
A Simple Approach to Evolutionary
Multi-Objective Optimization

Christine L. Mumford-Valenzuela

School of Computer Science
Cardiff University
United Kingdom
christine@cs.cardiff.ac.uk

Summary. This chapter describes a Pareto-based approach to evolutionary multi-
objective optimization, that avoids most of the time consuming global calculations
typical of other multi-objective evolutionary techniques. The new approach uses a
simple uniform selection strategy within a steady-state evolutionary algorithm (EA)
and employs a straightforward elitist mechanism for replacing population members
with their offspring. Global calculations for fitness and Pareto dominance are not
needed. Other state-of-the-art Pareto-based EAs depend heavily on various fitness
functions and niche evaluations, mostly based on Pareto dominance, and the calcu-
lations involved tend to be rather time consuming (at least O(N2) for a population
size, N). The new approach has performed well on some benchmark combinatorial
problems and continuous functions, outperforming the latest state-of-the-art EAs in
several cases. In this chapter the new approach will be explained in detail.

Key words: Evolutionary algorithm, Multi-objective optimization, Pareto
set, Knapsack problem .

1 Introduction

This chapter concentrates on a simple approach to evolutionary multi-objective
optimization that avoids most of the time consuming global calculations typi-
cal of many other Pareto-based evolutionary approaches. The basic algorithm
described here is called SEAMO (a Simple Evolutionary Algorithm for Multi-
objective Optimization), and although this new technique has not as yet been
very widely tested, it has proven successful on some benchmark combinato-
rial problems and continuous functions, outperforming other state-of-the-art
evolutionary algorithms (EAs) in several instances [19]. In addition to fast
execution, the simplicity of the new algorithm makes it relatively quick and
easy to implement, reducing the development time needed for prototyping
and testing new multi-objective applications. If required, more sophisticated

Pareto-based evolutionary techniques can be incorporated following an initial
proof-of-concept.

The main purpose of the chapter is to introduce and explain the key con-
cepts involved in the new approach using some simple applications as ex-
amples. In addition, in order to justify the approach, a summary of some
preliminary comparative studies will be included.

I will begin in Section 2 with a brief overview of Pareto-based multi-
objective optimization, moving on to multi-objective evolutionary techniques
in Section 3. Section 3 also includes a short preview of SEAMO, concentrating
on its main features and explaining how it differs from other evolutionary ap-
proaches. Following this, Section 4 describes the multiple knapsack problem
and introduces a sample test problem with two knapsacks. Section 5 describes
the SEAMO algorithm in detail and this is followed, in Section 6 by an illustra-
tion of SEAMO’s operation through the test problem introduced in Section 4.
Section 7 summarizes SEAMO’s performance on some large multiple knapsack
problems. Having studied a combinatorial application, I will turn my atten-
tion, in Section 8, to explaining how the techniques can be adapted to handle
some continuous multi-objective functions. Some results for the continuous
functions are summarized in Section 9. Full details of the representations and
genetic operators are given for the combinatorial and continuous problems.

2 Pareto-Based Multi-Objective Optimization

Many real-world applications require the simultaneous optimization of sev-
eral (often competing) objectives. For example, in the vehicle routing problem
(VRP) the determination of optimum delivery routes to a set of customers
can involve a number of different objectives (Figure 1), for example the total
distance travelled (or time taken), the number of vehicles used, and the num-
ber of satisfied customers (i.e. deliveries that have taken place to customers
within previously agreed time windows). There are three principle methods
of dealing with multiple objectives:

1. Combine all the objectives into a single scalar value, typically as a
weighted sum, and optimize the scalar value.

2. Solve for the objectives in a hierarchical fashion, optimizing for a first
objective then, if there is more than one solution, optimize these solutions
for a second objective, and repeat for a third etc. if appropriate.

3. Obtain a set of alternative, non-dominated solutions, each of which must
be considered equivalent in the absence of further information regarding
the relative importance of each of the objectives.

The first and the second methods both depend on making a priori as-
sessments to weigh up the relative importance of the various objectives. The
third method, on the other hand, involves no such (arbitrary) judgments, and
produces a set of viable alternatives from which a decision maker can make

Fig. 1. Vehicle routing can be a problem

an informed selection at a later stage. Ideally each alternative solution pro-
duced by method 3 will be optimal in the sense that it will not be possible
to improve the value of any one of the objectives, in a given solution vector,
without simultaneously degrading the quality of one or more of the other ob-
jectives. Such a solution set is called the Pareto-optimal set, and the objective
values in the set are located at the Pareto front. SEAMO is an evolutionary
algorithm that has been designed to produce approximate Pareto sets. Thus
method 3 is the way we will deal with multiple objectives in the remainder of
this chapter.

3 An Overview of Evolutionary Techniques for
Multi-Objective Optimization

Evolutionary algorithms (EAs) are ideally suited for multi-objective optimiza-
tion problems because they produce many solutions in parallel. However, tra-
ditional approaches to EAs require scalar fitness information and converge on
a single compromise solution, rather than on a set of viable alternatives. An

effective Pareto-based multi-objective EA will converge on a solution set with
the following properties:

• solutions that are ‘good’, i.e. close to the Pareto front
• solutions that are ‘evenly spread’ along the Pareto front
• solutions that are ‘widely spread’ - i.e. a good range

To seek solution sets with the above properties, most researchers rely on
selection that uses some form of Pareto-based fitness assignment. This idea,
which was first proposed by Goldberg [8], is based on dominance ranking and
assigns equal probability of reproduction to all non-dominated individuals.
Solutions can be further improved using techniques such as fitness sharing [8],
niches [6, 10] and auxiliary populations [2, 21]. Unfortunately most of these
approaches carry a high computational cost.

The present approach relies on very much simpler techniques. It disposes of
all selection mechanisms based on fitness values and instead uses a straightfor-
ward uniform selection procedure (i.e. each population member has an equal
chance of being selected). Thus no dominance ranking is required. In the new
approach improvements to the population and progress of the genetic search
depend entirely upon a replacement strategy that follows a few simple rules:

1. parents are (normally) replaced only by their own offspring,
2. offspring only replace parents if the offspring are superior – thus the

scheme is elitist,
3. duplicates in the population are deleted.

SEAMO depends on rules 1 and 3 to maintain diversity and prevent premature
convergence and on rule 2 to progress the genetic search and also ensure that
the best solutions are not lost.

Replacing parents only with their own offspring (rule 1) means that the
new individuals tend to be genetically very similar to the population mem-
bers they are replacing. Alternative replacement schemes, on the other hand
(replacing one of the weaker members of the population for example) can lead
to a much more rapid propagation of duplicated genetic material, and thus to
premature convergence. SEAMO further promotes genetic diversity by delet-
ing duplicates (rule 3) as soon as they arise in the population. Ideally an EA
should discard genotypic duplicates. (A genotypic duplicate is an individual
with exactly the same genetic makeup as another individual.) Unfortunately
the pairwise comparisons between chromosomes needed to detect genotypic
duplicates tends to be rather time consuming unless the chromosomes are
very short. Current implementations of SEAMO delete phenotypic duplicates,
i.e. individuals with the same solution vectors as other individuals. As the
solution vectors are usually rather shorter than the chromosomes, this tends
to be a very much faster process. Deleting phenotypic duplicates will certainly
eliminate genotypic copies. Unfortunately it can also lead to the deletion of
genetically diverse individuals if, by chance, they produce identical solution
vectors. In practice this does not seem to arise very often though.

Rule 2 controls the overall progress of the genetic search, and ensures that
the population as a whole improves over time (hence ensuring that solutions
are ‘good’). A ‘superior’ offspring in rule 2 is defined (most of the time) as an
offspring that dominates one or other of its parents (i.e. one of the objectives
in its solution vectors is better than its parent, and all the other objectives
are at least as good). An exception is made when an offspring arises with
a new global best value for just one of the objectives in its solution vector.
When this occurs, the dominance condition is relaxed, and the new individual
is assimilated into the population (hence ensuring that solutions are ‘widely
spread’). The new individual usually replacing one of its parents (this will be
explained in Section 5). Rule 2 ensures that the EA itself is elitist, thus, unlike
[2] and [21] no archive population is needed.

We shall see later in this chapter that SEAMOs subtle techniques appear
to work well in producing solutions that both ‘good’ and ‘widely spread’, and
thus meet two of the three criteria for effective Pareto-based EAs specified at
the start of the current section. However, current implementations of SEAMO
lack a specific mechanism to ensure that the solutions are ‘evenly spread’, and
this can cause difficulties when applying SEAMO to certain functions.

In common with other EAs, successful multi-objective implementations
require well-designed representation systems for individual problems and also
genetic operators that are appropriate for the task. Recombination (crossover)
operators can be particularly problematic. At worst an EA may waste vast
quantities of time generating invalid or illegal offspring, and even in a su-
perficially successful system, a crossover may produce an offspring that bears
very little phenotypical resemblances to either of its parents. As the similarity
between parents and their offspring remains one of the main tenets of evolu-
tion, a poorly designed or inappropriate recombination operator can turn an
otherwise perfect EA into an implementation that is no more effective than a
random search. Unfortunately there does not appear to be a known recipe for
producing effective representation schemes, either for single or multi-objective
EAs. Experience and intuition can help, but provide no guarantees! Thus the
success of SEAMO, or any other EA (multi-objective or otherwise) on a par-
ticular application, depends very much on the representation scheme chosen
for the application. Additionally it is necessary to tune various parameters of
the EA such as population size, crossover and mutation rates, to produce a
good performance.

Assessing the performance of EAs can be very difficult in practice. Even
when the same data sets are used to compare EAs with each other or with al-
ternative approaches, it can be dangerous to draw firm conclusions as to which
algorithm is the best. In addition to making sound (or unsound) choices for
representations and genetic operators, there are many other issues to con-
sider, and choices to be made. How long do you let the the EAs run? What
population sizes and crossover rates do you set? Some EAs converge quickly,
while others take longer but produce better results in the end. The algorithms
are differently sensitive to parameter settings such as population sizes and

crossover rates, so it is not easy to ensure fairness, especially when comparing
an unfamiliar EA that somebody else has written with one of your own (that
you would obviously like to win). Notwithstanding the difficulties associated
with representations, varying convergence rates and parameter settings, com-
parisons between EAs (or other metaheuristic approaches such as simulated
annealing) are frequently based on each algorithm performing an equal num-
ber of fitness or objective function evaluations. This is a very crude method,
however, as it ignores important run time issues such as time complexity.

Comparisons between EAs that carry out multi-objective optimizations
are even more problematic. Here we have the added difficulty of assessing the
quality of a each algorithm by examining a set of vectors, instead of examining
the single scalar value obtained from a ‘standard EA’. Although a range of
performance measures have been derived by various researchers, there is no
general agreement upon their usefulness. For vectors consisting of just two
objectives it is possible to represent the results quite effectively using 2D
plots, and comparisons can be made quite easily if plots for a small number
of different algorithms are placed on the same diagram, provided that not too
many of the points overlap.

4 The 0-1 Multiple Knapsack Problem

Fig. 2. The same objects may have different weights in each knapsack

Fig. 3. The same objects may have different profits in each knapsack

The 0-1 multiple knapsack problem (0-1 MKP) is a maximization problem.
It is a generalization of the 0-1 simple knapsack problem, and is a well-known
member of the NP-hard class of problems. In the simple knapsack problem, a
set of objects O = {o1, o2, o3, ..., on} and a knapsack of capacity C are given.
Each object oi has an associated profit pi and weight wi. The objective is
to find a subset S ⊆ O such that the weight sum over the objects in S does
not exceed the knapsack capacity and yields a maximum profit. The 0-1 MKP
involves m knapsacks of capacities c1, c2, c3, ..., cm. Every selected object must
be placed in all m knapsacks, although neither the weight of an object oi nor
its profit is fixed, and will probably have different values in each knapsack
(see Figures 2 and 3). A small problem with 10 objects and two knapsacks is
defined in Table 1.

A possible solution to the ten object, two knapsack problem from Table
1 is {2, 3, 4, 5, 6, 7, 9}, which involves packing objects number 2, 3, 4, 5, 6, 7
and 9 into the two knapsacks. To evaluate the solution vector for this problem
requires that we first ensure that neither knapsack capacity has been exceeded.
The total weight of the given objects when packed into knapsack 1 is 8+2+7+
3+6+1+9 = 36 units, and in knapsack 2 they weigh 4+2+4+9+5+4+3 = 31
units. In neither case is the knapsack capacity (38 and 35) exceeded. We then
work out the total profit for each knapsack by adding together the profits for
each of the items packed. The total profit in knapsack 1 is 7+ 4+ 5+ 6+ 2+
7 + 7 = 38, and in knapsack 2 is 9 + 1 + 5 + 3 + 8 + 2 + 1 = 29. The solution
{2, 3, 4, 5, 6, 7, 9} yields a solution vector of {38, 29}, the profits in knapsacks
1 and 2 respectively. The full Pareto set, for this small problem, is presented
in Table 2. The solutions were discovered using a simple exhaustive search
technique which took only a few seconds to run.

Table 1. A sample problem with ten objects and two knapsacks

Object number
Knapsack 1

Capacity = 38
Knapsack 2

Capacity = 35

Weight Profit Weight Profit

1 9 2 3 3
2 8 7 4 9
3 2 4 2 1
4 7 5 4 5
5 3 6 9 3
6 6 2 5 8
7 1 7 4 2
8 3 3 8 6
9 9 7 3 1
10 3 1 7 3

Table 2. The Pareto set for the sample problem with ten objects and two knapsacks

Knapsack 1 Profit knapsack 2 Profit Objects in Knapsacks

39 27 {2, 3, 4, 5, 7, 8, 9}
38 29 {2, 3, 4, 5, 6, 7, 9}
36 30 {2, 3, 5, 6, 7, 8, 9}
35 32 {2, 3, 4, 6, 7, 8, 9}
34 33 {2, 3, 4, 5, 6, 8, 9}
32 34 {2, 4, 6, 7, 8, 9, 10}
29 35 {1, 2, 3, 4, 5, 6, 8}
27 36 {1, 2, 4, 6, 7, 8, 10}

5 An Introduction to SEAMO

The Simple Evolutionary Algorithm for Multi-objective Optimization (SEAMO),
is outlined in Figure 4. The goal of any Pareto-based multi-objective EA is
to breed a widely and evenly spread population of solution vectors, as close
to the Pareto front as possible. The dual aims pursued by SEAMO during its
search process are: (1) to move the current solutions in the population ever
closer to the Pareto front, and (2) to widen the spread of the solution set. Im-
provements in both (1) and (2) are achieved by the replacement strategy used
in SEAMO, and not by the selection process. It was noted previously that
SEAMO currently has no specific mechanism for ensuring that the solutions
are evenly spread.

The selection procedure for SEAMO is very simple and does not rely on
fitness calculations or dominance relationships. The crossover rate is 100 %,
which means that parents are always selected in pairs. The algorithm sequen-
tially selects every individual in the population to serve as the first parent
once, pairing it with a second parent that is selected at random (uniformly).

Procedure SEAMO
Begin

Generate N random individuals {N is the population size}
Evaluate the objective vector for each population member and store it
Record the global best-so-far for each objective function in the vector
Repeat

For each member of the population
This individual becomes the first parent
Select a second parent at random
Apply crossover to produce offspring
Apply a single mutation to the offspring
Evaluate the objective vector produced by the offspring
If any element of the offspring’s objective vector

improves on a global best-so-far
Then the offspring replaces one of the parents

(or occasionally another individual)
and best-so-far is updated

Else If offspring dominates one of the parents
Then it replaces it

(unless it is a duplicate, then it is deleted)
Endfor

Until stopping condition satisfied
Print all non-dominated solutions in the final population

End

Fig. 4. Algorithm 1 A Simple Evolutionary Algorithm for Multi-objective Opti-
mization (SEAMO)

A single crossover is then applied that produces one offspring, and this is fol-
lowed by a single mutation. Objective values and dominance relationships are
not considered at this stage. They are applied later, at the replacement stage,
and it is here, rather than during selection, that the pressure for improvement
is applied.

As explained previously, the replacement of a parent by its offspring is
considered whenever an offspring is deemed to be superior to that parent.
This idea, called pre-selection when it was first suggested in [1], was originally
used for EAs with scalar objective functions. The technique easily extends
to Pareto-based multi-objective optimization, however. In the SEAMO algo-
rithm, the superiority test is applied first of all to the first parent, and then
to the second parent if that fails. Usually superiority is measured as a dom-
inance relationship, i.e. if an offspring dominates its parent, it may replace
it in the population. The replacement of population members by dominating
offspring ensures that the solution vectors move closer to the Pareto front as
the search progresses. To additionally ensure a wider spread of solutions, the
dominance condition is relaxed whenever a new global best value is discovered

for any of the individual components of the solution vector. In the case of the
multiple knapsack problem for example, a global best value will correspond to
a maximum profit in one of the m knapsacks. Care has to be taken, however,
to ensure that global best values for other components (e.g. maximum profits
in other knapsacks) are not lost from the population when a dominance con-
dition is relaxed. Ensuring elitism (i.e. that the best solutions are not lost)
at this level is straightforward if multi-objective optimization is restricted to
two components in the solution vector. Whenever an offspring produces an
improved global best for either of the components, if the global best for the
second component happens to occur in one of the parents, the offspring will
simply replace the other parent. With three or more components, however, it
is possible for global best values to occur in both parents. When this happens
SEAMO replaces another population member, chosen at random, provided
that the newly selected individual does not itself harbor a global best. If it
does, the random selection process is repeated until a suitable individual is
found.

As a final precaution, a solution vector for a dominating offspring is com-
pared with all the solution vectors in the current population before a final
decision is made on replacement. If the solution vector produced by the off-
spring is duplicated elsewhere in the population, the offspring dies and does
not replace its parent. As previously mentioned, the deletion of duplicates
helps maintain diversity in the population and thus avoid the premature con-
vergence of the population to sets of identical, or very similar, individuals.
The final action of SEAMO is to save all the non-dominated solutions from
the final population to a file.

6 Illustrating SEAMO Using a Small Multiple Knapsack
Problem

Several approaches have been suggested for representing solutions to single ob-
jective knapsack problems for EAs. Michalewicz [13] identifies three classes:
algorithms based on penalty functions , algorithms based on repair methods ,
and algorithms based on decoders (i.e. interpreters to convert lists of symbols
in the chromosomes into solutions to the required problem). The main chal-
lenge with the knapsack problem is to ensure that the EA does not waste vast
amounts of its time in generating illegal solutions with over-full knapsacks.

In the present study, SEAMO uses a representation system based on a
decoder for the 0-1 MKP. (Experiments with other representations for the 0-1
MKP are documented in a later study by the present author, see [15]). For
the decoder scheme MKP solutions are represented as simple permutations of
the objects to be packed. The decoder packs the individual objects, one at a
time, starting at the beginning of the permutation list, and working through.
For each object that is packed, the decoder checks to make sure that none
of the weight limits is exceeded for any knapsack. Packing is discontinued as

Fig. 5. Packing is discontinued and the final item removed as soon as the weight
limit is exceeded for a knapsack

soon as a weight limit is exceeded for a knapsack (Figure 5) and when this is
detected the final object that was packed is removed from all the knapsacks.
Thus, each knapsack contains exactly the same objects as required, and each
solution that is generated is a feasible solution. Using the ten object problem
with two knapsacks given previously as an example, given a permutation of
{2,5,1,7,9,8,10,3,4,6}, the decoder would first pack item 2, which weighs 8
units in knapsack 1 and 4 units in knapsack 2. Item 5 would be packed next,
weighing 3 units in knapsack 1 and 9 units in knapsack 2, giving total weights
of 11 and 13 for the two knapsacks. The decoder would carry on packing items
from the permutation list until it had packed item 10, giving total weights of
36 and 39 for knapsacks 1 and 2 respectively. A weight of 39 units in knapsack
2 exceeds the capacity of the knapsack, and so the last item to be packed,
which is item 10, is removed from both knapsacks giving final weights of 33
units for knapsack 1 and 31 units for knapsack 2. The profit vector for packing
the items 2, 5, 1, 7, 9, and 8 is {32, 24}.

Cycle crossover (CX) [16] is used as the recombination operator with the
above permutation representation, and the mutation operator swaps two ar-
bitrarily selected objects within a single permutation list. Cycle crossover was
selected as the recombination operator because it transmits absolute positions
of objects in the permutation lists from the parents to the offspring. Neither
edge based nor order based operators would seem to be appropriate here, for
a set membership problem such as this. Some comparative runs shown in Fig-
ure 6 support the choice of CX as the recombination operator. This figure
compares the performance of four different permutation-based operators on a
750 object, 2 knapsack problem (see Section 7). The traces on Figure 6 are

2.4 2.5 2.6 2.7 2.8 2.9 3

x 10
4

2.4

2.5

2.6

2.7

2.8

2.9

3
x 10

4

Profit in first knapsack

P
ro

fit
 in

 s
ec

on
d

kn
ap

sa
ck

Plots for 750 objects in 2 knapsacks

PMX
CX
OX
UOBX

Fig. 6. Non-dominated solutions for different crossovers

partially matched crossover (PMX) [7], cycle crossover (CX) [16], a version
[14] of order crossover (OX) [4] that preserves absolute positions better than
the original, and uniform order based crossover (UOBX) [5]. Populations of
250 were used for the test runs, and the EA run for 15,000 generations. Clearly
the plot of SEAMO using CX gives a much more diverse set of solutions than
any of the other plots. However, the UOBX solutions, although considerably
less diverse than the CX solutions, are slightly better in quality.

6.1 Cycle Crossover

The cycle crossover operator ensures that each position in the resulting off-
spring is occupied by a value occupying the same position in one or other of
the parents. As an example, suppose we have strings A and B below as our
two parents:

A = 8 7 6 4 1 2 5 3 9 10
B = 2 5 1 7 3 8 4 6 10 9

We now start from the left and randomly select an item from string A. Sup-
pose we choose item 6 from position 3, this is then copied to position 3 of the
offspring we shall call A′:

A′ = – – 6 – – – – – – –

In order to ensure that each value in the offspring occupies the same position
as it does in either one or other parent, we now look in position 3 of string B
and copy item 1 from string A to the offspring:

A′ = – – 6 – 1 – – – – –

Next we look in position 5 of string B and copy item 3 from string A:

A′ = – – 6 – 1 – – 3 – –

Looking at position 8 in string B we find item 6. This completes the cycle.
We now fill the remaining positions in A′ from string B thus:

A′ = 2 5 6 7 1 8 4 3 10 9
B′ = 8 7 1 4 3 2 5 6 9 10

The offspring B′ is obtained by performing the complementary operations.

7 A Summary of Results for Multiple Knapsack
Problems

The multiple knapsack problems of Zitzler and Thiele [21] were used as the
first set of test problems for SEAMO. These were a convenient choice because
of the extensive comparative studies that had already been carried out on
these problems, covering a wider range of state-of-the-art EAs (see [21] and
[22] for details). Furthermore, Zitzler and Thiele have made their test prob-
lems and most of their key results available at:

http://www.tik.ee.ethz.ch/zitzler/testdata.html.

7.1 Comparisons With Other Evolutionary Algorithms

In [19] SEAMO was compared with SPEA [21] (the strength Pareto evolu-
tionary algorithm) , and was found to do better. However, when SEAMO
was compared with the more recent EAs covered in [22], PESA (the Pareto
envelope-based seletion algorithm) [2], NGSA2 (a fast elitist non-dominated
sorting genetic algorithm) [3], and SPEA2 an improved version of SPEA (the
strength Pareto evolutionary algorithm) SPEA (the strength Pareto evolution-
ary algorithm) [21], it found these results more difficult to beat. Interestingly,
though, SEAMO improved its performance, relative to the other EAs as more
knapsacks (i.e. objective functions) were added. For a large problem with 750
objects, for example, SEAMO was easily beaten by some other EAs using
the same populations sizes and running the algorithms for the same num-
ber of generations, when only 2 knapsacks were used. SPEA2 [22] produced
particularly impressive results on this problem. When tested on a 750 object
problem with 3 knapsacks, SEAMO performed much better, relative to the
other EAs, although not quite able to match the other EAs on an evaluation
for evaluation basis. For the 750 object problems with either 2 or 3 knapsacks,
SEAMO is able to beat its competitors only if it is allowed to perform more
evaluations. Given the simplicity of the SEAMO algorithm, however, it may
be acceptable that it performs more evaluations, depending how much faster
it runs than its competitors. On the other hand, for the problem with 750
objects and 4 knapsacks, SEAMO was easily able to outperform all its main
competitors performing the same number of evaluations.

7.2 The Effect of Increasing the Population Size

In order to shed further light on the effect of increasing the number of evalua-
tions performed by SEAMO, a number of single runs were carried out on a 750
object, 2 knapsack problem using various sizes of population. Figure 7 illus-
trates the results of some of these experiments. Population sizes of 100, 200,
500, 1,000, 2,000 and 5,000 were tried and the EA halted after 40 generations
have elapsed in which no improvements have been made to the population.

Clearly, increasing the population size produces better results, consisting
of a larger quantity of non-dominated solutions which are closer to the Pareto
front. However the improvements are fairly small between population sizes
of 500 and 5,000. Surprisingly, perhaps, the SEAMO run with a population
of 100 appears to produce a wider spread of results, than the runs with the
larger populations. Some key features of all the runs are presented in Table 3.

Columns two and three of Table 3 give the total number of evaluations and
the run time, respectively. Column four gives the number of non-dominated
solutions present in the population at the end of each run. The size of this non-
dominated set clearly gets larger as the population is increased. Columns five
and six give the smallest and largest profits found in the final non-dominated
set for each knapsack. As previously suggested, the range of values would

2.4 2.5 2.6 2.7 2.8 2.9 3

x 10
4

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3
x 10

4 Plots for 750 objects in 2 knapsacks

Profit in first knapsack

P
ro

fit
 in

 s
ec

on
d

kn
ap

sa
ck

Population = 100
Population = 500
Population = 5000

Fig. 7. Non-dominated solutions from single runs of SEAMO showing the effect of
increasing the population size

Table 3. The effect on SEAMO of increasing population size

Population
size

Total
Evaluations

Run time
(secs)

Number of
non-dom. solns.

Largest
profit 1

Largest
profit 2

100 950,900 154 56 29,589 29,585
200 2,605,000 442 79 29,543 29,555
500 4,154,000 777 103 29,134 29,192
1,000 13,956,000 2,705 176 29,255 29,318
2,000 32,118,000 6,356 237 29,334 29,069
5,000 151,250,000 30,603 260 29,141 29,504

appear to decrease slightly as the population size is increased. A possible
explanation for this could be that smaller populations are more focussed to-
wards widening the spread of solutions than larger populations, because the
dominance condition for parental replacement is likely to be relaxed, a higher
proportion of the time, in order to incorporate new global best-so-far objective
values.

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

x 10
4

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3
x 10

4

Profit in first knapsack

P
ro

fit
 in

 s
ec

on
d

kn
ap

sa
ck

Plots for 750 objects in 2 knapsacks

Dominance and global best
Dominance only
Global best only

Fig. 8. Results showing the effect of using one or other or both replacement criteria

7.3 Investigation of SEAMO’s Parental Replacement Strategy

Progress in SEAMO is due entirely to its replacement strategy. Recall from
Section 5 that an offspring will replace one or other of its parents if it is deemed
to be superior to that parent. Most replacements occur when an offspring dom-
inates one of its parents. However, in situations where a new global best value
is discovered for one of the positions in the solution vector, the dominance
condition is relaxed, to encourage a wider spread of approximate Pareto so-
lutions within the population. In this section I investigate the contribution of
each component in the replacement strategy with some experimental runs. In
the first run, both replacement components are present. In the second run,
parents are replaced only by dominating offspring and not when new global
best values are discovered (unless the offspring solution with the new global
best also dominates a parental solution). The third run shows the effect of
replacing parents only when new global best values are discovered.

The 750 object, 2 knapsack problem is used for the experiments, and the
population size set to 500. All three tests are run for 13504 generations. The
results are plotted in Figure 8. Clearly, using both the replacement strategies
together produces the best results by far. Replacing parents only by domi-
nating offspring appears to produce high quality solutions, but within a very

limited range. Replacing parents only with offspring that improve a global best
value at any position in the solution vector, produces very poor solutions, and
very few of them.

8 Implementing SEAMO to Solve Continuous Test
Problems

Fig. 9. Continuous multi-objective functions

Having completed some preliminary work testing SEAMO on multiple
knapsack problems, I then tried SEAMO on some continuous test functions,
published in [22]. The permutation representation and decoder used for the
knapsack problems is not suitable for continuous functions, so a different
scheme had to be devised.

The continuous functions and their parameters are summarized in Table
4. Each of the test problems in Table 4 is a minimization problem consist-
ing of two objectives and 100 variables. For SPH-2 and KUR large domains
([−103, 103]) were selected in [22] in order to test the algorithms’ ability to
locate the Pareto-optimal set in a large objective space.

The function SPH-m is a multi-objective generalization of the Sphere
Model, a symmetric unimodal function where the isosurfaces are given by hy-
perspheres. Only the two objective instance (SPH-2) is covered in the present
paper, although Zitzler et al [22] also included the three objective instance in
their experiments.

Table 4. Continuous test problems used in this study. The objective functions are
given by fj , 1 ≤ j ≤ m, where m denotes the number of objectives and n the number
of variables. The type of the objectives is given in the first column (minimization or
maximization).

n Domain Objective functions
Type

SPH-m (Schaffer 1985 [?]; Laumans, Rudolph, and Schwefel 2001, [12])

100 [−103, 103]n fj(x) =
∑

1≤i≤n,i̸=j
(xi)

2 + (xj − 1)2

min
1 ≤ j ≤ m,m = 2

ZDT6 (Zitzler, Deb and Thiele 2000, [20])

100 [0, 1]n f1(x) = 1− exp(−4x1)sin
6(6πx1)

min f2(x) = g(x)[1− (f1(x)/g(x))
2]

g(x) = 1 + 9.((
∑n

i=2
xi/(n− 1)))0.25

QV (Quagliarella and Vicini 1997, [17])

100 [−5, 5]n f1(x) = (1/n
∑n

i=1
(x2

i − 10 cos(2πxi) + 10))1/4

min
f2(x) = (1/n

∑n

i=1
((xi − 1.5)2 − 10 cos(2π(xi − 1.5)) + 10))1/4

KUR (Kursawe 1991, [11])

100 [−103, 103]n f1(x) =
∑n

i=1
(|xi|0.8 + 5. sin3(xi) + 3.5828)

min
f2(x) =

∑n−1

i=1
(1− exp

−0.2
√

x2
i
+x2

i+1)

ZDT6 is also unimodal and has a non-uniformly distributed objective
space, both orthogonal and lateral to the Pareto-optimal front. ZDT6 was
proposed in [22] to test the ability of the various algorithms to find a good
distribution of points even in this very difficult case.

The components of the function QV are two multi-modal functions, where
the main difficulty, apart from the multi-modality, is the extreme concave
Pareto-optimal front together with a diminishing density of solutions towards
the extreme points.

Kursawe’s function (KUR) finally has a multi-modal function in one com-
ponent and pair-wise interactions among the variables in the other component.
The Pareto-optimial front is not connected and has an isolated point as well
as concave and convex regions.

For all of the continuous functions the solutions were coded as real vec-
tors, of length 100, for SEAMO and uniform crossover [18] selected as the re-
combination operator. Uniform crossover was chosen because the lack of any
particular relationship between adjacent variables on the chromosome would
seem to reduce any potential advantage that could be obtained by the build-
ing blocks created using one or two point crossover (although experiments I
carried out later indicate that, in fact, one point crossover produces better
results on these continuous functions). For the mutation operator a simple

uniform mutation operator was tried initially, but this was found to be much
too disruptive, particularly when large objective spaces were used. For ZDT6
and KUR, for example, individual mutated variables could take any value in
the range [−103, 103], and this made convergence of the EA very difficult.
To overcome this problem, which is commonplace with real valued represen-
tations, a non-uniform mutation based on that described on page 111 of [13]
was chosen. The idea of non-uniform mutation is to gradually reduce the mag-
nitude of any change that the operator is allowed to make to the values of the
variables as the EA progresses. Non-uniform mutation causes the operator to
search the space uniformly initially and very locally at later stages. The non-
uniform mutation is defined as follows: if stv = ⟨v1, . . . , vm⟩ is a chromosome
in the population at time t, and the element vk is selected for this mutation
(domain of vk is [lk, uk]), the result is a vector st+1

v = ⟨v1, . . . , v′k, . . . , vm⟩,
with k ∈ {1, . . . , n}, and

v′k =

{
vk +∆(t, uk − vk) if a random digit is 0,
vk −∆(t, vk − lk) if a random digit is 1,

where the function ∆(t, y) returns a value in the range [0, y] such that the
probability of ∆(t, y) being close to 0 increases as t increases. The following
function has been used in the present study:

∆(t, y) = y.(1− rf(t))

where r is a random number from [0 . . . 1], t is the number of generations that
have elapsed so far. f(t) = kt is used for these experiments, where k is a
constant factor set to 0.999.

An important feature of the SEAMO algorithm is the deletion of dupli-
cates, designed to help maintain diversity and prevent premature convergence.
For the knapsack problem, and other combinatorial problems, where the objec-
tive functions can take on only limited number of discrete values, phenotypic
duplicates are easily identified as individuals with identical solution vectors.
With continuous functions, however, it is sensible to identify duplicates in a
rather more flexible manner, because exact duplicates are likely to be rare.
To this end, values for component objective functions xi and x′

i are deemed
to be equal if and only if xi − ϵ ≤ x′

i ≤ xi + ϵ, where ϵ is an error term, which
was set at 0.00001× xi for the purpose of these experiments.

9 Summary of Results for the Continuous Functions

Figures 10, 11, 12 and 13 compare the 2D graphical traces of SEAMO with
various state-of-the-art EAs on the four continuous problems, respectively
SPH-2, ZDT6, QV and KUR. SEAMO’s competitors in the 2D plots are
PESA, NGSA2, and SPEA2. Population sizes of 100 were used in each case

and the algorithms run for 10,000 generations. Each trace is a plot of the
non-dominated solutions extracted from the results of 30 replicated runs.

Note that all the function optimization problems used in this study are
minimization problems, unlike the multiple knapsack problem. Thus the al-
gorithms producing the lowest traces on these graphs perform best for the
continuous functions.

The 2D graphical representations indicate that SEAMO performs very
well in comparison with its competitors for three out of four of the continu-
ous functions, i.e. SPH-2, QV and KUR. Table 5 compares the evolutionary
algorithms in pairs using values for the C metric defined in [21]. The C metric
is measures the coverage of two sets of solution vectors. Let X ′, X ′′ ⊆ X be
two sets of solutions vectors. The function C maps the ordered pair (X ′, X ′′)
to the interval [0, 1]

C(X ′, X ′′) =
| {a′′ ∈ X ′′; ∃ a′ ∈ X ′ : a′ ≽ a′′} |

| X ′′ |
(1)

The value C(X ′, X ′′) = 1 means that all the points in X ′′ are dominated
by or equal to points in X ′, (i.e. all the points in X ′′ are weakly dominated by
points in X ′). The opposite, C(X ′, X ′′) = 0, represents the situation when
none of the points inX ′′ is weakly dominated byX ′. Note that both C(X ′, X ′′)
and C(X ′′, X ′) have to be considered, since C(X ′, X ′′) is not necessarily equal
to 1 − C(X ′′, X ′) (i.e. when many solutions inX ′ andX ′′ neither dominate nor
are they dominated by solutions in the alternative set). The C metric values
used in the table indicate superior coverage of the search space by SEAMO
for SPH-2, QV and KUR. Single runs of SEAMO on the continuous functions
took between 81 secs for SPH-2, and 412 secs for KUR, using a Pentium III
processor and 128 MB of memory.

Table 5. C metrics to compare SEAMO with PESA, NSGA2, and SPEA2. The non-
dominated solutions are collected from 30 results files for each algorithm, as before.
A population size of 100 is used and a total of 1,000,000 evaluations is carried out
for each run of each algorithm.

C(alg1,alg2) SPH-2 ZDT6 QV KUR

C(SEAMO, PESA) 99 % 0 % 94.3 % 54.9 %
C(PESA, SEAMO) 0 % 93.3 % 0.03 % 4.9 %
C(SEAMO, NSGA2) 99 % 0 % 63.0 % 66.3 %
C(NSGA2, SEAMO) 0 % 93.3 % 0.6 % 2.0 %
C(SEAMO, SPEA2) 99 % 0 % 58.2 % 70.4 %
C(SPEA2, SEAMO) 0 % 93.3 % 0.6 % 2.1 %

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5
1,000,000 evaluations for SPH−2

f1(x)

f2
(x

)

PESA
NSGA2
SPEA2
SEAMO

Fig. 10. Non-dominated solutions from 30 runs of PESA, NSGA2, SPEA2 and
SEAMO on SPH-2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1,000,000 evaluations for ZDT6

f1(x)

f2
(x

)

SPEA2
SEAMO

Fig. 11. Non-dominated solutions from 30 runs of SPEA2 and SEAMO on ZDT6

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.8

1

1.2

1.4

1.6

1.8

2

2.2
1,000,000 evaluations for QV

f1(x)

f2
(x

)

PESA
NSGA2
SPEA2
SEAMO

Fig. 12. Non-dominated solutions from 30 runs of PESA, NSGA2, SPEA2 and
SEAMO on QV

50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35
1,000,000 evaluations for KUR

f1(x)

f2
(x

)

PESA
NSGA2
SPEA2
SEAMO

Fig. 13. Non-dominated solutions from 30 runs of PESA, NSGA2, SPEA2 and
SEAMO on KUR

10 Conclusions

This chapter describes SEAMO, a simple evolutionary algorithm for multi-
objective optimization. SEAMO avoids most of the time consuming global
calculations typical of other multi-objective evolutionary techniques, using
a simple uniform selection strategy within a steady-state evolutionary algo-
rithm (EA) and a straightforward elitist mechanism for replacing popula-
tion members with their offspring. Throughout the genetic search, SEAMO’s
progress depends entirely on the replacement policy, and no global fitness cal-
culations, rankings, sub-populations, niches or auxiliary populations are re-
quired. SEAMO has produced some promising results for the multiple knap-
sack problem, particularly where three or more objectives (knapsacks) are
involved. Results are also competitive for several continuous benchmarks, and
SEAMO outperforms state-of-the-art Pareto-based EAs compared in [22] in
many cases. In addition to fast execution, the simplicity of the new algorithm
makes it relatively quick and easy to implement, reducing the development
time needed for prototyping and testing new multi-objective applications.
If required, more sophisticated Pareto-based evolutionary techniques can be
incorporated following an initial proof-of-concept. The main weakness iden-
tified is SEAMO’s current inability to ensure an even spread of Pareto so-
lutions when tackling problems such as ZDT6, where highly non-uniformly
distributed objective spaces are involved. Work is currently in progress to
address this weakness and generally improve the performance of SEAMO. It
remains a challenge is to implement improvements without forfeiting the es-
sential simplicity of the SEAMO approach, however. Additionally, new and
better multiple objective techniques are emerging all the time, providing an
increasingly difficult challenge for SEAMO. For example, the multiple objec-
tive genetic local search of Jaskiewicz [?] has produced some excellent results
on the multiple knapsack problem.

This chapter describes the new approach in detail, covering implementa-
tions for a combinatorial problem (the 0-1 multiple knapsack problem) and
for several continuous functions, and including full details of representations
and genetic operators.

Acknowledgements

I should like to thank my husband, Mark Mumford, for the cartoon illustra-
tions.

References

1. Cavicchio D J (1970) Adaptive Search Using Simulated Evolution, Ph.D. dis-
sertation, University of Michigan, Ann Arbor.

2. Corne D W, Knowles J D, and Oates M J (2000), The Pareto envelope-based
selection algorithm for multiobjective optimization. Parallel Problem Solving
from Nature – PPSN VI, Lecture Notes in Computer Science 1917, pp. 839–
848, Springer.

3. Deb K, Agrawal S, Pratap A, and Meyarivan T (2000), A fast elitist non-
dominated sorting genetic algorithm for mult-objective optimization: NSGA-II,
Parallel Problem Solving from Nature – PPSN VI, Lecture Notes in Computer
Science 1917, pp. 849–858, Springer.

4. Davis L (1985), Applying adaptive algorithms to epistatic domains, Proceedings
of the Joint International Conference on Artificial Intelligence, pp. 162–164.

5. Davis L (1991), Order-based genetic algorithms and the graph coloring problem,
Handbook of Genetic Algorithms pp. 72–90, Van Nostrand Reinhold, New York.

6. Fonseca C M, and Fleming P J (1993), Genetic algorithms for multiobjective
optimization: Formulation, discussion and generalization, Proceedings of the
Fifth International Conference on Genetic Algorithms, pp. 416–423, Morgan
Kaufmann.

7. Goldberg D E, and Lingle R (1985), Alleles, loci and the TSP, Proceedings
of an International Conference on Genetic Algorithms and Their Applications,
Pittsburgh, PA, pp. 154–159.

8. Goldberg D E (1989), Genetic Algorithms in Search, Optimization, and Ma-
chine Learning, Addison-Wesley.

9. Hajela P, and Lin C -Y (1992), Genetic search strategies in multicriterion opti-
mal design, Structural Optimization, Volume 4, pp. 99–107, New York: Springer.

10. Horn J, Nafpliotis N, and Goldberg D E (1994), A niched pareto genetic algo-
rithm for multiobjective optimization, Proceedings of the First IEEE Confer-
ence on Evolutionary Computation, IEEE World Congress on Computational
Intelligence, Volume 1, pp. 82–87, IEEE Press.

11. Kursawe F (1991), A variant of evolution strategies for vector optimization. In
H. -P. Schewefel and R. Männer (Eds), Parallel Problem Solving from Nature
Berlin, pp 193–197, Springer.

12. Laumanns M, Rudolph G, and Schewefel H -P (2001), Mutation control and
convergence in evolutionary multi-objective optimization. Proceedings of the 7th
International Mendel Conference on soft Computing (MENDEL 2001), Brno,
Czech Republic.

13. Michalewicz Z (1996), Genetic Algorithms + Data Structures = Evolutionary
Programs, Third, revised and extended edition, Springer.

14. Mühlenbein H, Gorges-schleuter M and Krämer O (1988), Evolution Algorithms
in Combinatorial Optimization, Parallel Computing, Volume 7, pp. 65–85.

15. Mumford C L (Valenzuela) (2003), Comparing representations and recombi-
nation operators for the multi-objective 0/1 knapsack problem, Congress on
Evolutionary Computation (CEC), Canberra, Australia, 8–12th December 2003
(to appear).

16. Oliver I M, Smith D J, and Holland J R C (1987), A study of permutation
crossover operators on the traveling salesman problem, Genetic Algorithms and
their Applications:Proceedings of the Second International Conference on Ge-
netic Algorithms, pp. 224–230.

17. Quagliarella D, and Vicini A (1997), Coupling genetic algorithms and gradient
based optimization techniques. In D. Quagliarella, J. Périaux, C Poloni, and G.
Winter (Eds) Genetic Algorithms and Evolution Strategy in Engineering and

Computer Science – Recent advances and industrial applications, pp 289–309,
Wiley, Chichester.

18. Syswereda G (1989), Uniform crossover in genetic algorithms, Genetic Algo-
rithms and their Applications:Proceedings of the Third International Conference
on Genetic Algorithms, pp. 2–9.

19. Valenzuela C L (2002), A simple evolutionary algorithm for multi-objective
optimization (SEAMO), Congress on Evolutionary Computation (CEC), Hon-
olulu, Hawaii, 12–17th May 2002, pp 717–722.

20. Zitzler E, Deb K, and Thiel L (2000), Comparison of multiobjective evolution-
ary algorithms: Empirical results, Evolutionary Computation 8(2), pp 173–195.

21. Zitzler E, and Thiele L (1999), Multiobjective evolutionary algorithms: a com-
parative case study and the strength pareto approach, IEEE Transactions on
Evolutionary Computation, 3(4), pp. 257–271.

22. Zitzler E, Laumanns M, and Thiele L (2001), SPEA2: Improving the strength
Pareto evolutionary algorithm, TIK-Report 103, Department of Electrical En-
gineering, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland,
{zitzler, laumanns, thiele}@tik.ee.ethz.ch.

