
Adaptive Learning of Process Control
and Profit Optimization Using a
Classifier System

A. H. Gilbert*
School of Computing and Maths
University of Teesside
Middlesbrough
Cleveland, T S 1 3 BA
United Kingdom

Christine L. Valenzuela
School of Computing and Maths
University of Teesside
Middlesbrough
Cleveland, T S 1 3BA
United Kingdom

Frances Bell+
School of Computing and Maths
University of Teesside
Middlesbrough
Cleveland, T S 1 3 BA
United Kingdom

Abstract
A classifier system is used to learn control and profit optimization of a batch chemical
reaction. Ability to learn different market conditions and changes to reaction parameters
is demonstrated. The profit sharing algorithm is used for apportionment of credit. The
greater effectiveness of the use of the genetic algorithm over apportionment of credit alone
or the random replacement of low strength rules is also shown. The classifier system is
unusual in having more than one action per rule.

Apportionment of credit, batch process, chemical process, classifier system, genetic algo-
rithm, market, profit-sharing plan, return on capital.

Keywords

1. Introduction

Classifier systems (CS) are a class of self-learning expert systems for which the production
rules are coded so as to be processable by a genetic algorithm (GA) (Holland, 1962; Holland
& Reitman, 1978). These rules/chromosomes interact with the environment, which is to
be learned, in an apportionment of credit (AOC) subsystem resulting in the modification of
rule strengths/fimesses in accordance with their performance in the environment. Where
more than one rule is appropriate to the current environment state, use of the rule of higher
strength is more probable. Following a period of environmental interaction, a subset of the
rules is replaced by new rules evolved by the GA. The probability of an old rule being a

* Send correspondence to A.H.Gilbert@tees.ac.uk.
t Current address: Dept. of Applied Science & Computing, University College Salford, Frederick Road, Salford, M6 6PU, U.K.

@ 1995 The Massachusetts Institute of Technology Evolutionary Computation 3(2): 177-198

Gilbert, Bell, and Valenzuela

parent of a new rule is proportional to its fimess and hence it is expected that the population
will improve by the innovative combination of the strongest genetic material.

The utility of CSs for control of complex environments has been demonstrated in a
number of applications including space vessel power management (Goodloe & Graves, 1988),
gas pipeline design (Goldberg, 1983), and docking of a tractor-trailer (Raed & Hassoun,
1993).

There are several studies of adaptive control of a batch chemical reactor (Katoh, Nakao,
& Hanawa, 1989; Regev, Lewin, & Lavie, 1989; Rao & Lee, 1991) in which systems learn to
maintain a predetermined optimum temperature profile. Ryhiner, Dunn, Heinzle, and Ro-
hani (1992) have studied adaptive learning in a biochemical process by the method of steepest
ascent. Chen and Weigand (1992) have used a neural net to simulate a batch biochemical
reaction and a GA to optimize its reaction profile. This article presents a preliminary study
of a CS for adaptive control of a chemical batch reaction with no predetermined profile; a
complex, realistic profit optimization is the objective function.

2. The Environment to Be Learned

2.1 Choice of Application
Optimal control of batch processes is normally of great importance because they are typically
used for manufacture of high-cost, low-volume materials. Batch processes are generally
more difficult to control than a large-scale continuous process because there are no steady-
state conditions. Even if all mechanisms and parameters of the reactions involved were
known, it would be difficult to optimize profitability; in addition, in the real world, there are
complications owing to unpredictable changes that may be equipment related (fouled heat-
exchange surfaces, sticking valves), materials related (purity and cost), or market related
(market size/share, product price) so that the batch may enter a state that was previously
Unknown:

More than a dozen times a month over the past few years, the operators at a
certain chemical plant encountered what were considered unusual problems in
running their batch reactors. Records show that about 15% of the time a process
expert was available to give advice; the other 85% of the time the operators were
on their own. Records show that between the experts and the operators,
solutions were wrong about three times per month-sometimes because of errors
in judgement, in other instances because the actions were executed too late. The
money lost due to these incidents amounts to more than $260,000 annually.
(Nisenfield & Turk, 1986, p. 57)

Nisenfield and Turk then continue by advocating decision-support expert systems (ESs).
While this would be an eminently valid, potential improvement, it would entail writing an
ES for every process operated by the company. They might need frequent partial rewrites
as, for instance, market conditions or raw materials purity change. Experts (and hence ESs)
may not be able to anticipate all “unusual problems.” A robust CS might be a better solution
and to this end we explore the application of a CS to a batch process.

2.2
Chemical processes need to cope as efficiently as possible with undesirable reactions (de-
composition, overreaction, wrong reaction) that inevitably occur in parallel with the desired

Dynamics, Profitability, and Simulation of a Batch Chemical Process

178 Evolutionary Computation Volume 3 , Number 2

Process Control and Profit Optimization

Batch Chemical Reaction

+ Heat R1: A + A ,- AA

R3: A + B D(rubbish) + Heat

A

R2: AA + B c (desired) + Heat

CS -Simulation Interaction

n Actions n HeatICoollAdd B ’
Reaction Classifier Conditions

Return on Capital

Figure 1. Chemical reaction system and classifier system interaction.

reaction(s). In cases where a sequence of reactions is necessary to obtain the desired product
and where an intermediate product is difficult or costly to isolate, it is often advantageous
or necessary to carry out the sequence in the same batch process. This may be even more
beneficial where a reaction early in the sequence (with a product difficult to isolate) is a re-
versible reaction, because the further reaction of this intermediate product prevents it from
taking part in the reverse reaction.

The hypothetical process chosen for study (Figure 1) involves some typical features
described above. It consists of two sequential reactions that give a desirable product and a
parallel reaction that gives an unwanted product. The desired product, C, can only be formed
by reaction (Rz) of reactant B with an intermediate product AA formed by dimerization (R1)
of reactant A. Undesirable product, D, will be formed if B reacts (R,) directly with A (in a real
case there would typically be several unwanted parallel reactions). There is a temperature
threshold below which R1 will not proceed, hence for efficiency, the CS must learn to raise
the temperature before significant addition of B takes place. Also, R1 is a reversible reaction
in which AA can decompose back to A; this reverse reaction is favored by high temperature.
All three reactions liberate heat, making temperature control important. The CS must also
learn that the process must not be allowed to exceed a temperature of 425°K.

The process envisaged would be a small scale pharmaceutical or specialty chemical
manufactured in equipment as illustrated in Figure 2.’

Trpically such processes are optimized by statistical replicate experiments or “evolu-
tionary operation” (experimental steepest ascent around the best known point). The model
calculates temperature changes (caused by controls, heat loss, and reaction), chemical con-
centrations (using reaction-rate equations), and profit.

Changes in external heating (and cooling), for control purposes, are calculated by mul-
tiplymg the total available heat (or cooling) by the fractional opening of the appropriate valve

1 The heating/cooling system has been drawn to reflect the classifier action bit structure. It would not be built this way.

Evolutionary Computation Volume 3, Number 2 179

Gilbert, Bell, and Valenzuela

Solvent (condition bits ,

I I tovent B Addition valve
(action bits 5 7)

Thermocouple
ondition bits 1 7)

eatingCooling
Jacket

,steam
I .

,cooling
' water

stirrer

Heat/Cool Toggle
(action bit I)

HeatICool Control ,, (action bits2 4)

Figure 2. Plant diagram showing condition sensors and action controls.

and by the temperature differential. Heat loss from the reactor is calculated similarly

bT
S t MS

H,q(393 - r) + W,$(T - 303) - 0.04(T - 298) _ - -

where H, and W, are the maximum heating and cooling available (for simplicity, parameters
such as heat-transfer coefficients and surface area are rolled up into these values), V h and V,
are the positions of the heating and cooling valves (see below), 393"K, 303"K, 298°K are
the steam, cooling water, and ambient temperatures, M is the mass of total reactor contents
and S the specific heat.

Reaction rate equations are of the form

SCZ - = A o ~ - ~ / ~ ~ C ~ C ~
bt

for reaction (R,) X + Y 4 Z

where Cx is the concentration of component X, & is a constant, E is the activation energy
of the reaction, R is the gas constant, and T is temperature ("K) (values used are in Table 1).

The temperature rise owing to heat liberated in each reaction is determined by equations
such as

ST -Hr SC,

where Hr is the heat of reaction' (HI values are in Table 1).
The major simplifications made in the reaction simulation are that all reactants are

treated as nonvolatile, the specific heat (which would with vary with concentration and

2 By chemical convention, heats of reaction where heat is liberated are negative.

180 Evolutionary Computation Volume 3 , Number 2

Process Control and Profit Optimization

Table 1. Reaction constants used in simulator.

Scenario R::A+A R;:AA+ Rz:AA+B R , : A + B
-AA A + A -c + D

&(l mole-'sec-I) 1, 2, 3 3 x 10" 9 x 10" 1.3 x 10" 1.2 x 10"
87 100 83 87

83 84 I I I I
E(kJ mole-') 172

H,(kJ m01e-l)~ 192
3

3
- 193 193 -255 -235

-750 -600 I I I I

temperature) is constant, and heat transfer area (which would change with addition of B) is
constant.

The profitability is calculated on a yearly basis assuming that the achieved result at the
time of calculation is employed all year. The plant may not make more than the market
size. Variable cost is calculated from materials and energy used on a similar yearly basis.
Fixed costs are maintenance and depreciation. Labor costs are not included because the CS
replaces the human operator!

Profit is expressed as return on the capital value of plant used (cost parameters are
specified in Table 2).

($1 Variable Cost V = (UAPA + UBPB + UDPD + UsPs + UwPw)

Fixed Cost F d
Q+Cap- 100

(I - V - F)
Cap

Return(%) Rc = 100

where UA, UB, UC, UD are the mass of A, B, C, D used or made in the batch; PA, PB, PC are
the unit price of A, B, C; PD is the cost of disposing of D; US, UW are steam and water used;
and Ps, PW their unit price. L is the size of the market for C, Cap and Q are the capital cost
and annual maintenance cost of the equipment, d is the percent annual depreciation charge
and tb and ty are the time for a batch and the length of a year, both in minutes.

The changes in reactor contents, temperature, and return on capital during simulation
of a batch reaction, (illustrated in Figure 3) were produced during a test run of the simu-
lation under one particular regime of valve settings. No change in chemical concentration
(Figure 3a) occurs for approximately 10 minutes until the temperature (Figure 3b) reaches
325°K (threshold for reaction R1, see above). At this point reactant A rapidly diminishes
as i t dimerizes to form the intermediate product AA, which, typically of an intermediate,
rises and then disappears owing to further reaction with reactant B. Desired product C and
unwanted product D are seen to increase up to the point (approximately 60 minutes) where
the concentration of A and AA are so low that the reaction rate is almost imperceptible. The
return on capital graph (Figure 3c) shows what the return would be if the batch had been
stopped at the indicated time and all batches for a year run in exactly the same way. (In th ls

Evolutionary Computation Volume 3 , Number 2 181

Gilbert, Bell, and Valenzuela

Table 2. Cost parameters.

Parameter Symbol Value

Market Size(kg/yr) Scen 1
" " Scen 2,3
A Price(%/ Kg)
B Price(%/ Kg)
C Price(%/ Kg)
D Disposal Cost(%/Kg)
Heat Cost(%kJ)
Cool Cost(%/kJ)
Maintenance(%)
Capital(%)
Depreciation(%)
InterbatchDeadTime(min)

Unlimited
40000

2
6
8
0.5

2 x 1 0 - ~
4 x 10-5

20000
400000

10
20

test illustration the simulation has been allowed to run on beyond the point where it should
have been stopped (approximately 50 minutes) for best return [Figure 3cl).

2.3 Interaction of the Environment and the CS
The environment-CS interaction is depicted in Figures 1 and 2 . Interactions are of three
types:

1. Conditions, passed from environment to CS, have been limited to the very easily
measurable parameters temperature and quantity of component B added to the batch.
These make up the condition part of the CS rules and are passed to the CS each five
minutes of simulated time.

2 . Actions, determined by the CS from the conditions, are control valve semngs for steam
heating, water cooling, and the addition of B. They are passed back to the
environment, which will then operate under these conditions for the next five minutes.

strengths of all rules used in a batch in accordance with their performance.
3. Return on capital is the objective function, the basis on which the CS adjusts the

One area of interface control yet to be developed is that the CS should decide when to
end the batch. A stop-action bit could easily be included but t l s has potential problems
in that the random creation of classifiers would give approximately half with a stop bit set.
More significantly the transfer of this bit during crossover to rules that had evolved for
early reaction conditions could be very disruptive. In order to study the ability to learn
control and optimization without this complication the artificial expedient of stopping the
batch from the simulation has been adopted; currently the simulation stops itself, either after
125 minutes (25 control periods) or if an internal profit calculation shows a drop in profit
from the previous period. Clearly this is unsatisfactory; a basis for work in progress in this
area is discussed in Section 4.3.2.

182 Evolutionary Computation Volume 3, Number 2

Process Control and Profit Optimization

100 \

360

2
340

2 e
320

F ;.I
280 1 4 1 I

0 20 40 60 80 100
Time(mns)

(b)

60

I
I
I -20 ~

I
I

-40 ' 1 I ~

0 20 40 60 80 100
Time(mns)

120 140 160

~ * I '

120 140 160

Figure 3. Batch reaction simulation. (a) Chemical composition. (b) Temperature. (c) Return on
capital.

Evolutionary Computation Volume 3, Number 2 183

Gilbert, Bell, and Valenzuela

Temp 298425°K B Added 0-127mole Toggle W C valve Add valve
Headcool ~

c1 c2c3c4cSc6c7 c8c9c1ocllc12c13c14 a1 a2 a3 a4 aSa6a7

cn = (0, 1, #)} (# = wild card) an = (0 , I)

Figure 4. Rule representation, relation between CS conditions and plant information, and CS actions
and plant control.

3. The Classifier System

Much of the implementation of the CS is based on Goldberg’s (1989) “Simple Classifier
System” (SCS) but substantial changes have been made to accommodate profit sharing rather
than bucket brigade in the apportionment of credit (see below), and the use of multiple
actions in the classifiers, as well as considerable changes necessitated by factors related to the
environment to be learned.

3.1 Rule Representation and Creation
Note that there is not a simple dependency of a single action on a single condition; for
instance, the optimum headcool setting may depend on how much B has been added so far, as
well as on the more obvious current temperature condition. The chosen rule representation
is

Temperature condition, B added condition

action
: Headcool toggle action, Headcool valve setting action, B addition valve setting

The coding of the rules is depicted in Figure 4. Each rule is coded as 21 bits. There are
14 condition bits, 7 (c I - c~) represent temperature (298-425”K) and 7 (c S - C ~ ~) the quantity of
compound B added (0-127 r n ~ l e) . ~ There are 7 action bits. Because it would be inefficient
to heat and cool at the same time, the first (al) is a toggle between heating and ~ o o l i n g , ~
a2-a4 represent the degree of opening of the steam (or water depending on the setting of
al) valve and a5-a7 the B addition valve. In effect these valves are modeled as having eight
operating positions from 0 (shut) to 7 (fully open). To obtain shorter effective schemata the
conditions are coded with the most significant bit (MSB) on the right and the actions with
the MSB on the left.

The initial population of 100 rules/chromosomes is created randomly. Gray’s code is
used for the conditions and actions; other workers (Hollstien, 197 1; Frey & Slate, 1991) have
reported indications of benefit over normal binary coding. The inclusion of “wild card” bits
in the conditions enables the building of generalized rules. The number of “wild card” bits is
set with probability of 0.5 @wild, Table 3); this value, suggested by early experiments, gives
0 to 8 (usually 2 to 4) rules bidding at each interaction with the simulation.

3 A “mole” is the molecular weight of a compound in grams.
4 Purists might argue that, by this coding, the CS is being told an important rule, “do not cool and heat at the same time,” which

it should learn for itself.

184 Evolutionary Computation Volume 3, Number 2

Process Control and Profit Optimization

Table 3. Classifier system parameters.

Parameter Value

PopulationSize
Lnitial Strength
Replacesize
PMutate
PWild
BidSigma
BidTax
LifeTax
Punish
Gradient
Const
BetterBonus
EqualsBonus
Worse Bonus

100
10
20

0.02
0.5
0.12
0.0002
0.005

0.3
3 . 3
8
4

-1

- 2

3.2 Apportionment of Credit
Each rule, for which the conditions match the message from the simulation, bids for its
actions to be used for control in the next period; the deductible bid is risked in the hope of
gain by a reward for making a successful contribution. Bids are proportional to the fitness of
the bidders but are reduced in proportion to the rule’s generality and are perturbed by noise
(Bidsigma, Table 3) , and the highest bidder is selected (for detail see Goldberg, 1989).

If no match is found a new rule is created with conditions that match the message but
with some bits randomly replaced by “wild cards”; its actions are random. It is given the
average strength of the current population, used for the current control period and added
to the population. If more than 75 new rules are created in the course of a generation, that
generation is abandoned (so far this has not occurred).

In the traditional expert system the relative ratings of the rules are fixed by the expert.
In the CS the relative rule strengths must be learned. The system must, however, discover
and learn innovative combinations of rules; hence a reward of combinations rather than
individuals is required. CSs have mainly used one of two schemes to distribute reward. The
“bucket brigade” (BB) algorithm (Booker, 1982) has gained favor of late but an earlier algo-
rithm (Holland & Reitman, 1978) developed and named the “profit-sharing plan” (PSP) by
Grefenstette (1988) has been used in this work. Grefenstette’s comparative study concluded
that the BB is better when rules fire in parallel and the PSP is better when there is a single,
active chain. In addition, there are problems with the BB where long chains are involved
(Holland, 1985). The single, active, long chain of the batch reaction would appear to make
PSP a better choice here.

The combination of rules used in a batch are first rewarded in proportion to the size of
return in profit they produce; in addition there is a bonus reward, the bonus level depending
on bettering, equaling, or doing worse than the best result so far acheved in that generation.
The reward and bonus are shared by the combination of rules, with more specific rules
favored by a linear scaling. (Although Grefenstette’s (1988) original formulation of PSP

Evolutionary Computation Volume 3 , Number 2 185

Gilbert, Bell, and Valenzuela

gave each rule the full reward, it seemed reasonable in our case that the rule combination
should share the reward, so favoring shorter chains.) Rules used more than once get a
multiple reward. If the batch has been stopped by the simulator owing to a fall in the profit
compared with the previous period (see above) the last rule is not rewarded. If a rule-set
exceeds the permissible temperature (425°K) a punishment (- 2) is shared. In addition, at
the end of each generation a small life tax is extracted from all rules so that rules that do not
bid lose strength. For clarification, the pseudocode (see Table 3 for constants) is

IF MAXTEMP exceeded
reward := PUNISH
bonus := WORSEBONUS

reward:= GRADIENT*ThisReturnOnCap + CONST
IF reward < 0 THEN reward:=O

ELSE

ENDELSE
IF ThisReturnOnCap > BestThisGen

bonus:= BETTERBONUS
ELSE IF ThisReturnOnCap = BestThisGen

bonus:= EQUALSBONUS
ELSE

bonus:= WORSEBONUS
reward:= reward + bonus

The payment of this reward changes the strength of each contributing classifier by

strength := strength +
(reward / nClassifiersInSet) * (0.8 + 0.2
* nNonWildCards / nConditionBits)

3.3 The Next Generation
The subset of rules/chromosomes to be changed each generation has been 20 in work so far.
Selection of the parents is by a roulette-wheel technique biased in proportion to the rule
strengths (Goldberg, 1989). Each pair is subjected to single-point crossover with random
choice of crossover point. Mutation of random bits in the offspring also occurs, set by
pmutate at a low probability, 0.02. After offspring are born they are checked against the
other offspring and the existing generation and are rejected and re-bred if they are a duplicate.
They are each given the average strength of the two parents.

To keep the population at a steady size it is necessary to remove 20 members of the
existing population plus rules equal to the extra number created in the AOC phase, where
there was no match with the environment message. The choice of rules to die follows an
adaptation of the Crowding Model (De Jong, 1975). First, all rules with strength less than
0.001 are removed (natural death). Then a subpopulation of potential rules to die, at least
20% larger than the number of rules that must die, is picked from the population. This
subpopulation consists of all rules that have never bid in the AOC phase plus others chosen
by a biased coin toss from rules below average strength (the bias is increased according to the
number that must die). The subpopulation is then compared with the offspring population,
matching bit for bit, and the most similar are removed. Because rules that have never bid
are likely to be undesirable and unlikely to resemble the offspring subpopulation, there is a
bias factor that increases the likelihood that a rule that has never bid will die.

186 Evolutionary Computation Volume 3 , Number 2

Process Control and Profit Optimization

4. Results and Discussion

Results typical of many runs are given in Figures 5, 6, and 7, which show the best result
and the average result (of the last 20 batches of each generation) versus generation. The
progress achieved in any run is to some extent dependent on the genetic material present in
the initial, random population, but in all runs carried out there has been distinct evidence
of learning. Profit normally rises steeply for the first few generations (because there is large
scope for improvement) but then steadies out to a gradual rise with occasional setbacks.
These setbacks are further discussed in Section 4.3.2.

4.1 Learning Different Environments
An essential feature of a CS is that it should not need modification in order to cope with
changes in the environment. Ability to cope with changes in the market environment, market
size, and price would be essential; it is also common practice that small-scale batch reaction
equipment will be used for more than one product. Three scenarios are considered in the
current work using the parameters in Tables 1 and 2.

Scenario 1: The Market Size Is Unlimited This scenario has been examined using
75 generations with 200 batches per generation and 200 generations with 75 batches per
generation (Figure 5a,b). With an unrestricted market the CS tends toward the strategy of
malung compound C as fast as allowed by the restraints of the chemical dynamics and the
compound B addition valve, achieving a best value of 52% return on capital in 45 minutes
reaction time by raising the temperature rapidly and then adding compound B rapidly. The
rule set that achieved this is given in Table 4 (note that rule 33 is used twice) and it is fairly
clear that this is a highly generalized default set (recall that in the conditions the MSB is on
the right). Some appreciation of the way rules have formed a t generation 75 (200 batches per
generation) can be seen in Table 5, which shows the stronger classifiers existing a t that time.
An indication that these strong rules are consistent with the above good strategy (“make C
rapidly”) can be seen by comparing the last two columns. The designations F, E, L refer
to the first, early, and late periods of the reaction. There is a large measure of agreement
between the reaction period determined by the conditions and the actions suited to these
periods for the “make C rapidly” strategy. Note, however, that some rules (14, 24, 30, 33,
70, 74) are able to make mistakes (see Section 4.3.1).

The best rule set at generation 200 for the case shown in Figure 5b, where results have
leveled out at 46%, is given in Table 6. This rule set was used for 71 of the 75 batches made
in the generation. There are, however, other strong rules in existence and these are given in
Table 7.

Probably the best action strategy for this scenario is

Heat (H) 7; H 7; H 7; H 7 Add (A) 7; H 7 A7; H 5 A7; H 5 A7; H 5 A 7; H 5 A 4

giving a return of 55.6% by making 79,114 kg/year of C in 6,492 batches.

Scenario 2: The Market Size Is Limited to 40,000 kg/year In this case no extra profit
may be generated as a result of potential to make more than the market limit so, clearly, less
total profit can be made.’ Less importance must, therefore, be attached to speed and more

5 In the real world, if, as discussed above, the equipment can be used for other products, there might still be an advantage in fast
production.

Evolutionary Computation Volume 3, Number 2 187

Gilbert, Bell, and Valenzuela

Best in Generation - Average last 20 Batches

-60
80

~ ~ . _ _ _ _ ~~

-20

-40
Best m Generanon Average last 20 Batches

A + -

0 50 100 150 200
Generation

(b)

Figure 5. Scenario 1, market unlimited. (a) 200 batches per generation. (b) 7 5 batches per generation.

Table 4. A rule set for Scenario I, best rule set found.

Rule# Strength Conditions Actions Decoded Actions

2 7 A AnC ******n *****nn 1 1 nn nni uTp,,t 7 A & 1
J J

33
70
9

43
65
64
25
36

7 . T U J

4.405
6.430
5.70 1
5.280
4.942
7.734
5.277
1.582

v

0
0 0

1*****0
0

****o 1 *
****o 1 1
***** 1 *

* ****

vv

*****oo
o****oo
*****oo *****oo

0
*0**110
***** 10

0

1 IV" vv1

1100001
1100010
1100010
1 100 101
1110 101
1010 101
1011 100
1011 101

I L b a L , 1 X " U I

Heat 7 Add 1
Heat 7 Add 3
Heat 7 Add 3
Heat 7 Add 6
Hea t 4 Add 6
Hea t 3 Add 6
Hea t 2 Add 7
Hea t 2 Add 6

188 Evolutionary Computation Volume 3, Number 2

Process Control and Profit Optimization

Table 5. Strong rules formed after 7 5 generations (Figure Sa).

Rule# Strength Conditions Actions Condition Action
Period Period

2
10
8

14
23
24
25
33
36
45
48
50
51
66
62
70
76
86
87
88
92
95
97
98

5.489
5.1 17
4.741
4.91 1
8.343
5.321
6.453
5.796
4.020
7.302
7.839
7.2 14
7.525
6.628
4.887
5.705
6.843
6.997
5.532
6.010
6.606
4.842
6.299
5.633

1100010
1011 100
1000 101
1 100 101
1010 101
1110 101
1100010
1 100 101
1011 011
1000 100
1 100 100
I100001
1000 101
1100010
1100010
1110010
1 100 101
I100011
1 100 100
1 100 110
1 100 101
1 100 100
1000 101
1001 100

E L
L
L
F E L
L
E L
F E
F E L
L
L
L
L
L
F E
L
E L
F E L
E L
E L
L
L
L
L
L

E
L
L
L
L
L
E
L
L
L
L
E L
L
F E
L
E
L
E
L
L
L
L
L
L

Table 6. Best rule set after 200 generations (Figure Sb).

Rule# Strength Conditions Actions Decoded Actions

1
5
8
2
3
6
4
7

13

12.185
18.642
21.902
18.624
2 1.902
18.642
13 393
16.001
13.893

oooo*o*
1*00***
ooo*oo*
0*1 **o*
1*1**10
0*11**1
o*o*o 1 1
o*o*o 1 1
1*1**11

* **** 0 0
1011000
101 1*00
1011000
101 1*00
**1*I 10
1 ***o 10
1***010
1***010

1001 111
1 100 000
1 100 000
1 100 000
I101 100
1101 100
0001 100
1101 100
I100 100

Heat 1 Add 5
Heat 7
Heat 7
Heat 7
Heat 6 Add 7
Heat 6 Add 7
Cool 1 Add 7
Heat 6 Add 7
Heat 7 Add 7

Evolutionary Computation Volume 3 , Number 2 189

Gilbert, Bell, and Valenzuela

Table 7. Other strong rules after 200 generations (Figure 5b).
~

Rule# Strength Condition Actions Decoded Actions

56 6.351
57 7.264
58 6.92 5
59 6.925
60 6.735
61 6.735
63 6.736
68 7.574
69 7.574
81 7.254
82 7.254
87 6.527
88 5.143
89 12.291
90 12.291
91 9.541
92 9.541
93 6.936
94 7.551
99 10.889

102 5.596

o* 1 **o*
oooo*o*
ooo*oo*
o*o*o 1 1
o* 1 **o*
ooo* 1 1 *
1* 1**10
o*o**o*
ooo*o 1 *
ooo*o 1 1
0*0*011
000*11*
oooo*o*
*oo*oo 1
o* 1 1 ***
0*1*** 1
1*1**11
oooo*o*
o* 1 **o*
1 *1**10
1*00*00

1 o****o
*011000
10****0
101 1*00
101 1*00
101 1000
101 1*00
101 1*00
1*11000
10**0 10
1 ***** 0
101 1*00

0 0
**1*110
101 1*00
l***O 10
**l*llO
0 0

101 1*00
101 1**0
o*oo*oo

* ****

* ****

1001 011
1 100 000
1101 100
1 100 000
1 101 000
1100000
1101 111
1100000
1001 100
1101 100
1101 100
1101 111
1001 100
0001 100
1 100 000
1 100 100
0001 100
1 001 000
1101 111
1101 100
0010 111

Heat 1 Add 2
Heat 7
Heat 6 Add 7
Heat 7
Heat 6
Heat 7
Heat 6 Add 5
Heat 7
Heat 1 Add 7
Heat 6 Add 7
Heat 6 Add 7
Heat 6 Add 5
Heat 1 Add 7
Cool 1 Add 7
Heat 7
Heat 7 Add 7
Cool 1 Add 7
Heat 1
Heat 6 Add 5
Heat 6 Add 7
Cool 3 Add 5

to chemical efficiency, that is, make more C and/or less D and be parsimonious in the use
of expensive compound B. In these circumstances the CS learns to take much longer over
the reaction (90-120 minutes) and to add B more slowly. A major change in strategy takes
place in that the CS learns to incorporate a significant period of "000" actions (do nothing)
at the end of the reaction time, waiting for as much as possible of compound B, which has
been added to enter into reaction. By these means the classifier regularly achieves around
25% return whereas, if the Scenario 1 strategy had been used, a return of only 20% would
result. Results are given in Figure 6.

A best rule set discovered (shown in Table 8) makes the requisite 40,000 kglyear of C
in 3,000 batches and achieves 25.9% return on capital.

Scenario 3: Changed Reaction Parameters and Market Size 40,000 kglyear As stated
above, equipment of the type envisaged tends to be used for more than one product. In
principle, it would appear that this CS could control any reaction that requires the controlled
addition of a single component and that could be maintained within a desired temperature
range by the particular constraints of available heating and cooling. Rather than build a new
simulation to test this, it was expedient merely to change some of the reaction parameters (in
reality these parameters are constants for a given reaction). In particular, the parameters made

190 Evolutionary Computation Volume 3 , Number 2

Process Control and Profit Optimization

1

\ -

Best in Generation ~ Average last 20 Batches

-60 -- t,- 1-

0 20 40 60 80
Generation

(4
-

20

h

I

P u
8
E -20
2
P

3 0

Best in Generation ~ Average last 20 Batches -40tl/ \I
-60 4

0 50 100 150 200
Generation

(b)

Figure 6. Scenario 2 , market 40,000 kglyear. (a) 200 batches per generation. (b) 75 batches per
generation.

a good return more difficult by mahng the production of D more favored as temperature
increases (change in E, Table 1) and by increasing the heat liberated in reactions Rz and R1
(changes in H,, Table 1). These latter changes also caused the system to exceed the upper
temperature limit (425°K) quite frequently before it learned not to do so. From the rule set
of Table 9, it can be seen that the CS responded by malung significantly more use of cooling.
In particular the system appears to have discovered that each time a significant rate of B
addition is made, cooling must be applied to compensate for the heat liberated by reaction of
this B because of the increased heats of reaction (this is precisely what a chemist would do).
Some of the “do nothing” periods here are curious and probably parasitic because they are
without cost: the first is clearly a waste of time; the consecutive group after the initial heating
up of the contents may be a very subtle way of trimming a slightly hot reactor at no cost
by heat loss but is more probably parasitic; the final ones are beneficial. The employment
of divided reward in the PSP, to favor shorter rule sets, does not appear to have worked in

Evolutionary Computation Volume 3, Number 2 191

Gilbert, Bell, and Valenzuela

Table 8. Best rule set for Scenario 2.

Rule#

45
38
38

100
84
31
9

52
85
18
13
54
37
16
34
21
39
17
22
40
40
43
89
25
25

-
Strength Conditions Actions Decoded Actions

2.548
2.549
2.549
1.882
1.941
2.076
1.991
2.226
1.954
2.089
2.214
1.610
2.466
3.046
2.003
2.003
2.169
3.256
3.107
2.746
2.746
0.899
1.256
1.868
1.868

1100000
1 100 000
1 100 000
1100001
0 000 000
0 000 011
1010 110
1 000 011
0 001 011
0 000 100
0011 101
1 000 100
1 000 000
1 100 000
1 000 000
0011 101
1 000 000
1 000 000
1 100 000
1 000 000
1 000 000
1 000000
1 000 000
1 000 000
1 000 000

Heat 7
Heat 7
Heat 7
Heat 7 Add 1
Do nothing
Add 2
Heat 3 Add 2
Add 2
Cool 1 Add 2
Add 7
Cool 2 Add 6
Add 7
Do nothing
Heat 7
Do nothing
Cool 2 Add 6
Do nothing
Do nothing
Heat 7
Do nothing
Do nothing
Do nothing
Do nothing
Do nothing
Do nothing

this case. Results are given in Figure 7 and the lower levels of return (approximately 20%)
reflect the greater difficulty of this environment.

Ability to learn each environment from scratch is indicative of robustness. It is also
desirable that the CS should be able to accommodate a change in the environment. Training
was carried out as in Figure Sb (same random number seed) for 120 generations and at this
point the market size was changed to 40,000 kg/year. The return dropped immediately
to approximately 18% (Figure 8), as expected for the old rules applied to the new market
size. Results then steadily improved to approximately 25% as the CS learned this new
environment.

4.2 The Effect of the Genetic Algorithm
Figure 9 is typical of results obtained by running the AOC for 10,000 batches without benefit
of the GA under Scenario 2. It can be seen that, although individual batches may achieve a
moderate return a t times, such results are not maintained. The results may be indicative of

192 Evolutionary Computation Volume 3, Number 2

Process Control and Profit Optimization

I " Best in Generation Average last 20 Batches
I . -60 '+

100 150 200

-401 0 50

Generation

Figure 7. Scenario 3, high reaction heats, 75 batches per generation.

Table 9. Rule set for Scenario 3 .

Rule# Strength Conditions Actions Decoded Actions

2 7
5
1
8

21
62
20
20
98

2
35
35
65
29
29
85
2 3
14
76

9
9

3.468
4.41 7
3.510
3.629
3.762
3.064
3.776
3.776
3.405
3.77 1
2.251
2.251
2.467
3.163
3.163
2.93 1
2.657
2.493
1.692
4.017
4.017

ooo ***oooo
ooo *o*oooo
ooo ***oooo
** 10 1 ** ***oooo
10*10 *oooo
****010 ***oooo
***** 10 ***oooo
*****I0 ***oooo
***** 10 ***oooo
***1*10 ***oooo

0
0

*0***1 I ****** 0
1*11 *I*()
1*11 *I*()
****o 1 1 **** 1 *o
*0***11 ****** 0
*****11 ****** 0

0 1 *****
*****11 1101**1
*****11 1101**1

*** * * ******
*** * * ******

0 1
0 1

1 000 000
1100000
1100000
1100000
1100000
1 000 000
0 000 000
0 000 000
1 000 000
1 000 001
0 110 101
0 110 101
0 101 100
0 111 110
0 111 110
0 111 110
0 111 100
0 111 100
1101 111
1 000 000
1 000 000

Do nothing
Heat 7
Heat 7
Heat 7
Heat 7
Do nothing
Do nothing
Do nothing
Do nothing
Add 1
Cool 4 Add 6
Cool 4 Add 6
Cool 6 Add 7
Cool 5 Add 4
Cool 5 Add 4
Cool 5
Cool 5 Add 7
Cool 5 Add 7
Heat 6 Add 5
Do nothing
Do nothing

a problem with generalists (see Section 4.3.1) in that one might expect a long AOC learning
phase to reinforce more consistently and select the better results and hence increase the
moving average.

EvoIutionary Computation Volume 3, Number 2 193

Gilbert, Bell, and Valenzuela

Best in Generation - Average last 20 Batches

-
150 200 250 300 350 400

Genemoon
100

Figure 8. Change of environment, market size change at generation 120.

Batch Result

0 50 100 150 200 250
Batch

-40

Figure 9. Operation of AOC without GA, Scenario 2 .

Figure 10 shows the greater effectiveness of the GA over partial replacement by random
rules. A run in which randomly selected, below average fitness rules were replaced by new
random rules that were given average population fitness fluctuates wildly. (The same random
number seed was used as in Figure 6b.) While occasional good results are obtained by this
run, not using the GA, there is no sustained learning.

Overuse of the GA is also detrimental. Very short AOC learning (20 batches per
generation) for 1,000 generations, although better than very long AOC with no GA, does
not maintain the learning over many generations (Figure 11). It appears that a suitable
compromise of AOC length is required to achieve effective selection, by allowing sufficient
credit buildup but avoiding excessive polarization in the rule/ chromosome strengths (i.e.,
maintaining some gene-pool diversity). In the less extreme cases of 75 and 200 batches per
generation, taking all runs for all three Scenarios, the shorter AOC appears more efficient,
in that it tends to achieve a respectable return after fewer batches (2,500-3,000) than the 200
batch per generation case (3 ,OOO-5,000 batches).

194 Evolutionary Computation Volume 3, Number 2

Process Control and Profit Optimization

-~ ~-

Best in Generation ~ Average last 20 B a t i h q
40 I

t

0 50 I00 150 200
Generation

Figure 10. No GA, 20 new random rules each generation.

40

20 - - 5

2 -20

.2 0
2
V
C

d
-40

-60

Best in Generation Average .--I ~

0 50 100 I SO 200 250
Generation

Figure 11. Short AOC learning, 20 batches per generation.

4.3
That learning takes place is evident. As a comparative baseline, the results of controlling
the simulation by generating random numbers gives average return of approximately -24%
(Figure 12). Two possible weaknesses can be seen in the behavior of the CS.

Performance, Problems, and Potential Improvements

4.3.1 In the AOC phase very often the rule set obtaining
the best result does not become the dominant rule set of the generation. (The probabilistic
competition for rule selection will prevent the best rule set always becoming dominant but
the best set dominates less often than might be expected.) This effect was noted in the case
of the very long AOC (see Section 4.2). The bonus (for beating the best rule set so far) part
of the reward scheme was introduced in an attempt to combat this.

The cause is almost certainly that generalization allows a rule that has built strength
in appropriate situations, to win the bidding in a different situation where (because of its
low specificity) its conditions match but its actions are inappropriate. Potential for this has

Mistakes by Generalist Rules

Evolutionary Computation Volume 3 , Number 2 195

Gilbert, Bell, and Valenzuela

0 50 100 150 200 250
Batch

F B a w Z ~ Moving A v A

Figure 12. Random control.

been noted in the rules of Table S (see Section 4.1). The usual method for combating the
mistakes of generalists is to scale the bidding to favor the specialist (Riollo, 1987) and this
has been included from the first. In an attempt to further help the specialist, it was decided
to distribute more reward to specialists but the benefit (if any) from this is not evident.

Possible strategies for improvement might be to (a) take advantage of and accentuate
this generalization by grading the probability of a wild card in the rules such that the high-
order bits are more likely to be specific. (This could be a useful practical technique but from
the purist viewpoint it would mean that the CS has some knowledge of the significance of
some of the genes!) or (b) institute a directed mutation in rules of high strength by which
the most significant wild card may change to a specific bit that matches the most frequent
use of that rule. (This might involve excessive record keeping.)

4.3.2 Inappropriate Crossover It is apparent that good results achieved in one gen-
eration can easily be lost in the GA when forming the next generation. Clearly this will
occur when an inappropriate new chromosome of high strength is formed, for example from
a good start-of-reaction parent and a good end-of-reaction parent by a crossover close to
the condition-action boundary. The most promising, biologically analogous solution would
appear to be to encourage niche (Holland, 1975; Cavicchio, 1970; Booker, 198s) populations
for different periods of the reaction and to reduce the probability of interniche breeding.
The “B added so far condition” could provide a tag for niche identification because this
condition must increase through the reaction. The biological analogy would be organisms
that exploit different concentrations of the products C and D and are less likely to breed
with organisms that exist in other product concentrations.

4.3.3 Reaction Termination Control If niche populations can be established the dis-
ruptive crossover problems of a reaction termination action (see Section 2.3) would be simpli-
fied. This could be implemented as an action bit, always set to zero in the initial population,
but with a chance of a special mutation when in presence of high product concentrations
@gh B added condition).

196 Evolutionary Computation Volume 3, Number 2

Process Control and Profit Optimization

5. Conclusions

A CS has shown ability to learn the control of a production process and to optimize profit
from that process. In particular it has been shown that the CS far outperforms control
by randomly generated rules. That a GA is a valuable adjunct to AOC learning is also
demonstrated by better profit than with AOC alone or AOC with replacement of weak rules
by randomly generated rules. A degree of robustness has been demonstrated by its ability to
adapt to changes in the market environment and in the process. In the instance of coping
with high heats of reaction it learned to anticipate the heat rise by, when adding reactant
(cause of the heat rise), simultaneously increasing reactor cooling; i t also learned to keep
within an upper temperature-limit restriction.

In its present state, direct use of this CS to control a real chemical plant is problematic.
During learning the CS produces many batches that would be disastrous financially and
potentially dangerous (depending on the chemicals and process involved). Improvements, via
the niche mechanisms discussed above, will mitigate some of these problems. If a simulation
exists for a real plant then clearly off-line training is possible; it is unlikely, however, that a
simulation will reflect the real plant exactly, and there is the problem of what sort of genetic
pool could be allowed, when the CS goes on-line, such that the CS could explore new
regions it was led into by real-world fluctuations without going into disastrous areas. The
development of a system where a model world is used alongside the real world to evaluate the
CS suggestions and reject untenable ones may be worth exploration. No matter how well
the CS may ultimately perform, its use would require a supervisory safety control system to
exclude dangerous actions.

Future work will explore improvements via the niche mechanism and inclusion of a
stop action, a comparative study of BB in place of PSP, and consideration of plant noise (e.g.,
sticking valves, fouled heat exchange surfaces) and market noise (e.g., market size, price
fluctuation).

Acknowledgment

Thanks go to the referees for their constructive criticism and helpful suggestions.

References
Booker, L. B. (1982). Intelligent behavior as an adaptation to the task environment. (Doctoral dissertation,

University of Michigan, Ann Arbor). Dissertation Abstracts International, 4?(2), 496B.

Booker, L. B. (1985). Improving the performance of genetic algorithms in classifier systems. In
J. J. Grefenstette (Ed.), Proceedings of the First International Confirence on Genetic Algorithms and Their
Applications (pp. 80-92). Pittsburgh, PA: Lawrence Erlbaum.

Cavicchio, D. J. (1 970). Adaptive search using simulated evolution. Unpublished doctoral dissertation,
University of Michigan, Ann Arbor.

Chen, Q., & Weigand, W. A. (1992). Neural net model of batch process optimization based on an
extended genetic algorithm. International3ooint Conference on Neural Networks 1992, 4, 5 19-524.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems (Doctoral
dissertation, University of Michigan, 1975). Dissertation Abstracts International, ?6(lo), 5 140B.

Frey, P. W., & Slate, D. J. (1991). Letter recognition using Holland-style adaptive classifiers. Machine
Learning, 6(2), 161-182.

Goldberg, D. E. (1983). Computer-aided gas pipeline design using genetic algorithms and mle learning.

Evolutionary Computation Volume 3 , Number 2 197

Gilbert, Bell, and Valenzuela

(Doctoral dissertation, University of Michigan, Ann Arbor). Dissertation Abstracts International,
44(10), 3174B.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization ck machine learning. Reading, MA:
Addison-Wesley.

Goodloe, M., & Graves, S. J. (1988). Improving performance of an electric power expert system
with genetic algorithms. Proceedings of the First International Conference on the Applications of Arttjicial
Intelligence and Expert Systems, ZEA/AZE-88, 1 , 298-305.

Grefenstette, J. J. (1988). Credit assignment in rule discovery based on genetic algorithms, Machine
Learning, 4, 225-245.

Holland, J. H. (1962). Outline for a IogicaI theory of adaptive systems. Journai of the Association for
Computing Machinery, 3,297-3 14.

Holland, J. H. (1975). Adaptation in natural and arti&ial qstems. Ann Arbor: University of Michigan
Press.

Holland, J. H. (1985). Properties of the bucket brigade. In J. J. Grefenstette (Ed.), Proceedings of the
First Znternational Conference on Genetic Algorithms and Their Applications (pp. 1-7). Pittsburgh, PA:
Lawrence Erlbaum.

Holland, J. H., & Reitman, J. S. (1978). Cognitive systems based on adaptive algorithms. In D. A.
Waterman & E Hayes-Roth (Eds.), Pattern directed inference qstems (pp. 313-329). New York:
Academic Press.

Hollstien, R. B. (197 1). Artijicial genetic adaptation in computer control systems. (Doctoral dissertation,
University of Michigan, 1971). Dissertation Abstracts Zntemational, 24(3), 15 10B.

Katoh, N., Nakao, K., & Hanawa, M. (1989). Learning control of a batch reactor. Computers in
Chemical Engineering, 13, 12 7 3-1 2 76.

Nisenfield, A. E., & Turk, M. A. (1986). Batch reactor control: Could an expert advisor help? ZnZch,
(April), 57-64.

Rao, V. R., & Lee, W.-K. (1991). Neural networks approach to automatic startup and control of an
exothermic batch reactor. Proceedings of 1991 American Control Conference, 3, 2854-2857.

Raed, A. A. Z., & Hassoun, M. H. (1993). Regulator control via genetic search assisted reinforcement.
In S. Forrest (Ed.), Proceedings of the Ftjih International Conference on GeneticAlgorithms (pp. 254-260).
San Mateo, CA: Morgan Kaufmann.

Regev, O., Lewin, D. R., & Lavie, R. (1 989). Exothermic batch chemical reactor automationvia expert
system. Dechema-Monographs, 11 6, 71-80.

Riollo, R. L. (1987). Bucket brigade performance: Default hierarchies. In J. J. Grefenstette (Ed.),
Proceedings of the Second Znternational Conference on Genetic Algorithms (pp. 190-201). San Mateo, CA:
Morgan Kaufmann.

Ryhiner, G., Dunn, I. J., Heinzle, E., & Rohani, S. (1992). Adaptive on-line optimal control of
bioreactors: Application to anaerobic degradation. Joumai of ~ i o t e c h n o ~ ~ , 22,89-106.

198 Evolutionary Computation Volume 3 , Number 2

