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ABSTRACT

In this paper we present a weight coded genetic algorithm
(GA) based approach to the capacitated arc routing problem
(CARP). In comparison to metaheuristic algorithms, simple
constructive heuristic algorithms often produce poor quality
solutions to the CARP. Using a novel weight coding model
in conjunction with a series of standard CARP heuristics,
acting as a solution engine, we demonstrate how these simple
heuristic procedures can be ‘duped’ into producing better
solutions to the CARP. The algorithm is tested on a set of
problem instances drawn from the literature. Initial results
for our GA show that it is possible to reliably produce an
uplift in solution quality of between 7.3% and 14.3% above
the standard heuristics, the GA identifying 47 optimum or
best known solutions from the 57 problem instances tested.

Categories and Subject Descriptors

G.1 [Numerical Analysis]: Optimization; G.2.2 [Discrete

Mathematics]: Graph Theory—path and circuit problems

General Terms

Algorithms

Keywords

Genetic Algorithms, Heuristics, Optimization, Transporta-
tion

1. INTRODUCTION
In this paper we present a GA based algorithm with fixed

parameter settings, which works in conjunction with exist-
ing simple heuristic algorithms, to solve the Capacitated
Arc Routing Problem (CARP). This is achieved by using
a weight coding model, which essentially ‘dupes’ the heuris-
tics into producing far superior quality solutions for CARP
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problem instances, than can be obtained from the heuristics,
when used in their standard form. The algorithm does not
use any additional local search or improvement procedures,
resulting in a simple algorithmic implementation.

The transportation of goods and people continues to be a
vital function in the world we live in today. The Energy In-
formation Administration (EIA) predicts that over the next
25 years, world demand for liquid fuels and other petroleum
is expected to increase more rapidly in the transportation
sector than in any other end-use sector [1]. A portion of this
increase comes about quite naturally through the economic
expansion of poorer countries, however, a large proportion
comes from the increasing demands of society as a whole.

Enormous sums of money are spent each year by busi-
nesses on logistics, namely on petrol, repairs and associated
workforce costs. In addition to these measurable costs, there
are other ethical issues that play more and more of a role
today, most notably that of carbon emissions. Given the
growing evidence of climate change, the effect of overusing
transportation systems is potentially catastrophic.

Consider the refuse driver who departs each morning from
his depot location to collect the refuse from the sub-network
of streets within a city, returning to the depot once all collec-
tions have been made. The associated tangible and ethical
costs of undertaking these collections can be limited through
the derivation of a minimum length route which starts at the
depot, traverses each street at least once and finally returns
to the initial depot location. The problem that the refuse
driver faces is known as an Arc Routing Problem (ARP)

For a small number of collection trips the savings may
seem benign, but for the typical city council in the UK, the
number of trips required to collect the refuse of its cities
occupants can be substantial. This has been further com-
pounded by the recycling targets allocated to councils, which
if not met attract large financial penalties. Given the nature
of recyclate material, which must not be mixed with food
matter, different collection vehicles must be used, resulting
in further associated costs.

The multitude of research already undertaken into such
transportation problems, is largely due to their real world
applicability. Numerous techniques proposed have been used
in real world scenarios and many have proved successful in
reducing associated transport and emission costs. However,
there remains wide scope for new techniques. Through ef-
fective planning and the improvement of algorithmic tech-
niques, the burden on our world can be helped.

ARPs can be traced back many years to the infamous
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Königsberg bridge problem. In their simplest form, they
require the computation of a route across the edges of a
graph network in order to minimise the cost of traversing
that route, whilst adhering to any contraints that might ex-
ist. A specific problem in the subclass of ARPs is known as
the Capacitated Arc Routing Problem (CARP) and places
a capacity restriction on the quantity of goods that can be
carried by any vehicle at a point in time.

Due to the very nature of vehicles, they can hold only
a limited capacity, and typically more than one vehicle is
required to service all the required edges (i.e. those with
serviceable demands). A set of routes, one for each vehicle,
with the aim of minimising total travelling distance must be
computed.

The CARP can be modelled as two variants. The first
variant of the CARP, where each edge has a positive de-
mand, i.e. dij > 0, ∀{vi, vj} ∈ E, was first proposed by
Christofides [9]. Consider a connected undirected weighted
graph G = (V, E) with associated edge costs cij and edge
demands dij , ∀{vi, vj} ∈ E. A depot located at node v1 ∈ V
serves as the base location for a quantity of vehicles, each
with a holding capacity Q . The requirement is a set of m
cycles in G, each starting/ending at the depot node, where
each required edge is serviced exactly once, such that the
cost of traversing all cycles is minimised and the total de-
mand of each cycle does not exceed Q.

A second variant of the CARP was proposed by Golden
and Wong [13] and has identical parameters to those in the
Christofides model. The only difference between the two is
the quantity of required edges within the graph. In contrast
to the first variant, where every edge has a serviceable de-
mand, only a subset R ⊆ E of all edges present need to be
serviced. The traversal of such non required edges is known
as ‘deadheading’.

Many simple and fast heuristics have been proposed for
the solution of different combinatorial optimization prob-
lems. In general, the cost of such simplicity and efficiency is
an inferior solution quality. To obtain superior quality so-
lutions, the use of alternative methods such as Tabu Search
and other metaheuristics has become the norm. In turn,
these methods have become far more complicated from both
an understanding and implementation perspective. To be
truly effective, some require the use of very powerful com-
puters not available to the average user.

The use of a weight coding model within a GA framework,
allows existing simple heuristics to be utilised, can be run on
standard computer hardware and is very easy to implement.
The following sections introduce the notion of weight cod-
ing, outline two simple heuristic algorithms for the CARP,
both tried and compared as heuristic engines in the weight
coded GA, detail the different elements of the GA model
and finally present a series of preliminary experiments and
computational results, tested against a number of standard
benchmark problem instances from the literature.

2. WEIGHT CODING
The application of weight coding has been demonstrated

using a wide range of combinatorial optimization problems,
such as the optimum communications spanning tree prob-
lem [22], the shortest common supersequence problem [6],
the rectilinear Steiner tree problem [15], the minimum weight
triangulation problem [7], the traveling salesmen problem [16],
the multiple container packing problem [24], the multicon-

straint knapsack problem [25] and the degree-constrained
mimimum spanning tree problem [26].

Weight coding is a scheme used in conjunction with a GA.
Chromosomes are encoded with weights, in the case of the
TSP, each city is associated with a numeric weight. Each
chromosome is used in conjunction with the distances for
a given problem instance P , to produce a weight coded in-
stance P ′. A problem specific heuristic is then used to iden-
tify the solution for the instance P ′, which is then decoded
using the original instance data P , to provide a solution
and corresponding distance which is then used as the fitness
function for the GA.

P =
ˆ

4 5 2 6 7 8 3
˜

Figure 1: Weight coded chromosome.

Figure 1 illustrates a typical chromosome for a weight
coded GA to solve the TSP. The length of each chromo-
some is the same as the number of cities contained within
a problem instance. Chromosomes are encoded from city 1
to n, in the case of this example, city 1 has the weight 4
associated with it and city 7, the weight 3.
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Figure 2: Problem instance distance matrix C.

Each chromosome is used as a template to derive a new
inter-city cost matrix from that of the original problem in-
stance. Consider the cost matrix shown in figure 2. For each
distance in the cost matrix C between 2 cities, the associated
weights in the chromosome for both those cities are added to
the original distance to produce a new weight coded distance
matrix C′, shown in figure 3.

For example, the weight coded integer values of 4 and 5
in chromosome P , for customers 1 and 2 respectively, are
added to the distance of 21 between customers 1 and 2 in
C, to produce a weight coded value of 30 in C′

C′ =

2
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41 28 0 26 39 21 27
46 43 26 0 34 30 30
32 41 39 34 0 35 21
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Figure 3: Weight coded distance matrix C′.

An outline of the framework for the solution of the CARP
is shown in figure 4. The initial population of chromosomes
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is constructed at random. Offspring that result after the
application of a series of genetic operators are used in con-
junction with the original cost matrix data, to produce a
new altered matrix.

14 8 3 9 4 17 11

1 2 3 4 5 6 7

1 - 12 3 18 23 14 9

2 12 - 5 15 9 18 6

3 3 5 - 36 12 13 8

4 18 15 36 - 31 12 15

5 23 9 12 31 - 14 2

6 14 18 13 12 14 - 3

7 9 6 8 15 2 3 -

1 2 3 4 5 6 7

1 - 12 3 18 23 14 9

2 12 - 5 15 9 18 6

3 3 5 - 36 12 13 8

4 18 15 36 - 31 12 15

5 23 9 12 31 - 14 2

6 14 18 13 12 14 - 3

7 9 6 8 15 2 3 -

ORIGINAL DISTANCE MATRIX

CHILD OFFSPRINGWEIGHT CODED MATRIX

PROBLEM

SPECIFIC

HEURISTIC

WEIGHT

CODED

SOLUTION

DECODE

ACTUAL

SOLUTION

Figure 4: Overview of the solution process within

the weight coded GA framework for the CARP.

Through each iteration of the GA, each offspring chromo-
some generated is used in conjunction with the original un-
altered distance matrix C to derive a weight coded distance
matrix C′. The newly created matrix is fed to a problem
specific heuristic which generates a weight coded solution
from the altered distances of the weight coded matrix.

The resulting solution, based upon the weight coded dis-
tances, is subsequently decoded using the distances in the
original unaltered problem instance, resulting in a ‘true’ so-
lution for the CARP instance.

The philosophy of weight coding is similar to that of the
method of perturbation, which has been used under many
guises and applied to a range of combinatorial optimization
problems. The basic principle of of this approach is to intro-
duce a number of perturbations into the problem instance
data, providing a means to escape from a local optima. It
was first outlined by Storer et. al. [27] and Charon and
Hudry [8].

Codenotti et. al. [10] later applied these techniques within
an ILS algorithm to solve the Traveling Salesman Problem
(TSP). However, instead of perturbing the solution alone,
the algorithm by Codenotti et. al., additionally perturbed
the city coordinates in the problem instance itself. Valen-
zuela and Williams [28] and Bradwell et. al. [4] proposed
variations of this method. The algorithms breed perturbed
instance data, encoded as chromosomes within a Genetic Al-
gorithm framework, to solve the TSP. A Nearest Neighbour
and Karp heuristic algorithm are used to construct solutions
from the chromosomes of perturbed coordinates within the
population at any point in time.

A similar GA based algorithm, using perturbed instance
data and a Clarke & Wright heuristic as a solution mecha-
nism, was proposed by Morgan and Mumford [21] for the so-
lution of the Capacitated Vehicle Routing Problem (CVRP).

3. CARP HEURISTIC ALGORITHMS
For NP-Hard optimization problems such as the CARP,

heuristic methods provide a mechanism for the production
of, in the most part, good quality solutions, for large prob-
lem instances (allbeit generally not optimal), within realistic
time frames. Numerous heuristic algorithms have been pro-
posed for the CARP. The following section describes two
of the most notable, providing a more in depth analysis for
those algorithms that form the basis of the implementations
described later.

3.1 Augment Merge Algorithm
The Augment Merge Algorithm (AMA) was originally

proposed by Golden and Wong [13] and consists of 3 distinct
stages. Its mechanisms are similar to the Clark & Wright
algorithm used in the solution of the CVRP. The 3 phases
are: initialisation, augmentation and merge.

Initialisation

The procedure begins by constructing a set of initial routes
such that each route services precisely one servicable edge
in the graph. For each edge selected, the shortest path from
each of its endpoints back to the depot is calculated and a
cycle constructed. All cycles generated are then tabulated
in descending order based upon travelling distance, and each
cycle assigned a numeric identifier. The longest cycle is la-
belled 1, the next in the sorted table 2, down to the last
cycle n (initially equal to the total number of serviced edges
present in the graph).

Augmentation

The process of augmentation then involves selecting each
cycle in turn (the master route) starting at cycle 1 and eval-
uating the inclusion of each servicable edge in the shorter
sibling cycles (i.e. all cycles in the table below the master
cycle) into the currently selected master cycle. If the servi-
cable edge in a sibling cycle can be serviced on the master
cycle, whilst adhering to any vehicle capacity constraints,
the master cycle is updated to include the service of that
edge and the sibling cycle deleted.

Once all sibling cycles have been evaluated against a par-
ticular master cycle, the next cycle in the table becomes the
master and it’s sibling cycles are evaluated using the same
procedure. The process continues selecting master cycles
until the bottom of the table is reached and no further cy-
cles exist. If at any point in time the total demand on the
master cycle becomes equal to the capacity of the vehicles
available, it is immediately set aside and the next cycle in
the table is selected as the master.

Merge

The merge phase further refines the cycles derived during
augmentation. The selection mechanism remains the same
as that for augmentation. The first cycle in the table (not
full to capacity) is selected as the master and each cycle
following it in the table is selected in turn to take on the
role of the sibling. Each master/sibling combination is then
evaluated to assess the feasibility of a merger into a single
cycle. A merger is only valid if the new cycle services ev-
ery edge originally present in the master and sibling cycles.
For each valid merger, the total distance saving achieved by
combining the cycles is calculated as follows:
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Sij = li + lj − mij (1)

where:

Sij = saving achieved from the merger of cycles i
and j

lk = length of cycle k pre merger

mij = length of post merger cycle resulting from
combination of cycle i and j

3.2 Path Scanning Algorithm
In the Path Scanning Algorithm (PSA) of Golden et. al. [12]

the procedure iteratively builds single cycles, each starting
from the depot node, resulting in a final solution made up
of a set of multiple cycles. It is run five separate times, each
time using a different rule set to build solutions, after which
the best overall solution is then selected from all of those
generated.

Each rule set utilises a different selection criterion to ob-
tain the next edge (i, j), along which to extend the current
cycle route being built. Edges are chosen, subject to vehicle
capacity constraints, using the following rule sets:

1. the cost/demand ratio cij/dij , where cij is the distance
and dij the demand for edge i to j, is minimised.

2. the cost/demand ratio cij/dij is maximised.

3. the distance from node j (i.e. the end of the edge)
back to the depot is minimised.

4. the distance from node j back to the depot is max-
imised.

5. if the vehicle is less than half full, use rule 4 to select
next edge, else use rule 3.

The process begins by selecting the first rule and with a
set R containing all required edges in that instance and an
empty path P . The path P is then extended, one edge at
a time, until the vehicle is full to capacity. For each edge
extension, a set S containing all edges in R not exceeding the
capacity of the route currently being extended, is generated.
An edge is then selected from S using the chosen rule and
P extended along that edge.

This process is further repeated for all remaining rules and
the best of the solutions generations using the 5 different
rules is chosen.

4. THE GA MODEL
The following section outlines the specific details of the

different elements of the GA model. These include the chro-
mosome representation, structure and initialisation of the
population, selection procedure, crossover and mutation mech-
anisms and the method of generating and decoding solutions
obtained from the heuristic procedure.

4.1 Chromosome encoding
The encoding scheme and manipulation of the distance

matrix are identical to that described for the TSP in sec-
tion 2. Each chromosome contains a sequence of customers,

from 1 to n, with each position holding a weight coded inte-
ger value xn corresponding to a customer vertex. The simple
encoding scheme, illustrated in figure 5, allows standard ge-
netic operators to be used without the worry of infeasible
solutions being produced.

x2x1 x3 x4 x5 x6 x7C

Figure 5: Weight coded chromosome encoding

4.2 Population structure and initialisation
The initial population consists of p chromosomes, where p

equals the chosen size of the population. For each chromo-
some, a weight coded integer is randomly generated within a
preset range and associated with each customer vertex. The
process is then repeated until the required p chromosomes
have been created.

Intensive investigation has shown a larger size of around
250 to be more suitable. It should be noted that this size
is only relevant when the path scanning algorithm is used.
For other heuristic algorithms with poorer scalability and
running times, smaller population sizes may have to be used,
if excessive times are to be avoided.

4.3 Selection, Crossover and Mutation
The process of parent chromosome selection and crossover

involves the systematic selection of population members in
turn which are paired with another randomly selected mem-
ber of the population, through each single generation of the
GA. A Crossover operation is further applied to each off-
spring. A 2 Point Crossover (2PX) operator is used through-
out to produce child offspring.

Following crossover, a number of mutations are applied
to each offspring chromosome. The mutation scheme in-
volves the random selection from the chromosome of up to 2
weight coded integer values, each of which being replaced by
a newly generated integer weight within the same predefined
range.

4.4 Solution Mechanism and Decoding
Each offspring produced after selection, crossover and mu-

tation has taken place, serves as the input to the chosen
problem specific heuristic. The offspring chromosome is
used to generate a weight coded distance matrix, altering
the original distance matrix to reflect the values held within
the chromosome. The new matrix is used by the heuristic
to generate a solution, containing routes for all the vehicles,
for the given problem instance. The solution obtained is
decoded to produce its actual total cost using the original
unaltered distance matrix.

The ‘true’ solution distance, which serves as the fitness
of the chromosome, is then evaluated against that of the
weaker of the two parent chromosomes used to create the
offspring. If superior, the weaker parent chromosome in the
population is replaced with that of the child offspring. Off-
spring whose ‘true’ distance is worse than both parents are
discarded. Finally, the value of the best distance so far is
updated, iff the decoded solution distance for the solution
generated from the child offspring, is superior to that of the
currently stored best overall solution distance.
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5. COMPUTATIONAL EXPERIMENTS
A number of authors have published dataset instances for

the CARP, namely DeArmon [11], Benavent et. al. [2],
Li [19], Li and Eglese [20] and Kiuchi et. al. [17]. The
DeArmon instances, presented in table 1 are called gdb and
consist of 23 problem instances with a mixture of dense and
sparse graph networks.

Problem
Instance |V | |E|

P

d Q Density

gdb1 12 22 22 5 33
gdb2 12 26 26 5 39
gdb3 12 22 22 5 33
gdb4 11 19 19 5 35
gdb5 13 26 26 5 33
gdb6 12 22 22 5 33
gdb7 12 22 22 5 33
gdb8 27 46 249 27 13
gdb9 27 51 258 27 14
gdb10 12 25 37 10 38
gdb11 22 45 225 50 19
gdb12 13 23 212 35 30
gdb13 10 28 240 41 63
gdb14 7 21 89 21 100
gdb15 7 21 112 37 100
gdb16 8 28 116 24 100
gdb17 8 28 168 41 100
gdb18 8 36 153 37 100
gdb19 8 11 66 27 20
gdb20 11 22 106 27 40
gdb21 11 33 154 27 60
gdb22 11 44 205 27 80
gdb23 11 55 266 27 100

Table 1: De Armon dataset analysis

Problem
Instance |V | |E|

P

d Q Density

val1 24 39 358 45-200 14
val2 24 34 310 40-180 12
val3 24 35 137 20-80 13
val4 41 69 627 75-225 8
val5 34 65 614 75-220 12
val6 31 50 451 50-170 11
val7 40 66 559 65-200 8
val8 30 63 566 65-200 14
val9 50 92 654 70-235 8
val10 50 97 704 75-250 8

Table 2: Benavent et. al. dataset analysis

The second set of instances from Benavent et. al., pre-
sented in table 2, are called val and comprise 34 problems,
modelled on 10 sparse graph networks, with varying vehicle
capacities for each network. The Li and Eglese instances are
derived from real world data, relating to winter gritting in
the county of Lancashire, UK and consist of 24 problems.

The gdb and val data instances include only required edges,
in contrast to those from Li and Eglese where a mixture of
both required and non-required edges are found. For the
purposes of this paper, experimentation has been curtailed
to those problem instances, namely gdb and val, containing
only required edges.

5.1 Preliminary Experimentation
A series of preliminary experiments were undertaken to as-

sess the effectiveness of using AMA and PSA as the heuristic
engines in the GA.

5.1.1 Comparing AMA and PSA as heuristic engines
for the GA

Initial experimentation was limited to using the PSA and
AMA heuristics as the solution generation mechanism, with
the following settings:

Population size: 250 (PSA) & 100 (AMA)
Crossover: 2PX

Mutation rate: 1 or 2 mutations
Stopping criterion: 1,500 generations

For all reported results, a statistic known as Relative De-
viation (RD) is reported. This figure measures the RD from
the best known or optimum solution for a problem instance,
for each solution generated. It is stated for all individual so-
lutions presented and also as an average over various prob-
lem instance sets. The calculation for RD is made using
equation 2 and reported as a percentage value.

Dev % =

„

solution − optimum/best known

optimum/best known

«

× 100 (2)

Each combination was run against a subset of the gdb and
val problem instances and the results attained, for the differ-
ent ranges, are presented in table 3. The average deviation
% across the gdb and val instances tested are shown for the
ranges 10%, 50% and 100%.

For each range, the mutation of a weight coded integer
results in a change to the current weight coded integer within
the chromosome by up to the particular preset percentage
value. e.g. For a range of 50%, the mutation of a weight
coded integer value of 10 would be ±5, producing a mutated
value of between 5 and 15.

Method Av Dev % Av Dev % Av Dev %
(instance subset) 10% 50% 100%
AMA (gdb) 0.67 0.53 0.49
PSA (gdb) 0.25 0.21 0.24
AMA (val) 4.40 5.11 6.31
PSA (val) 3.12 2.89 3.41

Table 3: CARP preliminary results for different

ranges of adjustment for weight coded integers.

As can be seen, the results are quite robust across all
ranges evaluated, however, the runtime when using the path
scanning method is superior when compared to augment
merge. Although the augment merge method is capable
of producing quality solutions to CARP problem instances
given sufficient time, is does not lend itself as a valid solu-
tion mechanism with such poor scalability. In contrast, the
path scanning approach scales well and offers superior solu-
tion quality. Given this fact, the solution mechanism for the
CARP has been restricted to the path scanning approach.

5.1.2 Convergence and solution uplift

The uplift in solution quality obtained from the integra-
tion of the PSA and AMA heuristics into the weight coded
GA framework in comparison to using these heuristics in
their standard form is shown in figure 6.

Using the same settings are those described for the com-
parison of the AMA and PSA as heuristic engines, the weight
coded GA has succeeded in substantially lifting the solu-
tion quality of the PSA and AMA heuristics by margins of
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Figure 6: Uplift in solution quality using the weight

coded GA in comparison to the standard heuristics

for instance sets gdb and val.

between 7.3% and 14.3% across the gdb and val problem
instance sets.

5.2 Computational Results
Utilising the same set of predefined parameters as those

used for the preliminary experiments, the algorithm was run
against two sets of problem instances, using the PSA heuris-
tic and a range of 50% for all mutations. A total of 50 runs
were carried out for each individual problem instance us-
ing a Pentium IV 2.8GHz computer, running a GNU/Linux
Operating System.

The state of the art presented in the literature for the so-
lution of the CARP are all based upon metaheuristic tech-
niques. The results obtained from three of the most success-
ful algorithms have been used as the basis of comparison
against those obtained from the weight coded GA. These
are a tabu search algorithm called “CARPET”, a memetic
algorithm “MA” and a deterministic tabu search algorithm
called “TSAv2”.

Another algorithm to solve the CARP with intermediate
facilities was presented by Polacek et. al. [23]. The authors
ran their algorithm on the basic CARP variant and detailed
results for the val/eglese problem instances. The results at-
tained by the procedure are on a par with those for the MA,
but provide a superior run time performance in comparison.

Experimental results for the weight coded GA are shown
in tables 4 and 5. The column headed “CARPET” give the
results reported by Hertz et. al. [14], for an adapted version
of TS called CARPET. The column headed “MA” show the
results by Lacomme et. al. [18] using a memetic algorithm.
The column headed “TSAv2” presents results for a deter-
ministic tabu search algorithm by Brandâo and Eglese [5].

The CPU computing time in seconds reported for weight
coded GA are achieved using the hardware described. The
runtimes reported by other authors have been scaled in line
with those reported by Brandâo and Eglese. The average
deviation from the best known solution for each problem
instance is presented and calculated using equation 2.

For the gdb set of problems instances, the average results
for the weight coded GA are better than those of CARPET
and very similar to those presented for TSAv2. However, the
results for MA provide a slightly superior solution quality.

With the exception of gdb8 and gdb9, the weight coded GA
has been able to identify the best known solutions for all gdb
problem instances.

In contrast, the success of the weight coded GA for the
val problem instance set is mixed, providing slightly infe-
rior results, when compared to the results from the other
algorithmic approaches. Clearly, good or in most cases best
known solutions for the A and B variants of each problem
are achieved. However, in the case of the C and D vari-
ants, only limited success has been achieved, the quality of
solution degrading in line with an increase in problem size.

6. CONCLUSIONS
The trend amongst researchers over the last decade has

been the development of more and more powerful algorithms
for the solution of optimization problems. However, the re-
sult of these endeavours is often ever increasingly complex
algorithms, which are typically both difficult to understand
and implement.

Another side effect is often the desire of many authors to
produce new best results for benchmark instances from the
literature, resulting in algorithmic techniques which are not
generic in nature and whose ability to provide good quality
solutions for unseen instances is arguably questionable.

The key philosophy in the development of the weight coded
GA framework is simplicity, making it is easy to both un-
derstand and implement. The experimental results for the
weight coded GA, run against standard benchmark instances,
clearly demonstrate the dramatic uplift in solution qual-
ity from using standard heuristic techniques alone, brought
about through the integration of these problem specific heuris-
tics within a genetic algorithm framework, in conjunction
with a weight coded model.

Improvements over the standard heuristics are achieved
for the CARP using a weight coded scheme. Over the same
configuration of experimental runs, the weight coded GA
has identified 47 optimum or best known solutions from the
57 problem instances tested. However, in the case of weight
coding, it is evident that superior quality solutions are more
easily obtained for smaller problem instances.

Given that the use of classical heuristics are still preva-
lent in commercial software today, largely due to the relative
solution quality attained in relation to quick runtime execu-
tion, the substitution of a simple framework like the weight
coded GA would arguably represent a realistic alternative
method, providing consistently superior quality solutions,
in realistic time scales.

7. FUTURE WORK
The extension of the present study to benchmark a wider

range of larger problem instances is the most obvious course
of action. Given that experimentation was curtailed to prob-
lem instances with only required edges, extension to encom-
pass problem instances that include non required edges and
those derived from real world data, would be the obvious
priority.

Valid instances would be those by Beullens et. al. [3],
based upon the road network in Flanders, Belgium, and by
Brandâo and Eglese [5], derived from a winter gritting study
in Lancashire.

It is also apparent that using the current scheme, all edge
distances in the matrix are altered through weight coding, ir-
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Best CARPET MA TSA v2 WC GA WC GA
Problem Known Cost CPU (s) Cost CPU (s) Cost CPU (s) Cost CPU (s) Best
gdb1 316 316 2.4 316 0.0 316 0.0 316 4.8 316
gdb2 339 339 4.0 339 0.3 339 0.1 339 3.7 339
gdb3 275 275 0.1 275 0.0 275 0.0 275 0.2 275
gdb4 287 287 0.1 287 0.0 287 0.0 287 0.8 287
gdb5 377 377 4.3 377 0.1 377 0.1 379 14.6 377
gdb6 298 298 0.7 298 0.1 298 0.0 298 1.2 298
gdb7 325 325 0.0 325 0.1 325 0.0 325 1.4 325
gdb8 344 352 47.2 350 26.5 348 1.6 356 23.3 348
gdb9 303 317 41.8 303 4.7 303 26.1 309 96.4 303
gdb10 275 275 1.2 275 0.1 275 0.0 275 0.4 275
gdb11 395 395 1.8 395 0.9 395 0.1 395 21.3 395
gdb12 458 458 16.0 458 6.5 458 0.8 462 12.6 458
gdb13 536 544 1.9 536 4.9 540 4.8 539 17.4 536
gdb14 100 100 0.4 100 0.1 100 0.1 100 0.4 100
gdb15 58 58 0.0 58 0.0 58 0.0 58 0.1 58
gdb16 127 127 1.3 127 0.1 127 0.1 127 0.2 127
gdb17 91 91 0.0 91 0.1 91 0.0 91 0.1 91
gdb18 164 164 0.2 164 0.1 164 0.0 164 0.9 164
gdb19 55 55 0.2 55 0.0 55 0.0 55 0.1 55
gdb20 121 121 7.4 121 0.2 121 0.2 121 0.4 121
gdb21 156 156 0.9 156 0.1 156 0.0 156 2.3 156
gdb22 200 200 2.6 200 2.3 200 0.1 200 19.4 200
gdb23 233 235 26.6 233 34.1 235 22.3 234 15.2 233

Average Dev (%) 0.47 0.04 0.08 0.34 0.00

Table 4: Computational results for instance set gdb.

Best CARPET MA TSA v2 WC GA Av WC GA
Problem Known Cost CPU (s) Cost CPU (s) Cost CPU (s) Cost CPU (s) Best
val1A 173 173 0.0 173 0.0 173 0.0 173 1.2 173
val1B 173 173 7.2 173 5.3 173 0.9 174 37.2 173
val1C 245 245 72.3 245 19.1 245 12.1 248 19.9 245
val2A 227 227 0.1 227 0.1 227 0.0 227 4.3 227
val2B 259 259 10.1 259 0.1 259 0.3 260 10.6 259
val2C 457 457 24.5 457 14.5 457 7.8 474 15.2 468
val3A 81 81 0.6 81 0.1 81 0.0 81 1.9 81
val3B 87 87 2.1 87 0.0 87 0.0 88 4.3 87
val3C 138 138 32.2 138 18.8 138 1.3 140 15.2 138
val4A 400 400 21.9 400 0.5 400 0.4 403 57.4 400
val4B 412 412 58.6 414 0.8 412 5.5 417 67.4 412
val4C 428 428 54.2 428 12.7 428 38.0 452 96.4 450
val4D 530 530 180.8 541 68.9 530 110.0 575 78.3 569
val5A 423 423 2.9 423 1.3 423 0.3 423 71.1 423
val5B 446 446 32.0 446 0.7 446 0.1 447 84.9 446
val5C 473 474 41.3 474 67.3 474 10.6 481 92.7 479
val5D 571 577 173.5 583 60.5 583 73.3 607 124.3 598
val6A 223 223 3.0 223 0.1 223 1.6 223 14.4 223
val6B 233 233 20.9 233 44.9 233 12.7 234 92.7 233
val6C 317 317 66.0 317 34.8 317 22.9 338 42.6 337
val7A 279 279 5.1 279 1.3 279 1.0 279 16.3 279
val7B 283 283 0.0 283 0.3 283 0.5 283 41.6 283
val7C 334 334 94.0 334 67.5 334 37.0 339 44.7 337
val8A 386 386 3.0 386 0.5 386 0.3 386 52.4 386
val8B 395 395 63.1 395 6.7 395 1.8 396 45.7 395
val8C 521 521 114.1 527 47.7 529 55.7 569 78.6 545
val9A 323 323 22.1 323 12.2 323 0.0 326 56.6 323
val9B 326 326 46.4 326 19.6 326 0.5 335 81.2 326
val9C 332 332 43.7 332 47.5 332 0.4 336 102.4 332
val9D 385 391 273.5 391 140.7 391 60.4 421 78.9 410
val10A 428 428 4.3 428 17.0 428 3.2 433 67.4 429
val10B 436 436 14.3 436 3.1 436 1.8 452 97.3 436
val10C 446 446 72.4 446 11.5 446 7.5 471 81.5 447
val10D 526 528 121.0 530 143.3 530 218.1 560 114.9 557

Average Dev (%) 1.86 0.23 0.15 2.45 1.38

Table 5: Computational results for instance set val.

respective of whether the edges are required or non-required.
Perturbing edges distances for any traversals along non-
required edges could potentially be detrimental. However,
further investigation would be required in order to substan-
tiate this theory.
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