On the other hand, it is

precisely the sequence of examinations that determines the

proximity costs. Fortunately, the grouping heuristic respects

the time slot spacing perfectly, and “reverse” has a relatively

small effect following any reallocation of exams to time slots,

imposed by the greedy decoder. We shall explore these issues

in more detail below.

The greedy decoder: To cope with the clashes and

seating capacity simultaneously, the greedy decoder fits ex-

aminations sequentially into the earliest possible time slot,

respecting seating capacities as well as avoiding clashes.

Adaptations to the reordering heuristics: Recall that

Culberson and Luo applied the following heuristics to reorder

their color classes “largest first”, “reverse” and “random” in

the ratio 50:50:30. For the present study the “largest first”

heuristic is replaced with a heuristic that orders on decreasing

total degree (DTD). DTD ties in well with our objective

function, P1, which favors solutions that have classes with

high values for their total degree. The “random” ordering

heuristic, was also abandoned in favor of an alternative which

we will call “deletion and insertion”. This heuristic simply

selects a time slot (color), and deletes it from one part of the

chromosome, reinserting it elsewhere at random, respecting

class boundaries. Deletion and insertion was found to be less

disruptive to the proximity costs than randomly reordering all

of the time slots.

Parameter settings: The MOEA ran for 3,000 genera-

tions on populations of 250 for each of the six instances. Five

replicate runs were carried out in each case. Applications of

the reordering heuristics were applied in the ratio 50:50:50

for “reverse”, “deletion and insertion” and DTD. One itera-

tion of the iterated greedy algorithm specified in Algorithm 1

corresponds to a random choice between the three reordering

heuristics, with just one selection being made.

VI. RESULTS

The results for the six timetabling instances are presented

in Table II. The values presented in columns 1 and 2 of the

table are derived from the approximate Pareto sets produced

by the 5 replicate runs carried out on each of the problem

instances. Instead of quoting values for the objective func-

tions, P1 and P2 used by the MOEA, however, we refer to

more meaningful measures: the number of time slots (column

1) and the average proximity cost per student (column 2).

Associated with each value stating the number of time slots

in column 1, is a range of average proximity costs in column

2. Where a single value is listed in column 2 instead of

a range, this indicates that only one of the five replicate

runs produced a result for a particular number of time slots.

Unfortunately, direct comparisons between the proximity

costs in Table II and other published results (including [7]) is

not possible, because previous researchers have not included

a seating capacity constraint. Thus, to give some basis for

comparison, the MOEA was re-run with the same parameters

of population size and number of evaluations, but with the

second objective set to a constant value. In this way random

values for proximity were collected for various numbers

of time slots, and these are presented in column 3 of the

tables. Note: to save space results involving large numbers of

time slots are omitted from the tables. However, the gradual

improvement in proximity costs that can be observed in the

tables, as one progresses down the rows, continues at this

slow rate for longer timetables.

The results demonstrate the ability of the MOEA to

produce short timetables and obtain proximity costs that are

consistently better than random. Indeed, the smallest number

of time slots obtained for car-s-91 (37) and tre-s-92 (23)

exactly match the solutions to the underlying bin packing

problems and are thus provably optimal for time slots. On

the other hand, kfu-s-93 (19) matches the underlying graph

coloring solution and is thus most likely optimal for time

slots. Nevertheless, there is probably room for improvement

with regards to proximity costs. Although results quoted by

TABLE II

MOEA RESULTS

Slots MOEA Costs “Random” Costs

car-f-92

31 6.59 - 6.63 7.65 - 10.51
32 6.28 - 6.58 7.47 - 10.60
33 6.09 - 6.33 7.28 - 10.75
34 5.96 - 6.08 7.28 - 10.18
35 5.82 - 6.02 7.07 - 10.10
36 5.74 - 5.90 6.91 - 9.94

car-s-91

37 7.23 8.26 - 9.75
38 6.77 - 7.04 8.22 - 10.58
39 6.57 - 6.83 7.83 - 10.62
40 6.47 - 6.70 7.64 - 10.19
41 6.33 7.41 - 9.95
42 6.28 7.47 - 10.00

kfu-s-93

19 23.26 - 23.84 27.12 - 48.38
20 21.23 - 22.24 26.36 - 49.13
21 21.21 - 21.50 25.44 - 46.90
22 20.53 - 20.73 24.85 - 47.22
23 20.18 - 20.84 24.62 - 47.42

pur-s-93

34 12.92 -
35 12.46 - 12.70 15.19 - 15.84
36 12-06 - 12.57 13.93 - 17.29
37 11.78 - 12.22 13.59 - 16.94
38 11.53 - 12.01 13.64 - 16.75
39 11.35 - 11.80 13.39 - 16.66
40 11.21 - 11.68 13.38 - 16.43
41 11.03 - 11.51 13.20 - 16.58
42 10.91 - 11.29 12.94 - 16.44
43 10.87 - 11.29 12.78 - 15.93
44 11.07 - 11.11 12.59 - 16.00
45 10.79 - 10.96 12.55 - 16.21
46 10.70 - 10.95 12.46 - 16.03

tre-s-92

23 10.88 - 11.25 -
24 10.01 - 10.34 11.98 - 15.78
25 9.51 - 9.84 11.07 - 15.92
26 9.26 - 9.59 11.02 - 15.93
27 9.08 - 9.39 10.77 - 15.36
28 8.81 - 8.90 10.76 - 14.99
29 8.38 - 8.98 10.64 - 14.61

uta-s-92

31 6.00
32 5.76 - 5.90 6.79 - 8.33
33 5.52 - 5.65 6.35 - 9.58
34 5.35 - 5.45 6.13 - 9.33
35 5.17 - 5.22 6.12 - 9.21
36 4.95 - 5.09 6.03 - 9.26
37 4.81 - 5.01 5.85 - 9.32
38 4.71 - 4.99 5.76 - 9.10
39 4.64 - 4.85 5.67 - 8.85

other researchers are not directly comparable to the present

study because no seating capacities were imposed, their

proximity values are notably better. Of particular significance

is the multi-objective work of Côté et al, [7].

It is interesting to observe that even the “random costs”

in column 3 of Table II are well below the upper bounds for

proximity costs given in the last column of Table I for all

six timetabling instances.

VII. CONCLUSION AND DISCUSSION

This paper documents a preliminary study that uses an

order based bi-objective evolutionary algorithm to solve the

examination timetabling problem. The order based represen-

tation used with a greedy decoder makes it easy to impose

hard constraints, of which two are applied here: 1) avoiding

examination clashes and 2) respecting the given maximum

seating capacity. The bi-objective evolutionary algorithm

uses a simple steady-state approach to simultaneously min-

imize the overall length of the examination period and the

total proximity cost, the proximity cost being a measure of

how well the examinations are spread out for individual stu-

dents. Genetic operators specially devised to be sensitive to

time slot boundaries, ensure that timetables of short duration

are easily produced. While time slots can be sequenced in any

order without altering the length of a timetable, the (random)

reordering of time slots can unfortunately have a devastating

effect on the values of the proximity costs. Although some

effort has been made to address the issue of proximity costs

in the present study, for example some modifications to

the iterated greedy heuristics have been made, more work

is needed. The genetic operators and greedy decoder are

perhaps rather biased towards breeding short timetables,

rather than good ones. Work is currently in progress to

address this issue and take more account of proximity costs.

Nevertheless, results presented herein clearly demonstrate

that an order based MOEA approach shows promise. While

single objective algorithms require the number time slots to

be fixed in advance of any optimization for soft constraints,

such as proximity costs, MOEAs have the advantage that a

good set of non-dominated results can be produced, covering

a range of timetable lengths. Furthermore, the order based

approach used in the present paper ensures that only feasi-

ble timetables are produced, eliminating the need for time

consuming repair heuristics which undoubtedly become an

increasing burden for methods that use direct representations

if problems are multiply constrained.

VIII. ACKNOWLEDGMENT

The author would like to thank the three anonymous ref-

erees for their helpful suggestions, and also Mark Mumford

for producing the excellent diagrams in Figures 1 and 2.

REFERENCES

[1] H. Asmuni, E. Burke, and J. Garibaldi. Fuzzy multiple ordering
criteria for examination timetabling. In E. Burke and M. Trick, editors,
PATAT 2004, volume 3616 of Lecture Notes in Computer Science, page
334354. Springer-Verlag Berlin Heidelberg, 2005.

[2] E. Burke, Y. Bykov, and S. Petrovic. A multicriteria approach
to examination timetabling. In Practice and Theory of Automated

Timetabling III: Third International Conference, PATAT 2000, volume
2079 of Lecture Notes in Computer Science, pages 118–131. Springer,
2001.

[3] E. Burke and J. Newell. A multi-stage evolutionary algorithm for the
timetabling problem. IEEE Transactions on Evolutionary Computa-

tion, 3(1):63–74, 1999.
[4] E. Burke and S. Petrovic. Recent research directions in automated

timetabling. European Journal of Operational Research, 140(2):266–
280, 2002.

[5] M. Caramia, P. Dell’Olmo, and G. Italiano. New algorithms for
examination timetabling. In Algorithm Engineering 4th International

Workshop, volume 1982 of Lecture Notes in Computer Science, pages
230–240. Springer, 2000.

[6] M. W. Carter, G. Laporte, and S. Y. Lee. Examination timetabling:
algorithms, strategies and applications. European Journal of Opera-

tional Research, 47:373–383, 1996.
[7] P. Côté, A. Wong, and R. Sabourin. A hybrid multi-objective

evolutionary algorithm for the uncapacitated exam proximity problem.
In E. Burke and M. Trick, editors, PATAT 2004, volume 3616 of
Lecture Notes in Computer Science, pages 294–312. Springer-Verlag
Berlin Heidelberg, 2005.

[8] J. Culberson and F. Luo. Exploring the k-colorable landscape with it-
erated greedy. In D. S. Johnson and M. A. Trick, editors, Cliques, Col-

oring and Satisfiability: Second DIMACS Implementation Challenge,
volume 26 of DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, pages 499–520. American Mathematical Society,
1996.

[9] L. Davis. Order-based genetic algorithms and the graph coloring
problem. In Handbook of genetic algorithms, chapter 6, pages 72–
90. Van Nostrand Reinhold, New York, 1991.

[10] D.Brélaz. New methods to color the vertices of graphs. Communica-

tions of the ACM, 24(4):251–256, 1979.
[11] W. Erben. A grouping genetic algorithm for graph colouring and

exam timetabling. In PATAT 2000, volume 2079 of Lecture Notes in

Computer Science, pages 132–156. Springer, 2001.
[12] E. Falkerauer. A hybrid grouping genetic algorithm for bin packing.

Journal of Heuristics, 2:5–30, 1996.
[13] P. Galinier and J. K. Hao. Hybrid evolutionary algorithms for graph

coloring. Journal of Combinatorial Optimization, 3(4):379–397, 1999.
[14] D. Matula, G. Marble, and J. Isaacson. Graph coloring algorithms. In

Graph theory and computing, pages 104–122. Academic Press, 1972.
[15] C. L. Mumford. Simple population replacement strategies for a steady-

state multi-objective evolutionary algorithm. In Proceedings of the

2004 Genetic an Evolutionary Computation Conference (GECCO),
pages 1389–1400, Seattle, Washington, USA, 2004.

[16] C. L. Mumford. New order-based crossovers for the graph coloring
problem. In Proc. of the 9th Int. Conference on Parallel Problem

Solving from Nature, PPSN IX, volume 4193 of Lecture Notes in

Computer Science, pages 880–889, Reykjavik, 2006. Springer.
[17] A. Schaerf. A survey of automated timetabling. Artificial Intelligence

Review, 13:87–127, 1999.
[18] C. L. Valenzuela. A simple evolutionary algorithm for multi-objective

optimization (seamo). In Proceedings of the 2002 IEEE Congress

on Evolutionary Computation (CEC2002), pages 717–722, Honolulu,
Hawaii, 2002. (C.L. Valenzuela is now known as C.L. Mumford).

[19] D. Welsh and M. Powell. An upper bound for the chromatic number
of a graph and its application to timetabling problems. The Computer

Journal, 10:85–86, 1967.

