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Abstract- This paper compares the performance of three
evolutionary multi-objective algorithms on the multi-
objective knapsack problem. The three algorithms are
SPEA2 (strength Pareto evolutionary algorithm, ver-
sion 2), MOGLS (multi objective genetic local search)
and SEAMO2 (simple evolutionary algorithm for multi-
objective optimization, version 2). For each algorithm,
we try two representations: bit-string and order-based.
Our results suggest that a bit-string representation
works best for MOGLS, but that SPEA2 and SEAMO2
perform better with an order-based approach. Although
MOGLS outperforms the other algorithms in terms of
solution quality, SEAMO2 runs much faster than its
competitors and produces results of a similar standard
to SPEA2.

1 Introduction

The multi-objective knapsack problem (MKP) is a popu-
lar test-bed with researchers developing evolutionary multi-
objective algorithms (EMOs). The present paper com-
pares the performance of three EMOs on some large in-
stances of this problem, trying two different representa-
tions on each EMO. The EMOs chosen for this study are
SPEA2 (strength Pareto evolutionary algorithm, version 2)
[17], MOGLS (multi-objective genetic local search) [5]
and SEAMO2 (simple evolutionary algorithm for multi-
objective optimization, version 2) [13]. The study builds on
earlier work in which Mumford [12] used the SEAMO algo-
rithm [14, 16] (the precursor of SEAMO2) as a framework
to explore a number of different representations and oper-
ators for the 0-1 multi-objective knapsack problem. The
approaches tested by Mumford on the SEAMO framework,
covered bit-string and order-based representations, with var-
ious penalty functions, repair mechanisms and decoders, all
adapted from the single objective case [3, 4, 10, 11]. Re-
sults published in [12] favor an order-based approach with a
first fit decoder over the bit-string representations. Notwith-
standing the apparent success of the order-based approach
in this particular study, the favorite method of representa-
tion for the MKP is a bit-string chromosome with a greedy
repair mechanism [5, 8, 17, 18]. However, the implications
drawn from the comparative study must remain tentative,
given the experiments were limited to the SEAMO algo-
rithm. Bit-string representations may indeed produce better
results for other EMOs.

The present study takes the most promising approaches

established for SEAMO [12], and tries them on the three
above mentioned EMOs. In addition, our paper assesses the
relative merits of the EMOs in terms of solution quality and
run time.

The remainder of the paper is organized as follows. Sec-
tions 2 to 5 cover the essential background to our study,
including the MKP and an outline of the representations,
operators and algorithms. In Section 6 we describe our ex-
perimental method, and in Section 7 we present our results.
Finally, we summarize the paper and suggest future work in
Section 8.

2 The 0-1 Multi-Objective Knapsack Problem

The 0-1 multi-objective knapsack problem (MKP) is a gen-
eralization of the 0-1 simple knapsack problem, and is a
well known member of the NP-hard class of problems.
In the simple knapsack problem, a set of objects, O =
{o1, o2, o3, ..., on}, and a knapsack of capacity C are given.
Each object, oi, has an associated profit pi and weight wi.
The objective is to find a subset S ⊆ O such that the weight
sum over the objects in S does not exceed the knapsack ca-
pacity and yields a maximum profit. The 0-1 MKP involves
m knapsacks of capacities c1, c2, c3, ..., cm. Every selected
object must be placed in all m knapsacks simultaneously, al-
though neither the weight of an object nor its profit is fixed,
and will probably have different values in each knapsack.
The present study covers problems with between two and
four objectives (i.e. knapsacks).

3 Representations for the Multiple Objective
Problem

For our experiments we have selected the two best perform-
ing approaches from [12]: a bit-string representation with
greedy repair [18], and an order-based representation with a
first-fit decoder [12]. More details of these approaches are
given below.

3.1 The Bit-String Representation with Greedy Repair

For the bit-string representation, all n objects of a given
instance of the MKP are fixed in an arbitrary sequence,
[o1, o2, . . . , on], and each object, oi, is mapped to bit i of
an n bit chromosome. Bit i is set if and only if the ith ob-
ject from the list is included in the knapsack, otherwise bit
i = 0. Thus, for example, a bit pattern (0 1 1 0 1 0) for a



six object problem would mean that objects 2, 3 and 5 are
packed.

Unfortunately, the act of randomly assigning bits to
objects, cannot guarantee a feasible solution, and over-
full knapsacks are produced when too many bits are set.
Processing and storing large numbers of infeasible solutions
can seriously reduce the effectiveness of an EA. The most
popular method of dealing with this problem in the MKP is
to use a greedy repair mechanism.

Initially, a greedy repair routine is presented with knap-
sacks packed with all the objects that have their bits set. Re-
pair proceeds by the sequential removal of objects from the
knapsacks, until all the capacity constraints are satisfied. In
the repair method of Zitzler and Thiele [18], used in SPEA2,
the order in which the items are removed is determined by
the maximum profit/weight ratio per object (taken over all
the knapsacks), with the object which is least profitable, per
unit weight, being the first to be removed. The repair mech-
anism of [12] used in SEAMO2 is similar to this but here
the removal of objects from the knapsacks is sequenced on
average profit to weight ratio taken over all the knapsacks.
Our implementations of SPEA2 and SEAMO2 do not write
back the repaired chromosomes into the population.

The repair mechanism for MOGLS, although similar to
the approach described for SPEA2 and SEAMO2, takes ac-
count of the weighted scalarized functions that MOGLS
uses to fuel the local search phase of the algorithm, [5].
In this case the replacement of repaired chromosomes into
the population forms a constituent part of the algorithm.

One-point crossover and point mutation (i.e. bit flips)
are used for all our bit-string experiments.

3.2 The Order-Based Representation

In the order-based representation the genes represent the ob-
jects themselves and the chromosomes consist of orderings
of all the objects. Because every object is included on each
chromosome, a decoder is required to produce legal solu-
tions. Hinterding [3] used a first fit heuristic for his order-
based representation in the single objective case. Starting
with an empty knapsack, he selected objects in sequence
from a permutation list, starting with the first object on the
list, then working through to the second, then the third and
so on. Whenever inclusion of an object from the list would
result in a constraint violation, that object was skipped over
and the next object tried. Assume we are given an order-
based sequence of (1, 5, 2, 4, 3, 6) for a six object problem
in the single objective case. A first-fit decoder will attempt
to pack object 1, then object 5, then object 2 etc., until it
reaches an object that, if packed, would exceed the capac-
ity constraint. If this occurs, for example, when object 4 is
tried, the first-fit decoder would skip over object 4 and try
object 3, then 6.

Adapting a decoder based on the first fit algorithm for
the multi-objective knapsack problem simply requires that
the constraints are tested for all the knapsacks each time an
object is considered for inclusion in the solution, and this is
the approach adopted here.

Cycle crossover, CX, [15] is used as the recombination

operator for all the order-based experiments, and the muta-
tion operator swaps two arbitrarily selected objects within
a single permutation list. CX was selected as the recombi-
nation operator because it produced better results than other
permutation crossovers in some test runs described in [12].

4 The Evolutionary Multi-Objective Algo-
rithms

We justify our choice of SPEA2, MOGLS and SEAMO2 as
follows:

1. SPEA and SPEA2 are successful and widely imple-
mented,

2. MOGLS produces particularly impressive results and
uses a different approach to most other EMOs: linear
scalarizing functions, rather than Pareto-based fitness
assignment

3. SEAMO and SEAMO2 seem to be fast and effective,
but need testing against other state-of-the-art EMOs.

Below we outline the main features of our chosen EMOs.
Interested readers should refer to the original papers for
more details, [5, 13, 14, 16, 17, 18].

4.1 SPEA2

Procedure SPEA2
Parameters: N – population size, N̄ – archive size, stopping condition
Begin
Initialization:

Generate an initial population, of N random individuals
Create an empty archive, P̄0 ← ∅

Main loop
Repeat

Fitness assignment:
for each individual in Pt and P̄t

Environmental selection:
from Pt and P̄t creating new archive, P̄t+1

Mating selection:
Perform binary tournament selection
with replacement on P̄t+1

in order to fill the mating pool, Mt+1

Apply recombination and mutation to Mt+1

Set Pt+1 ← Mt+1

Increment generation counter, t ← t + 1
Until stopping condition is satisfied
Print all non-dominated solutions in the final population and archive

End

Figure 1: Algorithm 1 A basic framework for SPEA2

SPEA2 uses two populations: a regular population, Pt

and an archive, P̄t. The archive is used to accumulate non-
dominated solutions and it is from here that individuals are
selected to form a mating pool. Following the application
of the genetic operators to the mating pool, the resulting
offspring become the new regular population, Pt+1. The
new archive, P̄t+1, is mainly constructed from the non-
dominated solutions in Pt+P̄t. Binary tournament selection
is used to fill the mating pool, and fitness assignment con-
sists of two components: one based on the concept of Pareto



dominance and the other on density information. The pur-
pose of the density component is to encourage a more even
spread of solutions across the Pareto front. SPEA2 is out-
lined in Figure 1.

In more detail, the procedure for fitness assignment can
be expressed as follows:

F (i) = R(i) + D(i)
Where F (i) is the total fitness value, R(i) represents the
raw fitness component, and D(i) the density component.

In order to calculate the raw fitness, each individual in
Pt and P̄t is assigned a strength value, S(i), representing
the number of solutions it dominates. The raw fitness, R(i),
for a particular individual, is then determined by adding to-
gether the strengths of all members of Pt and P̄t, that dom-
inate that individual. The density value, D(i), is based on
the inverse of the Euclidean distance (in objective space) of
the kth nearest neighbor from individual i:

D(i) = 1
σk

i
+2

where σk
i denotes the Euclidean distance sought. We set

k =
√
N + N̄, following advice in [17]. In the denominator,

two is added to avoid division by zero and ensure D(i) < 1.
Environmental selection essentially copies all the indi-

viduals in Pt and P̄t that are non-dominated, to P̄t+1, but at
the same time, it ensures that the size of the archive remains
constant at N̄ . To achieve this, solutions are deleted if N̄ is
exceeded and added when the archive size would otherwise
fall below N̄ . A truncation operator is used to reduce the
population by deleting those members considered too close
to another individual in objective space. When the popula-
tion needs to be increased, the best dominated individuals
are copied from the previous archive and population.

4.2 MOGLS

In [5] Jaskiewicz describes how MOGLS is able search for
approximations to all the points in a non-dominated set si-
multaneously, by making a random choice of a scalarizing
function at each iteration of the algorithm’s main loop. This
process simply requires the application of random numbers,
rand(), in the range (0, 1) to the formulae in (1):

λ1 = 1 − m−1
√

rand()
. . .

λj =

(
1−

j−1∑

l=1

λl

)(
1 − m−1−j

√
rand()

)

. . .

λm = 1−
m−1∑

l=1

λl (1)

When m = 2 objectives, the weights applied to objec-
tives 1 and 2 simply become, respectively, λ1 = 1 − r1

and λ2 = r1, where r1 = rand(). When m > 2 it
is necessary to generate more than one random number,
(r1, r2, . . . rm−1), using the function rand(). The linear
scalarizing function in the is given by: λ1P1 +λ2P2 + . . .+
λmPm, where P1, P2 etc. are the total profits in knapsack
1, 2 and so on. (Note: For problems where objectives share

Procedure MOGLS
Parameters: S – number of initial solutions

K – size of the temporary elite population (TEP ),
stopping condition

Begin
Initialization:

The set of potentially non-dominated points PP ← ∅
The current set of solutions CS ← ∅

Generation of the initial set of solutions:
Repeat S times

Draw at random a weight vector, (λ1, λ2, . . . , λm)
Construct randomly a new feasible solution x
Apply local heuristic to solution x obtaining x′
Update set PP with x′

Main loop
Repeat

Draw at random a weight vector, (λ1, λ2, . . . , λm)
From CS select K solutions best on

scalarizing functions (λ1P1 + λ2P2 + . . . + λm)
forming temporary elite population TEP

Draw at random with uniform probability
two solutions x1 and x2 from TEP

Recombine x1 and x2 obtaining x3

Mutate x3 then apply local heuristic to solution x3

obtaining x′3
If x′3 is better on (λ1P1 + λ2P2 + . . . + λm)

than the worst solution in TEP
and different in the decision space
from all solutions in TEP

Then
Add x′3 to the current set of solutions CS
and update set PP with x′3

Until stopping condition satisfied
Print PP

End

Figure 2: Algorithm 2 A basic framework for MOGLS

approximately the same range, it is not necessary to nor-
malize the scalarizing function, [5].) Outline pseudocode
for MOGLS can be found in Figure 2.

The MOGLS algorithm begins by initializing the current
set, CS, with S random bit-strings, or permutations, de-
pending on the representation scheme. In the case of the bit-
string representation, a local search heuristic (i.e. greedy re-
pair) is applied to each newly generated string, but this stage
is inappropriate for the order-based scheme and is therefore
omitted. The lack of opportunity for local search is a poten-
tial disadvantage of the order-based approach in the case of
MOGLS.

In addition to the current set, CS, MOGLS maintains
two further populations: PP , the set of potentially non-
dominated solutions, and TEP a temporary elite popula-
tion. At the start of each iteration of the main loop, a new
random weight vector, (λ1, λ2, . . . , λm), is generated and
this is used to select K different solutions from CS to make
up TEP . The K solutions selected are the best on the cur-
rent scalarizing function, (λ1P1 + λ2P2 + . . . + λmPm).
Two solutions, x1 and x2, are next selected at random from
TEP . These are recombined to produce an offspring, x3.
Mutation is then applied, followed by the greedy repair
heuristic in the case of the bit-string representation, or the
decoder applied to the order-based scheme, giving x′3. x′3 is
then added to CS if it is better on the linear scalarizing func-
tion than the worst solution in TEP and different in the de-



cision space (i.e., the chromosomes) from all the solutions
in TEP . Finally PP , the set of potentially non-dominated
solutions, is updated.

As already mentioned in Section 3.1, the local search
heuristic used for the bit-string representation involves a
form of greedy repair heuristic that takes into account the
current value of the linear scalarizing function. In more de-
tail, each new offspring, x, is checked for feasibility, and
if the capacity is exceeded for one or more of the knap-
sacks, objects are removed (i.e. bits reset from “1” to
“0”) until the constraints are satisfied. The order in which
the objects are removed corresponds with their profit to
weight ratios amalgamated according to the random vec-
tor, (λ1, λ2, . . . , λm). Assuming that object i has profit to
weight ratios, pi1/wi1, pi2/wi2 . . . , pim/wim, in knapsacks
1, 2, . . . , m respectively, the amalgamated profit to weight
ratio for object i will be λ1pi1/wi1 + λ2pi2/wi2 + . . . +
λmpim/wim. The local search heuristic will remove ob-
jects in non-decreasing sequence of these amalgamated val-
ues (thus removing the least promising objects first). In
the case of the order-based representation, the decoder de-
scribed in Section 3.2 will produce a feasible solution from
any given permutation, making the local repair heuristic re-
dundant. As mentioned previously, the lack of a weighted
local search in MOGLS when using the order based repre-
sentation, is a potential disadvantage (and we shall see later
that this is borne out by our results).

CS is organized as a queue of maximum size K × S,
where K is the size of the temporary elite populations and
S is the size of initial population. New solutions are added
to the front of the queue, and old solutions deleted from the
back of the queue to prevent CS exceeding its maximum
size.

4.3 SEAMO2

The SEAMO2 framework, outlined in Figure 3, illustrates
a simple steady-state approach, which sequentially selects
every individual in the population to serve as the first parent
once, and pairs it with a second parent that is selected at
random (uniformly).

A single crossover is applied to produce each offspring,
and this is followed by a single mutation. Each new off-
spring will either replace a parent, or another population
member, or it will die, depending on the outcome of a num-
ber of tests. Essentially, an offspring will replace a parent if
it is deemed to be better than that parent. This occurs if the
offspring dominates one of the parents, or if produces a new
global best profit in one of the knapsacks. If the offspring
neither dominates either of its parents, nor is it dominated
by either of them, the offspring will replace a random in-
dividual in the population, if one can be found that it dom-
inates. Any offspring that duplicates any member of the
population in its objective space will be deleted, regardless
of its ability to dominate its parents.

Procedure SEAMO2
Parameters: N – population size, stopping condition
Begin
Generation of the initial set of solutions:

Generate N random individuals
Evaluate the objective vector for each individual

and store it
Record the bestSoFar for each objective function

Main loop
Repeat

For each member of the population
This individual becomes the first parent
Select a second parent at random
Apply crossover to produce offspring
Apply a single mutation to offspring
Evaluate the objective vector

produced by the offspring
If offspring objective’s vector

improves on any bestSoFar
Then it replaces a parent

Else if offspring is a duplicate
Then it dies

Else if offspring dominates either parent
Then it replaces it

Else if offspring is neither dominated by
nor dominates either parent
Then it replaces another individual
that it dominates at random

Otherwise it dies
End for

Until stopping condition is satisfied
Print all non-dominated solutions in the final population

End

Figure 3: Algorithm 3 A basic framework for SEAMO2

5 Comparing the Performance of the Algo-
rithms

Unfortunately there is no general agreement amongst re-
searchers on how best to assess the quality of a non-
dominated set of points produced by a particular multi-
objective algorithm. Of the multitude of metrics from the
literature which attempt to express the solution quality as a
single number, the S metric of Zitzler and Thiele[18] has
been recommended in [9] as a good all-round choice, pro-
vided the problem involves relatively few dimensions, and
the non-dominated sets are not overlarge. For this reason
we have adopted S as the main metric for the the present
study. In addition, we use simple 2D plots, where appro-
priate, to give a visual interpretation and also consider the
cardinality (i.e. size) of the non-dominated sets produced
by the various algorithms and compare their run times.

5.1 The S Metric

The S metric is a measure of the size of the dominated
space, measured in the number of dimensions determined
by the number of objectives. Let X ′ = (x1, x2, . . . , xl) ⊆
X be a set of l solution vectors. The function S(X ′)
gives the volume enclosed by the union of the polytypes
p1, p2, . . . , pl, where each pi is formed by the intersection
of the hyperplanes arising out of xi, along with the axes.
For each axis in the objective space, there exists a hyper-
plane perpendicular to that axis and passing through the
point (f1(xi), f2(xi), . . . , fk(xi)). In the two dimensional



case, each pi represents a rectangle defined by the points
(0, 0) and (f1(xi), f2(xi)). In this study, the size of the
dominated space is quoted as a percentage of the reference
volume between the origin and an upper approximation of
the ideal point taken from [5].

6 Experimental Method

The purpose of our experiments is to answer the following
questions:

1. For each EMO, which representation is best: bit-
string or order-based?

2. How do the EMOs compare with each other with re-
spect to solution quality?

3. How do the EMOs compare with each other with re-
spect to run time?

Five problems were selected from the test data taken
from [18], kn250.2, kn500.2, kn750.2, kn750.3 and
kn750.4. Problems kn250.2, kn500.2 and kn750.2 are two
objective problems with 250, 500 and 750 objects, respec-
tively, while kn750.3 and kn750.4 are problems with 750
objects and 3 and 4 objectives. SPEA2, MOGLS and
SEAMO2 were each run 30 times, on the two objective
problems, and just 5 times on kn750.3 and kn750.4 (because
of the long run times). Each replicate run was seeded with a
different random start, and population sizes were N = 150,
200 and 250 for kn250.2, kn500.2 and kn750.(2,3,4). On
all problems, runs were extended for 5000 generations for
SPEA2 and SEAMO2, and for 5000× S evaluations in the
case of MOGLS. Each EMO performed exactly the same
number of objective function evaluations on a given prob-
lem. For SPEA2 the regular population (Pt) and archive
(P̄t) were set to the same size, N = N̄ . MOGLS was ini-
tialized with a current set, CS, of S = N , and we set the
size of TEP to 20, the same as [5].

Crossover was applied at a rate of 100 % in MOGLS and
SEAMO2 and at a rate of 80 % in SPEA2, and the mutation
rate was 0.6 % in SPEA2, 1 % in MOGLS and one mu-
tation per offspring in SEAMO2. Guidelines for crossover
and mutation rates were based on those given in the original
papers, validated by us in some pilot studies. To give each
algorithm a fair chance in the contest, we set crossover and
mutation rates favorable to each technique, rather than use
a “one size fits all” approach.

In adapting MOGLS for an order-based implementation,
we found it necessary to deviate slightly from the published
version of the algorithm. The standard version of MOGLS
checks the temporary elite population, TEP , for duplicates
in the decision space. However, the order-based encoding
has a very high level of redundancy (i.e. many orderings
produce identical solutions) and deleting duplicates in the
decision space tends to be ineffective and leaves too many
individuals that are identical in the objective space. For this
reason we delete duplicates in the objective space of CS,
rather than the decision space of TEP . Much better re-
sults can be obtained in this way, with no extra burden on
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Figure 4: Non dominated solutions extracted from 5 runs of
SPEA2 (top), MOGLS (center), and SEAMO2 (top)



the run time (pairwise comparisons in the decision space
are very much more time consuming than comparisons in
the objective space). We also discovered that better results
for SPEA2 can be obtained if objective space duplicates are
deleted, and not allowed to enter the archive. Furthermore,
these improvements were noted for SPEA2 using bit-string
as well order-based approaches. These findings are in ac-
cordance with previous reports on the same issue. Fitness
duplicate elimination has been shown to be an important
feature to avoid drift and improve performance in multi-
objective evolutionary algorithms on a range of problems
in [1].

The performances of the algorithms are assessed using
the S metric described in [18] and outlined in Section 5 of
the present paper. In addition, 2D graphical plots, run time
measurements and the sizes of non-dominated sets provide
additional information. Experiments were conducted using
Java 2, version 1.4.2 (J2SE) on a PC with 2.99 GHz Intel
Pentium 4 and 1 GB RAM.

7 Results

We shall now attempt to answer the three questions posed
in the previous section, beginning with the effect of repre-
sentation. A visual impression of the algorithms’ perfor-
mance on kn750.2 can be obtained from Figure 4, which
plots non-dominated solutions extracted from five replicate
runs, comparing bit-string and order-based representations
for each EMO. The traces in Figure 4 indicate that MOGLS
performs better with a bit-string representation but that the
order-based representation works best for SEAMO2. The
results appear less clear cut for SPEA2, although the order-
based approach seems to give a better spread of results.

Figure 5 shows box plots for the S metric on kn250.2,
kn500.2 and kn750.2. Each plot gives the distribution of
the dominated space for 30 replicate runs, covering a par-
ticular EMO, representation and knapsack instance. The
plots provide strong supporting evidence in favor of bit-
strings for MOGLS and order-based representations for
both SEAMO2 and SPEA2. The box plots in Figure 6
for kn750.3 and kn750.4 add further support in favor of a
bit-string approach for MOGLS, and furthermore, the gap
between the two approaches appears to grow quite consid-
erably for MOGLS, as the number of objectives increases
from two to four. This is consistent with expectations, con-
sidering the absence of the local search phase in the order-
based approach. As the number of objectives increase, so
the problems get harder to solve, and it is possible that the
role of local search becomes increasingly important. The
order-based approach performs consistently better than the
bit-string for SEAMO2. However, the case is not quite so
clear cut for SPEA2, which still favors an order-based ap-
proach for kn750.3 but performs slightly better with a bit-
string representation on kn750.4.

We shall now try to answer the second question we
posed, and compare the three EMOs with respect to solu-
tion quality. Examination of Figures 5 and 6, indicate that
MOGLS is the best performer, using a bit-string represen-
tation. Figures 5 and 6 further suggest that SPEA2 is mar-
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Figure 5: Dominated space for 30 runs of 5,000 generations
on kn250.2 (top), kn500.2 (middle) and kn750.2 (bottom),
SP: SPEA2, MO: MOGLS SE: SEAMO2

ginally better than SEAMO2 on problems with two objec-
tives, but that the situation changes when more objectives
are used, with SEAMO2 outperforming SPEA2 on kn750.3
and kn750.4. Figure 7 compares the three EMOs: SPEA2,
MOGLS and SEAMO2 on kn750.2, using the most appro-
priate representation in each case. (The results are similar
for kn250.2 and kn500.2 but the sets of points are closer to-
gether and rather difficult to distinguish.) As before, non
dominated solutions are extracted from 5 replicate runs.
Clearly, MOGLS is able to achieve a much broader spread
of results than the other EMOs. MOGLS also tends to
produce larger sets of non-dominated points than the other
EMOs, especially for problems with more objectives. Table
1 bears this out.

Finally, we answer question 3 and compare the run times
of the three algorithms. Table 2 shows the results, in sec-
onds, for the three EMOs on kn250.2, kn500.2 and kn750.2,



Table 1: Average sizes of final non-dominated sets, |z|
Algorithm Test problems

kn250.2 kn500.2 kn750.2 kn750.3 kn750.4
SPEA2 BIT 155 201 242 264 301
SPEA2 ORD 164 209 245 270 300
MOGLS BIT 212 212 190 1492 3087
MOGLS ORD 190 175 145 850 1504
SEAMO2 BIT 68 80 107 204 228
SEAMO2 ORD 97 136 172 224 239
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Figure 6: Dominated space for 5 runs of 5,000 generations
on kn250.3 (top) and kn750.4 (bottom), SP: SPEA2, MO:
MOGLS SE: SEAMO2
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Figure 7: Comparing the performance of MOEs: OB =
order-based, BS = bit-string

using the same parameters as previously, with each EMO
performing exactly the same number of objective function
evaluations on a given problem. Averages are taken of three
replicate runs, starting with different random seeds, and ex-
cluding the calculation of any metrics. Clearly, SEAMO2
is at least an order of magnitude faster than its competitors
on the two objective problems. Unfortunately, we did not
record run times on kn750.3 and kn750.4 because the work
was carried out at a much later date and on a different plat-
form, making comparisons unreliable.

Table 2: Comparing run times of EMOs (in seconds)
Algorithm kn250.2 kn500.2 kn750.2

SPEA2 BIT 1169 2180 3341
SPEA2 ORD 1205 2287 3593
MOGLS BIT 1078 3400 7890

MOGLS ORD 497 1100 1710
SEAMO2 BIT 23 50 98
SEAMO2 ORD 34 78 138

8 Conclusion and Discussion

This paper compares the performance of the three EMOs:
SPEA2, MOGLS and SEAMO2, using the multi-objective
knapsack problem as a test-bed. For each algorithm, we
try two representation schemes: bit-string and order-based.
Our results provide strong evidence that a bit-string repre-
sentation works best for MOGLS, but that SEAMO2 per-
forms better if an order-based approach is used. The rel-
ative performance of the two approaches is less well de-
fined for SPEA2, however. MOGLS appears to benefit from
the bit-string representation because it is able to apply its
weighted scalarizing function at the repair stage, thus bias-
ing the search towards the chosen region of the Pareto front.
Furthermore, it would seem that the relative benefit of ap-
plying the bit-string approach to MOGLS increases as the
problems get harder with more objectives.

Over all, MOGLS produces better results than either
SPEA2 or SEAMO2. SPEA2 and SEAMO2 produce rather
similar results, with SPEA2 performing slightly better than
SEAMO2 on the instances with two objective problems,
and SEAMO2 doing better on kn750.3 and kn750.4. The
EMOs are compared on the basis of equal numbers of objec-
tive function evaluations. However, as MOGLS and SPEA2
both take very much longer to run than SEAMO2 on the
knapsack test problems, it is clear that an evaluation for
evaluation comparison may not be entirely fair.



Future plans include extending our comparative studies
(covering representations, solution quality and run time) to
more EMOs, for example PESA (Pareto envelope-based se-
lection algorithm) [7], NSGA II (non-dominated sorting al-
gorithm II) [2], and PMA (Pareto memetic algorithm) [6].
PMA is of particular interest because it operates in a similar
fashion to MOGLS (using scalarizing functions), and thus
promises high quality results. Yet, because it uses a simple
tournament selection instead of TEP used by MOGLS, it
promises to be much faster.
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