
A Hierarchical Solve-and-Merge Framework for Multi-Objective Optimization
Christine L. Mumford

School of Computer Science
5 The Parade

Cardiff, CF24 3AA
C.L.Mumford@cs.cardiff.ac.uk

Abstract- This paper presents hierarchical solve-and-
merge (HISAM): a two-stage approach to evolutionary
multi-objective optimization. The first stage involves
a simple genetic algorithm working on a number of
isolated subpopulations, each using its own uniquely
weighted linear scalarizing function to encourage it to
focus on a different region of the Pareto space. At
the second stage, the best solutions from stage one are
passed to a Pareto-based hierarchy, where the solu-
tion set is judged on Pareto dominance and further im-
proved. Preliminary results for large knapsack prob-
lems with 2 - 4 objectives are highly competitive with
those obtained using other methods. Furthermore, the
HISAM implementation has a fast execution time.

1 Introduction

The application of evolutionary algorithms (EAs) to prob-
lems with multiple objectives is currently a very active area
of research, and many successful algorithms have been de-
veloped. Most of these approaches use a global fitness func-
tion to bias the choice of parents for breeding, emulating ap-
proaches popular in the single objective case, such as tour-
nament selection or the roulette wheel. Unlike their single
objective counterparts, however, multi-objective EAs have
to take account of several criteria simultaneously, and this
makes the design of a suitable scalar fitness function much
more of a challenge. Most researchers base their fitness
functions for multi-objective EAs on dominance conditions
that exist between individuals within the population, for ex-
ample NSGA-II (non-dominated sorting genetic algorithm
II) [2], SPEA (strength Pareto evolutionary algorithm) [15]
and SPEA2 (improved SPEA) [14]. Additionally, fitness
functions for some EAs (notably NSGA-II and SPEA2) also
incorporate a density component, encouraging the solution
set to be more evenly spread in Pareto objective space, by
inhibiting selection from the denser regions and favoring it
from the sparser regions. Indeed, another popular multi-
objective EA, the PESA algorithm (Pareto envelope-based
selection algorithm) [3], relies solely on density information
in the computation of its fitness function. In PESA inferior
members of the population are quickly deleted leaving only
non-dominated individuals to become the parents of the next
generation.

Fitness functions for multi-objective EAs based on dom-
inance or density are examples ofPareto-based selection
techniques[4]. Alternatively, it is possible to calculate
fitness functions using a simple weighted combination of
the multiple objective values. This approach, taken by
Jaszkiewicz [5, 6] in his MOGLS algorithm (multiple objec-
tive local genetic search), has produced excellent results for

the multi-objective knapsack problem (MKP). In MOGLS,
a random set of weights is generated at the start of each iter-
ation, and this ensures a good coverage of the Pareto space.

The SEAMO algorithm (Simple Evolutionary Algo-
rithms for Multi-objective Optimization) [11, 13] and its
successor, SEAMO2 [10], have a different approach to re-
production, and do not need to maintain global information
on fitness, dominance or density relationships within the
population. In SEAMO and SEAMO2, parents are simply
chosen from a uniform distribution, and progression of the
genetic search relies solely on decisions taken locally, after
an offspring has been produced. A strong offspring will re-
place an inferior parent (or occasionally another individual)
and a weak offspring will be allowed to die without ever
entering the population.

The present study extends the work of Mumford [9], in
which a hierarchical framework of SEAMO2 algorithms,
working on separate subpopulations, produced convincing
improvements over a comparable implementation with a
single SEAMO2 implementation. However, in the earlier
work no attempt was made to focus the subpopulations and
each could freely operate over the entire Pareto space. This
would seem to be inefficient. The new approach addresses
this weakness by adding an extra stage (stage one) to the
bottom of the hierarchy (see Figure 1). The function of
stage one is to focus different subpopulations onto sepa-
rate regions of the Pareto space. Stage one is implemented
using multiple copies of a simple genetic algorithm, each
copy running on its own independent subpopulation and
optimizing a differently weighted “MOGLS style” linear
scalarizing function. At the second stage of the new two-
stage approach, the best solutions from stage one are passed
to the hierarchy of SEAMO2 implementations for further
improvement. Here the solution sets are judged on Pareto
dominance, rather than on the linear scalarizing function
used in stage one.

The new approach easily outperforms both MOGLS and
SEAMO2, for solution quality and run time, on a suite of
large multi-objective knapsack problems (MKP) with 2 - 4
objectives. Recent studies have established MOGLS as a
front-runner in terms of solutions quality on the MKP [1,
6]. The new HISAM algorithm not only produces better
solutions than MOGLS, but does so much faster.

A final motivation for the present work is to correct a
known weakness present in the SEAMO and SEAMO2 al-
gorithms: there is no specific mechanism to ensure an even
spread of solutions across the Pareto front. Solution sets
produced by multi-objective EAs are usually judged on the
basis of three criteria: solutions should be (1) of good qual-
ity, (2) widely spread and (3) evenly spread. Although
the SEAMO algorithms include specific mechanisms to im-

200 generations

200 generations

200 generations

200 generations

600

150 150 150 150

75 75 75 75 75757575

2525
50 50 50

Pop1 Pop2 Pop3 Pop4 Pop5 Pop12

300300

200 200200200200 200

Stage 2

Stage 1
..........................

Figure 1: The two-stage framework of HISAM

prove the quality and range of the solutions set, they lack
control over the evenness of spread.

2 Test Data Used

The test problems used in this paper are MKPs taken from
[15]. Instances with 500 and 750 items are used, with 2, 3
and 4 objectives, denoted as knn.m, wheren is the number
of items andm the number of knapsacks (objectives).

The 0-1 multi-objective knapsack problem is a gener-
alization of the 0-1 simple knapsack problem, and is a
well known member of the NP-hard class of problems.
In the simple knapsack problem, a set of objects,O =
{o1, o2, o3, ..., on}, and a knapsack of capacityC are given.
Each object,oi, has an associated profitpi and weightwi.
The objective is to find a subsetS ⊆ O such that the weight
sum over the objects inS does not exceed the knapsack ca-
pacity and yields a maximum profit. The 0-1 MKP involves
m knapsacks of capacitiesc1, c2, c3, ..., cm. Every selected
object must be placed in allm knapsacks, although neither
the weight of an object nor its profit is fixed, and will prob-
ably have different values in each knapsack.

3 The Two-Stage Framework for HISAM

In the first stage of the two-stage process, the Pareto space
is discretized into a predetermined number of regions using
linear weighted scalarizing functions. Simple single objec-
tive GAs are then run on independent subpopulations cov-
ering each region. Following execution of the single ob-
jective stage, the best individuals from each subpopulation
are collected and passed to a hierarchical Pareto-based algo-
rithm known as thehierachical-balanced algorithm, HBA,
described in [9]. Figure 1 gives an example implementa-
tion of the two-stage framework. Here we start stage one
with twelve independent subpopulations each consisting of
200 individuals, and each using a differently weighted linear

scalarizing function. After the twelve single objective GAs
have executed for 200 generations, each subpopulation will
contribute its 50 best individuals to the12×50 = 600 (total)
population at the level above. The hierarchical-balanced al-
gorithm then runs for a total 800 generations, executing 200
generations at each of the four levels. There are eight sub-
populations, each consisting of 75 individuals, at the base
level of stage two. These merge in pairs to give four sub-
populations of 150 individuals at the next level up. Subse-
quently, these also merge in pairs to give two subpopula-
tions each of 300, and finally a single population of 600 is
produced at the root level.

3.1 Discretizing the Space at level one

Weighted linear scalarizing functions provide the simple
GA, at stage one, with its single objective values. A differ-
ent combination of weights is supplied to each of subpopu-
lation to spread the focus into different regions of the Pareto
space. Weighted linear scalarizing functions are defined in
Equation 1.

S(f(x)) =
j=m∑

j=1

λjfj(x) (1)

whereλj is the weight applied to the value ofjth objective,
fj(x). The weight vectors are initially set as fixed sum in-
teger combinations, such thatλ1 + λ2 + λ3 + . . . + λm =
k, 1 < k < ∞. For example, with a two objective case, it
is possible to split the Pareto space into 6 separate regions
using the fixed integer sumk = 5. The resulting weight vec-
tors are:(0, 5), (1, 4), (2, 3), (3, 2), (4, 1) and(5, 0). For a
given value ofk, it is relatively simple to generate all possi-
ble integer weight combinations for a general problem with
m objectives. In this way the number of regions assigned is
easily varied. The weights in the weight vectors are finally
scaled with respect to the average values of the individual

objectives. (Although this is probably not strictly necessary
for the problem instances considered here, as range of prof-
its in the various knapsacks are very similar.)

Figure 2 illustrates the discontinuities frequently ob-
served following the execution of stage one of HISAM. It
also show the effect of applying a simplified stage two in
place of the hierarchical balanced algorithm. The instance
Kn500.2 is used for this demonstration, and the Pareto space
is discretized into six regions at stage one. We use subpop-
ulation sizes of 200 for this experiment, and run the simple
GA for 500 generations on each of the six subpopulations.

1.5 1.6 1.7 1.8 1.9 2 2.1

x 10
4

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05
x 10

4

Profit in first knapsack

P
ro

fit
 in

 s
ec

on
d

kn
ap

sa
ck

kn500.2

Figure 2: Single run of stage 1, followed by a simplified
stage 2

The lower broken trace in Figure 2 represent the non-
dominated outputs produced by the six subpopulations at
the end of stage one. The upper broken trace in Figure
2 represents the output following the application of the
simplified second stage. Stage two simply runs a single
copy of SEAMO2 on the entire accumulated population of
6×200 = 1200 for 500 generations. The discontinuities ev-
ident in the lower trace, are still apparent in the upper trace.
Clearly, the simplified second stage has failed to smooth
them out. Either we need to use many more subpopulations
at stage one, or we apply a more sophisticated approach at
stage two. We shall see later that the hierarchical-balanced
algorithm provides a highly effective smoothing mechanism
at stage two.

3.2 The Representation and Genetic Framework

The single objective and multi-objective GAs, that form the
basis of the HISAM framework, both operate on a simple
a steady-state principle. The algorithms sequentially step
through the entire population (or subpopulation), selecting
every individual in its turn to serve as a first parent, and
pairing it with a second parent that is selected at random
(uniformly). A single crossover is then applied to produce
one offspring, and this is followed by a single mutation.
Each new offspring will either replace an existing popula-
tion member (usually one of its parents), or it will die, de-
pending on the outcome of the replacement strategy used.

ProcedureSIMPLE GA
Begin

GenerateN random individuals{N is the population size}
Evaluate the fitness function for each population member and store it
Repeat

For each member of the population
This individual becomes the first parent
Select a second parent at random
Apply crossover to produce single offspring
Apply a single mutation to the offspring
Evaluate the objective function produced by the offspring
if the offspring is better than weaker parent

(and not a duplicate)
Then the offspring replaces it in the population

elseit dies
Endfor

Until stopping condition satisfied
End

Figure 3: Algorithm 1 The simple single-objective GA

The representation chosen for HISAM on multiple knap-
sack problems is order-based and uses a first fit decoder to
convert a permutation of objects into a packing for the knap-
sacks [8]. Briefly, a first-fit decoder packs objects taken
from the permutation list in sequence, until an object is
reached that would violate a constraint if it was packed.
This object will be skipped over and the next one tried. For
example, assume we are given an order-based sequence of
(1, 5, 2, 4, 3, 6) for a six object problem. A first-fit decoder
will attempt to pack object 1, then object 5, then object 2
etc., until it reaches an object that, if packed, would exceed
the capacity constraint of at least one of the knapsack. If
this occurs, for example, when object 4 is tried, the first-fit
decoder would skip over object 4 and try object 3, then 6.

Cycle Crossover (CX) [12] is used as the recombination
operator for HISAM, and a simple mutation operator swaps
two arbitrarily selected objects within a single permutation
list. The order-based representation scheme was chosen for
HISAM because SEAMO2, upon which HISAM is based,
produced better results using an order-based approach than
it did when other methods were tried in a recent comparative
study, [1].

The simple single objective GA, outlined in Figure 3,
operates independently on each subpopulation at stage one.
Using a single scalar value, consisting of the weighted sum
of the multiple objectives (see Section 3.1), it is possible
to concentrate each subpopulation onto a different region of
the Pareto space. Parents are chosen by uniform selection,
as described above, and progress of the genetic search is de-
pendent on the replacement strategy, in which an offspring
will replace its weaker parent if and only if it has a better
value for its weighted linear scalarizing function.

The SEAMO2 algorithm, outlined in Figure 4, is used
as a basis for the hierarchical-balanced algorithm at the sec-
ond stage of the optimization framework. Here copies of
SEAMO2 operate independently on each subpopulation in
the hierarchy. SEAMO2 works in a very similar manner to
the simple GA, and the parents are selected in exactly the
same manner. The replacement strategy in SEAMO2, how-

Table 1: Population parameters for experimental runs
Problem Algorithm

HISAM SEAMO2
stage 1 stage 2

subpops subpopsize generations popsize generations popsize generations
kn500.2 12 200 200 600 800 960 1,000
kn750.2 12 250 250 600 1000 1080 1,250
kn750.3 15 250 300 750 1200 1350 1,500
kn750.4 35 250 400 1,750 1600 3150 2,000

ProcedureSEAMO2
Parameters:N – population size, stopping condition
Begin
Generation of the initial set of solutions:

GenerateN random individuals
Evaluate the objective vector for each individual

and store it
Record the bestSoFar for each objective function

Main loop
Repeat

For each member of the population
This individual becomes the first parent
Select a second parent at random
Apply crossover to produce offspring
Apply a single mutation to offspring
Evaluate the objective vector

produced by the offspring
If offspring objective’s vector

improves on any bestSoFar
Then it replaces a parent

Else if offspring is a duplicate
Then it dies

Else if offspring dominates either parent
Then it replaces it

Else if offspring is neither dominated by
nor dominates either parent
Then it replaces another individual
that it dominates at random

Otherwise it dies
End for

Until stopping condition is satisfied
Print all non-dominated solutions in the final population

End

Figure 4: Algorithm 2 A basic framework for SEAMO2

ever, is based on Pareto dominance, and it is not as straight-
forward to determine which individuals are better than their
parents when we are dealing with more than one objective.
It can be seen by examining the pseudocode in Figure 4 that
new offspring are evaluated according to the following cri-
teria in SEAMO2:

1. Does offspring dominate either parent?

2. Does offspring produce a global improvement on any
Pareto components?

3. Does offspring have a mutually non-dominating rela-
tionship with both its parents?

4. Is offspring a duplicate?

When offspring are evaluated in relation to their parents,
the first parent is always considered before the second, with
the offspring replacing the first parent if it passes the nec-
essary “test”. It is only if the offspring is not considered

good enough to replace the first parent that it is evaluated in
relation to the second parent.

When there is a mutually non-dominating relationship
between parents and offspring, the new offspring may re-
place another population member. In this situation, a ran-
dom search will be initiated in an attempt to locate an indi-
vidual that is dominated by the new offspring. This process
will sequentially test and then remove individuals from con-
sideration until a suitable individual is found, or until the
population is exhausted without discovering such an indi-
vidual, whichever occurs first. The new offspring will die if
it fails to dominate any member of the population.

At all levels in the hierarchy, a strict ‘deletion of dupli-
cates’ policy is implemented, preventing offspring identi-
fied as duplicates from entering the population. This is to to
help promote genetic diversity and prevent premature con-
vergence. For the simple GA as well as for SEAMO2, pair-
wise comparisons identify new offspring that have identical
counterparts already present in the current population, and
these offspring are allowed to die. For speed and simplicity
it is the values of the multiple objectives that are used for
comparison (even at the single objective stage), rather than
the genotypic values (i.e. the permutation lists of objects).
Experimental evidence presented in [10] demonstrates that
the pairwise comparisons required to implement the dele-
tion of duplicates is efficient and does not increase the run
time for large multiple knapsack problems. The time re-
quired for the pairwise comparisons is compensated by re-
ductions in number of long permutation lists copied into the
population.

4 Experimental Design

The new hierarchical solve-and-merge algorithm is evalu-
ated using two benchmarks: 1) SEAMO2 and 2) MOGLS.
SEAMO2 is an obvious choice, given that stage two of the
new approach is based on this algorithm. MOGLS is cho-
sen as the second benchmark because it has produced su-
perior results to other state-of-the-art algorithms on multi-
objective knapsack problems [1, 6], and is hard to beat.
Comparisons are made on the basis of each algorithm per-
forming equal numbers of objective function evaluations.
30 replicated runs are collected for each set of experiments.
All three algorithms were implemented by the present au-
thor.

Population and subpopulation sizes for HISAM and
SEAMO2 are given in Table 1, together with the numbers of
generations allocated to the runs. Parameters for MOGLS

will be dealt with later, because it does not operate on the
basis of a fixed population in quite the same way as the other
approaches.

The entries in Table 1 will now be explained in a little
more detail. It is probably helpful to refer back to Figure 1
which shows the precise architecture for HISAM applied to
kn500.2. The table specifies the number of subpopulations,
the subpopulation sizes, and the number of generations used
at stage one of HISAM, for all the problem instances. Only
total population sizes and generations are specified for stage
two, on the other hand. For the purposes of this study, the
basic architecture shown in Figure 1, with four levels at
stage two, is used on all four problems. Thus, copies of
the SEAMO2 algorithm operate on eight subpopulations at
the lowest level of stage two, then these undergo pairwise
merging to produce four subpopulations at the next level
up, then two at the level above that, and finally a single pan-
mictic population is produced at the top of the tree. The
eight subpopulations at the lowest level of stage 2 will each
contain 75 individuals for kn500.2 and kn750.2, 93 or 94
for kn750.3 and 218 or 219 for kn750.4. Total populations
at stage two of 600, 750 or 1,750 are derived by accumulat-
ing the best 50 individuals from each of the subpopulations
from stage one, i.e.12 × 50 = 600, 15 × 50 = 750 and
35 × 50 = 1, 750. Selection of these 50 individuals from
each subpopulation at stage one is carried out in two phases.
In the first phase all the non-dominated solutions are iso-
lated from the subpopulation, and in the second phase the
non-dominated solution set is expanded or reduced, as nec-
essary, by randomly adding or removing solutions, so that
each subpopulation contributes exactly 50 individuals.

The stand-alone SEAMO2 algorithm, used as a bench-
mark, is allowed to run for exactly the same number of gen-
erations in total as the HISAM algorithm. Furthermore, the
population size for SEAMO2 is adjusted to ensure the algo-
rithm performs exactly the same number of objective func-
tion evaluations as HISAM on each problem. For exam-
ple, SEAMO2 uses a population size of960 for kn500.2,
because this is the average size of the HISAM population
taken over the two stages,(960 = (12×200×200+600×800)

1000).
Unlike SEAMO2 and most other multi-objective EAs,

MOGLS does not operate on a fixed size population. In-
stead it maintains a long list of current solutions,CS, and
stores an archive,PP of potentially non-dominated solu-
tions. Following guidelines given in [6], maximum sizes of
CS are set at 4,000, 5,000, 6,000 and 7,000 for kn500.2,
kn750.2, kn750.3 and kn750.4 respectively.

While SEAMO2 and HISAM are implemented with
order-based representations, as described previously,
MOGLS uses a bit string representation with repair, exactly
as described in [6]. MOGLS relies on the repair mechanism
to drive the local search phase of the algorithm. Further-
more, the order-based approach produced very poor results
for MOGLS in a recent study [1]. To give each algorithm a
fair change in the contest, each is allowed to use the repre-
sentation and operators that seem to suit it best.

5 Performance Measures

Assessing the relative quality of non-dominated set of points
produced by different multi-objective algorithms is a chal-
lenge. Simple two dimensional plots of the approximate
Pareto sets can provide a useful visualization when prob-
lems are limited to two objectives. However, this approach
lacks rigor and, in any case, it is of no use for problems
with many objectives. Of the multitude of metrics from the
literature which attempt to express the solution quality as a
single number, theS metric of Zitzler and Thiele[15] has
been recommended in [7] as a good all-round choice, pro-
vided the problem involves relatively few dimensions, and
the non-dominated sets are not overlarge. For this reason
we have adoptedS as the main metric for the the present
study. In addition, we use simple 2D plots, where appropri-
ate, to give a visual interpretation of the results and we also
compare the run times of the algorithms.

5.1 TheS Metric

The S metric is a measure of the size of the dominated
space, measured in the number of dimensions determined
by the number of objectives. LetX ′ = (x1, x2, . . . , xl) ⊆
X be a set ofl solution vectors. The functionS(X ′)
gives the volume enclosed by the union of the polytypes
p1, p2, . . . , pl, where eachpi is formed by the intersection
of the hyperplanes arising out ofxi, along with the axes.
For each axis in the objective space, there exists a hyper-
plane perpendicular to that axis and passing through the
point (f1(xi), f2(xi), . . . , fk(xi)). In the two dimensional
case, eachpi represents a rectangle defined by the points
(0, 0) and (f1(xi), f2(xi)). In this study, the size of the
dominated space is quoted as a percentage of the reference
volume between the origin and an upper approximation of
the ideal point taken from [6].

6 Results

Figure 5 compares single runs of HISAM with SEAMO2
and MOGLS on kn500.2 and kn750.2. Clearly the new ap-
proach produces superior results to MOGLS, as the curve
for HISAM lies above the curve for MOGLS. Unfortu-
nately, the results for SEAMO2 are a little difficult to dis-
tinguish on the graphs, particularly for kn500.2. On careful
examination, however, the SEAMO2 results can just be seen
bunched up in a small area on the graph for kn750.2, form-
ing the top curve. This indicates that the quality is good for
SEAMO2, but the spread is poor.

The boxplots in Figure 6 compare the amount of domi-
nated space,S [15] produced for the 30 runs of the three al-
gorithms on kn500.2, kn750.2, kn750.3 and kn750.4. These
plots provide very strong evidence in favour of the HISAM.

Finally, Table 2 shows very clearly that HISAM has a
very much faster run time than either SEAMO2 or MOGLS.
MOGLS is particularly slow because of its frequent need
to re-evaluate all the members ofCS, the current list of
solutions, with respect to their weighted linear scalarizing
functions. This occurs every time a new random weight

1.6 1.7 1.8 1.9 2 2.1

x 10
4

1.6

1.7

1.8

1.9

2

2.1
x 10

4 kn500.2

Profit in knapsack one

P
ro

fit
 in

 k
na

ps
ac

k
tw

o

SEAMO2
MOGLS
HISAM

2.4 2.5 2.6 2.7 2.8 2.9 3

x 10
4

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3
x 10

4 kn750.2

Profit in knapsack one

P
ro

fit
 in

 k
na

ps
ac

k
tw

o

SEAMO2
MOGLS
HISAM

Figure 5: Example runs, comparing HISAM with MOGLS and SEAMO2 on kn500.2 and kn750.2

HISAM SEAMO2 MOGLS

92

93

94

95

96

97

98

P
er

ce
nt

 D
om

in
at

ed
 S

pa
ce

Algorithm

Kn500.2

HISAM SEAMO2 MOGLS
90

91

92

93

94

95

96

97

98

P
er

ce
nt

 D
om

in
at

ed
 S

pa
ce

Algorithm

Kn750.2

HISAM SEAMO2 MOGLS

80

82

84

86

88

90

92

94

P
er

ce
nt

 D
om

in
at

ed
 S

pa
ce

Algorithm

Kn750.3

HISAM SEAMO2 MOGLS

66

68

70

72

74

76

78

80

82

84

86

P
er

ce
nt

 D
om

in
at

ed
 S

pa
ce

algorithm

Kn750.4

Figure 6: Box plots showing amount of dominated space

Table 2: Comparing run times of the multi-objective algo-
rithms (in seconds)

Algorithm kn500.2 kn750.2 kn750.3 kn750.4

HISAM 59 105 207 1,097
SEAMO2 139 254 572 4,208
MOGLS 2,918 8,955 14,085 45,099

vector is generated. Also note that HISAM runs faster than
SEAMO2, the algorithm upon which HISAM is based. This
is probably due to the reduced time required for checking
the population for duplicates (run time =O(N2), for each
iteration of the population, whereN is the population, or
subpopulation size).

7 Conclusion

A new fast and effective two-stage, evolutionary multi-
objective framework calledhierarchical solve-and-merge
(HISAM)has been presented. At stage one (level 1) a simple
single objective genetic algorithm operates concurrently on
a discretized Pareto space, using linear weighted scalarizing
functions on independent subpopulations. Stage two (level
2 and above) is made up of hierarchy consisting of multiple
copies of the SEAMO2 algorithm. Each level in the stage
two hierarchy,l > 1, is seeded from the previous level,l−1,
by the merging of pairs of subpopulations, until finally, a
single panmictic population is produced at the top of the hi-
erarchy. The single objective stage at the very bottom level
seeds the Pareto-based hierarchy with groups of high qual-
ity solutions, each group focussed towards a different region
of Pareto space. The role of the Pareto-based hierarchy is to
simultaneously improve the results while smoothing out any
discontinuities.

The new approach is tested on large multi-objective
knapsack problems (MKP) with 2 - 4 objectives. Experi-
mental results, conducted on on an evaluation for evaluation
basis, demonstrate that a much wider, and better spread set
of solutions can be obtained using a hierarchical approach
than is possible using an equivalent Pareto-based algorithm
on a single panmictic population. In addition, it is clear
that the HISAM algorithm runs much faster than its stand-
alone panmictic SEAMO2 counterpart. HISAM also com-
pares favorably with MOGLS (multi-objective genetic local
search), in terms of solution quality and run time. MOGLS
was selected as a benchmark because it outperformed all
its competitors (including SPEA2) on multi-objective knap-
sack instances in some recent studies [1, 6]. The encourag-
ing results for HISAM presented here suggest that it could
be a useful addition to the armory of best-performing multi-
objective evolutionary algorithms. Further work is needed,
however, to extend its application beyond multi-objective
knapsack instances and establish its potential on a wider
range of problems. Future plans include a coarse-grained
parallel implementation of HISAM.

Bibliography

[1] G. Colombo and C. L. Mumford. comparing algorithms, rep-
resentations and operators for the multi-objective knapsack

problem. CEC 2005 (to appear).

[2] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast
elitist non-dominated sorting genetic algorithm for multi-
objective optimization: NSGA-II. InParallel Problem Solv-
ing from Nature – PPSN VI, number 1917 in LNCS, pages
849–858, Berlin, 2000. Springer.

[3] J. K. D.W. Corne and M. Oates. The pareto envelope-based
selection algorithm for multiobjective optimisation. InPar-
allel Problem Solving from Nature – PPSN VI, number 1917
in LNCS, pages 839–848, Berlin, 2000. Springer.

[4] D. E. .Goldberg. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley, 1989.

[5] A. Jaskiewicz. Genetic local search for multiple objective
combinatorial optimization. European Journal of Opera-
tional Research, 137:50–71, 2002.

[6] A. Jaskiewicz. On the performance of multiple objective ge-
netic local search on the 0/1 knapsack problem - a compar-
ative experiment.IEEE Transactions on Evolutionary Com-
putation, 6(4):402–412, 2002.

[7] J. D. Knowles and D. W. Corne. On metrics for compar-
ing non-dominated sets. InProceedings of the 2002 IEEE
Congress on Evolutionary Computation (CEC2002), pages
711–716, Honolulu, Hawaii, 2002.

[8] C. L. Mumford. Comparing representations and recombi-
nation operators for the multi-objective 0/1 knapsack prob-
lem. In Proceedings of the 2003 IEEE Congress on Evolu-
tionary Computation (CEC2003), pages 854–861, Canberra,
Australia, 2003.

[9] C. L. Mumford. A hierarchical approach to multi-objective
optimization. InProceedings of the 2004 IEEE Congress on
Evolutionary Computation (CEC2004), pages 1944–1951,
Portland, Oregon, 2004.

[10] C. L. Mumford. Simple population replacement strategies
for a steady-state multi-objective evolutionary algorithm. In
Proceedings of the 2004 Genetic an Evolutionary Computa-
tion Conference (GECCO), pages 1389–1400, Seattle, Wash-
ington, USA, 2004.

[11] C. L. Mumford-Valenzuela. A simple approach to evolution-
ary multi-objective optimization. In A. Abraham, L. Jain,
and R. Goldberg, editors,Evolutionary Computation Based
Multi-Criteria Optimization: Theoretical Advances and Ap-
plications, chapter 4, pages 55–79. Springer Verlag, London,
2005.

[12] I. M. Oliver, D. J. Smith, and J. Holland. A study of permuta-
tion crossover operators on the traveling salesman problem.
In Genetic Algorithms and their Applications:Proceedings of
the Second International Conference on Genetic Algorithms,
pages 224–230, 1987.

[13] C. L. Valenzuela. A simple evolutionary algorithm for multi-
objective optimization (seamo). InProceedings of the 2002
IEEE Congress on Evolutionary Computation (CEC2002),
pages 717–722, Honolulu, Hawaii, 2002. (C.L. Valenzuela
is now known as C.L. Mumford).

[14] E. Zitzler, M. Laumanns, and L. Thiele. Spea2: Improving
the strength pareto evolutionary algorithm. Technical Report
103, Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland.

[15] E. Zitzler and L. Thiele. Multiobjective evolutionary algo-
rithms: a comparative case study and the strength pareto ap-
proach. IEEE Transactions on Evolutionary Computation,
3(4):257–271, 1999.

