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ABSTRACT
It is strategically important to design efficient and environ-
mentally friendly distribution networks. In this paper we
propose a new methodology for solving the capacitated fa-
cility location problem (CFLP) based on combining an evo-
lutionary multi-objective algorithm with Lagrangian Relax-
ation where financial costs and CO2 emissions are considered
simultaneously. Two levels of decision making are required:
1) which facilities to open from a set of potential sites, and
2) which customers to assign to which open facilities with-
out violating their capacity. We choose SEAMO2 (Simple
Evolutionary Multi-objective Optimization 2) as our multi-
objective evolutionary algorithm to determine which facil-
ities to open, because of its fast execution speed. For the
allocation of customers to open facilities we use a Lagrangian
Relaxation technique. We test our approach on large prob-
lem instances with realistic qualities, and validate solution
quality by comparison with extreme solutions obtained using
CPLEX R© .

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—graph and tree search strategies, heuris-
tic methods

General Terms
Algorithms, Design, Experimentation, Performance

1. INTRODUCTION
One of the most important strategic issues for many busi-

nesses is where to site various storage and service facilities,
and which facility should serve a particular customer. Usu-
ally there are restrictions that determine potential locations
for facilities, and geographical, planning or financial con-
straints will influence a facility’s capacity for storing goods
and/or serving customers. The capacitated facility location
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problem (CFLP) provides a popular model for various distri-
bution networks, and involves making decisions at two levels:
1) which facilities to open from a set of potential sites, and 2)
which customers to assign to which open facilities. Further-
more, the CFLP requires that all constraints are complied
with, for example, all customer demand should be met and
no capacity constraint should be violated (i.e., demand on a
particular facility must not outstrip supply). Traditionally,
the design of a distribution network is driven by a need to
reduce costs or maximize profit, and for this reason formula-
tion is generally based on single objective optimization with
all other potential objectives, such as customer service lev-
els, modelled as extra constraints, so that a certain minimum
level (e.g., of customer service) has to be maintained. In this
paper we are concerned with single source facility location,
in which each individual customer is required to source its
total demand from a single facility. Although the CFLP is
NP-Hard [14], Mixed Integer Programming (MIP) packages,
such as CPLEX R© can be used very effectively for small and
even moderate sized instances. We shall show later in this
paper that MIP does not cope well with very large instances,
and thus there is an need for efficient heuristic/metaheuristic
approaches. This is especially true for multi-objective opti-
mization techniques, where repeated evaluations for each of
objective functions are required to obtain a set of tradeoff
solutions.

The motivation for our work stems from our view that,
with recent environmental concerns and high levels of com-
mercial competition, companies could benefit from using
multi-objective optimization techniques when designing their
distribution networks, to give extra flexibility to deal with
key objectives simultaneously [12]; for example, minimizing
the environmental impact of their business, while improving
customer service levels at the same time as they are reducing
cost or maximizing profits.

Increasingly, the UK and other nations throughout the
world are recognizing the importance of reducing the envi-
ronmental impact of their operations (e.g., see [2] and [13]).
Some researchers have started to incorporate environmental
measures with traditional objectives within a supply chain
context. For example, Paksoy [16] proposed a multi-period
supply chain design model which aims to minimize total
transportation costs, and CO2 emissions from transporta-
tion and manufacturing. Modern multi-objective objective
optimization techniques [5] offer the flexibility to find good
compromise solutions that balance the many important ob-
jectives, so that a decision maker has a choice of tradeoff



solutions without the need to make a priori decisions re-
garding the relative importance of the various objectives. In-
stead of a single solution (usually optimized on cost), multi-
objective optimization techniques can offer a decision maker
a choice of tradeoff solutions, providing sufficient options to
give him/her the power to make an informed choice that
balance ALL the important objectives. It may be possible,
for example, to greatly reduce energy consumption or waste
gas emissions whilst incurring a very small increase in eco-
nomic costs. Such compromise solutions can be easily missed
using traditional single objective methods.Farahani et al.[7]
in their recent review on multi-criteria location problems
and solution approaches also point out that sustainability
(environment and social) in location analysis is one of the
important areas for future research.

In this paper we build on the multi-objective work carried
out on the uncapacitated facility location problem (UFLP)
in [11] and extend to the two-objective CFLP, balancing
economic cost and CO2 emissions. The multi-objective al-
gorithm and Lagrangian Relaxation software have been built
in Java. We were fortunate to have the opportunity to col-
laborate with a major supermarket chain during the past
two years, which has given us a practical insight into the
operation of a real-world distribution network. Applying
this knowledge we have generated a range of large test in-
stances with realistic characteristics (which can be obtained
from [1]) to test our multi-objective approach. Furthermore
we use the Company’s model to evaluate the various costs
associated with the different warehouse and transport activ-
ities within the supply chain. Although locations, capacities
and levels of demand etc. are all randomly generated for
our test instances, reasonable upper and lower bounds have
been observed based on Company data. We have used UK
Government sources to obtain correct environmental infor-
mation regarding energy consumption.

In addition, similar to the Company’s logistic model, our
data sets have two capacity constraints for each potential
facility: the maximum number of cases and the maximum
number of stores that can be served. The two-objective
CFLP model aims to balance the financial cost (£) and the
environmental impact (kg CO2), taking into account activ-
ities such as picking and loading the goods as well as trans-
porting them and opening the depots needed to serve the
customers’ needs. The environmental impact is extracted
from running the logistics network in terms of CO2 emis-
sions from the transportation and also from the emissions
generated by energy use for the day-to-day running of the
depots.

To solve the multi-objective CFLP and generate a set of
tradeoff solutions for our benchmark data, we use a solution
technique which is based on the elitist evolutionary multi-
objective algorithm SEAMO2 (Simple Evolutionary Multi-
objective Optimization) [15, 17]. We utilize a Lagrangian
Relaxation technique [8, 9] to perform the allocation of cus-
tomers to depots, which is described in detail in Section 3.1.

2. PROBLEM FORMULATION
We assume that customers have a certain demand in cases

(for a single product type) and associated transportation
and warehousing costs for a particular depot. Each depot
has a given capacity in cases and the number of stores it is
able to serve. Each customers is served directly by a single
depot, and transportation costs are based on stem distances

and reflect both time and distance based components. The
warehouse (variable) costs reflect any associated costs with
picking and loading the goods.

The problem is to determine how many facilities to open
in order to satisfy all customer demand while solving both
objectives simultaneously: minimize the environmental im-
pact from operating depots and transport in terms of CO2

emissions, and minimize the overall financial cost. As men-
tioned above, the CFLP is divided into two sub-problems:
determine which depots to open, and assign customers to
the open facilities without violating the number of cases or
the number of customers capacity constraints.

The following notation is used in the formulation of the
model:
Glossary
VDC = {1...i} set of potential depots;
VC = {1...j} set of customers;
cij cost of attending demand dj from cus-

tomer j to depot i consisting of overall
transportation and depot costs;

fi fixed cost for operating a depot i;
dj demand of customer j;
qi capacity (cases) of facility i, i ∈ VDC ;
ni capacity (number of customers) of facil-

ity i, i ∈ VDC;
e tij CO2 emissions from transport between

depot i and customer j to satisfy cus-
tomer demand dj ;

e gi CO2 emissions from gas consumption for
each depot i, i ∈ VDC ;

e ei CO2 emissions from electricity consump-
tion for each depot i, i ∈ VDC ;

The decision variables are:
xij equals 1 if customer j is allocated to facility i, and

0 otherwise;
yi equals 1 if depot is chosen to operate and 0 other-

wise;
The following economic and environmental objective func-
tions are considered simultaneously as part of the network
design:

• Minimising costs. This financial objective finds the
best combination of open depots that allows minimiza-
tion of the overall cost for the entire the network. It
consists of the variable costs (transport and depots) of
servicing the demand of all customers, plus the fixed
cost of running the open depots.

minimize[
∑

i∈VDC

∑

j∈VC

cijxij +
∑

i∈VDC

fiyi] (1)

• Minimizing the CO2 emissions from transport and run-
ning depots. The environmental objective is expressed
as CO2 emissions and aims to find the best number
of open facilities that minimizes the total CO2 emis-
sions from transportation and energy consumption for
running facilities. The first term of the formulation
represents the emissions from transport to attend the
demand of customers by the open depots, and the sec-
ond term represents the total emissions from the elec-
tricity and gas usage of operating open depots.

minimize[
∑

i∈VDC

∑

j∈VC

e tijxij +
∑

i∈VDC

(e gi + e ei)yi]

(2)



• Subject to following constraints:

∑

i∈VDC

xij = 1, j ∈ VC (3)

xij ≤ yi, j ∈ VC , i ∈ VDC (4)

∑

j∈VC

djxij ≤ qi,∀i ∈ VDC (5)

∑

j∈VC

xij ≤ ni,∀i ∈ VDC (6)

xij ∈ {0, 1}, i ∈ VDC , j ∈ VC (7)

yi ∈ {0, 1}, i ∈ VDC (8)

Constraints (3) and (7) ensure that each customer is at-
tended by only one depot and the demand is satisfied by
that facility. (4) assigns the customers to open depots only,
and (5) and (6) ensure that the capacity constraints for de-
mand (cases) and number of stores for the depots are not
violated. Finally, (7) and (8) define decision variables as
binary.

3. MULTI-OBJECTIVE OPTIMIZATION
The evolutionary multi-objective algorithm SEAMO2 [15,

17] (see Algorithm 1) was chosen for our work. Following
our exploratory tests (unpublished) on the UFLP, this al-
gorithm proved considerably faster than better known al-
gorithms such as NSGA-II with very small reductions in
solution quality (see also [3]).

In a multi-objective context, fitness functions are usually
based either on a count of how many contemporaries in the
population are dominated by a particular individual, or al-
ternatively on by how many contemporaries the individual is
itself dominated. This approach, known as Pareto-based se-
lection, was first proposed by Goldberg [10], and is favoured,
in one form or another, by most researchers (for example see
[4, 6, 18]). In contrast, the SEAMO algorithms use a less
compute-extensive approach, based on uniform random se-
lection and do not require global fitness functions either to
bias the selection of parents or to determine whether or not
new offspring are inserted into the population. Instead a
few simple rules determine “who shall live and who shall
die” within a steady-state environment. Survival decisions
are based on the outcome of simple comparisons between
offspring solutions and parents (or other population mem-
bers).

In more detail, after generating the initial population of
size N (line 2), evaluating and storing the objectives for
each member of the population (line 3), and recording the
best-so-far values for each objective (line 4), the algorithm
iterates through two nested loops. The inner (For) loop steps
through each member of the population in turn, selecting
that member as a first parent for a crossover operation (line
7), with the second parent selected at random from the other
N − 1 members of the population (line 8). Crossover is
then performed to produce a single offspring (line 9), and
then a single mutation is applied to that offspring (line 10).
The SEAMO2 algorithm is steady-state, thus each time a
new offspring is produced, it is considered for entry into the

Algorithm 1 SEAMO2

1: Begin:

2: Generate N random individuals
3: Evaluate the two objectives for each population member

and store them
4: Store best-so-far values for each objective
5: while stopping condition not satisfied do
6: for each member of the population do
7: This individual becomes the first parent
8: Select a second parent at random
9: Apply crossover to produce single offspring
10: Apply single mutation to the offspring
11: Evaluate each objective vector produced by the off-

spring
12: if offspring harbors a new best-so-far Pareto com-

ponent then
13: a) it replaces a parent, if possible
14: b) else it replaces another individual that it dom-

inates at random
15: else if offspring is a duplicate then
16: it dies
17: else if offspring dominates either parent then
18: it replaces it
19: else if offspring is neither dominated by nor dom-

inates either parent then
20: it replaces another individual that it dominates

at random
21: else
22: otherwise it dies
23: Print all non-dominated solutions in the final population
24: End

population, based on a sequence of comparisons. A “strong”
offspring will replace a current population member according
to the following criteria:

a. It improves on a “best-so-far” Pareto objective,

b. Or it dominates either of its parents,

c. Or it is neither dominated by nor dominates either
parent,

d. Provided that it is not a “duplicate”.

The new offspring is first tested for an improvement on a cur-
rent best-so-far score for at least one objective (line 12). If
it succeeds, then the offspring will replace one of its parents
and the appropriate best-so-far score will be updated (pro-
vided that best-so-far scores for other objectives are not lost
in the process). In the present case, we are dealing with only
two objectives. Thus, for example, suppose the offspring
harbours a global improvement for objective 1, then it will
be necessary to avoid deleting a single individual which is
harbouring the best-so-far score for objective 2. Therefore,
at least one parent will qualify for replacement. Provided the
new offspring has not entered the population at this stage,
the next test to be carried out (line 15) is to check whether
the paired objective values of the offspring are duplicated (or
within a small margin of error) in the current population.
To help maintain population diversity, if a match is found,
the offspring will die. If the offspring survives, the next test
is a comparison for dominance between the offspring and its



Figure 1: The assignment for Capacitated Facility
Location Problem

parents (line 17), starting with the first parent. If the off-
spring dominates its first parent, then it will replace it in
the population, and if it fails, then it will be tested against
the second parent, and replace that parent if it dominates
it. The replacement of population members by dominating
offspring ensures that the solution vectors move closer to the
Pareto front as the search progresses. Finally, if a decision
has not been made by this stage, the last test establishes
whether the new offspring has a mutually non-dominating
relationship with both of its parents. If this is the case, the
offspring will enter the population if possible, by replacing
a current population member that is dominates, found by
sampling the population at random without replacement,
until a suitably weak member is identified which is domi-
nated by the new offspring. If no such weak member can
be identified, the offspring will die. The outer (While) loop
repeats the algorithm until a stopping condition is satisfied.

Solution encoding involves the use of simple binary strings,
where 1 represents an open depot, and 0 a closed depot, for
example 0011011011 for a ten depot problem indicates that
depots 3,4,6,7,9 and 10 are open, and the others are closed.
The assignment procedure for the CFLP is extremely im-
portant and ensures that capacities in terms of cases and
numbers of stores are not violated. Here, we utilize a La-
grangian Relaxation (LR) technique for assigning the cus-
tomers to open depots. Figure 1 illustrates the assignment
procedure. Our technique was adapted from [9] where it was
applied to both location and assignment. As a result of ap-
plying our procedure, the customers are assigned according
to the minimum possible cost.

3.1 Assigning customers to depots
For a given pattern of open/closed depots, we use La-

grangian Relaxation to assign the stores to open depots. In
this work each store is assigned to a single depot, and the
total costs are minimized whilst capacity constraints are ad-
hered to. It is worth noting, however, that the assignment
process could itself be considered as a multi-objective opti-
mization process, simultaneously minimizing costs and the
environmental impact of operations. Fortunately, solution
quality is excellent for the present data instances when as-
signment is based on cost alone (see Section 7).

In our present LR formulation we relax the capacity con-
straint for the number of cases. Our model for relaxing the
two (or more) capacity constraints simultaneously is work-
in-progress and will be presented elsewhere. Please note
that by relaxing only one constraint initially we were mak-
ing the assumption that the number of cases is a harder
constraint compared to the number of stores constraint, and
this seemed appropriate on close examination of the data.
Nevertheless, the feasibility of the upper bound (UB) solu-
tion was checked for violation of both constraints to ensure
only feasible results were produced.

The main step in the Lagrangian relaxation is the deter-
mination of a lower bound obtained by relaxing the capacity
(cases) constraint using Lagrangian multipliers. Please note
that the fixed costs associated with running a depot do not
need to be considered here, given that open depots have al-
ready been determined. However, the fixed costs must be
added to the variable costs for the objectives in the SEAMO2
algorithm (Equations 1 and 2). Let λi ∈ R,∀i ∈ VDC .

Minimize
∑

i∈VDC

∑

j∈VC

cijxij +
∑

i∈VDC

λi(
∑

j∈VC

djxij − qi) (9)

subject to
∑

i∈VDC

xij = 1, ∀j ∈ VC (10)

∑

j∈VC

xij ≤ ni,∀i ∈ VDC (11)

xij ∈ {0, 1}, i ∈ VDC, j ∈ VC (12)

In (9) the term in brackets on the right, (
∑

j∈VC
djxij −

qi), calculates the difference between the total demand on a
facility i imposed by the relaxed formulation, and its ability
to meet that demand (i.e., its capacity (cases), qi). If the
capacity is violated, or underutilized, the value of total cost
in (9) will change, depending on the value of λi.

One issue that needs to be considered regarding the right-
hand side of formula (9), is that normal practice dictates
that Lagrangian Relaxation only makes adjustments to the
cost when a constraint is violated. Thus, in the case of (9)
we would expect the term (

∑

j∈VC
djxij − qi) to equal zero,

for any facility for which its capacity has not been exceeded.
However, this is not the case, as under-utilized capacities
will produce non-zero values. Later on in this paper we will
make some suggestions as to how the Lagrangian scheme can
be adapted to cope with this issue, by constraining the λi

values: if λi = 0, it follows that
∑

i∈VDC
λi(

∑

j∈VC
djxij −

qi) also equals zero.
Problem (9) - (12) can be decomposed into |VC | sub-

problems. For a given set of multipliers, λi ∈ R, the op-
timal lower bound of the problem (9) - (12), LB(λ), can be
found by solving the following subproblem for each customer
j ∈ VC .
Minimize

∑

i∈VDC

(cij + djλi)xij (13)

subject to
∑

i∈VDC

xij = 1, ∀j ∈ VC (14)



∑

j∈VC

xij ≤ ni,∀i ∈ VDC (15)

xij ∈ {0, 1}, i ∈ VDC, j ∈ VC (16)

and then by setting

LB(λ) =
∑

j∈VC

LB
j(λ)−

∑

i∈VDC

λiqi (17)

(13) is easily solved for the relaxed problem simply by apply-
ing a greedy algorithm to allocate each customer along the
lowest cost arc, according to the augmented costs, cij+djλi.
By suitably modifying the Lagrangian multipliers, it is pos-
sible to obtain a feasible solution to the original capacity
constrained problem. To provide a good updating formula
for the Lagrangian multipliers, we will need an upper bound,
in addition to the lower bound in (17).

For an upper bound (UB) we will use a feasible solution
obtained on the basis of the allocations of customers to fa-
cilities discovered in the evaluation of LB(λ). However, it
is likely that the allocation made for the lower bound cal-
culation will produce some capacity violations. In order to
obtain the best possible upper bound (i.e., with the lowest
cost), we need to establish a good method for reallocating
customers when facilities are over-subscribed. For an up-
per bound, we assert that it is better to allocate customers
with high demand first, to try to ensure that individual de-
pots have sufficient unused capacity. One possible way of
doing this is to sort customers in non-increasing order of de-
mand level (highest demand first), then work through the
list, assigning customers in the same way as they were as-
signed to compute the LB, whenever possible. When ca-
pacity constraints are violated for the LB assignment, we
iterate through the sorted list of depots, attempting to as-
sign on the basis of the next lowest augmented cost depot,
until a legal assignment is found, or the list is exhausted (in
which case no feasible solution will be found and the UB will
not be updated).

Updating the Lagrangian multipliers
For each facility at time step, k

s
k
i =

∑

j∈VC

x
k
ijdj − qi (18)

where xk
ij is the solution of the Lagrangian relaxation (9) -

(12) using λk
i ∈ R,∀i ∈ VDC as the Lagrangian multipliers.

Now set

λ
k+1

i =

{

λk
i + βkski if ski > 0

0 otherwise
(19)

where βk is a suitable scalar coefficient. We will start the
procedure by seeding all the Lagrangian multipliers to zero.
Formula (19) can be explained in the following way. If for
a certain facility i, ski is positive, it means that demand
outstrips supply for that facility, and thus the correspond-
ing value of λi should be increased to increase the cost of
assigning customers to that facility in the next round. Sim-
ilarly, if ski is negative, it means that there is spare capacity,
so λi should be reduced to make that facility more attractive
for assignment in the next iteration. However, as we pointed
out earlier, it may not be appropriate to make adjustments
to the multipliers when the capacity has not been violated
for a facility. Formula (19) ensures that the λk

i are always
positive.

Tuning the Lagrangian heuristic technique
To ensure that the algorithm is robust and performs effi-
ciently, several experiments were performed in order to tune
the βk coefficient and also to determine how many iterations
to perform between updates of the constant α. The coeffi-
cient βk was tested with two different settings (20) and (21).
However results were very similar for the two settings, and
Equation (20) was incorporated into our final algorithm.

β
k =

α(UB − LB(λk))
∑

i∈VDC
(ski )

2
(20)

β
k =

α(UB(λk)− LB(λk))
∑

i∈VDC
(ski )

2
(21)

Parameter α is a constant in the interval [0, 2] [9]. Here, we
start α at 2 and halve it whenever the feasible upper bound
fails to improve on the best known feasible upper bound for
n iterations. Parameter n was tested in the range [1,100]
with step 1 for all benchmark problems, to identify the best
value for n. As a result, a value of 70 was chosen for n

because our algorithm produced its best solutions (or very
close) for most of the instances tested with these values. The
total number of iterations was tested at: 500, 1000 and 2000.
We discovered no difference in the final results, so a value
of 500 was used for the total number of iterations in order
to minimize the computational time. Finally, the algorithm
for the Lagrangian Relaxation is described in Algorithm 2.

Algorithm 2 Lagrangian heuristic algorithm for a single
source capacitated allocation problem, single product

1: Begin
2: (initialization)
3: Select a tolerance level ǫ ≥ 0
4: Set difference = +∞, LB = −∞, UB = +∞, k = 1 and

λk
i = 0, i ∈ VDC

5: while (difference ≥ ǫ) OR (k ≤number of iterations) do

6: (Computation of a new lower bound)
7: Solve the Lagrangian relaxation (9) - (12) using λk

i ∈

R, ∀i ∈ VDC multipliers (Greedy algorithm with on unca-
pacitated version based on augmented costs). Let LB(λk)
be its cost.

8: if LB(λk) solution is feasible then

9: STOP algorithm and return cost LB(λk)
10: else if LB(λk) > LB then

11: set LB = LB(λk)
12: (Computation of a new upper bound)
13: Determine the corresponding upper bound (modified

greedy algorithm, as described in the text). Let UB(λk)
be its cost.

14: if UB(λk) < UB then

15: set UB = UB(λk)
16: Calculate difference = (UB − LB)/LB
17: Update parameters ski , βk and compute Lagrangian

multipliers λk+1

i (18)-(20), ∀i ∈ VDC

18: Update k=k+1
19: Return cost of the UB feasible solution

20: End

4. TEST DATA
Due to the lack of environmental test data for the multi-

objective CFLP in the public domain, we generated random
data sets [1]. Besides, we preferred to use data sets of realis-
tic sizes with typical properties and constraints experienced



in the real world. Thus we used Company data to guide the
ranges of values used for demand, productivity, costs and the
number of depots. On the other hand, we vastly increased
the number of customers in some of our artificially generated
instances. We generated environmental data for each depot
based on the figures for average consumption of electricity
and gas across some real depots. The following procedure
was used for calculating this information for each facility,
allowing us to derive a formula for energy consumption in
kWH for a particular capacity of a depot.

The financial costs consist of both transportation and
depot related costs, where transportation costs have dis-
tance and time related components. We assume that cij =
(tcij + dcij), where tcij is the transportation costs and dcij
is the related depot costs between customer j and depot i.
Also, to reflect the fact that costs can vary, depending on
geographical locations (e.g., labour costs tend to be higher
in London and the South East), each depot has its own rates
for transport and warehousing components.

It is important to ensure that feasible solutions exist for
each generated instance. With this in mind, capacities were
generated for each depot, relative to the computed overall
demand across all depots. To achieve this the total demand
was multiplied by a capacity ratio value (e.g., a ratio of 2
will ensure that total capacity summed over all potential
facilities is twice the demand) and then divided by the total
number of potential facilities, to give an equal capacity to
each one. For the initial experiments, the following capacity
ratio values were tested: 2, 3, 4, 5, 6, 7, 8, 9 and 10. A similar
procedure was used to calculate a capacity for the maximum
number of stores which each depot could serve. As a result,
all depots are equivalent regarding capacity constraints. A
simple cost multiplier was used to produce a fixed cost value
from a capacity. Different fixed cost ratio values were tried
(0.5, 0.75, 1.25 and 1.5) to create a range of instances with
different features.

To ensure feasibility and sufficient flexibility for multiple
objectives, following some initial tests with the SEAMO2
algorithm, we chose capacity ratio values of 4 and 8 and
a fixed cost ratio value of 1.5 for further study, and gen-
erated large data instances based on these parameters for
our main experimental work. The instances had 10 depots
(all with equal capacities for cases and stores) and five dif-
ferent settings for the number of customers: 2000, 4000,
6000, 8000 and 10000. The name given to each instance re-
flects the different values generated. For example, instance
set1 10 2000 r4.0 fc1.25 has 10 depots, 2000 customers, a
capacity ratio of 4 and fixed costs ratio of 1.25. In total,
10 different test instances were generated for analysis of the
dual objective CFLP, where financial and environmental ob-
jectives are solved simultaneously.

5. TUNING SEAMO2
Prior to full experimentation, the algorithm was tuned us-

ing the S metric [18] to compare the quality of solutions pro-
duced by different crossover/mutation combinations. Two
data instances (set1 10 2000 r4.0 fc1.25 and
set1 10 8000 r4.0 fc1.25) were used, and a population of 40
run for 250 generations. Three scenarios were tested: no
crossover/no mutation, one-point crossover/mutation, two-
point crossover/mutation, and uniform crossover/mutation.
In total, 8 different sets of experiments were undertaken
for tuning purposes. The S metric and final approximate

Pareto frontier were obtained from 20 independent runs for
each data instance and settings for mutation/crossover. Af-
ter performing statistical analyses on the S metric results,
it appears uniform crossover with mutation performed best
amongst all settings. As a final step the size of the popula-
tion was increased to 100 and the number of generations to
1000 to ensure that the algorithm runs a sufficient amount
of time to find really good quality solutions.

6. EXPERIMENTAL SETUP
As mentioned above, a population of 100, with 1000 gen-

erations was used with uniform crossover and mutation as
the final settings for the SEAMO2 algorithm, and 10 inde-
pendent replicate runs were used on each of the 10 different
data instances.To validate our multi-objective approach, we
compared the quality of solutions located at the extremes
(i.e., minimum cost and minimum environmental impact),
with solutions produced by CPLEX R© optimized on the sin-
gle objectives of cost and environmental impact. Unfortu-
nately, due to the large size of some of our data instances,
it was impossible to determine the best CPLEX R© solution,
in all cases. For the CPLEX R© optimization by cost, the in-
stances with 2,000 customers were solved taking between 9
and 30 hours. On the other hand, because of a simpler prob-
lem formulation, all instances were solved for CO2 emissions
by CPLEX R© within an hour or two.

7. RESULTS
A Pareto plot for each data instance was obtained by ag-

gregating the fronts of 10 independent runs for the SEAMO2
algorithm. Figure 2 illustrates the approximate Pareto fron-
tier obtained for instance set1 10 2000 r4.0 fc1.25. The tech-
nique found very good solutions for both extreme points of
the front. The solution which was found by CPLEX R© for
the optimization by cost alone, is identical to the solution
found by SEAMO2, and the solution found in the CPLEX R©
optimization by CO2 is very close to the other extreme so-
lution on the edge of the Pareto front. Figure 3 illustrates
trade off solutions for instance set1 10 6000 r4.0 fc1.25. In
both cases the trade-off solutions appear to be rather un-
evenly spread across the approximate Pareto front, which
could be due to the problem configuration, producing a rel-
atively small number of feasible solutions. A similar pattern
was observed for all the data sets, although lack of space
prevents us from including the other 8 in this paper.

As can be seen in Figures 2 and 3, the low cost solution
produces the highest CO2 emissions with fewer depots open,
whereas the best solution for environmental impact needs
more open depots. The compromise solutions highlighted
for each of the instances identify reduced CO2 emissions
before the frontier steepens towards high costs.

Tables 1 and 2 present a summary of the results for all in-
stances comparing the SEAMO2 multi-objective algorithm
on 10 independent runs with single objective solutions based
on costs or emissions using the CPLEX R© optimization soft-
ware. In Table 1, we compare the solution quality produced
by optimization for cost or CO2 emissions using CPLEX R©
to the best found cost or CO2 solution found by SEAMO2.
As can be seen, SEAMO2 produced high quality solutions
which came at around 0.14%-0.88% difference from solutions
found by CPLEX R© .

Table 2 records total execution times for 10 independent



Data Cost solution CO2 solutuion
instance CPLEX R© SEAMO2 CPLEX R© SEAMO2

(optimisation (best cost % diff (optimisation (best CO2 % diff
by cost) solution) by CO2) solution)

set1 10 2000 r4.0 fc1.25 54,476,666.18 54,476,666.18 0 9,110,719.54 9,133,357.28 0.25
set1 10 2000 r8.0 fc1.25 71,012,035.53 71,012,035.53 0 11,350,098.95 11,433,813.45 0.74
set1 10 4000 r4.0 fc1.25 n/a 110,290,153.21 n/a 19,114,557.23 19,193,122.65 0.41
set1 10 4000 r8.0 fc1.25 n/a 142,865,836.50 n/a 23,551,122.74 23,593,999.22 0.18
set1 10 6000 r4.0 fc1.25 n/a 163,086,191.26 n/a 27,502,122.32 27,563,028.70 0.22
set1 10 6000 r8.0 fc1.25 n/a 211,113,103.48 n/a 34,509,852.20 34,559,236.39 0.14
set1 10 8000 r4.0 fc1.25 n/a 229,077,087.04 n/a 39,069,000.26 39,354,372.01 0.73
set1 10 8000 r8.0 fc1.25 n/a 295,814,178.47 n/a 49,987,201.17 50,425,972.79 0.88
set1 10 10000 r4.0 fc1.25 n/a 277,887,312.30 n/a 46,848,513.35 47,210,577.06 0.77
set1 10 10000 r8.0 fc1.25 n/a 359,872,980.28 n/a 58,644,745.65 58,858,491.71 0.36

Table 1: Solution comparison between SEAMO2 and CPLEX R© optimization

Data SEAMO2 CPLEX R©
instance Num of non-dominated By Cost By CO2

solutions Time(sec) Time(sec) Time(sec)
set1 10 2000 r4.0 fc1.25 9 1,676 107,544 24
set1 10 2000 r8.0 fc1.25 5 166 33,451 77
set1 10 4000 r4.0 fc1.25 6 5,118 n/a 157
set1 10 4000 r8.0 fc1.25 4 250 n/a 1,066
set1 10 6000 r4.0 fc1.25 10 5,309 n/a 533
set1 10 6000 r8.0 fc1.25 6 409 n/a 1,671
set1 10 8000 r4.0 fc1.25 7 9,840 n/a 564
set1 10 8000 r8.0 fc1.25 4 817 n/a 3,662
set1 10 10000 r4.0 fc1.25 10 9,641 n/a 3,277
set1 10 10000 r8.0 fc1.25 4 440 n/a 8,063

Table 2: Comparison of run times between SEAMO2 and CPLEX R©

Figure 2: Approximate Pareto frontier for instance:
set1 10 2000 r4.0 fc1.25

Figure 3: Approximate Pareto frontier for instance:
set1 10 6000 r4.0 fc1.25



runs of SEAMO2 for each instance, and also the total num-
ber of non-dominated solutions produced by SEAMO2. Com-
paring execution times for 10 runs of SEAMO2 with sin-
gle runs of CPLEX R© for minimizing cost and CO2 emis-
sions, it can be seen that CPLEX R© is highly impractical for
large instances, particularly for cost optimization. However
SEAMO2 is able to find a set of non-dominated solutions,
for which it can be seen that the extreme solutions are close
to the optima. These results show us that in terms of exe-
cution times, SEAMO2 (combined with LR for allocation of
customers to stores) is computationally very fast, and can
provide a good set of tradeoff solutions to a decision maker.

To conclude, throughout the analysis on our large data
sets it was demonstrated that the SEAMO2 algorithm com-
bined with Lagrangian Relaxation (for customer assignment)
is able to find efficient trade-off solutions balancing cost and
CO2 emissions for network design very quickly. In many
cases it is easy to spot good compromise solutions.

8. CONCLUSION
This paper presents an evolutionary multi-objective ap-

proach to the CFLP problem using SEAMO2, balancing two
objectives: financial cost and CO2 emissions. We generated
random data sets based on real-world data to use in experi-
ments, some instances with huge numbers of customers. In
addition, we integrated a Lagrangian Relaxation (LR) tech-
nique to find the best assignment of stores to open depots for
any particular individual in the population. Both the multi-
objective optimization and the LR have been coded by us in
Java. The evolutionary algorithm determines which depots
are open, and the LR takes care of the allocation of cus-
tomers to depots. The quality of results compares very well
with single-objective optima obtained using the CPLEX R©
optimization software, where is possible to make compar-
isons, and runtimes are considerably faster for SEAMO2.
Indeed, CPLEX R© is not a realistic option for very large
instances. The analysis of our findings confirm that a multi-
objective approach can be efficient at identifying good com-
promise solutions to balance cost and environmental impact,
with the goal of making significant savings in CO2 emissions
at an affordable cost. Work-in-progress includes a weighted
sum approach to multi-objective optimization, and an im-
proved LR model. In future we plan to extend our work to
more complex supply chain problems with more objectives,
and also take account of uncertainty in our approach.
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