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Abstract

This paper describes a recursive process for generating data
sets of rigid rectangles that can be placed into rectangular
regions with zero waste. The generation procedure can be
modified to guarantee that the aspect and area ratios of the
rectangles in the generated data sets satisfy user-specified
parameters. This recursive process can thus be employed to
create a variety of data sets that can be used to evaluate the
efficiency and scalability of rectangular cutting and packing
algorithms.
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1 Introduction

Many rectangular cutting and packing algorithms have ap-
peared in the literature in the last three decades. These
solution procedures have often been evaluated by using a
variety of test data sets. For cutting problems, several popu-
lar benchmark data sets [1, 4] have been utilized for solving
constrained and unconstrained problems. The number of
rectangles appearing in these data sets typically ranges from
the tens to hundreds of pieces, and the optimal solution
for each data set may or may not be known. Similarly,
many rectangular bin packing heuristics have relied on data
sets for demonstrating their effectiveness. For example,
bin packing data sets have been used in [2, 5, 6, 7]; these
contain at most hundreds of rectangles and several share the
property that an optimal solution for the data set is known.
Other bin packing data sets (e.g. [3]) contain rectangles
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whose heights and widths have been randomly generated
and whose optimal solution has waste that is unknown but
can be bounded below by summing the areas of the rectan-
gles to be packed.

The rectangles appearing in the published data sets for both
cutting and packing display a range of properties. Some
data sets contain rectangles that appear to be “nearly” square.
Others contain rectangles that are mostly tall and thin or
short and fat, while other data sets contain both types of
rectangles. Additionally, many contain rectangles that are
either very large or very small in area, while others contain
rectangles that all have similar area.

This variety of rectangle sizes and areas enables researchers
to determine if their proposed algorithms are biased towards
any particular types of data. However, the small sizes of
these data sets do not enable a determination to be made of
whether cutting and packing algorithms will scale to large
problem sizes, and often, the quality of the solution can only
be approximated since the optimal solution is not known.

Due to this sparsity of large benchmark data sets for the
problem of cutting or packing rectangles into rectangular
regions, we have developed a recursive routine for gen-
erating data sets of rigid rectangles which can be packed
into a zero-waste rectangular region. More importantly, this
procedure permits the user to specify a range of variation
in the dimensions and areas of the generated rectangles.

Section 2 describes the basic approach used by the data set
generation algorithm which, simply stated, recursively cuts
a user specified input rectangle into smaller subrectangles.
This method can be modified so that the height-to-width
ratios of the resulting rectangles is controlled as proven in
section 3. Further, section 4 illustrates how the imposi-
tion of restrictions governing the choice of which subrect-
angles can be recursively sliced will yield data sets where
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Figure 1: A zero–waste packing

the maximum-to-minimum area of resulting rectangles can
be limited. Next, we show how these procedures can be
combined to produce data sets containing rectangles whose
height-to-width and area ratios are controlled as described
in section 5. Section 6 characterizes some sample data sets
that were generated by these procedures. A description
of how these algorithms and data sets can be used is pre-
sented in section 7. Finally, areas of ongoing research are
described in section 8.

2 Generating unconstrained rectangles

A basic procedure can be formulated which generates data
sets containing n rectangles with no restrictions being placed
on the relative height hi and width wi of each rectangle.
Recursive slicing of a large (stock) rectangle is performed
by applying vertical or horizontal cuts with equal probabil-
ity. At each step, slicing positions are chosen with uniform
probability. By reversing the slicing process, the rectangles
can be reassembled into a zero-waste packing. In this man-
ner, rectangles such as those shown in Figure 1 can easily
be generated.

At the start of the data set generation process, the user is
asked to input the dimensions of the stock rectangle and also
the precise number of rectangular pieces desired. The input
parameters consist of n, the number of desired rectangles,
and H and W , the height and width of the stock rectangle
being cut. Algorithm 1 describes the basic technique for
generating a data set.

It is clear that this Θ(n) process generates a set of rectangles
with real-valued dimensions that can be reassembled into a
stock rectangle of size H ×W with zero waste.

Algorithm 1 Generating Unconstrained Rectangles
Input: n, H , and W
while n rectangles have not yet been generated do

choose a rectangle R randomly
choose a vertical or horizontal slicing direction ran-
domly
choose a random position to cut R in the chosen
direction
perform the cut, generating two subrectangles
replace R in the list with the two new subrectangles

end while

3 Generating rectangles satisfying the
aspect ratio constraint

The aspect ratio of a rectangle with height hi and width wi

is defined to be the ratio hi

wi
. Algorithm 1 can be modified

to produce a set of rectangles whose aspect ratios fall within
a user-specified range of [1/ρ, ρ] where ρ ≥ 2. To ensure
this, additional constraints must be satisfied during the gen-
eration process. First, the input stock rectangle must satisfy
an initial condition based on the value of the ρ parameter.
Next, positions at which successive random cutting of the
initial stock piece and the intermediate subrectangles must
be restricted. To prove that the final set of generated rect-
angles have the desired aspect ratio, the following theorems
are noted. For convenience, a rectangle R of height H and
width W is said to “have” aspect ratio ρ if 1/ρ ≤ H/W ≤
ρ.

3.1 Mathematical conditions for aspect ratio
cutting

Lemma 1 Let R be a rectangle having height H and width
W that is sliced vertically into two subrectangles R1 and
R2. If W > 2ρH for a given ρ, then R1 and R2 cannot
both have aspect ratio ρ.

Proof. Suppose R is sliced at position x to form two sub-
rectangles R1 and R2 as shown in Figure 2. Let W > 2ρH
and assume that R1 has aspect ratio ρ.

It follows that x < W/2 and W − x > W/2 because

=⇒ H/x ≥ 1/ρ

=⇒ x ≤ ρH < ρW/(2ρ) = W/2

=⇒ x < W/2

=⇒ W − x > W/2
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Figure 2: Vertical slicing of an H ×W rectangle

from which

=⇒ H/(W − x) < H/(W/2)

=⇒ H/(W − x) < 2H/W < 2H/(2ρH) = 1/ρ

=⇒ H/(W − x) < 1/ρ

which implies that R2 does not have aspect ratio ρ. A
similar argument can be used to establish that R1 will not
have aspect ratio ρ if W > 2ρH and R2 has aspect ratio ρ.
2

Lemma 2 Let R be a rectangle having height H and width
W that is sliced vertically into two subrectangles R1 and
R2. If W < 2H/ρ for a given ρ, then R1 and R2 cannot
both have aspect ratio ρ.

Proof. Let W < 2H/ρ and assume that R1 has aspect ratio
ρ. Then it can be shown that x > W/2 and W −x < W/2:

=⇒ H/x ≤ ρ

=⇒ H ≤ ρx

=⇒ ρW/2 < H ≤ ρx

=⇒ W/2 < x

=⇒ W − x < W/2

so that

=⇒ H/(W − x) ≥ 2H/W > 2H/(2H/ρ) = ρ

=⇒ H/(W − x) > ρ

which implies that R2 does not have aspect ratio ρ. Simi-
larly, if W < 2H/ρ and R2 has aspect ratio ρ, then it can
be shown that R1 does not have aspect ratio ρ. 2

Lemma 3 Let R be a rectangle having height H and width
W that is sliced horizontally into two subrectangles R1 and
R2. If H > 2ρW or if H < 2W/ρ for a given ρ value, then
R1 and R2 cannot both have aspect ratio ρ.

Proof. This lemma can be established by first observing
that 1/ρ ≤ H/W ≤ ρ implies that 1/ρ ≤ W/H ≤ ρ
and then applying the same arguments used in the proofs of
Lemmas 1 and 2 with H and W interchanged. 2

The proof techniques used for the above lemmas provide
clues for obtaining some conditions which guarantee that
a rectangle can be vertically (or horizontally) sliced into
two subrectangles, each having an aspect ratio of ρ. For
example, note that Lemmas 1 and 2 have indicated that if
there is to be a chance that a rectangle can be cut vertically
into two acceptable subrectangles, then it should probably
have height H and width W satisfying 2H

ρ ≤ W ≤ 2ρH .
We now show that this must be the case.

Theorem 1 A rectangle with height H and width W can
be sliced vertically into two subrectangles with aspect ratio
ρ if W satisfies 2H

ρ ≤ W ≤ 2ρH .

Proof. If the height H and width W of the rectangle to
be cut satisfy any of the conditions in Lemmas 1, 2 or 3,
then the two resulting subrectangles cannot both have as-
pect ratio ρ. Thus, suppose that the width W of a rectangle
satisfies 2H

ρ ≤ W ≤ 2ρH . (Note that this is equivalent to
H
ρ ≤ W/2 ≤ ρH .)

Now observe that any vertical cut at position x definitely
dictates that H/ρ ≤ x ≤ ρH: if not, then x < H/ρ implies
that H/x > ρ and x > ρH implies that H/x < 1/ρ. These
conditions cause the left subrectangle, R1, which is formed
by the cut at x, to lack the desired aspect ratio property.

However, it is not clear that cutting the rectangle at position
x where H/ρ ≤ x ≤ ρH will guarantee that R1 has aspect
ratio ρ. To verify this, first assume that H/ρ ≤ x ≤ W/2.
If this is true, then H/x ≥ 2H/W ≥ 1/ρ and H/x ≤
H/(H/ρ) = ρ, and so R1 will have aspect ratio ρ.

For a cut position x, W/2 < x ≤ ρH , H/x < H/(W/2) ≤
ρ so H/x < ρ. Also H/x ≥ H/ρH = 1/ρ. Thus the
resulting R1 will again have aspect ratio ρ.

Cutting the rectangle at position x where H/ρ ≤ x ≤ ρH
does not, however, necessarily guarantee that the subrect-
angle created to the right of the x cut will also have aspect
ratio ρ. In order for this to be true, the x cut will have to
be limited to the range W − ρH ≤ x ≤ W −H/ρ as seen
in Figure 3. Arguments similar to those used above can
be applied to prove this restriction, since cutting at these
positions is symmetric with respect to the midpoint W/2 of
the rectangle width.

It follows that in order to cut the rectangle so that both
subrectangles have aspect ratio ρ, the vertical cut must be
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Figure 3: Legal vertical slicing positions of an H ×W rectangle

restricted to positions

max(H/ρ,W −Hρ) ≤ x ≤ min(Hρ,W −H/ρ).

Note that if W = 2H/ρ or W = 2ρH , it can easily be
shown that only one vertical cut position of x = W/2 can
be used which will produce two subrectangles with aspect
ratios of ρ. 2

Corollary 1 If an H×W rectangle with 2H
ρ ≤ W ≤ 2ρH

is sliced vertically at any position x where

max(H/ρ,W −Hρ) ≤ x ≤ min(Hρ,W −H/ρ)

then the resulting two subrectangles have aspect ratio ρ.

Equivalent results can also be derived for horizontally cut-
ting a rectangle of height H and width W so that two result-
ing subrectangles with aspect ratio ρ are obtained. These
results can be obtained by interchanging H and W in the
above proof, hence Theorem 2 and Corollary 2.

Theorem 2 A rectangle with height H and width W can be
sliced horizontally into two subrectangles with aspect ratio
ρ if H satisfies 2W

ρ ≤ H ≤ 2ρW .

Corollary 2 If an H×W rectangle with 2W
ρ ≤ H ≤ 2ρW

is sliced horizontally at any position y where

max(W/ρ,H −Wρ) ≤ y ≤ min(Wρ,H −W/ρ)

then the resulting two subrectangles have aspect ratio ρ.

We can combine these two theorems to obtain a condition
that will guarantee that both horizontal and vertical slicing
will yield two subrectangles with aspect ratio ρ.

Theorem 3 If the height H and width W of a rectangle
satisfies the relation 2H/ρ ≤ W ≤ Hρ/2 where ρ ≥ 2,
then it can be cut horizontally and vertically to yield two
subrectangles with aspect ratio ρ.

Proof. Using the inequalities 2H/ρ ≤ W ≤ Hρ/2 and
1/2 < 2, it follows that

H/(2ρ) ≤ 2H/ρ ≤ W ≤ Hρ/2 ≤ 2ρH.

which meets the conditions of both Theorems 1 and 2. 2

Theorem 3 can be used to ensure that the initial stock rect-
angle to be recursively cut by our revised algorithm will
generate two resulting rectangles with aspect ratio ρ. What
remains to be proved is that the recursive cutting of these
resulting rectangles will continue to generate subrectangles
with aspect ratio ρ. We now show that this is the case if ρ is
chosen so that ρ ≥ 2.

Theorem 4 Suppose a rectangle R has aspect ratio ρ where
ρ ≥ 2. If R cannot be sliced vertically (horizontally) to
produce subrectangles with aspect ratio ρ, then it can be
sliced horizontally (vertically) to yield subrectangles with
aspect ratio ρ.

Proof. Suppose R has aspect ratio ρ ≥ 2 and R cannot be
sliced vertically to yield two subrectangles with aspect ratio
ρ. By Theorem 1, its dimensions satisfy either W < 2H/ρ
or W > 2Hρ. The only possibility is W < 2H/ρ since
the second inequality would contradict the assumption that
R has aspect ρ: W > 2Hρ implies that H/W < 1/(2ρ) <
1/ρ.

Now assuming that W < 2H/ρ and ρ ≥ 2, we have ρ2 ≥ 4
so that W ≥ 4W/ρ2. Combining this with the first in-
equality, then 2H/ρ > 4W/ρ2 or H > 2W/ρ. We saw
earlier in Theorem 2 that if 2W/ρ ≤ H ≤ 2ρW then
R can be cut horizontally to give two subrectangles with
aspect ratio ρ. So it remains to show that H ≤ 2ρW .
If H > 2ρW , then H/W > 2ρ > ρ contradicting the
initial assumption that R has aspect ratio ρ, thus R satisfies
the conditions of Theorem 2 and can be cut horizontally to
produce subrectangles with aspect ratio ρ.

Analogously, it can be shown if that if R has aspect ratio
ρ and it cannot be sliced horizontally, then it can be sliced
vertically. If R cannot be cut horizontally, then H < 2W/ρ
or H > 2ρW . The case where H > 2ρW conflicts with
the assumption that H/W ≤ ρ.

Now assuming that H < 2W/ρ and ρ ≥ 2, we have ρ2 ≥ 4
so that H ≥ 4H/ρ2. Combining this with the first in-
equality, then 2W/ρ > 4H/ρ2 or W > 2H/ρ. We saw
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earlier in Theorem 1 that if 2H/ρ ≤ W ≤ 2ρH then
R can be cut horizontally to give two subrectangles with
aspect ratio ρ. So it remains to show that W ≤ 2ρH . If
W > 2ρH , then H/W < 1/(2ρ) < 1/ρ contradicting the
initial assumption that R has aspect ratio ρ, thus R satisfies
the conditions of Theorem 1 and can be cut vertically to
produce subrectangles with aspect ratio ρ.

Thus, any rectangle R with aspect ratio ρ ≥ 2 can be sliced
vertically or horizontally, (or both ways) if the conditions
of Theorem 4 are met. 2

3.2 Algorithm for generating aspect ratio data
sets

It is now possible to design an algorithm that slices a stock
rectangle into a set of subrectangles having the same aspect
ratio ρ ≥ 2. First, start with a rectangle R having aspect
ratio ρ whose height and width satisfy the conditions of
Theorem 3. R can be sliced either vertically or horizon-
tally to yield two subrectangles with the same aspect ratio
ρ: after selecting a direction randomly, choose a random
slicing position dictated by the appropriate Corollary (1 or
2). The resulting two subrectangles will have aspect ratio ρ.

Next, randomly select a subrectangle and determine a slic-
ing direction: (horizontal, vertical, or either if possible).
Having chosen the direction to slice, select an appropriate
random position and cut the subrectangle. Replace the rect-
angle in the list with these two subrectangles. This process
is then re-applied to the list of subrectangles: since each
subrectangle has aspect ratio ρ, its subrectangles will also
have aspect ratio ρ (Theorem 4) and these slicing steps can
be repeated. The process terminates when the list contains
the desired number of subrectangles.

The second Θ(n) data generation procedure can be written
as expressed in Algorithm 2.

4 Generating rectangles satisfying the
area ratio constraint

The data sets generated by Algorithm 2 consist of rectangles
hi × wi with aspect ratio ρ (i.e. 1/ρ ≤ hi/wi ≤ ρ). The
areas of these rectangles, however, often vary as widely as
those produced by the basic algorithm alone. To control the
range of areas, a second parameter, γ is now introduced. A
modification to Algorithm 1 can be made to generate data
sets whose rectangles satisfy a user-specified area ratio γ ≥
2. That is, the ratio of the areas of any two rectangles in the

Algorithm 2 Controlling the Aspect Ratio
Input the parameters n, ρ ≥ 2, H , and then W where
2H/ρ ≤ W ≤ ρH/2
while n rectangles not yet generated do

choose a rectangle R at random {Theorem 4 guaran-
tees that it can be cut in at least one direction}
randomly choose a vertical or horizontal slicing direc-
tion, if possible;
otherwise select the vertical or horizontal direction as
appropriate {Theorem 2 or 3}
randomly choose a cutting position within the legal
range of slicing positions {Corollary 1 or 2}
perform the cut on R, generating two subrectangles
replace R in the list with the two subrectangles

end while

data set must fall in the interval [1/γ, γ]. To ensure that the
generated rectangles satisfy this constraint, the following
properties are noted.

Theorem 5 Let γ ≥ 2 and {Ri} be a set of n rectangles
with area ratio γ which are ordered by non-increasing ar-
eas:

area (R0) ≥ area (R1) ≥ area (R2) ≥ . . .
≥ area (Rn−1)

Any Rj where area (Rj) ≥ 2 area (R0)/γ can be sliced
vertically into two subrectangles so that the resulting set of
n+ 1 subrectangles will have area ratio γ.

Proof. Assume that rectangle Rj is selected for cutting, and
let the vertical slicing of Rj take place at position x. Since
cuts at x and wj−x yield symmetric subrectangles, we limit
the choice of x to x ≤ wj/2.

To ensure that the two subrectangles resulting from this
slicing both have areas of at least area (R0)/γ when γ ≥ 2,
we restrict x further so that x ≥ area (R0)

γhj
. It is possi-

ble to restrict x this way because area (Rj) = hjwj ≥
2 area (R0)/γ, i.e.

wj/2 ≥ area (R0)

γhj
. (1)

The initial set of n sorted rectangles were assumed to have
area ratio γ; in particular

1/γ ≤ area (Rp)/ area (Rq) ≤ γ for all p, q ̸= j

and this expression still holds after Rj has been sliced.

Let A and B denote the resulting subrectangles from the
slicing of Rj as shown in Figure 4. The remaining area
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Figure 4: Vertical slicing of rectangle Rj = hj × wj rectangle

ratios that must be examined are: (i) area (Ri)/ area (A)
and area (Ri)/ area (B) for all i ̸= j and
(ii) area (A)/ area (B)

case(i) Since area (A) ≤ area (Rj) and
area (Rj)/ area (Rn−1) ≤ γ, then
area (A)/ area (Rn−1) ≤ γ and
area (Rn−1)/ area (A) ≥ 1/γ.
But area (Ri) ≥ area (Rn−1),
so area (Ri)/ area (A) ≥ 1/γ for all i ̸= j.

Furthermore, the vertical cut position x was chosen so that
area (A) ≥ area (R0)/γ, implying that

area (A)/ area (R0) ≥ 1/γ so that area (R0)/ area (A)
≤ γ.

Since area (Ri) ≤ area (R0),
we have area (Ri)/ area (A) ≤ γ for all i ̸= j.

Thus,

1/γ ≤ area (Ri)/ area (A) ≤ γ for all i ̸= j

and similarly,

1/γ ≤ area (Ri)/ area (B) ≤ γ for all i ̸= j.

case (ii) The vertical cut position guarantees that area (A) ≥
area (R0)/γ so

area (A)/ area (B) ≥ area (R0)/(γ area (B)).

Further, area (B) ≤ area (Rj) ≤ area (R0)
yields area (R0)/ area (B) ≥ 1, so area (A)/ area (B) ≥
1/γ.

Similarly,

area (A) ≤ area (Rj) ≤ area (R0)

and

area (B) ≥ area (R0)/γ

combine to yield area (A)/ area (B) ≤ γ, and so

1/γ ≤ area (A)/ area (B) ≤ γ.

This completes the proof that the set of n + 1 resulting
subrectangles satisfies the area ratio constraint. 2

Corollary 3 Let m denote the area of the rectangle having
the maximum area in a list of n rectangles with area ratio
γ. Select any rectangle Rj where area (Rj) ≥ 2m/γ and
slice it vertically at position x where m

γhj
≤ x ≤ wj/2. The

resulting set of n+ 1 rectangles has area ratio γ.

It can be shown that a similar condition for horizontal cut-
ting exists. For brevity, we state only the corresponding
corollary.

Corollary 4 Let m denote the area of the rectangle having
the maximum area in a list of n rectangles with area ratio
γ. Select any rectangle Rj where area (Rj) ≥ 2m/γ and
slice it horizontally at position y where m

γwj
≤ y ≤ hj/2.

The resulting set of n+ 1 rectangles has area ratio γ.

By incorporating these observations into the basic algorithm,
an O(n2) data generation procedure that creates a set of
rectangles satisfying the area ratio constraint can be written
as expressed in Algorithm 3.

Algorithm 3 Controlling the Area Ratio
Input the parameters n, γ ≥ 2 , H , and W
while n rectangles not yet generated do

let m be the area of the largest rectangle in the current
set
choose a rectangle R from all subrectangles whose
areas are greater than 2m/γ
randomly choose a vertical or horizontal slicing direc-
tion
randomly choose a cutting position within the legal
range of slicing positions {Corollary 3 or 4}
perform the cut on R, generating two subrectangles
replace R in the list with the two subrectangles

end while
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5 Combining aspect and area ratio con-
straints

The algorithms developed thus far generate data sets where
the sizes and areas of the rectangles can be constrained by
either aspect ratio or area ratio. In many instances, it is
desirable to employ data sets where both the aspect ratio
and the maximum-to-minimum area ratio are bounded.

To accomplish this, the algorithms derived in sections 3 and
4 can be combined. However, merging the two methods
requires that the conditions in Corollaries 1, 2, 3 and 4 be
met. To prove that these conditions do not conflict, the
following theorem is established.

Theorem 6 Let ρ, γ ≥ 2 and {Ri} be a set of n rectangles
with aspect ratio ρ and area ratio γ which are ordered by
non-increasing areas:

area (R0) ≥ area (R1) ≥ area (R2)
≥ . . . ≥ area (Rn−1)

Any Rj where area (Rj) ≥ 2 area (R0)/γ can be sliced
into two subrectangles so that the resulting set of n + 1
subrectangles will have aspect ratio ρ and area ratio γ.

Proof. Assume that rectangle Rj = hj ×wj is selected for
cutting because Rj meets the condition
area (Rj) ≥ 2 area (R0)/γ. Note this implies that in-
equality (1) in Section 4 holds.

From Theorem 4, we know that Rj can also be sliced either
vertically or horizontally. (If Theorem 3 is satisfied, Rj can
be sliced in either direction.) Specifically, if the conditions
of Theorem 1 hold, then Rj can be sliced vertically; if
the conditions of Theorem 2 hold, then Rj can be sliced
horizontally.

Suppose that the conditions of Theorem 1 hold:

2hj

ρ
≤ wj ≤ 2ρhj , (2)

and so Corollary 1 defines the positions x for slicing verti-
cally so that the resulting two subrectangles will have aspect
ratio ρ:

max(hj/ρ,wj − hjρ) ≤ x ≤ min(hjρ,wj − hj/ρ) (3)

Similarly, in order to ensure that the n + 1 subrectangles
resulting from the cut will have area ratio γ, Corollary 3
dictates the slicing positions as

m

γhj
≤ x ≤ wj/2 (4)

where m = area (R0).

If the vertical slicing position x can be selected to satisfy
both inequalities 3 and 4, then the resulting set of rectan-
gles will have aspect ratio ρ and area ratio γ. A proof by
contradiction establishes that x can be so chosen.

Suppose there is no x that satisfies both inequalities (3) and
(4). Then either

(i) wj/2 < max(hj/ρ,wj − hjρ)

or

(ii) m
γhj

> min(hjρ,wj − hj/ρ).

case(i) If wj/2 < max(hj/ρ,wj − hjρ), then either (a)
wj/2 < hj/ρ or (b) wj/2 < wj − hjρ. Inequality (a)
implies that wj < 2hj/ρ and (b) implies that 2ρhj < wj

which both contradict inequality (2).

case(ii) If m
γhj

> min(hjρ,wj − hj/ρ), then either (a)
m
γhj

> hjρ or (b) m
γhj

> wj − hj/ρ. Inequality (a) implies
that

m
γhjwj

>
hjρ
wj

and since γ ≥ m
hjwj

and hj

wj
≥ 1

ρ , this leads to the con-
tradiction that 1 > 1.

Since wj−hj/ρ ≥ wj/2 using inequality (2), inequality (b)
simplifies to m

γhj
> wj/2 which contradicts inequality (1)

in section 4. Thus, x can be chose to satisfy both conditions
of Corollaries 1 and 3.

Using similar techniques, a proof for the case where Rj is
to be sliced horizontally can be derived by applying Theo-
rem 2 and Corollaries 2 and 4. 2

Corollary 5 Let m denote the area of the rectangle hav-
ing the maximum area in a list of n rectangles with aspect
ratio ρ and area ratio γ. Select any rectangle Rj where
area (Rj) ≥ 2m/γ and slice it vertically at position x
where

max(hj/ρ, wj − hjρ,
m
γhj

) ≤ x

≤ min(hjρ,wj − hj/ρ,wj/2).

The resulting set of n+ 1 rectangles has aspect ratio ρ and
area ratio γ.

Corollary 6 Let m denote the area of the rectangle hav-
ing the maximum area in a list of n rectangles with aspect
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Data Set Height Width
Name n max min avg max min avg

path 10 10 100 8.35837 60 66.1978 3.05587 38.5064
path 20 20 74.8535 0.37062 22.9127 181.903 0.0047569 43.3106
path 30 30 63.5651 0.16178 20.3529 126.544 0.0980349 48.8760
path 50 50 73.4758 1.24164e-05 7.3563 136.987 0.4282280 41.4501
path 100 100 78.9366 0.00165 7.68243 145.203 0.0109578 26.8371
path 200 200 37.2576 2.10877e-07 5.56013 198.444 0.0008622 32.9201
path 500 500 76.5074 2.36039e-05 1.41293 171.899 6.76548e-06 4.5372
path 1t 1000 35.4326 2.23302e-07 1.83857 127.698 1.17497e-06 10.1380
path 2t 2000 90.6677 2.39115e-09 3.81625 157.532 2.4667e-10 5.0222
path 5t 5000 54.8126 6.44536e-09 2.11321 139.143 4.55262e-08 2.3374
nice 10 10 69.0438 19.1295 44.6252 70.5507 18.8939 47.0551
nice 20 20 58.9809 11.0813 33.2061 62.7279 16.8828 29.8496
nice 30 30 100 14.6891 27.0852 94.2618 11.5792 24.9402
nice 50 50 60.9188 8.69446 21.4948 37.1099 8.88438 20.4661
nice 100 100 32.4315 5.10983 14.6936 30.8926 4.80933 14.1599
nice 200 200 28.0957 3.67168 10.721 25.7108 3.55487 10.2708
nice 500 500 20.4512 2.33988 6.63364 18.8291 2.58266 6.56829
nice 1t 1000 12.1489 1.60008 4.55755 13.7578 1.6738 4.76367
nice 2t 2000 10.4493 1.24654 3.32311 11.4757 1.22907 3.29283
nice 5t 5000 6.91479 0.780134 2.07974 7.18023 0.784575 2.11803

Table 1: Height and width statistics for example data sets

ratio ρ and area ratio γ. Select any rectangle Rj where
area (Rj) ≥ 2m/γ and slice it horizontally at position y
where

max(wj/ρ, hj − wjρ,
m

γwj
) ≤ y

≤ min(wjρ, hj − wj/ρ, hj/2).

The resulting set of n+ 1 rectangles has aspect ratio ρ and
area ratio γ.

A fourth O(n2) data generation procedure can now be writ-
ten as expressed in Algorithm 4.

6 Sample Data Sets

To illustrate the differences in the data sets that can be gen-
erated by the approaches described in this paper, we ex-
amine some sample data sets that were produced by Algo-
rithms 1 and 4. For each of these sets, an initial rectangle
of size 100 × 200 was recursively sliced as discussed in
sections 2 and 5. The characteristics of the resulting data
sets are summarized in this section.

Algorithm 4 Controlling the Aspect and Area Ratio
Input the parameters n, {γ, ρ ≥ 2}, H , and then W ,
where 2H/ρ ≤ W ≤ ρH/2
while n rectangles not yet generated do

let m be the area of the largest rectangle in the current
set
choose a rectangle R from all subrectangles whose
areas are greater than 2m/γ
if possible, randomly choose a vertical or horizontal
slicing direction;
otherwise select the vertical or horizontal direction as
appropriate {Theorem 2 or 3}
randomly choose a cutting position within the legal
range of slicing positions {Corollary 5 or 6}
perform the cut on R, generating two subrectangles
replace R in the list with the two subrectangles

end while

The first group of data sets shown in Table 1 were gener-
ated by the basic routine given in Algorithm 1. Recall that
no restrictions are placed on aspect ratio or area ratio in
this case– rectangles are randomly selected for cutting, and
slices are equally likely to be made in random directions.
This procedure results in generating the rectangles whose
height and width dimensions are shown in Figure 5 for n =
50, n = 500, and n = 5000.

We refer to these sets as “pathological” data sets because
there is a large variance in the heights and widths of the
generated rectangles. As the data sets get larger in size,
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Data Set Aspect ratio = Height/Width Area
Name n max min max min γ = max/min

path 10 10 32.723862 0.177596 6619.78 305.587 21.6625
path 20 20 10240.3 0.034009 8319.75 0.124119 67030.6
path 30 30 340.701 0.00127842 3466.24 3.27442 1058.58
path 50 50 3.37028 2.40351e-06 7847.19 6.41424e-05 1.2234e+08
path 100 100 532.073 6.24847e-05 11461.8 0.000493591 2.32212e+07
path 200 200 15628.6 6.01994e-09 2546.71 1.83324e-06 1.38918e+09
path 500 500 23600.3 4.14669e-05 6141.94 2.6104e-09 2.35288e+12
path 1t 1000 685712 1.36322e-08 2428.64 6.33723e-08 3.83234e+10
path 2t 2000 9.76744e+07 1.1043e-07 3659.14 4.72855e-13 7.73839e+15
path 5t 5000 2.9487e+07 1.09439e-09 1146.07 1.11438e-14 1.02843e+17
nice 10 10 2.447984 0.271145 3555.91 873.88 4.06911
nice 20 20 3.113818 0.276488 2975.18 436.494 6.81608
nice 30 30 3.888324 0.272336 2571.8 372.526 6.90369
nice 50 50 3.433568 0.260070 1132 169.914 6.66221
nice 100 100 3.993231 0.320414 545.908 78.5245 6.95208
nice 200 200 3.970387 0.252198 285.179 42.3561 6.73289
nice 500 500 3.999504 0.250588 150.389 21.5188 6.98872
nice 1t 1000 3.975254 0.250259 67.7191 9.67665 6.9982
nice 2t 2000 3.996923 0.250161 41.0826 5.86941 6.99945
nice 5t 5000 3.999353 0.250004 16.2659 2.32397 6.99918

Table 2: Height/Width and area ratios for sample data sets

either the height or width of the rectangles also seem to get
very small.

The second group of data sets shown in Table 1 were gen-
erated using Algorithm 4 where the slicing positions are
controlled so that resulting rectangles will have aspect ratio
ρ and the data set will have area ratio γ. The values ρ = 4
and γ = 7 were selected for these data sets. Thus each
generated rectangle has a height/width ratio lying between
[0.25,4]. Similarly, the ratio of the largest area to smallest
rectangle area in any data set does not exceed 7.

Figure 6 plots the rectangles for the data sets of size n = 50,
n = 500, and n = 5000. The sets can be thought of as
“nice” data sets because the rectangles’ characteristics fall
within specified ranges: there are no long flat or tall thin
rectangles and the areas of the rectangles are of the same
magnitude.

The characteristics of these two types of data sets are further
illustrated by regarding their observed values of ρ and γ.
Note that in Table 2 there tends to be at least two mag-
nitudes of difference in the rectangles’ height/width ratios
within every pathological data set where n > 30. For the
nice data sets generated by Algorithm 4, each rectangle’s
aspect ratios is at most 4 and no less than 0.25 for all data
sets.

Figure 7 plots the sorted height/width ratios for rectangles
in the pathological and nice data sets where n = 50. The

graphs shows how the height/width ratios are distributed
within each data set and reflects the difference in magnitude
shown in Table 2. The distribution of height/width ratios for
the pathological rectangles range from many small ratios to
several larger ratios. The aspect ratios for the nice data sets
fall only between 0.25 and 4.

The differences in the areas of the rectangles belonging to
the pathological and nice data sets are also shown in Ta-
ble 2. For the pathological data sets, the ratio of the largest
rectangle area to smallest rectangle area appears to increase
by orders of magnitude as the number of rectangles in the
sets grows larger. For the nice data sets, this ratio is at most
7, the value specified as the input parameter γ.

In addition to finding the maximum and minimum area val-
ues for each data set, the average rectangle area could be
calculated, but this value will always equal the total area
of the initial rectangle divided by the number of rectan-
gles generated and so does not provide much any additional
information about the data set. However, the areas of the
rectangles in each data set can easily be plotted to show the
range of their distribution.

In Figure 8, the distribution of area values includes many
small and some very large rectangles for the pathological
data set. As expected, the area variance in the nice data set
is far smaller due to its being bounded by a maximum area
ratio equal to 7.
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Figure 5: Height and width of rectangles in pathological data sets

7 Using the Algorithms to Generate
Test Data Sets

The procedures outlined in this report permit the generation
of sets of n rigid rectangles which can be packed or cut from
rectangular regions with zero waste. The sizes and areas of
these rectangles may have large variance as produced by Al-
gorithm 1 or can be restricted to satisfy user specified aspect
and maximum-to-minimum area ratios using Algorithms 2,
3 or 4. Data sets of any size can be obtained in this manner.
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Figure 6: Height and width of rectangles in some nice data sets

These data sets can be used to evaluate the performance
of algorithms which are intended to solve the problem of
packing a given set of rectangles into a single larger two-
dimensional rectangular region with minimum total waste,
or equivalently, minimal total height in the case of two-
dimensional strip packing. Several data sets can also be
replicated or combined to yield test suites for solving cut-
ting stock problems. Individual rectangles can be rotated,
or different stock sizes could be used when generating the
data. In these cases, a range of aspect or area ratios might
also be specified. The optimal solution would still have zero
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Figure 7: Height/Width comparisons for data sets of size
n = 50
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Figure 8: Area comparisons for data sets of size n = 50

waste as it would consist of all the original rectangles that
were sliced to generate the data sets. The zero waste prop-
erty, while not reflective of real-world cutting problems,
still provides researchers with a means for comparing the
quality of their solutions against a known optimal.

One characteristic of the example data sets described in
the previous section is clearly that the dimensions of the
rectangles are given as real values. The precision of these
values is dictated by the default arithmetic precision of the
programming language and computer system on which the
algorithms are implemented and executed. By limiting the
precision of the output statements to the number of desired
decimal places (i.e. by rounding the values), we have found
that we can usually overcome the difficulties inherent with
finite precision arithmetic.

It is also possible to utilize our algorithms to generate data

Figure 9: A pathological data set of 500 rectangles with
integer dimensions

Figure 10: A nice data set of 500 rectangles with integer
dimensions

sets containing integer valued rectangles, i.e. rectangles
whose heights and widths are integers. One way to ac-
complish this is by rounding the cut positions to the nearest
integer. Two examples of data sets that were generated by
rounding the cut positions are shown in Figures 9 and 10
which were generated using Algorithms 1 and 4, respec-
tively. However, it is not guaranteed that a rounded cut
position will satisfy the conditions needed to ensure that the
aspect and area ratios of the final rectangles will fall within
the specified ranges.

For example, if the input rectangle to be sliced has size 10×
50, the maximum number of integer dimension rectangles
that could be generated by arbitrarily slicing this rectangle
would be n = 500 rectangles of size 1× 1. Requesting that
the procedure generate 1000 rectangles with integer dimen-
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sions would result in at least 500 final rectangles having a
height or width of zero. Thus, the choice of the size of the
input rectangle must be carefully considered along with the
corresponding n value.

In Figures 9 and 10, a 1000× 1000 rectangle was sliced to
generate the data sets of n = 500 rectangles. The ρ and
γ values that were input to Algorithm 4 to obtain the data
in Figure 10 were 4 and 7, respectively. The algorithms
successfully generated rectangles having nonzero integer
dimensions. However, because of the rounding process, the
data set generated by Algorithm 4 has an aspect ratio of 4.18
and an area ratio of 7.32 which are greater than the speci-
fied values. Nevertheless, the generated data sets still have
bounded aspect and area ratios, and we believe that some
additional analysis of our methods will show that the aspect
and area ratios of the generated data sets can be predicted
when the rectangles are rounded to integer dimensions.

8 Ongoing Research

Current versions of our algorithms give the user control
over the range of variation within data sets for aspect ratio
and area, but no control over the distribution of shapes and
sizes. It is possible that small alterations to our data gener-
ation algorithms would result in different types of data sets
which a researcher may prefer. There are many possibilities
here: for example, the largest rectangle at any stage could
be the one chosen to be sliced, or slicing positions could be
restricted to favor more or less extreme aspect ratios. The
distribution of rectangle sizes and areas generated by our
algorithms depends on the probability distributions which
govern the random choices for the rectangles to be recur-
sively sliced as well as the direction and the position of the
slice, to the extent dictated by the appropriate theorems and
corollaries. A probabilistic analysis of the size distribution
of the final rectangles, or an analysis of the impact of chang-
ing the slicing probabilities would be interesting to pursue.

Extensions of our general method can also be made so that
data sets can be generated (with bounded aspect and/or area
ratios) whose optimal packing (or cutting) solutions con-
sist of non-slicing (i.e. non-guillotine) patterns. This re-
search area is currently under study. In addition we are also
considering modifications to our software that will make it
possible to generate data sets with known optima for testing
algorithms for VLSI floorplanning.

Finally, a public domain software package consisting of the
algorithms described in this paper as well as visualization
tools for drawing the data sets are under development and
will be distributed in the near future.
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