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Abstract. We present a genetic algorithm (GA) which used a normal-
ized postfix encoding scheme to solve the VLSI floorplanning problem.
We claim to have overcome the representational problems previously as-
sociated with encoding postfix expressions into GAs, and have developed
a novel encoding scheme which preserves the integrity of solutions un-
der the genetic operators. Optimal floorplans are obtained for module
sets taken from some MCNC benchmarks. The slicing tree construction
procedure, used by our GA to generate the floorplans, has a run time
scaling which compares very favourably with other recent approaches.

1 Introduction

One of the most important stages in the physical design of VLSI circuits is floor-
plan design: the placement of a set of rectangular circuit modules on a chip so
as to minimize the total area and the total interconnecting wire length. When
placing circuit modules (or macro cells) many of the modules are themselves
not yet fully designed and frequently have some flexibility in their shape. For
example a circuit module made up from 12 identical components may have them
placed in one row of 12 components, 2 rows of 6 components, 3 rows of 4 com-
ponents etc., offering the floorplan designer a range of possible shapes for that
module. Using a technique based on a slicing floorplan, which can be obtained
by recursively dividing a rectangle into two parts with either a vertical or a hor-
izontal line, it is possible to fully exploit the available flexibility in the circuit
modules and efficiently combine module placement and area optimization into
a single algorithm. The purpose of our paper is to present a genetic algorithm
(GA) which appears to be very effective at breeding good (often optimal) slicing
floorplans. We believe that with our GA we have overcome most of the represen-
tational problems usually associated with encoding floorplans, and claim that
our solution is elegant as well as effective.

We now summarize some important definitions based on [13]. Let a given
rectangle, R, have height h(R), width w(R) and area A(R). The aspect ratio of
R is the ratio h(R)/w(R). A soft rectangle is one that can have different shapes
as long as the area remains the same. The shape flexibility of a soft rectangle
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specifies the range of its aspect ratio. A soft rectangle of area A(R) is said to
have a shape flexibility r if its aspect ration can take on any value between 1/r
and r. The shape flexibility of modules provides a continuous range of candidate
aspect ratios for our soft modules.

An alternative to the slicing floorplan, which is favoured by many researchers,
is the non-slicing floorplan. In the non-slicing floorplan there is no requirement
for recursive construction, and tighter packings are often possible using this
approach. Our main motivation for using a slicing floorplan approach is that
by considering only slicing floorplans, we are able to massively reduce the size
of the search space. Stockmeyer [9], examining cases where each subcircuit may
have different layout alternatives in a floorplan, showed that there is an efficient
polynomial time area optimization algorithm for slicing floorplans whereas the
area optimization problem for non-slicing floorplans is NP-Hard.

A recent non-slicing placement technique, called the sequence-pair method
[5], has been extended to handle soft modules and area optimization [4]. However
the sequence-pair method has to solve expensive convex programming problems
in order to determine the exact shape of each module, and this results in a very
long runtime. Another relatively new technique, called the Bounded Sliceline
Grid (BSG) packing algorithm [6], has proved successful in the placement of hard
rectangles (i.e. rectangles with no flexibility in their shape). On the downside,
though, a single application of BSG packing algorithm scales at T (n) = O(n2) for
hard modules, given the n x n grid size suggested by the authors. This compares
with T (n) = O(n) for hard modules using a slicing floorplan approach. It is our
belief that the average case run time scaling of the combined placement and
area optimization algorithm for slicing floorplans with soft modules at T (n) =
O(n lg n) will be hard to beat.

To the best of our knowledge the slicing structure representation used in our
GA is novel. Although there are several other examples of genetic algorithms
applied to slicing tree structures in the literature, it would appear that none of
them uses a GA to manipulate encoded normalized postfix strings. Schnecke and
Vornberger, for example, used a GA to manipulate the slicing tree directly [8].
However, to facilitate their crossover involves complex repair mechanisms simply
to ensure that the final product (or offspring) represents a legal slicing floorplan,
with no duplications or deletions of modules. Another approach [2], in what is
probably the best known study of its type, used a collection of four different
crossovers and applied them to postfix expressions that were not normalized
(using non-normalized expressions greatly increases the search space).

We view our main contribution to the field of slicing tree optimization as
the extension of the ideas of Wong, Leong and Lui [12]: they used a normalized
postfix representation for simulated annealing, and, through the addition of a
novel encoding, we have adapted the approach to produce a simple but effective
genetic algorithm. We test our GA on soft modules from the benchmark MCNC
data sets, ami33 and ami49. The objective of our present study is a ‘proof of
concept’ and we limit our objective function to the construction a floorplan of



minimum area. Other elements, such as the minimization of the total wire length,
will be included in the cost function at a later date.

In section 2 we begin with a review of slicing floorplans and their postfix
representations, and then we briefly describe our approach to the addition of
shape-curves for the combination of soft modules. Section 3 describes the rep-
resentation we use to encode our slicing floorplans, and also the decoder which
interprets these structures as normalized postfix expressions. In section 4 we de-
scribe our genetic algorithm and section 5 presents our results. We conclude in
section 6 with a summary of our achievements and an outline of our plans for
future work.

2 Slicing Structures and Postfix Representations

A slicing floorplan is a rectangular floorplan with n basic rectangles that can be
obtained by recursively cutting a rectangle into smaller rectangles using a series
of vertical and horizontal guillotine cuts. A slicing floorplan can be represented
in the form of a binary tree, called a slicing tree, in which each internal node
of the tree is labelled either * or +, corresponding to a vertical or a horizontal
cut respectively. Each leaf represents a basic rectangle and is labelled between
1 and n, where n is the total number of basic rectangles. Each slicing tree can
be represented, alternatively, using a postfix expression. The postfix expression
is derived by carrying out a post-order traversal.

Fig. 1. Slicing floorplan, skewed slicing tree and corresponding normalized postfix ex-
pression

There is a one-to-many relationship between slicing floorplans and slicing
tree representations for slicing floorplans. If we restrict our representations to
skewed slicing trees, however, we obtain unique depictions for slicing floorplans
[12]. A skewed slicing tree is a slicing tree in which no node and its right child
have the same label in {*, +} and it is obtained by making consecutive vertical
cuts from right to left, and making consecutive horizontal cuts from top to
bottom. The postfix expression derived from a skewed slicing tree is called a



normalized postfix expression, and provides a linear form of the representation.
Figure 1 illustrates a typical slicing floorplan, (b) and the corresponding skewed
slicing tree and normalized postfix expression. A normalized postfix expression
is obtained by traversing a skewed slicing tree in post-order and is characterized
by chains of {*, +} operators in which the operators alternate. For example the
postfix expression 1 2 3 + * 4 * is normalized, but the expression 1 2 3 + + 4 *
is not (because of the two adjacent + symbols). A slicing floorplan with (n− 1)
cuts will produce n basic rectangles. Thus a postfix expression consists of exactly
2n− 1 entries.

A normalized postfix expression which characterizes a slicing floorplan can
be written: π1c1π2c2π3c3π4c4, . . . , πncn where π1π2π3π4 . . . πn represent a per-
mutation of the 1, 2, . . . , n basic rectangles, and the ci’s are chains of operators,
either +∗+∗+∗. . ., or ∗+∗+∗ . . . If we let l(ci) represent the length of the chain,
ci, then

∑
i l(ci) = n − 1, and l(c1) = 0. Also for any position, i : 1 ≤ i ≤ n,∑

l(ci) ≤ i− 1 (this is often referred to as the balloting property).

2.1 Circuit Module Placement

In the discussion so far, we have viewed a slicing tree as a top down description
of a slicing floorplan, in which the slicing tree specifies how a given rectangle is
cut into smaller rectangles by vertical and horizontal cuts. An alternative is to
view a slicing tree as a description of a bottom up procedure. From a bottom
up point of view the slicing tree describes how pairs of smaller rectangles can
be combined recursively to yield larger rectangles. Figure 2 shows the actions of
the binary operations + and * on the two rectangles A and B: ‘+’ puts B on
top of A, and ‘*’ puts B on the right of A. In the example depicted in Figure 2,
the two rectangles A and B have combined under + or *, the combined module
is replaced by the smallest enclosing rectangle, resulting in the creation of dead
space (or waste) in the floorplan.

Fig. 2. Binary operations for combining rectangles

2.2 Area Optimization Using soft Modules

Various vertical (y coordinate) and horizontal (x coordinate) dimensions are
possible for a soft module with aspect ratio, ρ, such that 1/r ≤ ρ ≤ r, and these



can be modelled by a shape curve, Γ . Γ is a smooth, continuous curve, lying
entirely within the first quadrant, such that the x and y coordinates of points
lying on or above the curve define the feasible region.

Fig. 3. Shape curve addition for vertical combination. Shape flexibility for A is 2 and
B is 3.

Pairs of soft modules, A and B, can be combined by adding their shape
curves; AB +, by adding along the y direction and AB *, by adding along the
x direction. Figure 3 illustrates a vertical (+) combination of a pair of modules.
The shape curves depicted in the diagram indicate possible height and width
dimensions for A, B and for the enclosing rectangle A B +. The two points at
either end of each of the curves mark the limits of flexibility for the rectangles,
which means that the rectangles can only be made taller or wider than this by
the addition of dead space. When a pair of soft modules is combined, the new
shape curve can be computed simply by adding together the so-called ‘corners’
of the curves for the component modules. The diagram shows clearly that the
shape curves for basic modules of fixed orientation (i.e. no rotation is allowed)
are each completely characterized by two ‘corners’. (Note: a hard module of fixed
orientation is completely characterized by a single point or ‘corner’).

So much for combining basic rectangles in pairs. In order to produce a slicing
floorplan from a postfix expression it is necessary to create a recursive process
which combines together super-modules, as well as basic modules, adding to-
gether their shape curves in a bottom-up fashion. Fortunately the process of
adding shape curves for super-modules is essentially the same as the procedure



for combining two basic modules, only with more ‘corners’ to add. Although full
details of our routines for combining shape curves are omitted from the present
paper, to save space, they are published elsewhere [11]. Essentially our approach
makes use of our observation that the area of a module/super-module varies
uniformly between any two adjacent corners, and we perform a full evaluation
of all the points. Since a basic module of fixed orientation has a maximum of
two corners, a combined module, produced from two basic modules, will have at
most four corners on its shape curve. Combining n modules following an arbi-
trary slicing tree, where the number of corners may double at each level as the
algorithm combines more modules and moves up the tree, gives an average case
run time of T(n) = O(nlgn) [9]. Despite scaling well the run time for our shape
curve combination routine is currently rather long, because we have not as yet,
incorporated approximations, as suggested by Wong [12], to reduce the number
of corners accumulated by our shape curves.

3 The Representation and Decoder

Our representation is order based and consists of an array of records, with one
record for each of the basic rectangles of the data set. Each record contains three
fields:

– a rectangle ID field : this identifies one of the rectangles from the set {1, 2,
3,..., n}

– an op-type flag : this boolean flag distinguishes two types of normalized post-
fix chains, T = + * + * + * +...., and F = * + * + * + *.....

– a chain length field : this field specifies the maximum length of the operator
chain consecutive with the rectangle identified in the first field.

Algorithm 1 Outline decoder algorithm

1) Examine next (first) record; print the rectangle ID.
2) Generate a chain of alternating operators of op-type specified in the op-type flag.
this chain should have length defined in the length field.
3) Print operators, in sequence, from the chain generated in 2) until either you get
to the end of the chain or the addition of more operators would violate the balloting
property.
4) If there are more records left to process, then go to 1) else complete the normalized
postfix expression by printing further operators at the end of the postfix string
until the number of operators is one less than the total number of rectangles in the
expression.

Our decoder converts a given instantiation of the array of records into a legal
normalized postfix expression by writing down the rectangle IDs in the order
given, and inserting the type of normalized chain of operators indicated by the



op-type flag immediately following each rectangle number. The maximum length
of each chain of operators given in the chain length field is allocated provided
that the balloting property is not violated by doing so (i.e. if we are currently
processing the ith rectangle in the list the total number of operators in the
postfix expression constructed so far must be less than or equal to (i − 1)). If
the decoder reaches the end of the sequence of records and the resulting postfix
string has insufficient operators (less than n−1), extra operators are added on to
the end of the string maintaining the normalized pattern of ..+ * + *... etc. The
decoder algorithm is presented in Algorithm 1. Below is an example showing
an encoded string and its normalized postfix interpretation:

rect5 rect2 rect4 rect1 rect3
op-type* op-type+ op-type* op-type* op-type+
length 2 length 1 length 0 length 2 length 0

Postfix expression generated: 5 2 + 4 1 * + 3 +

4 The Genetic Algorithm

The simple genetic algorithm (GA) used here is derived from the model of [3]
and is an example of a ‘steady state’ GA (based on the classification of [10]. It
is It uses the ‘weaker parent replacement strategy’ first described in [1]. The GA
applies the genetic operators to permutations of rectangle records. The fitness
values are based on the amount of dead space produced in each floorplan defined
by the individual normalized postfix expressions encoded in the population. The
first parent is selected deterministically in sequence, but the second parent is
selected in a roulette wheel fashion, the selection probabilities for each genotype
being calculated using the following formula:

selection probability = (Rank)/
∑
Ranks

where the genotypes are ranked according to the values of the dead space that
they have produced, with the worst ranked 1, the second worst 2 etc. and the best
ranked highest. The GA breeds permutations of records from which our decoder
produces normalized postfix strings. These strings are, in turn, processed by
a stack to generate a floorplan. For each horizontal or vertical combination,
the shape curves are added as described in section 2. As each floorplan design
is generated, the dead space is calculated and recorded. The initial population
consists of random permutations of records with each basic rectangle represented
exactly once in each list. The op-type flag for each record is set to ‘+’ or ‘*’ with
equal probability, and the value in the length field is generated in two stages:

- Stage 1: length = 0, with a probability of 0.5

- Stage 2: if the length is not set to zero, then it is generated from a Poisson
distribution with mean 3.



4.1 Genetic operators for permutations

We use three different mutation operators, one for each of the fields in our
encoding structure (rectangle ID, op-type, and op length):

- M1 Swap positions of two rectangle IDs.
- M2 Switch op-type flag, + to * or vice versa.
- M3 Mutate length by incrementing or decrementing (i.e. length = length +

1, length = length - 1) with equal probability. (If length is zero we increment).

M1 and M2 produce an identical effect to the M1 and M2 operators defined
in chapter 3 of [12]. Our M3 operator, on the other hand, is different from the
M3 described in Wong et al, although its effect is similar. Our M3 will always
produce legal postfix expression. In the very early stages of our study we chose
some non-problem specific permutation crossovers for testing and carried out
some extensive comparisons to test the performance of four crossovers on our
data sets. Overall Cycle Crossover (CX) [7] came out best and was selected for
our study. Our implementation of CX is efficient and runs in linear time.

For our GA we choose a population size of 20n, where n is the number of
modules in the problem. We chose this rather large size for our population be-
cause it matched the number of evaluations undertaken at each temperature by
the simulated annealing algorithm of Young and Wong in their recent papers
[14, 15]. The GA is halted when 40 generations have passed since the last im-
provement was recorded in the best-so-far. We set the limits on the aspect ratio
for the final enclosing rectangle (i.e. the chip aspect ratio) to those used in 1988
by [12]: 1/2 ≤ chip aspect ratio ≤ 2. Unfortunately there does not appear to be
a way to predict a chip aspect ratio in advance of a full evaluation of a postfix
expression. To ensure that we obtain acceptable solutions, we simply reject all
offspring in which the best point on the final shape curve does not correspond
to a legal chip aspect ratio, and try generating them again.

5 Results

Table 1. Means of 5 replicate runs for % dead space of the genetic algorithm

Problem
Shape

flexiblity Genetic algorithm
Mean

% dead space # evaluations
Mean run time

mins:secs
Best

% dead space

ami33 2 0 66734 2:33 0
ami33 3 0 39183 1:33 0
ami33 4 0 28919 1:11 0
ami49 2 0.07 197934 11:42 0
ami49 3 0 101405 6:08 0
ami49 4 0 72913 4:31 0



The results for our GA are summarized in Table 1. We use the modules from
the benchmark data sets ami33 and ami49 with 33 and 49 modules respectively.
Column 2 gives the shape flexibility of the basic rectangles for the experiments
in the rows and columns 3 to 6 summarize the dead space obtained by the GA.
The percentage of dead space for the best floorplan is recorded over five replicate
runs of the GA in column 3, and the overall best for from the five runs is shown
in column 6. The total number of postfix expression evaluations averaged over
the five replicate runs is noted in column 4, and the average run time appears
in column 5. (The individuals rejected because of illegal chip aspect ratios are
counted amongst the evaluations.) As we mentioned earlier, we have not as yet
incorporated any approximations to reduce the number of ‘corners’ accumulated
during the floorplan construction process. Thus we could surely improve our run
times. Because we have used precise calculation we observe vastly inflated run
times due to the large number of ‘corners’ accumulating during the construction
process. From Table 1 it is clear that the GA frequently produces optimal results.
Figure 4 shows a GA frequently produces optimal results. Figure 4 shows a
typical floorplan found by our GA for ami49.

Fig. 4. Ami49 floorplan with shape flexiblity 2 and 5 0 % dead space

6 Conclusions and Further Work

This paper describes a genetic algorithm (GA) which uses a novel encoding to
breed normalized postfix expressions for macro cell placement and area optimiza-
tion in VLSI floorplan design. Our experiments confirm that simple order based
genetic operators are effective in guiding the genetic search when our encoding
is used.



The only recent related work on VLSI, of which we are aware, is that reported
by Young and Wong [13–15]. Young and Wong use soft modules and normalized
postfix expressions with their simulated annealing algorithm. In the introduction
to [15] the authors report results of less than 1% dead space for several MCNC
benchmarks including ami33 and ami49. Although we achieve 0 % dead space for
the same problems, we must be cautious about making direct comparisons. We
are not yet include wire length in our optimization, and this is usually accounted
for by Young and Wong.

We believe that our new approach has opened up some interesting possibil-
ities for genetic algorithms applied to slicing floorplans. Not only does our al-
gorithm produce excellent results but the slicing tree construction process used
to generate the floorplans has a run time scaling of O(n) for hard modules and
O(n lg n) for soft modules. This compares very favourably with the Bounded-
Sliceline Grid (BSG) that has been used in GAs and Simulated Annealing for
VLSI placement by several authors of recent papers. Work in progress is cur-
rently focussed on incorporating some simple heuristics into our approach and
extending the GA to allow rotation of the modules and super-modules. We also
plan to incorporate a cost for wire length into the objective function in the near
future, and extend to much larger problems.
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