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Abstract- The multiple knapsack problem (MKP) is a characterized by a set of alternative solutions, each of which
popular test-bed for researchers developing new Pareto- must be considered equivalent in the absence of further in-
based multi-objective evolutionary algorithms. This pa- formation regarding the relative importance of each of the
per explores a range of different representations and op- objectives in the solution vectors. Such a solution set is
erators for the MKP which have been adapted from the called thePareto-optimal setand the objective values in the
single objective case. Results indicate that order-based set are located at theareto front Pareto-optimal solutions
approaches are superior to binary representations for arenon-dominated solutioria the sense that it is not possi-

the problem instances considered here. ble to improve the value of any one of the objectives, in such
a solution, without simultaneously degrading the quality of
1 Introduction one or more of the other objectives in the vector.

The multi-objective, or multiple knapsack problem

The 0/1 knapsack problem involves selecting from amon@IKP) is a generalization of the simple 0/1 knapsack prob-
various items those that will be most profitable, given théem. The 0/1 MKP involvesn knapsacks of capacities
knapsack has limited capacity. Knapsack problems have, co, cs, ..., ¢,,. Every selected object must be placed in
been extensively studied and provide a useful test-bed what m knapsacks, although neither the weight of an object
developing new optimization techniques. Their simple; nor its profit is fixed, and will probably have different
structure, and close relationship with many real industrialalues in each knapsack. The present study is restricted to
problems make them an ideal choice, and they have cqroblems involving two knapsacks.
tainly proven to be very popular with researchers in the To avoid confusion, it is worth mentioning a related
field of evolutionary computation. The 0/1 knapsack probproblem which is also known as the multiple knapsack prob-
lem, in its simplest form, consists of a set of obje€ts= lem. In this version, although each item can have a different
{01, 09,03, ..., 0, } and a knapsack of capacify. Each ob- weightin each knapsack, it always has the same profit. This
jecto,; has an associated prgfitand weightw;. The objec- is not a multi-objective problem, although it has multiple
tive is to find a subse$ C O such that the weighted sum knapsacks and is thus multi-constrained [7, 13].
over the objects ir$ does not exceed the knapsack capacity For the purposes of the present study, the test problems
and yields a maximum profit. are taken from Zitzler and Thiele [19]:

A number of representations and genetic operators have  http://www.tik.ee.ethz.ch/zitzler/testdata.html.
been developed over the years for the simple 0/1 knapsatkese problems were randomly generated with uncorrelated
problem [4, 5, 9, 10], and comparative studies indicate thairofits and weights, and the knapsack capacities were set to
some representations give much better results than othenglf the total weight, corresponding to each knapsack, of all
although performance does depend, to some extent, on chidne items. Problem sizes vary between 100 and 750 items.
acteristics of the chosen data sets. Researchers develBpseto optimal solutions for three of the problems (used in
ing evolutionary algorithms (EAs) for multi-objective op- some 2D plots) were also obtained from the above web site.
timization problems, however, have favored one particular
approach over all others when solving 0/1 multiple knap2 Representations and Operators for the 0/1
sack problem - the binary (or bit string) representation with
greedy repair [19] (described later). This paper concen- Knapsack Problem
trates on extending the main representations and operat@gpresentations and operators used for the single objective
found useful for the single objective problem to the mU|ti-knapsack prob|em are eas”y adapted for knapsack prob-
objective case and comparing their performance. lems with two or more objectives. One of the major diffi-

Multi-objective optimization problems involve the si- culties with single and multi-objective versions alike, how-
multaneous optimization of several (often competing) obever, is handling the capacity constraint. Section 2.1 sum-

jectives, and usually there is no single optimal solutionmarizes the various representations and operators that have
Instead, multi-objective optimization problems tend to be



been used in the single objective case, and Section 2.2 thessults for these techniques on the single objective problem,
discusses how some of these approaches have been adafied0].

for the multiple objective case in the present study. Sev-

eral methods for handling capacity constraints are exploreg.2.1 The Binary Representation with a Penalty Func-

All experiments with the various representations and ge-  tion

netic operators for the multi-objective case take place within

the framework of the SEAMO algorithm [17], which is de-A binary represent_ation consi_stfs of a \_/ectcx, N
scribed in Section 4 (z1, 2,23, ..., Tn), With z; = 1 if item 4 is included in

the knapsack(s), and; = 0, otherwise. Generating bits at
random or using EAs, can easily produce violated capacity
constraints, so that knapsacks over-fill. The simplest way to
Robert Hinterding [5] provides the following broad classi-deal with violated constraints is to apply a penalty function.
fication of representational techniques for the 0/1 knapsack Michalewicz and Arabus [9, 10] and Olsen [14] report
problem: good results when penalties are used with binary represen-
e Binary representation — where biti is set if the;?”  tations of certain 0/1 knapsack problems in the single ob-
item from the list of items is included in the knapsackjective case. Extending the penalty approach to the MKP
e Numeric representation— here the genes are num-requires th"’_‘t penalties are are appliedrta.rlapsacks,' any
bers instead of bits, and a decoder is used to produgé all of which may be over-filled. Following some initial
an ordering of the items. expenmentau_on, the penalty function choser_1 for the_present
i i study was derived from the linear model of Michalewicz and
¢ Symbolic representation— the genes represent the 5 oy is | this model the penalty function grows in a linear
items themselves in a list. The list can either contaig,qpion in proportion to the extent of the constraint vio-
a subset of the items, or may consist of a permutatioqio ~ The alternative schemes proposed by Michalewicz
of all the items. In the !atter case a heuristic is used Qnd Arabas, involving logarithmic or quadratic growth, did
select items from the list to fill the knapsack. not work very well when adapted for the multi-objective in-
When the binary representation is used, the capacity Cogrances explored in the present paper. Although the previ-
straint can be handled either by penalizing solutions whichs authors found penalty functions based on logarithmic
violate the constraint, [5, 9, 10, 14] or by using a heurisyrowth produced the best results, logarithmic growth pro-
tic mechanism to correct any violations, [5, 9, 10]. Nugyced penalties that were far too small for the instances
meric representations [5, 9, 10] and symbolic representgf the MKP explored here, and resulting populations con-
tions [4, 5], on the other hand, employ heuristic decoders tgsteqd entirely of illegal solutions with violated constraints.
ensure that only legal knapsacks are produced. Quadratic growth, on the other hand, produced penalties

that were too large and overwhelmed the objective func-
2.2 Representations for the Multiple Objective Problem  tions. The linear model adopted is defined below:

2.1 Representations for the Single Objective Problem

For the MKP most researchers to date (for example, [6, 8, Penj(x) = p;.(30, ziwi; — Cj)
19, 20]) have favored the binary representation and a greedy n
repair heuristic adapted from [9] by Zitzler and Thiele [19]. evalj(x) = 32, @i-pi; — Pen(z;)

The present paper concentrates on comparing the perfWherep@nj(x) is the penalty applied to knapsagkp; =
mance of an evolutionary algorithm using this most populafaz;—; ,{p;;/wi;}, C; is the capacity of knapsagk and
approach to the performance of the same EA using othepal,(x) is the adjusted value of the total profit in knapsack
approaches, including the use of penalty functions. Accord-

ing to Michalewicz and Arabas [9, 10] algorithms usingNote: Penalty functions are applied only to knapsacks
a penalty function with the binary representation perfornyhich are over capacity.

well on some single objective problems, although they are

reported to perform exceptionally badly on problems wittp 2 2 The Binary Representation with Repair
restricted knapsack capacitiye. only a few of the items can

be packed. In addition to exploring a number of alternative@S an alternative to penalties, heuristics may be used to deal
based on the binary representation, the present study al¥ith capacity constraints. These will either form part of a
includes an order-based representation introduced in [4] f§coder, or be incorporated into a repair mechanism. A de-
the single objective problem and adapted by the present &pder ensures that only legal solutions are generated, using
thor for the 0/1 MKP [17]. Numeric representations for the? Step-by-step procedure to add items one at a time to ini-
0/1 MKP are not covered, however, due to space limitation&ally empty knapsacks, stopping before any constraints are
In any case, previous researchers have reported rather p¥ifated. A repair mechanism, on the other hand, begins



with knapsacks already packed with all the items that haw&ult in a constraint violation, that item was skipped over and
their bits set, and sequentially removes items from the sthe next item tried. Adapting a decoder based on the first
lution until all constraints are satisfied, and no knapsack ## algorithm for the multiple knapsack problem simply re-
over-filled. Hinterding [5] has experimented with a decodequires that the constraints are tested for all the knapsacks
based on a first fit algorithm, for the single objective casesach time an item is considered for inclusion in the solu-
but repair methods based on the work of Michalewicz antion. The present study explores two decoders: a decoder
Arabas would seem to be far more popular. For the MKBased on the first fit heuristic, as used by Hinterding, and
the repair method adapted by Zitzler and Thiele [19] is thene based on the next fit heuristic, as used previously by the
approach favored by researchers. This repair algorithm redrrent author [17]. The next fit heuristic is very similar to
moves items, one at a time, from the solution until all the cahe first fit heuristic: it selects items in sequence from the
pacity constraints are satisfied. The order in which the itenpermutation list. It differs from the first fit heuristic only
are deleted is determined by the maximum profit/weight rawhen it encounters an item that cannot be accommodated,
tio per item, with the item which is least profitable, per unitat which stage the next fit heuristic halts, rather than explore
weight, being the first to be removed. Zitzler and Thielghe list any further.
use chromosomes repaired in this way to ensure that only Cycle crossover, CX, [12] is used as the recombination
legal solutions are produced. They do not write the repairezperator for the order based experiments, and the muta-
chromosomes back into the population, however. tion operator swaps two arbitrarily selected objects within
Michalewicz and Arabas experimented by writing baclka single permutation list. CX was selected as the recom-
to the population various proportions (from 0 % to 100 %bination operator because it produced better results than
of the repaired chromosomes in the single objective casether permutation crossovers in some test runs (see Fig-
and found that whether or not the chromosomes were rare 1). CX transmits absolute positions of objects in the
placed made no significant difference to the result. Expermutation lists from the parents to the offspring. Nei-
periments carried out by the present author on some multher edge based nor order based operators would seem to
objective problems confirm these findings, although the rdse appropriate here, for a set membership problem such
sults are omitted due to space limitations. None of the ra&s this. Other recombination operators tried were the fol-
sults presented in this paper rely on the replacement of rkowing: partially matched crossover (PMX) [3], a version
paired chromosomes into the population. [11] of order crossover [1] that preserves absolute positions
Two variations of repair have been coded for the presebgtter than the original, and uniform order based crossover
study, both depend on sequential removal of objects with t{eOBX) [2].
least profitable, per unit weight, being deleted first. How-
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ever, the order in which the items are deleted is slightly dif xw Plots for 750 objects in 2 knapsacks

3 T T T
ferent. The two methods are: o, xoow
e the mechanism due to Zitzler and Thiele where item ® @0 oapgy X Gosx
are deleted according to theiraximunrprofit/weight | P ooe 1
ratio, %j: D@m;g*
e and an alternative mechanism where items are deletis *®/ % )
according to theinverageprofit/weight ratio. j e
One-point crossover and point mutation were used for a§ 27t Ok ]
experiments using the binary representation, for penalty is >
well as repair methods. e %
26 %o B
2.2.3 The Order-Based Representation %@@
251 —
In the order-based representation the genes represent Qb%
items themselves and the chromosomes consist of orderir
of all the items. Because every item is included on eac %4 25 26 27 26 29 3

Profit in first knapsack 4

chromosome, a decoder is required to produce legal solu-

tions. Hinterding [4] used a first fit heuristic for his order- _. ) . . .
o : S -Figure 1: Non-dominated solutions for different crossovers
based representation in the single objective case. Startin

with an empty knapsack, he selected items in sequence from . . .
Pty knap q The comparative runs shown in Figure 1 support the

a permutation list, starting with the first item on the Iist,Choice of CX as the recombination operator. This fiaure
then working through to the second, then the third and Sgom ares the performance of the foﬂr abo;/e menti%ned
on. Whenever inclusion of an item from the list would re- P P



order-based operators on Zitzler and Thiele’s 750 object,\#here eachp; is formed by the intersection of the follow-
knapsack problem. Populations of 250 were used for thieg hyperplanes arising out af;, along with the axes: for
test runs, and the EA run for 15,000 generations. Clearlyach axis in the objective space, there exists a hyperplane
the plot using CX gives a much more diverse set of solyerpendicular to the axis and passing through the point
tions than any of the other plots, although the UOBX soluf f1 (z;), fa(x:), ..., fr(z:)). In the two dimensional case,
tions are of slightly better quality. The quality of the CXeachp; represents a rectangle defined by the poift9)
solutions, relative to UOBX, was found to improve whenand (f1(x;), f2(z;)). The size of the dominated space is

the population size was increased, however. guoted as a percentage of the reference volume between the
origin and an utopia point, defined as the profit sums of all
3 Performance Measures Used items in each objective in [20]. Th& metric can be used

only for maximization problems.
Presenting and analyzing the results of multi-objective opti-
mization is a challenge. Algorithms that solve single ob4 The SEAMO Algorithm
jective problems produce single answers that are easy to
present graphically and lend themselves readily to statiséx Simple Evolutionary Algorithm for Multi-objective Opti-
cal analysis. Multi-objective techniques, on the other handhization (SEAMO) [17] was implemented and used for all
usually produce a large set of answers that are far more difie experiments reported in this paper. SEAMO is an un-
ficult to handle, and there is no general agreement amongstmplicated, steady-state algorithm which relies on a few
researchers on which performance measures are best ¥ery basic techniques. In an earlier study [17] some ex-
such problems. In the present study theandS metrics cellent results were obtained with SEAMO for the multi-
of Zitzler and Thiele[19] are used, together with some 2@bjective 0/1 knapsack problem.

plots. TheC andS metrics are described below. Using SEAMO as the framework for the experiments in
the current study, it is possible to concentrate on the repre-
3.1 TheC Metric sentational issues, without the need to fine-tune very many

L . parameters. For example, there is no auxiliary population

This is a measure of the coverage of two sets of SOIU“QH SEAMO and selection is uniform and not based on the
/ 1 H

\_/rithf)rS' Ifertfc( , X ghX bg IW% set;{ef}s{oﬁlutmnhs v_ectors. values of (arbitrary) fitness functions. Crossover is applied

€ functionC maps the ordered pai”, X") to the inter- at 100 % and mutation is always exactly one mutation per

val [0, 1] - e, individual (these rates of crossover and mutation rate have
(X', X")Y=|{a"€e X"";3a’€ X":a'"> a"}| .
X7| produced good and reliable results for the present author,

The valueC(X’, X") = 1 means that all the points in over a number of different applications, for example see
X" are dominated by or equal to points i, (i.e. all the [15, 16, 18]). Thus the only parameters we need be con-
points in X" areweakly dominatedy points inX’). The cerned with are population sizes and stopping criteria. The
opposite,C(X’, X"”) = 0, represents the situation whenSimple Evolutionary Algorithm for Multi-objective Opti-
none of the points id{” is weakly dominated byX’. Note  mization (SEAMO), is outlined in Figure 2.
that bothC(X’, X”") andC(X"”, X') have to be considered,  The algorithm sequentially selects every individual in the
sinceC(X’, X") is not necessarily equal to— C(X”, X’)  population to serve as the first parent once, pairing it with
(i.e. when many solutions iX’ and X" neither dominate a second parent that is selected at random (uniformly). A
nor are they dominated by solutions in the alternative sgingle crossover is then applied that produces one offspring,
set). and this is followed by a single mutation.

The C metric can be used for both maximization and The replacement of a parent by its offspring is consid-
minimization problems, and can be used to tell which of tw@red whenever an offspring is deemed to be superior to that
algorithms produces the better outcomes. It does not, howarent. The offspring is compared, first of all, to the first
ever, give any indication as to how much better these ouparent. If the offspring is considered to be better than the
comes are. Results are quoted as percentages in the presigsttparent, it replaces it in the population. If this is not the

paper. case, then the same test is made between the offspring and
the second parent. For this purpose superiority is normally
3.2 TheS Metric judged as a dominance relationship, i.e. if an offspring

. . . dominates its parent, it may replace it in the population.
Thisis a measure/of the size of the dominated space, or hy replacement of population members by dominating off-
pervolume. LetX’ = (z1,29,...,2;) C X be a set

) . . spring ensures that the solution vectors move closer to the
of [ solution vectors. The functio§(X’) gives the vol- pring

me enclosed by the union of th vt Pareto front as the search progresses. To additionally ensure
ume enclosed by the union ot In€ polylypeaspz, ---.pi. - 4y improved range of coverage, the dominance condition



Bpggoﬁ]ed“reSEAMo sults are averaged to obtain representatieadS metrics,

GenerateV random individualg IV is the population size and tests for statistical significance (analysis of variance and
Evaluate the objective vector for each population member and store trtests) carried out on the ravandS values, where prac-
Record the globabest-so-fafor each objective function in the vector tical. A goodness of fit tesﬂiﬂietest from MATLAB sta-

Repeat ot ;

For each member of the population tistical toolqu) is used to ensgre t.hat th(_a raw \{alqgs are a
This individual becomes the first parent reasonable fit to a normal distribution, prior to significance
Select a second parent at random testing.

Apply crossover to produce offspring The 2D plots are obtained by combining all 30 results

Apply a single mutation to the offspring . . . .
Evaluate the objective vector produced by the offspring files, for each experiment, and extracting the non-dominated

If any element of the offspring’s objective vector improves on aSolutions from the combined results.
globalbest-so-far
Then the offspring replaces one of the parents

(or occasionally another individual) 6 Results
andbest-so-faiis updated . )
Else If offspring dominates one of the parents Tables 1 and 2 summarize the dominated space and cover-
Thenitreplacesit . o age, respectively, produced by the various representations
Endfor (unless itis a duplicate, then itis deleted) 5 gperators. In the tables RAX’ and ‘R _AVE’ denote

Until stopping condition satisfied the algorithms that use the binary representation and a repair

Print all non-dominated solutions in the final population mechanism. ‘MAX’ is the scheme based on the maximum

End profit/weight ratio, and ‘AVE’ is the scheme that uses the

average profit/weight ratio. ‘OBFF’ stands for the order-

based representation with the first fit decoder, and ‘OBNF’
stands for the order-based representation with the next fit’
decoder. The results of the experiments with the penalty
function are recorded in the rows labelled ‘PEN’. The test
problems km.y denote knapsack problems witlitems and

is relaxed whenever a new global best value is discovergabjectives (or knapsacks).

for any of the individual components of the solution vec-

Figure 2: Algorithm 1 A Simple Evolutionary Algorithm
for Multi-objective Optimization (SEAMO)

tor (i.e. for improved maximum profits in individual knap- | Algorithm || kn100.2 | kn250.2| kn500.2 | kn750.2
sacks). Care has to be taken, however, to ensure that globadR_MAX 55.28 50.54 49.52 48.64
best values for other components (i.e. maximum profits in R_.AVE 55.14 50.44 49.52 48.82
other knapsacks) are not lost when a dominance conditionOBFF 56.03 52.10 51.62 51.14
is relaxed. Ensuring elitism (i.e. that the best solutions are OBNF 55.88 51.82 51.42 51.15
not lost) at this level is straightforward if multi-objective | PEN 54.08 49.14 48.53 47.68

optimization is restricted to two components in the solution

vector. Whenever an offspring produces an improved global Table 1: Average percentage of dominated spate ,

best for either of the components, if the global best for the

second component happens to occur in one of the parents,Tab|e 1 indicates that order-based techniques tend to

the offspring will simply replace the other parent. produce better results that dominate more space than solu-
Before a final decision is made on replacement, a s&ons produced using binary string representations. Also the

lution vector for a dominating offspring will be comparedorder-based algorithm with the first fit decoder appears to

with all the solution vectors in the current population. Ifperform marginally better than the version that uses the next

the offspring’s solution vector is duplicated elsewhere in thét decoder. Repair mechanisms appear to do better than

population, the offspring dies and does not replace its papenalty functions, but not as well as the order-based algo-
ent. rithms. The repair heuristic based on average profit/weight

ratios gives slightly better results than the one based on
maximum profit/weght ratios.

Separate one-way analysis of variance testsoyal
For most of the experiments populations of 250 are useiom MATLAB) of the S values of individual runs for
regardless of the problems size, and the EAs are each rkil100.2, kn250.2, kn500.2 and kn750.2, demonstrate the
for 5,000 generations. Long runs are used to ensure cofifferences in performances observed in Table 1 to be highly
vergence, although good results can be obtained by runnifignificant at the 0.0001 level.
for a much shorter time. Each experiment consists of 30 Table 2 shows the coverage of various combinations of
replicate runs, initialized with different random seeds. RePairs of solutions sets, averaged over 30 replicate runs. Cov-

5 Experimental Method



_ CoveraggA = B) based approach or a binary string with repair. Order-based
Algorithm Test problems methods produce better values 8y and thus would ap-
A B kn100.2 [ kn250.2 | kn500.2 | kn750.2 : .
VA [ RAVE =36 ™ =2 e pear to have a better spread of points. When covefage
) OBEE 46.1 5.6 15.6 29.2 examined though, it would appear that the order-based ap-
OBNF 54.8 14.1 28.2 35.9 proaches are not so good when faced with the larger prob-
PEN 65.6 52.8 84.9 79.5 lems, such as kn500.2 and kn750.2.
RAVE | RMAX 45.6 79.9 81.2 68.8 Figure 3 gives a pictorial summary of the results pro-
OBFF 306 334 40.0 89.4 duced by three of the approaches: the binary string repre-
OBNF 419 | 487 | 466 | 432 Dy thrt ppro: - N y string rep
PEN 49.1 89.6 91.1 95.4 sentations with penalty function, the binary string represen-
OBFEF R.MAX 73.2 77.9 290 35 tation with repair based on the average profit/weight ratios,
R_AVE 75.1 30.4 5.6 0.3 and the order-based representation with the first fit decoder.
OBNF 719 62.2 658 62.6 For each algorithm all 30 results files have been combined
PEN 76.4 88.1 85.0 49.9 : .
and the non-dominated vectors extracted. Figure 3 clearly
OBNF | RIMAX 58.1 59.1 10.8 12 indi hat althouah the order-based h brod
R AVE 629 112 14 01 indicates that, although the order-based approach produces
OBFF 48.9 14.7 13.2 15.5 a much better spread than the other algorithms, it is strug-
PEN 60.6 75.8 67.9 18.7 gling to match the solution quality of binary approach with
PEN R-MAX 50.8 27.6 13 17 repair on the larger problems. One could speculate that a
gé*;’FE gg'g é‘é 2; (7)'3 larger population may be needed to better exploit a larger
OBNF 45.5 46 53 17.3 spread of approximated Pareto points.
To test the hypothesis that larger populations may be
Table 2: Average values for Coveragé > B) required if order-based approaches are to deal effectively

with larger problems, some extra experiments were per-

formed. Figure 4 summarizes the results for sets of 30 repli-
erage(A ~ B) shows the proportion of points produced bycate runs using populations of 500 and 1000 for kn500.2
algorithm B that are weakly dominated by points producegyng kn750.2, respectively. Clearly the order-based results
by algorithmA. Each of the 30 results files obtained by runow look much better than the results using the binary
ning algorithmA is paired with exactly one of the results string and repair. The coverage results also favor the order-
files generated by algorithii, and the coveragéA = B)  pased approach over the binary string approach: for kn500.2
and(B = A), evaluated for each of the 30 pairs of files. ThECoverage(OBFF = R_AVE) = 40.0 and Coverage
table records the averages of these values. (Note: statisti@pjﬁAVE > OBFF) = 24.9, for kn750.2 Coverage
significance tests have not been attempted for Coverage@prF » R_AVE) = 87.2 and CoveragéR_AVE =
this stage, because of the large quantity of correlated datp F) = 2.8. Student t-teststestfrom MATLAB) on
pairs involved. This issue is addressed, however, to SOMge distribution of
extent at the end of this section, when tests are carried MBFF = R_AVE) — (R_AVE = OBFF) bear this out

to compare just two instead of five approaches.) by showing that the mean of this distribution differs signifi-
From Table 2 the repair mechanism that uses the avefantly from zero at the 0.001 level.

age profit/weight ratio produces much better results than the
one that uses the maximum profit/weight ratio, exceptin t .
case of the smallest problems, kn100.2. For the order—ba:chcmClUSIOn and Future work
representations the first fit _decoder would appear to Worlﬁsing a simple Pareto-based evolutionary algorithm, this
much better than the next fit decoder. The penalty methqghper explores various representations and recombination
performs worst of all. . operators for the 0/1 multiple knapsack problem. The ap-
In general, theS andC results appear to reinforce eachprgaches tested are adapted from the single objective ver-
other. Both metrics indicate that the repair method based @y of the problem, and cover binary strings and order-
the average profit/weight ratio is better than the one basg@sed representations as well as various techniques for deal-
on the maximum profit/weight ratio, and also suggest thq,t]g with capacity constraints.
when an order-based representation is used, a decoder USThe findings generally favor order-based approaches, us-
ing a flrst fit heuristic is prefe_rable to a decoder based ONiAg cycle crossover, over binary string representations, al-
next fit decoderS andC metrics show that repair methodsoygh binary string techniques with repair do rather better
and dgcoders work better than the penalty function in thesgan those that use a penalty function. The order-based ap-
experiments. _ proaches appear to converge more slowly and generate a
~ When the results are examined more closely, however,{{re widely spread set of solutions than binary string rep-
is not easy to determine whether it is better to use an ordggsentations are able to produce, although an adequate size
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Figure 4: Comparing different approaches using larger populations



of population is essential, for those solutions to be of really[8] J. D. Knowles and D. W. Corne, M-PAES: a memetic algo-
high quality. Binary string methods can produce a narrow
set of reasonably high quality solutions fairly quickly, even

when a small population is used. They seem incapable of

producing much in the way of improvement, however, re-

gardless of how large the population, or how long the run
time. There are indications that order-based approaches
may also produce poorly spread results, depending on the
choice of genetic operators. Sample runs suggest that cy-
cle crossover works better than other order-based recompi:
nation operators, at least in conjunction with the SEAMO
algorithm.

Future work will concentrate on testing the various ap{11]

proaches on a wider range of knapsack problems, with
more objectives and more restricted capacities, for example.

Other plans include the enhancement of the repair heuris-
tics, along the lines suggested by Jaszkiewicz in [6] - aftée

taking items out of an overfull knapsack he suggested trying
to put some small ones back. It would also be very inter-
esting to see how the various representations and operators

explored here would perform on the MKP if multi-objective
EAs other than SEAMO are tried. [
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