
A Metaheuristic Approach to the Urban Transit

Routing Problem

Lang Fan and Christine Mumford
Cardiff University,

School of Computer Science,
Queen’s Buildings,

5 The Parade, Roath,
Cardiff CF24 3AA, UK

Contact: C.L.Mumford@cs.cardiff.ac.uk

Preprint of journal article

Abstract

The urban transit routing problem (UTRP) is NP-Hard and in-
volves devising routes for public transport systems. It is a highly
complex multiply constrained problem and the evaluation of candi-
date route sets can prove both time consuming and challenging, with
many potential solutions rejected on the grounds of infeasibility. Due
to the problem difficulty, metaheuristic algorithms are highly suitable,
yet the success of such methods depend heavily on: 1) the quality
of the chosen representation, 2) the effectiveness of the initialization
procedures and 3) the suitability of the chosen neighbourhood moves.
Our paper concentrates on these three issues, and presents a frame-
work which can be used as a starting point for solving this problem.
We devise a simple model of the UTRP to evaluate candidate route
sets. Finally, our approach is validated using simple hill-climbing and
simulated annealing algorithms. Our simple method beats published
results for Mandl’s benchmark problem. In addition, the potential for
solving larger problem instances has been explored.

Keywords

Urban transit routing, hill-climbing, simulated annealing

1

1 Introduction

With the development of modern cities, the increase in population and con-
cerns about the environment and traffic congestion, efficient urban public
transport systems are needed throughout the world. The urban transit net-
work design problem (UTNDP) is concerned with the determination of a set
of routes with corresponding schedules for such an urban public transport
system. This complex NP-Hard problem must optimize many criteria in
order to efficiently meet the needs of the users, while at the same time min-
imizing the cost to the service provider. From the passengers’ point of view,
for example, an ideal service will provide rapid transit between source and
destination, with a minimum of transfers between vehicles on the way. Op-
erators, on the other hand, aim to minimize their cost, yet a low cost option
may provide a poor service to the customer. In addition, there are other
stake-holders involved: typically national and local government as well as
taxpayers and local business. While all interested parties will benefit from
an efficient public transport service, each one will be observing from their
own perspective, and thus may have a slightly different definition of what
efficiency means. From the point of view of the scientific research, the urban
transit network design problem provides an enormous challenge.

The UTNDP can be subdivided into two major components, namely
the transit routing problem and the transit scheduling problem [8]. Gener-
ally, the urban transit routing problem (UTRP) involves the development
of efficient transits routes (e.g., bus routes) on an existing road network,
with predefined pickup/dropoff points (e.g., bus stops). On the other hand,
the urban transit scheduling problem (UTSP) is charged with assigning the
schedules for the passenger carrying vehicles. In practice, the two phases
are usually implemented sequentially (or iteratively), with the routes deter-
mined in advance of the schedules.

In this paper we concentrate on the urban transit routing problem, and
present a basic metaheuristic framework for solving it, consisting of: a repre-
sentation scheme, an initialization procedure and a set of simple neighbour-
hood moves. We demonstrate the effectiveness of our scheme, by embed-
ding some simple search mechanisms into our metaheuristic framework and
comparing our results with previously published results on a benchmark in-
stance. Furthermore, we explore the scalability of our approach by testing it
on some larger instances, generated by ourselves. In addition, we introduce
a simplified model of the UTRP, which allows us to concentrate on the key
issues of minimizing travel time and the number of transfers simultaneously.

Section 2 surveys relevant literature on the UTRP and the methods used

2

to solve it, and Section 3 highlights the main contributions of our work. In
Section 4 we introduce key features of the UTRP and define our model,
then in Section 5 we explain the representation we use for route sets and
also the main routines for generating, evaluating and improving the route
sets. Section 6 describes our metaheuristic framework and we present our
results in Section 7. Finally, we summarize our work and discuss some future
plans in Section 8

2 Relevant Literature

Historically, transport planners have devised reasonable bus route networks
and schedules, without the aid of computer programs, by relying on past
experience, following simple guidelines and utilizing local knowledge. How-
ever, for a large urban area where the number of bus routes may be over a
hundred and the number of bus stops in the thousands, past experience and
simple guidelines may not be enough to produce an efficient transit route
network configuration and bus schedule [24].

Whether relying on a manual or a computer-aided system for solving
the UTNDP however, it is important to realize that the resulting system
will not be useful in practice if it is designed on the back of poor quality
information - such as inaccurate travel demand estimation, for example.
Travel demand between various sources and destinations can be collected or
forecasted in several ways: for example, by examining current ticket sales,
carrying out a survey on the local population, or undertaking a public and
private vehicles analysis [4]. In addition, design guidelines are determined
by many additional factors such as the street environment in the local area
and the transport and management policies of the local government. These
researches have been carried out by White [23] and Emerson [9].

We shall now survey some key papers covering the historical development
of research on automatic methods for solving the UTNDP, focussing our
attention primarily on the UTRP.

2.1 Pioneering Work

Despite the enormous practical importance of the UTNDP, very little re-
search appears to have been published prior to 1979. A few papers studied
some operational research approaches to very specific instances, for exam-
ple, [16] and [21]. An exception is the pioneering work of Christoph Mandl
[17, 18, 19] who tackled the problem in a rather more generic form. Indeed,

3

his common-sense account of the UTNDP in [17] makes remarkably con-
temporary reading, despite its early publication date. Mandl concentrated
on the UTRP, and developed a solution in two stages: first a feasible set
of routes was generated, and then heuristics were applied to improve the
quality of the initial route set. The route generation phase involved first
computing shortest paths between all pairs of vertices by Dijkstra’s algo-
rithm [6] or Floyd’s algorithm [13], and then seeding the route set with
those shortest paths that contained the most nodes, respecting the position
of any nodes designated as terminals. Unserved nodes were then iteratively
incorporated into routes in the most favourable way, or new routes created
with unserved nodes as route terminals. In this first phase, Mandl consid-
ered only in-vehicle travel costs when assessing route quality. He went on to
suggest several heuristic methods whereby improvements could be made to
an initial route set, and used these in his second phase: (i) obtaining new
routes by exchanging parts of routes at an intersection node; (ii) Including
a node that is close to a route, if travel demand between this node and the
nodes on the route is high; and (iii) excluding a node from a route that is
already served by another route, if the travel demand between this node and
the other nodes on the route is low. In this second phase waiting costs were
considered, in addition to in-vehicle travel costs. Waiting times were fixed
as constant values, according to specified vehicle frequencies.

2.2 Heuristic Developments

In the following decade, Ceder and Wilson [5] in 1986 and Israeli and Ceder
[14] in 1989 published models for simultaneously solving the transit route
design and scheduling problems. Appreciating the enormous complexity of
real-world problems, they took a modular approach in an attempt to break
down the problem into manageable and interrelated components. They con-
sidered multiple constraints and multiple objectives. However, their models
were not implemented and only the simpler steps were tested on very small
instances. More details of these models are given below.

First, the 1986 model [5] focussed on two routines for generating and
testing candidate route sets: Level I considered only the passenger’s view-
point, and was aimed at minimizing the total travel time, while Level II
considered both passengers’ and operator’s viewpoint, and balanced travel
time and waiting time with the number of vehicles required. Vehicle fre-
quencies and timetables were also set at level II. The general idea of the
route construction algorithms was to start from the terminal nodes having
the largest demand and expand the routes incrementally by including more

4

nodes.
Ceder with Israeli [14] in their 1989 paper, introduced a much more

complex seven-stage system. It included several steps to create routes, iden-
tify transfers, and calculate frequencies. Finally, various objectives such as
travel time, waiting time, empty space and fleet size were identified as a
set of multiobjective tradeoff solutions to be presented to a human decision
maker.

More recently Baaj and Mahmassani in 1995 [3] described and imple-
mented an heuristic route generation algorithm for the route network de-
sign. Generally it determined an initial set of skeletons and expanded them
to form transit routes, which heavily depend on the travel demand matrix.
In this algorithm, the designer’s knowledge and experience were also used
to reduce the search space.

2.3 Metaheuristic Approaches

The last two decades have seen a rapid growth in computing power and, as
computers have become faster, metaheuristic techniques have become ever
more popular for solving hard combinatorial problems. Methods such as
genetic algorithms (GAs), tabu search (TS) and simulated annealing (SA)
have all played important roles in recent research on the UTNDP. GAs are
particularly popular, and several researchers have used them to determine
simultaneously the route network and the associated vehicle frequencies.
Pattnaik, Mohan and Tom [20], Tom and Mohan [22], and Agrawal and
Mathew [1] all used a binary encoding scheme to identify candidate routes.
In this way candidate routes can be pre-determined and stored in a list, and
it is the job of the GA to select routes from this list to make up a route set.
In general, their initial candidate route sets were produced using heuristic
procedures, applying shortest path calculations moderated by user-defined
guidelines. The genetic operators, mutation and crossover, produced new
route set variations for selection, giving the population scope to improve
over time, provided selection is biased towards saving the better solutions
over the poorer ones. In this approach it is important that similar routes
should be identified by similar binary codes, so that a simple mutation to
a binary code for a particular route, for example, will tend to produce a
mutated route with many nodes in common with its parent. Frequencies
are also encoded as part of the chromosome in [1]and [22].

On the other hand, in 2002 Chakroborty and Dwivedi [7] took a different
approach to encoding a GA: listing the nodes explicitly, rather than binary
coding a route as an entity. This work was taken further by Chakroborty in

5

2003 [8] to cover scheduling (UTSP) as well as routing (UTRP). For other
metaheuristic methods, examples can be seen in Fan and Machemehl’s 2004
[11] and 2006 [12] papers. They utilized their solution methodology with
tabu search and simulated annealing to solve specialized UTNDP problems.

3 Our Research Characteristics

We believe that metaheuristic approaches are highly suitable for the UT-
NDP, yet the success of such methods depend heavily on: 1) the quality of
the chosen representation, 2) the effectiveness of the initialization procedures
and 3) the suitability of the chosen neighbourhood moves. Yet, to the best of
our knowledge little attention has been paid to these issues in the UTNDP
literature. In this paper we concentrate on the urban transit routing prob-
lem, and present a basic metaheuristic framework for solving it, consisting
of: a representation scheme, an initialization procedure and a set of simple
neighbourhood moves. Furthermore, we demonstrate the effectiveness of our
scheme, as best we can, given the lack of “standard models” for the prob-
lem, and shortage of benchmark data. To do this we experiment with two
simple algorithms: hill-climbing and simulated annealing, embedding their
simple search mechanisms into our metaheuristic framework. In addition,
we introduce a simplified model of the UTRP, along the lines of Mandl [17]
for his Swiss network.

Given the practical importance of the UTNDP, it is perhaps rather sur-
prising that so little work has been done on extracting generic features,
formulating simplified models and devising benchmark data sets, such that
comparative studies are facilitated to identify which algorithms work best.
This is certainly not the case for other combinatoric optimization problems,
for example: the travelling salesman, capacitated vehicle routing, examina-
tion timetabling, job-shop scheduling, bin packing etc. all have well-known
benchmark instances, and researchers developing new algorithms to solve
these problems are expected to validate their approaches by beating other
people’s results on standard benchmarks. Perhaps the lack of fundamental
research can be explained by the enormous complexity of the UTNDP. It
may be difficult for researchers to agree which aspects of the problem are
most important, and thus decide which should extracted as “generic” to for-
mulate a simplified model. Nevertheless, we attempt to do exactly this for
the UTRP as part of our research. Guided by our study of the literature,
we focus on the potential user of a public transit system, and identify two
key objectives to be minimized: 1) total travel time (in-vehicle plus waiting

6

time) and 2) the number of transfers. In practice we recognize that there
are many other vital issues to be considered for practical purposes. These
considerations include service frequency, capacity, and operating costs. How-
ever, these features greatly complicate the model. Our main interest in the
present study is to validate our initialization procedure, our representation
scheme and our neighbourhood operators.

4 The Urban Transit Routing Problem

In the literature different models of the UTRP are characterized by different
criteria to optimize and special constraints. However, the following criteria
of a good route set have been generally accepted by most researchers [8]:

• The entire transit demand is served, that is, the percentage of unsat-
isfied demand is zero;

• A large percentage of transit demand is served through direct connec-
tions, that is, the percentage of demand satisfied with zero transfers
is high;

• The average travel time per transit user is as low as possible.

At the same time, in the real world some basic constraints have to be satis-
fied, for example:

• a maximum and minimum length for each route - that means a lim-
ited number of stops in a single route. Normally the planner will set
constraints on the route length based on consideration of issues such
as the difficulty in maintaining bus schedule adherence and bus driver
fatigue [24];

• a connected route set - which is an essential requirement for the UTRP.
Basically, this kind of route set can cover the whole network in a city
and ensure that all customers can get to their destinations in that city;

• a fixed number of routes in the route set - generally the bus company
will decide the number of routes in advance, constrained by funding;

• normally no cycles or backtracks are allowed in individual routes -
although this is not always the case, we will make this assumption
here.

7

4.1 A Simple Model of the Urban Transit Routing Problem

¿From the basic criteria of a good route set mentioned above, an efficient bus
route set could reasonably be expected to minimize both the travel distance
or time and the number of transfers. Further, for any given “bus route set”
we can create a corresponding “bus route network” simply by fusing together
all the routes in that route set. A particular bus route network will differ
from the original road network from which it is derived, provided some links
present in the road network are absent from the bus route network. As a
consequence, shortest path distances for travellers between the various node
pairs will need to be recalculated for each new route set that is evaluated,
using a distance or time matrix specific to that bus route network. We
will assume that each traveller chooses the shortest path (in the bus route
network) from source to destination node, without regard to the number of
transfers. Waiting times are not included in our shortest path calculation.
Instead transfers are dealt with separately in our objective function.

Our objective function is a weighted sum of two components: the total
travel distance (time) accumulated over all passengers, and the total number
of transfers for the entire demand. Below, we present the key features of our
simple model (introduced in [10]):

1. To store the basic problem information we need:

• An undirected graph, G(V,A), consisting of n vertices (or nodes),
V = {v1, v2, v3, . . . , vn}, and m arcs, A = {a1, a2, a3, . . . , am}.
this will store the road network.

• A demand matrix, D, where dij = travel demand between nodes
i and j.

• Routes in the current route set, stored as lists.

• A cost matrix, C, where cij = the travel cost (i.e., distance or
time) between nodes i and j, where direct links exist in the cur-
rent route network. (Note: travel cost is recorded as +∞ between
nodes that are not directly connected).

2. To find the simple objective function:

Minimize : Z = A
i=n−1∑
i=1

j=n∑
j=i+1

dijpij +B
i=n−1∑
i=1

j=n∑
j=i+1

dijtij (1)

where:
pij is length of the shortest path between i and j for the current route

8

Figure 1: A connected and an unconnected 8 node network

network (calculated using Dijkstra’s algorithm and the cost matrix,
C);
tij is the minimum number of transfers required to traverse the shortest
path for the current route set (obtained from the current routes and
the cost matrix);
A and B are constants used to weight the two components of the
objective function. (A and B are chosen to ensure the two parts of
the objective function are of similar magnitude).
Our current objective function is subject to the following constraints:

• each route in a given route set is free of cycles and backtracks.
This is easily checked when generating or modifying a route, sim-
ply by checking that there are no repeated nodes. (see details in
Sections 5.2 and 5.4)

• the route set is connected (see Figure 1). The connectivity of the
route set is checked as part of the Feasibility Check Procedure
(see details in Section 5.3).

• there are exactly r routes in the route set (usually r is set by the
planner or bus company).

• the number of nodes in every route must be greater than one, and
must not exceed a planner-defined maximum value, MAX.

9

5 Methods of Representing and Improving Route
Sets

Success in finding good route sets depends on devising the following: (1)
a suitable representation scheme, (2) an effective initialization mechanism
and (3) intelligent route improvement heuristics. In our method we use
simple arrays to store the routes, and utilize three basic procedures, namely
Initialization, Feasibility Check and Make-Small-Change.

5.1 Representation

The representation we use to store the route set is a two dimensional array.
The first location of each row stores the route number, which is useful for
identification purposes. For example, consider the first graph in Figure 1,
if we set the maximum number of nodes in each route to 4 and the number
of routes in the route set to 3 routes, the routes (i) 0-1-4-7 ; (ii) 0-3-6 ; (iii)
1-2-5 can be stored as shown in Figure 2.

Figure 2: Two dimensional array. The * occupies the blank space in the
array.

5.2 Initialization

The purpose of the Initialization procedure is to construct an initial route
set at random according to the constraints listed in Section 4.1 and some
user-defined parameters. In the initial route set, each route is a connected
path containing no cycles or backtracks.

5.3 Feasibility Check

The Feasibility Check procedure is necessary because finding feasible route
sets (that obey all constraints) using randomized methods is a huge chal-
lenge. The main purpose of the Feasibility Check routine is to ascertain
whether candidate route sets are connected and include every node present

10

in the original road network. A connected route set means that the pas-
sengers can get to any destination point from any start point in the route
set network. An unconnected route set means that some places or nodes in
the network are not directly or indirectly linked, therefore passengers are
not able to reach all points. For example, the first graph in Figure 1 is a
connected route set, but the route consisting of nodes 2 and 5 in the second
graph is not linked to the rest of the route network. Hence this route set is
an unconnected route set. In a similar way, demand to and from nodes that
do not appear in at least one route in the route set, cannot be met. The
structure of our Feasibility Check Procedure is shown in Algorithm 1

Algorithm 1 Feasibility Check Procedure

Input the route set, S
Input N, the the number of nodes in the road network
Initialize found-node[1...N] = 0 {records nodes that have been found}
Initialize explored-node[1...N] = 0 {records nodes that have been ex-
plored}
Select an arbitrary node, i, present in at least one route
Set feasibility = False
while {feasibility == False} AND {there are unexplored nodes in found-
node} do

Set explored-node[i] = found-node[i]=1
Find all routes containing node i
Set flags in found-node to record all the nodes found in those routes
Select any node from found-node that is absent from explored-node
That node becomes node i
if all N nodes have been found and entered in found-node then

feasibility = True
return feasibility

5.4 Make-Small-Change

The Make-Small-Change procedure is responsible for making local (intelli-
gent) neighbourhood changes to a route set. There are three possibilities:

1. Adding a node to the last position in a route;
ensuring that there is a direct link in the road network to connect the
new node and that no cycles or backtracks are produced.

2. Deleting the first node in a route;

11

3. Inverting the order of nodes in a route;
i.e., the first node becomes last node and the last node becomes the
first node. This method is used in place of the “adding a node” when
no suitable nodes can be added (see below).

The above mentioned “add” and “delete” node operators are key in the
Make-Small-Change procedure, with “inversion” used occasionally in place
of “add”, when it is not possible to add a node to the last position.

The Make-Small-Change procedure proceeds as follows. First of all, it
randomly selects one of the routes in the route set to act as a candidate route
for change. Next, this route will be checked for its potential, with respect
to possible application of the Make-Small-Change operators. In general,
there are three situations. (I) the length of a route is between the maximum
number of nodes and the minimum number of nodes defined by user. (II)
the length of a route is equal to maximum number of nodes. (III) the length
of a route is equal to minimum number of nodes.

If a chosen route is in the (I) situation, the adding or deleting operator
is randomly selected as the “small change” to be made. Unfortunately, a
problem can occasionally arise, when the “add node” operator is selected
and there is no available node that can be added to the end of the route,
avoiding cycles and backtracks. For example, in the first graph in Figure
1, if a route 0-3-6 has been selected to add a node to the end, obviously
no available node can be added to the route. Hence in this situation, the
“inversion” operator will be applied instead to this route. In our example,
the original route becomes 6-3-0 following inversion. Next, an alternative
route will be selected at random from the remaining routes in the route
set. This newly selected route will be identified as situation (I), (II) or
(III), as before, and a Make-Small-Change operator applied appropriately.
This process will be repeated, as necessary, until a “small change” has been
effected.

If a chosen route is in the (II) situation, the route cannot be made any
longer, so the deleting method will be applied to the route. In a similar
way, if a chosen route is in the (III) situation, the route cannot be made any
shorter, so the adding method will be applied. Once again, in some circum-
stances there will be no available node to add, just as we saw in situation
(I). Like before, this route will be inverted and another route selected.

12

6 Framework of Implementation

Simple hill-climbing (HC) and simulated annealing (SA) algorithms have
been implemented in order to test our procedures. Generally the two algo-
rithms have similar structure. The framework is summarized in Algorithm
2.

Algorithm 2 Route-Hillclimber or Route-SimulatedAnnealing

Parameters: D, C, r, MAX, {plus T0 and L for SA}
Initialization:
Generate an initial route set of r routes, S
Main loop
repeat

Modification:
Call Make-Small-Change {to generate a near neighbourhood route set,
S′}
Feasibility check:
repeat

if the new route set is not connected then
Call Make-Small-Change

until successful
Evaluation:
Calculate

∑i,j=n
i,j=1 dijpij ,

∑i,j=n
i,j=1 dijtij , and the objective function, Z

Selection:
Select either S or S′ as new focus of search following rules of Hill-
Climbing or Simulated Annealing

until the stopping condition is satisfied
Output Best route set and Z for the best route set

Recall that D is the demand matrix, C the cost (distance or time) matrix
for the current route network, r the number of routes in the route set and
MAX is the maximum number of nodes per route. T0 and L are parameters
for the SA, to be discussed later.
Initialization: generates an initial route set and stores it following the
constraints and user-defined parameters.
Modification: calls the Make-Small-Change routine to generate a new
neighbourhood route set.
Feasibility Check: is to check whether the new neighbourhood route set
is connected, and contains all the demand nodes. If not, the Make-Small-
Change routine is used iteratively until a feasible route set is produced.

13

Evaluation: Once a feasible route set has been obtained, it needs to be
evaluated by calculating the objective function in Equation 1. We consider
the route network obtained by fusing all the routes from a given route set,
as explained in Section 4.1. (Recall that a route network is a subset of
the specified road network.) We assume that all demand is satisfied along
the shortest path available (in the route network) between a given pair or
nodes, regardless of whether or not this involves making transfers (no time
penalty is added for making a transfer). All required shortest paths are
calculated from the route network using Dijkstra’s algorithm, and the first
component of Equation 1,

∑i=n−1
i=1

∑j=n
j=i+1 dijpij , is calculated. This gives

the total travel distance (or time), for the route network, summed over all
passengers. Note: if there is more than one contender for the shortest path
between an origin and destination, the path with the highest demand is
selected.

The total number of vehicle transfers summed over the entire demand
(i.e., the second term in Equation 1) also needs to be calculated. This is done
by checking every part of each shortest travel path, to identify which route
it belongs to. In this way, the minimum number of transfers required along
each shortest path is recorded, and this information is used to calculate the
second term in the Equation,

∑i=n−1
i=1

∑j=n
j=i+1 dijtij .

Selection: In the two algorithms the selection rules are different. In the hill-
climbing algorithm a route set which has the smaller value of the objective
function is kept as a current best result at each time-step. On termination,
the best route set found during the entire run of the algorithm will be
output. In the simulated annealing algorithm a new neighbourhood route
set will replace the “current” route set at a given time-step if it is better,
similar to hill-climbing. If the neighbourhood route set is “worse” than the
current route set, however, it is still possible that it may replace it as the
new focus of the search. Acceptance will be determined using an “acceptance
probability”, and the value of this will depend on the current “temperature”,
and also on exactly how poor the new contender is, in relation to the route
set currently occupying the focal position. Early in the execution of an SA
algorithm the temperature is high and most neighbourhood moves will be
accepted. As the search progresses, however, the temperature cools and
poor solutions tend to be accepted considerably less frequently. As is the
case with hill-climbing, the best route set found during the entire run of the
algorithm will be output when the algorithm terminates.

Values for the acceptance probability - prob - for a minimization prob-
lem, are evaluated using Equation (2) and (3). ∆ represents the difference
between the objective functions (or costs) of the new solution, C(S′), and

14

the focus solutions, C(S). Note that the value of prob depends on the value
of ∆ and also on T , the current temperature, which is determined by the
cooling schedule.

∆ = C(S′)− C(S) (2)

prob = min(1, e−∆/T) (3)

The new solution is accepted with probability 1 if ∆ ≤ 0 (in other words, if
the neighbourhood solution is better than S) and with probability e−∆/T if
∆ > 0 (that is, if the neighbourhood solution is worse than S). Through-
out the execution of an SA algorithm, the temperature T is progressively
lowered.

In the present study we determine the precise annealing schedule from
user-specified values for the number of cooling steps and the initial and final
solution acceptance probabilities. We use N cooling steps to correspond
to the number of iterations, so that the temperature is decreased slightly
between each iteration. Thus, knowing N and setting initial and final ac-
ceptance probabilities, P0 and PN , as well as an additional parameter, M ,
that signifies an initial number of random trials, the starting temperature
T0, the final temperature TN , and the cooling factor α can be calculated, as
indicated below.

∆i = C(S′)− C(S) (4)

∆ave =

∑i=M
i=1 | ∆i |

M
(5)

T0 = − ∆ave

logP0
(6)

Tn = − ∆ave

logPN
(7)

α = exp
log TN−log T0

N (8)

Please note that ∆ave (Equation (5)) is obtained by applying the Make-
Small-Change procedure to construct M new neighbours, (S′), to the initial
route set, (S). In this way M values for C(S′) − C(S) are obtained, and
their magnitude can be averaged to obtain an estimate for ∆ave. We use this
estimate to help determine the starting temperature, the final temperature

15

and the cooling schedule. The neighbouring solutions generated during this
parameter initialization phase are subsequently discarded.

In this study we use an “inner loop” (omitted from the Framework above
for simplicity), with L iterations per temperature, in addition to the “outer
loop”. The outer loop implements the cooling schedule, while the inner loop
gives the SA a chance to search the solutions space at each temperature. In
our study, P0 = 0.999, PN = 0.001, M = N = 1, 000, and L = 100.

7 Experimental Results

There is only one popular benchmark instance - Mandl’s (see Figure 3). We
use this to compare our results against those of other researchers in our
first set of experiments. Although our objective function is different from
those used by other researchers, we are able, nevertheless, to make direct
comparisons on the basis of common criteria.

In the second set of experiments we test our techniques on three fur-
ther instances, to examine the scalability of our approach. Unfortunately,
comparisons with other work is not possible for these instances. However,
it is an easy matter to obtain quite good lower bounds, making it possible
to assess our solutions in terms of percentage error. In addition, we use all
four instances to examine the efficiency of the Make-Small-Change routine,
with respect to problem size, number of nodes per route, and number of
routes per route set. Our concern here is to ensure that our algorithms
do not spend a disproportionate time generating and evaluating infeasible
solutions as the problem size and/or difficulty increases.

7.1 A Note on Assessment Parameters

As mentioned above, we use Mandl’s network to compare our approach
with others. The following parameters are used to compare the quality of
our route sets with those obtained in [18, 2, 15, 7].

d0 - The percentage of demand satisfied without any transfers.

d1 - The percentage of demand satisfied with one transfer.

d2 - The percentage of demand satisfied with two transfers.

dun - The percentage of demand unsatisfied.

ATT - Average travel time in minutes per transit user (mpu). This incor-
porates transfer waiting times, at 5 minutes per transfer.

16

Figure 3: Mandl’s Swiss Road Network

The above parameters are quite easily calculated from the best route
set generated at the end of an optimization run of our HC or SA algorithm.
Recall that our objective function is composed of two components: 1) a com-
ponent concerned with total travel time, accumulated over all passengers,
and 2) a similar accumulated term for the total number of transfers made
between vehicles by passengers. An average travel time can be obtained
simply by dividing the accumulated travel time by the total demand. How-
ever, unlike other researchers, the travel times we use in our optimization
process do not make any allowance for transfer waiting times.

To obtain values for average travel times (ATT), comparable with other
researchers, it is necessary to add 5 minutes for each person-transfer to our
accumulated travel times before dividing by the total demand. However,
this is not as straightforward as it seems. We have discovered that different
values for ATT can be obtained, depending on whether or not transfer times
are included in the shortest path calculations when determining the travel
paths for passengers. We tried two different ways of calculating ATT from
a given route set:

1. Assume passengers ignore transfer waiting times when choosing their
travel paths.

2. Assume passengers take account of transfer waiting times when choos-
ing their travel paths.

17

Method 1 defines the mode of travel path selection used in our objective
function. Evaluating ATT for our best route set at the end of a run (to make
it comparable with values quoted by other researchers), involves adding five
minutes for each person-transfer to the total travel time, before dividing
by the total demand. Method 2, on the other hand, effectively gives the
passengers fuller information. In these circumstances individuals will surely
choose to avoid transfers, where this will delay arrival at the final destination.
As an added bonus, method 2 can reduce the total number of transfers. Thus
ATT is calculated by accumulating all shortest travel paths, with transfer
time included explicitly in the shortest path calculations.

In any case, our assessment routine will retrace the shortest paths from
each source to destination node pair, using the distance (time) matrix com-
puted for that particular route network, incorporating waiting times, or not,
depending on the calculation model chosen. As each route is retraced, we
can record which part of the shortest path belongs to which route in the best
route set. Hence we can discover the number of transfers which passengers
needs to make to travel on their shortest path. Finally, with the demand of
each path, we can respectively calculate the number of passengers who need
0, 1, 2 transfers.

To validate our calculations for the route set quality parameters, we
examined Mandl’s best route set (4 routes) from [18]. The routes (from the
network shown in Figure 3 are listed below:

0-1-2-5-7-9-10-12

4-3-5-7-14-6

11-3-5-14-8

12-13-9

That we were able to replicate his values for d0, d1, d2, dun and ATT
using method 2, is illustrated in Table 1. Thus, method 2 will be used to
evaluate our final route sets in all our experiments. Interestingly (but not
surprisingly) method 2 gives results that are at least as good (and probably
better) than method 1, as can been seen in Table 1. Method 2 produces
a smaller value for ATT and a larger percentage of travellers reach their
destinations with zero transfers.

7.2 Results for Mandl’s Swiss Road Network

In order to establish the viability of our approach we first compare the re-
sults obtained by running our algorithms with those previously published by

18

Table 1: Parameters for Mandl’s best route set [18] by our Method 1 and
Method 2

Parameters Method 1 Method 2
d0 66.67 69.94
d1 26.33 29.93
d2 7.00 0.13
dun 0.00 0.00
ATT 13.29 12.90

Mandl[18], Baaj and Mahmassani[2], Kidwai[15] and Chakroborty [7]. For
consistency with the other work, the route sets were developed for Mandl’s
network (Figure 3) in four situations: 4 routes, 6 routes, 7 routes and 8 routes
in each route set. In line with the previous authors, a transfer penalty of
5 minutes is added to the travel time of every passenger for each time a
transfer is made, as discussed in Section 7.1. We also set a maximum eight
nodes in each route. We carried out 20 replicate runs for each algorithm in
each situation (i.e., 4, 6, 7, and 8 routes). For hill-climbing (HC) we used
100,000 iterations, and we performed 1,000 cooling steps, with 100 iterations
within the inner loop, for the simulated annealing.

The results in Table 2 clearly show that competitive results have been
found by our algorithms. Our results have better values for d0, d1 in 3 out
of 4 cases. For the average travel time (ATT) our results beat previous
researchers’ results for the 4 route and 8 route cases, and they are only
marginally inferior to those published by Chakroborty [7] for the 6 and 7
route cases. Although average solutions for SA are slightly better than
those obtained using HC, t-tests on ATT and d0 values show that some of
these differences are significant and some are not at the 5 percent level. The
actual routes produced for our best solutions for each situation are presented
in Table 3.

Table 4 gives the average run times for our hill-climbing and simulated
annealing algorithm. Note: our computer platform is Windows XP with
Inter(R) Pentium(R) D CPU 3.00GHz and 1GB of RAM. Clearly, the SA is
faster than the HC.

7.3 Scalability Experiments

Because of a lack of published benchmarks, it was necessary to create our
own data to establish whether the techniques would scale to larger instances.

19

Table 2: Results for Mandl’s Network

N
u
m
b
er

of
R
ou

te
s

P
ar
am

et
er
s

M
an

d
l
[1
8
]

B
a
a
j
[2
]

K
id
w
ai

[1
5]

C
h
ak

ro
b
or
ty

[7
]

O
u
r
B
es
t

H
C

A
v
er
ag

e
S
A

A
v
er
ag

e
N
o.

R
u
n
s

4
d
0

6
9.
94

N
7
2.
95

86
.8
6

9
3
.2
6

91
.8
3

92
.4
8

20
d
1

2
9.
93

N
2
6.
92

12
.0
0

6
.7
4

8.
17

7.
52

d
2

0
.1
3

N
0
.1
3

1.
14

0
.0
0

0
.0
0

0
.0
0

d
u
n

0
.0
0

N
0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

A
T
T

1
2.
90

N
1
2.
72

11
.9
0

1
1
.3
7

11
.6
9

11
.5
5

6
d
0

N
78

.6
1

7
7.
92

86
.0
4

9
1
.5
2

90
.2
3

90
.8
7

20
d
1

N
21

.3
9

1
9.
68

13
.9
6

8
.4
8

9.
26

8.
74

d
2

N
0
.0
0

2
.4
0

0
.0
0

0
.0
0

0.
51

0.
39

d
u
n

N
0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

A
T
T

N
11

.8
6

1
1.
87

1
0
.3
0

10
.4
8

10
.7
8

10
.6
5

7
d
0

N
80

.9
9

9
3
.9
1

89
.1
5

93
.3
2

92
.2
1

92
.4
7

20
d
1

N
19

.0
1

6
.0
9

10
.8
5

6.
36

7.
13

6.
95

d
2

N
0
.0
0

0
.0
0

0
.0
0

0.
32

0.
66

0.
58

d
u
n

N
0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

A
T
T

N
12

.5
0

1
0.
69

1
0
.1
5

10
.4
2

10
.7
4

10
.6
2

8
d
0

N
79

.9
6

8
4.
73

90
.3
8

9
4
.5
4

93
.2
3

93
.6
5

20
d
1

N
20

.0
4

1
5.
27

9.
62

5
.4
6

6.
18

5.
88

d
2

N
0
.0
0

0
.0
0

0
.0
0

0
.0
0

0.
59

0.
47

d
u
n

N
0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

A
T
T

N
11

.8
6

1
1.
22

10
.4
6

1
0
.3
6

10
.6
9

10
.5
8

20

Table 3: Routes obtained using our methods

Situation Number of Routes Route Description
1 4 9-13-12-10-11-3-1-0

11-10-9-7-5-2-1-0
10-9-7-5-3-4-1-2
1-2-5-7-9-6-14-8

2 6 12-13-9-10-11-3-5-7
10-12-9-6-14-5-2-1
8-14-5-2-1-3-11
0-1-2-5-7-9-10-11
4-3-11-10-9-6-14-8
10-9-7-5-3-4-1

3 7 12-13-9-7-5-3-4-1
11-10-12-13-9-6-14-8
8-14-5-2-1-4
3-1-2-5-14-6-9-12
4-3-11-10-9-7-14-6
9-10-11-3-5
12-13-9-7-5-2-1-0

4 8 9-13-12-10-11-3-4
6-9-7-5-3-4-1-0
9-10-11-3-5-14-8
8-14-6-9-10-11-3
11-3-1-2-5-7-14
9-6-14-5-2-1-3
9-13-12-10-11-3-1-0
0-1-2-5-7-9-12-13

For these tests we use Mandl’s network (which consists of 15 nodes and 20
links) plus 3 additional data sets: I - a small instance obtained from [20]
consisting of 8 nodes and 9 links; II - one we devised ourselves, based on a
small Chinese town, consisting of 20 nodes and 24 links; and III) a 50 node
and 65 link network obtained by joining three Mandl’s networks together.

A simple method to assess the quality of our results on these instances
is to compare the average travel time (ATT) per passenger with the lower-
bound result, which assumes that every passenger travels on the shortest
path on the road network (as opposed to the route network) between source
and destination without any transfers. The difference between the actual
ATT and the “ideal” ATT is quoted as a percentage of the “ideal” quantity
in our results. Table 5 presents the best results for average travel time (ATT)

21

Table 4: Average run times for the HC and SA algorithms.

Number of Routes HC Time (secs) SA Time (secs)
4 254 98
6 244 89
7 232 81
8 221 74

for 20 replicate runs of hill-climbing on our four networks. In addition, we
give the ATT-error, as mentioned above. We include our best results for
Mandl’s network (8 routes and maximum 8 nodes), so that we can observe
whether on not the quality of our solutions, with respect to the lower bound,
will decline with increasing problem size. Each hill-climbing run consisted
of 100,000 iterations. From Table 5 we can see that the percentage errors
are similar for all the instances, with no observable deterioration for larger
instance.

Table 5: Comparing best solutions with “ideal” solutions. ATT—Average
Travel-Time; Rs—Routes; Ns—Nodes

Network Ideal ATT Test Situation Best ATT ATT-error%
Mandl’s 10.01 8 Rs, max 8 Ns 10.36 3.50
I 2.36 3 Rs, max 4 Ns 2.57 8.90
II 8.59 6 Rs, max 9 Ns 8.95 4.19
III 15.48 9 Rs, max 10 Ns 16.52 6.72

In the final set of experiments we examine the efficiency of the Make-
Small-Change procedure. Throughout the execution of our algorithms, each
time a neighbourhood route set is generated, there is a chance that it will
be infeasible (i.e., not connected). Hence the Make-Small-Change procedure
will be called iteratively, until a connected route set is produced. Clearly, the
efficiency of the Make-Small-Change procedure can be assessed by counting
the number of iterations required before a connectivity is achieved. Here
we examine the average number of iterations needed in order for each new
feasible route set to be generated. To do this we examine single runs of
the HC algorithm on all four of our problem instances. The results are
presented in Table 6. Column four of the Table records the average run
time required, per solution, for the Make- small-Change routine to produce

22

a feasible solution.

Table 6: Make-Small-Change Procedure Tests

Network Type Route Set Condition Feasible Fraction Time (secs)
I 3 routes, max 4 nodes 1 / 14 0.000123

3 routes, max 5 nodes 1 / 6 0.000061
4 routes, max 4 nodes 1 / 5 0.000055
4 routes, max 5 nodes 1 / 3 0.000016

Mandl’s 4 routes, max 8 nodes 1 / 582 0.001735
6 routes, max 8 nodes 1 / 126 0.000454
7 routes, max 9 nodes 1 / 88 0.000378
8 routes, max 7 nodes 1 / 57 0.000158

II 8 routes, max 8 nodes 1 / 786 0.002365
8 routes, max 9 nodes 1 / 689 0.001013
9 routes, max 10 nodes 1 / 175 0.000684
10 routes, max 9 nodes 1 / 162 0.000598

III 10 routes, max 10 nodes 1 / 1340 0.003465
11 routes, max 10 nodes 1 / 967 0.002692
12 routes, max 12 nodes 1 / 577 0.001487
12 routes, max 16 nodes 1 / 365 0.000856

¿From the experimental results, we can observe some interesting pat-
terns: the efficiency of the Make-Small-Change routine appears to improve
with increasing numbers of routes in a route set and also when the maximum
number of nodes allowed per route is increased.

8 Conclusions and Future Work

In our paper we have presented a framework for solving the UTRP, consisting
of the following components: 1) a representation for the problem, 2) an
initialization procedures to construct feasible route sets at random, and 3)
a Make-Small-Change routine to generate neighbourhood moves. To test
our techniques, we have implemented two simple algorithms: hill-climbing
and simulated annealing, and embedded their simple search mechanisms
into our metaheuristic framework. Furthermore, we have demonstrated the
effectiveness of our scheme, by beating previously published results for the
only benchmark problem we have been able to locate. In addition, the
potential for solving larger problem instances has been explored. Finally,
we have introduced a simplified model of the UTRP, which evaluates routes

23

according to the average in-vehicle travel time and the number of transfers
between vehicles. Nevertheless, even this relatively simple model involves
complicated calculations, and infeasible route sets are all too easily produced
by random procedures that form the basis of metaheuristic techniques.

In future work we plan to extend our study to even larger problems,
and incorporate operator costs into our model, by making some simple as-
sumptions regarding service frequencies. In addition, we propose to incorpo-
rate more realism into route choice, recognizing the diversity of preferences
amongst the travelling public. In doing this, our priority will be to develop
a more sophisticated and realistic model, yet maintain simplicity, as far as
possible, so that other researchers will be able to replicate our results. In ad-
dition, we will experiment further with various heuristic and metaheuristic
algorithms, in an attempt to improve performance.

References

[1] Jitendra Agrawal and Tom V.Mathew, Transit Route Network Design
Using Parallel Genetic Algorithm, Journal of Computing in Civil Engi-
neering, July (2004) 248-256.

[2] M. H. Baaj and H. Mahmassani, Baaj, M.H. and H. Mahmassani, An
AI-based approach for transit route system planning and design, Journal
of Advance Transportation, 25(2)(1991), 187-210.

[3] M. Hadj Baaj and Hani S.Mahmassani, Hybrid Route Generation Heuris-
tic Algorithm for The Design of Transit Networks, Transportation Re-
search 3(1) (1995) 31-50.

[4] R.Balcombe, The demand for public transport: a practical guide, TRL
Report, TRL Limited, UK, 2004.

[5] Avishai Ceder and H.M.Wilson, Bus Network Design, Transportation
Research -B 20B(4) (1986) 331-344.

[6] E.W. Dijkstra, A Note on Two Problems in Connexion with Graphs,
Numerische Mathematik (1959) Vol.1, 269-271.

[7] Partha Chakroborty and Tathagat Dwivedi, Optimal Route Network
Design For Transit Systems Using Genetic Algorithms, Engineering Op-
timization (2002) Vol.34(1), 83-100.

24

[8] Partha Chakroborty, Genetic Algorithms for Optimal Urban Transit
Network Design, Computer-Aided Civil and Infrastructure Engineering
18 (2003) 184-200.

[9] B.Emerson, Design and Planning Guidelines for Public Transport
Infrastructure-Bus Route Planning and Transit Streets, Public Transport
Authority, 2003.

[10] Lang Fan and Christine Mumford, A Simplified Model of the Urban
Transit Routing Problem, the 7th Metaheuristics International Confer-
ence, Montreal, Canada, 2007.

[11] Wei Fan and Randy B.Machemehl, A Tabu Search Based Heuristic
Method for the Transit Route Network Design Problem, the 9th Inter-
national Conference on Computer-Aided Scheduling of Public Transport,
San Diego, California, 2004.

[12] Wei Fan and Randy B.Machemehl, Using a Simulated Annealing Al-
gorithm to Solve the Transit Route Network Design Problem, Journal of
Transportation Engineering, February (2006) 122-132.

[13] R. W. Floyd, Algorithm 97: Shortest Path, Communications of the
ACM (1962), Vol. 5 (6), 345.

[14] Yechezkel Israeli and Avishai Ceder, Designing Transit Routes at the
Network Level, IEEE Vehicle Navigation and Information Systems Con-
ference, (1989), 310-316.

[15] F. A. Kidwai, Optimal design of bus transit network: a genetic algo-
rithm based approach, PhD.dissertation, Indian Institute of Technology,
Kanpur, India, 1998.

[16] W. Lampkin and P. D. Saalmans, The Design of Routes, Service Fre-
quencies and Schedules for a Municipal Bus Undertaking: a case study,
OR Quarterly, 18 (1967), 375-397.

[17] Christoph E.Mandl, Applied Network Optimization, Academic Press,
London, 1979.

[18] Christoph E.Mandl, Evaluation and Optimization of Urban Public
Transport Networks, Third Congress on Operations Research, Amster-
dam, Netherlands (1979).

25

[19] Christoph E.Mandl, Evaluation and Optimization of Urban Public
Transport Networks, European Journal of Operational Research 5 (1980)
396-404.

[20] S.B. Pattnaik, S. Mohan and V.M. Tom, Urban Bus Transit Route
Network Design Using Genetic Algorithm, Journal of Transportation En-
gineering July/August (1998) 368-375.

[21] L. Simman, Z. Barzily and U. Passy, Planning the Route System for
Urban Buses, Comput. Ops. Res. 1 (1974), 201-211.

[22] V.M.Tom and S.Mohan, Transit Route Network Design Using Fre-
quency Coded Genetic Algorithm, Journal of Transportation Engineering,
March/April (2003) 186-195.

[23] Peter White, Public Transport: Its Planning, Management and Oper-
ation, 4th Edition, Spon Press, 2002.

[24] Fang Zhao and Albert Gan, Optimization of Transit Network to Min-
imize Transfers, Final Report, Lehman Center for Transportation Re-
search, Florida International University, 2003.

26

