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Abstract

University examination timetabling is a challenging set partitioning problem that
comes in many variations, and real world applications usually carry multiple constraints
and require the simultaneous optimization of several (often conflicting) objectives.
This paper presents a multiobjective framework capable of solving heavily constrained
timetabling problems. In this prototype study, we focus on the two objectives: min-
imizing timetable length while simultaneously optimizing the spread of examinations
for individual students. Candidate solutions are presented to a multiobjective memetic
algorithm as orderings of examinations, and a greedy algorithm is used to construct
violation free timetables from permutation sequences of exams. The role of the mulito-
bjective algorithm is to iteratively improve a population of orderings, with respect to
the given objectives, using various mutation and reordering heuristics.

1 Introduction

In its most basic form, the university examination timetabling problem (UETP) involves
scheduling a set of exams into the minimum number of time slots, so that there are no
clashes; i.e., no student is required to take more than one examination at any one time.
This version of the UETP is identical to the well-known graph coloring problem, with time
slots allocated to examinations instead of colors assigned to vertices. However, the graph
coloring model represents a simplistic view and limitations in resources in the ‘real world’,
invariably impose a number of additional constraints on timetable planners in universities
throughout the world. Examples include:

• Time limitations - exams are constrained within a maximum time period, to avoid
overlapping with teaching or vacations.

• Capacity constraints - due to room size limitations.

• Restricted sessions - perhaps certain exams have to fit in with the needs of part time
students.

• Restricted resources - some exams may need special resources in limited supply, (e.g.,
a fully equipped laboratory).

• Interdependencies among examinations - Perhaps exam A has to occur before exam
B, for example.

A survey of British universities carried out by Burke et al in 1996 [7] identified a total
of 32 constraints encountered by those completing the questionnaires. Nevertheless, most
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state-of-the-art approaches published in the literature consider only one or two of them,
and publicly available benchmarks data sets lack the variety and complexity challenging
real institutions. On the other hand, those researchers who choose to focus on the com-
plex situations encountered in real schools, tend to produce bespoke solutions, and their
techniques cannot generally be compared with others. Thus, as pointed out in [7], there
would appear to be a very large gap between ‘theory and practice’, and a need for greater
generality in dealing with heavily constrained problems.

In addition to hard constraints, which must be adhered to, various less critical con-
siderations, or soft constraints can be identified as desirable. Some examples are listed
below:

• Spreading examinations as widely as possible for individual students, to give them
revision breaks.

• Scheduling exams with the most candidates as early as possible, to give sufficient time
for marking.

• Avoid scheduling exams of different durations in the same room.

Soft constraints are most naturally modeled as objectives, and the aim is to minimize their
effect, rather than to eliminate them entirely.

In this research we represent our candidate solutions as permutations of examinations,
and use a greedy algorithm as a ‘decoder’ to allocate time slots to the exams in a sequential
fashion. Using this sequential technique it is possible to check all of the constraints at each
stage of the timetable construction process and (for the most part1) avoid assignments that
would cause violations. Furthermore, it is an easy matter to tailor this approach to situ-
ations pertaining on the ground, by adding or removing constraint checks, as appropriate,
thus increasing the versatility and generality of the technique. On the other hand, many
approaches in the literature rely on a ‘direct representation’, in which timetables are stored
as vectors, with each vector element representing an exam, and each element value repre-
senting a time slot. Feasible timetables can be challenging to find when multiple constraints
are applied, if a direct representation is used. Nevertheless, to guarantee feasible solutions,
sequential methods require an inexhaustible supply of time slots to be available for greedy
assignment, and this cannot be sustained in practice. For this reason, if sequential methods
are to be competitive, it is essential that they are effective in reducing overlong timetables
so that they fit into a given academic calender. Fortunately, the multiobjective algorithm
presented in the present paper appears to be capable in this respect. A summary of the key
components of the present approach is listed below:

1. A simple multiobjective framework for the UETP to simultaneously reduce timetable
lengths and produce a favorable ‘spread’ of exams for the students.

2. A greedy algorithm that sequentially allocates time slots to examinations while simul-
taneously considering two objectives, and checking multiple constraints.

3. Grouping and reordering techniques for iterative improvement, based on the iterated
greedy algorithm of Culberson and Luo, [19], but tailored towards the UETP.

4. Two alternative performance measures for assessing timetable length: the first is
applied in the early stages of the multiobjective evolutionary algorithm (MOEA)
to encourage shorter timetables; and the second is used in the later on to give more
flexibility for the second objective, when it is clear that further reductions in timetable
length are unlikely.

1A few constraints, such as restricted sessions, are sometimes more difficult to accommodate. These will
be discussed later in the paper.
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5. Two mutations - insertion and Kempe chain exchange.

6. A local search (based on Kempe exchanges), applied at the very end to the best
solutions produced by the MOEA.

The rest of the paper is structured as follows. Sections 2 and 3 give some background and
cover related work. Section 4 then describes the various components of the current approach.
This is followed by Section 5, which gives details of the data sets used in the study. Section 6
next gives details of how the hard constraints are dealt with in the multiobjective approach,
and Sections 7 and 8 present some comparative studies to assess the abilities of three greedy
algorithms to construct good timetables in a multiobjective setting. The main results for
the uncapacitated, capacitated and restricted sessions versions of the UETP are presented
in Section 9. Finally, Section 10 summarizes the main conclusions of the paper.

2 Single Objective Approaches the UETP

There is a vast literature devoted to timetabling including a bi-annual conference, PATAT
(International Conference on the Practice and Theory of Automated Timetabling) which
covers this topic exclusively. The interested reader is referred to these conference proceed-
ings, and survey papers such as [11, 13, 15, 29, 30] for more background on the subject. This
Section will provide a brief overview of the main single objective techniques that appear
in the literature, and the following Section will focus on multiobjective techniques. The
classification used here is based on [29], however many successful methodologies overlap
categories or combine strategies from different paradigms.

Early research on timetabling focussed on simple sequential methods based on graph
coloring techniques [34]. In essence, sequential methods work through a list of examina-
tions, assigning the earliest feasible time slots to each exam in turn, using a simple greedy
algorithm. A large number of ordering strategies have been devised, aimed at presenting
favorable sequences to the greedy assignment algorithm, generally attempting to schedule
the most ‘difficult’ or heavily constrained exams first, for example, [21, 24, 34]. However,
the performance of these techniques tends to be variable and somewhat unpredictable, and
the most successful implementations rely on some kind of additional iterative improvement
mechanism, on top of the basic construction scheme. Carter and his colleagues, for exam-
ple, make extensive use of backtracking [14], to attempt to correct poor assignments. In
another approach, by Burke and Newall [10], an heuristic modifier is utilized in an iterative
framework, to adjust a ‘difficulty’ score for ‘problematic’ examinations, so that they are
scheduled earlier the next time the ordering heuristic is applied. Examples of other schemes
that can be found in the literature for the iterative improvement of orderings include: a
fuzzy system that brings together three ordering criteria [3], and a hyper-heuristic algorithm
used to select appropriate low-level ordering heuristics, each to sequence just a few of the
events for the timetable [9]. Sequential methods play a significant role in the present work.

Another popular approach is to use constraint based techniques. There are two main
approaches: constraint logic programming (CLP) [2] and constraint satisfaction problem
(CSP) techniques [32]. These techniques operate on exams modeled as a set of discrete
variables with finite domains, and a set of constraints between the variables specify which
combinations of values are allowed and which are not. Optimization is based on a form of
branch and bound. Used on their own, constraint based techniques tend to be computa-
tionally expensive, and the most successful approaches combine constraint based techniques
with other methods. Most notable is the work by Merlot et al [25]. They used constraint
programming to obtain initial solutions, then improved them with simulated annealing and
hillclimbing. In this way they reported some of the best results (at the time) for some
literature benchmarks, including several instances from the well known Toronto data sets
[14]. Although other researchers have reported successful implementations using constraint
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based methods and hybrid techniques, their work is mostly confined to specific instances at
particular institutions, making comparisons with other approaches difficult.

The last decade has seen many studies involving local search and metaheuristics. Of
particular note is a local search heuristic, known as a Kempe chain interchange2, which
attempts to improve a timetable by swapping groups of exams between pairs of time slots,
where this can be done without violating any hard constraints. This technique was devel-
oped for the UETP by Thompson and Dowsland [31] and has been used subsequently by
many researchers including Merlot et al [25] in their previous mentioned hybrid approach
(also see [16, 18]). Abdullah et al [1] developed a technique based on larger neighbourhoods,
instead of using the usual pairwise exchanges. Best results were obtained on some Toronto
benchmark instances using this approach (see Table 3).

3 Multiobjective Approaches

Multiobjective optimization techniques are becoming increasingly popular methods for solv-
ing a range of real world problems where consideration of more than one optimization cri-
terion is required. Solutions to problems involving multiple objectives are characterized by
optimum sets of alternative solutions, known as Pareto sets, rather than by a single global
optimum. Pareto-optimal solutions are non-dominated solutions in the sense that it is not
possible to improve the value of any one of the objectives, in such a solution, without simul-
taneously degrading the quality of one or more of the other objectives in the solution vector.
(The reader is referred to [22] for a more general treatment of multiobjective techniques.)

It has been recently argued by Cheong et al [17], that the UETP is essentially a multiob-
jective optimization problem. Treating it as such certainly avoids the need to determine the
length of the timetable in advance, and ‘freeing up’ this constraint can allow the production
of a range of alternative timetables from which the user can select the one that suits his/her
purposes the best. Nevertheless, as far as the present author is aware, very few studies have
been undertaken to date involving multiobjective optimization applied to the UETP.

A multi-criteria approach to timetabling involving nine criteria was published by Burke,
Bykov and Petrovic in 2001 [4]. In this study several hard constraints were modeled as
soft constraints, and an heuristic search used to minimize the extent to which the various
constraints were violated. More recently Côté, Wong and Sabourin [18, 35], Cheong, Tan
and Veeravalli [17], and the present author, [28], have tackled timetabling as a dual objective
optimization problem, simultaneously minimizing timetable length and reducing proximity
costs (i.e., maximizing the spread of exams for individual students).

Côté, Wong and Sabourin cover both uncapacitated [18] and capacitated (with seating
capacity constraints) [35] versions of the dual objective UETP in their research. Their
method uses a multiobjective evolutionary algorithm (MOEA) with a main population and
an archive, and two local searches (TABU search algorithms) plus mutation and selection. A
direct representation is used in their research, which means that their algorithm manipulates
the time slot values for each exam. A local search algorithm is then used to reduce conflicts
and repair infeasibility. The results obtained in [18] for the uncapacitated problem are used
for benchmarking the present study. However similar comparisons with their results for the
capacitated problem have not been possible, due to shorter timetables being obtained in
the present study.

In another recent study of the bi-objective optimization of the capacitated UETP,
Cheong, Tan and Veeravalli [17] employ an innovative crossover they call day-exchange
crossover. In their study, temporal relationships within the timetable are stored explicitly
in the chromosome, facilitating meaningful exchanges between parents. Unfortunately, once
again, the timetables produced in this earlier study tend to be longer than those produced
in the present paper.

2First used by Alfred B. Kempe in 1879 in a ‘proof’ of the four-color conjecture.
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An additional factor making comparative studies very difficult for the capacitated prob-
lem is that the various studies have not all used the same objective function to measure
the proximity costs. Inevitably, various authors, over the last decade or so, have come up
with different ways to assess the spread of examinations, depending on their views as to
what constitutes a ‘good spread’ of exams (see [29] for a summary). Many recent studies
(including the present paper and also [18] and [28]) favor a measure introduced by Laporte
and Desroches in [23] and used by Carter et al in [14]. This measure is simple and is
based on how many free periods students have between their exams (see Section 4.5.2 for
details). On the other hand, measures introduced in [5] and [6] are based on very real-
istic assumptions and model timetables with three sessions a day and one on a Saturday
morning. Unfortunately, the present author has found a general lack of clarity and consis-
tency in many research papers that use proximity costs calculated from week day /weekend
scenarios. For this reason comparative studies have been restricted to results quoting the
proximity measure of Laporte and Desroches.

4 Details of the New Multiobjective Framework

We will start with an overview of the new approach. The multiobjective framework operates
in four phases (MOO is an abbreviation for multiobjective optimization):

1. Initialization

2. MOO 1 : Optimization of dual objectives

3. MOO 2 : Focussing on proximity costs (i.e., improving the ‘spread’ of exams)

4. Local search

Following Initialization in Phase 1, the second Phase, MOO 1, operates to simultane-
ously reduce timetable length (objective 1) and proximity costs (objective 2). The purpose
of Phase 3, MOO 2, is to focus almost entirely on further reducing proximity costs, following
a stagnation in the attempts to reduce the timetable lengths any further. The transition
between Phase 2 and Phase 3 is accompanied by a change in the performance measure for
timetable length. In Phase 2 we use a measure that favors uneven distributions of exams
between the time slots, in the hope that time slots with few exams will be ‘squeezed out’
to make the timetables shorter. Once a good range of trade-off solutions for timetable
length have been obtained in this way, however, we find that there remains much scope for
improvement in the proximity costs, if movement between time slots can be freed up. For
this reason we use timetable length explicitly as our performance measure in Phase 3. The
final component of the multiobjective approach is the local search, which is only applied to
the ‘best’ (non-dominated) individuals produced in MOO 2. For this stage a hillclimbing
algorithm is used, based on Kempe chain interchanges (explained later). The hillclimber is
useful in making small improvements at the end, but it is time consuming.

Having first taken a ‘top down’ approach to introduce the structure of the multiobjec-
tive framework, we shall now view the techniques we use within this framework from a
‘bottom up’ perspective, and concentrate initially on the detail of the sequential and greedy
techniques, which are the fundamental agents of change in the MOEA (stages MOO 1 and
MOO 2 ).

4.1 The Grouping and Reordering Heuristics

One category of sequential techniques that have not so far been widely used for timetabling,
are the grouping and reordering heuristics of Culberson and Luo (CL) [19]. Like most other
sequential techniques they were originally developed for the graph coloring problem. The
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techniques are simple to apply and operate by iteratively altering a sequence of nodes (ex-
ams) presented to a simple greedy algorithm, so that fewer colors are needed (or shorter
timetables obtained). Focussing their attention on sorting and reordering whole color classes
(i.e., groups of nodes assigned the same color), these techniques are capable of producing
excellent results. Previous studies by the present author have used the CL heuristics as
a preprocessor for new order-based crossovers (i.e., crossovers that work on orderings of
exams) for an evolutionary algorithm, as well as for local search operators in their own
right, [27, 28]. Of particular significance to this type of work is a rare property of the CL
heuristics, which we shall call the ‘non-deterioration’ property:

The non-deterioration property
It is impossible to get a worse result by applying any of Culberson and Luo’s reordering
techniques to the graph coloring problem, and it is possible that a better result (using fewer
colors) may be produced (see [19] for details).

When applied to the UETP, the CL heuristics associate a numerical measure with each
time slot, such as the number of exams or the number of students, and this measure is used
as a criterion for re-sequencing the permutation lists with exams grouped together in their
time slots. For example, the time slot with the most exams may be selected first, and thus
these exams will occupy the first section of a permutation list, followed by the exams in the
second most popular time slot, etc.. Following a complete rearrangement of list, the greedy
algorithm is reapplied, and it is at this stage that shorter timetables can sometimes arise.
Interestingly, the CL heuristics can be applied equally effectively to the bin packing problem,
and thus they are suitable for capacitated versions of UETP. Culberson and Luo suggest
a random mix of various reordering heuristics and call the composite algorithm iterated
greedy, IG. Given an initial permutation of vertices, the IG algorithm can be defined by the
following repeating sequence:

1. greedy assignment

2. grouping of exams within their color classes (time slots)

3. reordering of complete color classes (time slots)

Figure 1 illustrates some key operations from a single iteration of IG applied to a small graph
coloring instance with 12 vertices and 14 edges. Imagine that the nodes are examinations,
and the colors time slots, and Figure 1 becomes a timetabling problem. Figure 1 (a) defines
the small graph, and Figure 1 (b) gives a typical random permutation of the vertices from the
graph and also the resulting greedy coloring. Figure 1 (c) shows the grouping operation used
to sort the list in non-descending sequence of color label, and 1 (d) gives the arrangement
following the application of one of the CL reordering heuristics called largest first. The
largest first heuristic rearranges the color classes in non-ascending sequence of their size
(i.e, the number of nodes or exams). Note that the positions of color classes 1 and 2 have
been reversed in Figure 1 (d). This follows the advice in [19] to interchange positions of
equal sized color classes. Figure 1 (e) shows the colors relabelled, with the lowest integer
used to label members of the color class occurring first on the list. Finally, Figure 1 (f)
illustrates the situation following a second application of the greedy algorithm. Note, that
vertices 4 and 1 have each been assigned colors with lower integer labels, making some
color classes smaller. It is likely that repetition of steps such as these will soon produce the
optimum coloring of 3, on a small instance such as this.

Various numerical properties of the color classes were tried by Culberson and Luo as
criteria for reordering:

1. Reverse: Reverse the order of the color classes
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Figure 1: Various operations by Culberson and Luo, [19], used in the local search procedure
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2. Random: Place the color classes in random order

3. Largest first: Place the classes in order of decreasing size (Figure 1 (d))

4. Smallest first: Place the smallest classes first

5. Increasing total degree: Place the classes in increasing order by the degree sum of
the group

6. Decreasing total degree: Place the classes in decreasing order by the degree sum
of the group

The favored combination of Culberson and Luo was: ‘largest first’, ‘reverse’ and ‘random’
used in the following ratio 50:50:30. We will use a slightly different regime, described later.
But first, it is necessary to look in more detail at the greedy algorithms that can be used
to decode the orderings to produce the actual timetables.

4.2 The Greedy Algorithms

Two new variations of greedy algorithm are presented and evaluated in this work, and the
one that performed the best in tests is incorporated into the multiobjective framework.

Greedy heuristic construction approaches to timetabling problems can be classified ac-
cording to whether or not the number of time slots is fixed in advance. In the absence
of soft constraints, the role of a greedy algorithm is normally to attempt to convert an
ordering of examinations into a timetable with no clashes, that is as short as possible. In
this case each exam in turn will be allocated the earliest time slot that is available, without
constraint violation. On the other hand, greedy allocation to optimize soft constraints, such
as proximity costs, usually operates within a predetermined timetable length [14]. With
the latter approach, the greedy algorithm will allocate to each exam the most favorable
time slot in terms of its contribution to the overall proximity cost, all the while maintaining
feasibility. Exams that cannot be allocated in this way within the predetermined number
of time slots, however, will remain ‘unallocated’, unless suitable reassignments can be made
by some additional procedure, such as backtracking.

At the other extreme, consider a greedy algorithm free to operate with no restrictions
imposed on the timetable length. With ultimate freedom to produce timetables of any
length, the greedy algorithm will be able produce conflict free timetables with no clashes
and zero proximity costs. In other words, proximity cost can be treated as just another
hard constraint. Although, it is likely that excessively long timetables will be produced if
this scheme is used. 3

The two new greedy algorithms presented here attempt a ‘middle way’: they simulta-
neously minimize timetable length and proximity costs, without the need to fix the number
of time slots in advance. On the other hand, they do not go as far as eliminating proximity
costs altogether. In essence, the new greedy algorithms work within an adaptive ‘ceiling’ for
timetable length, and new assignments are restricted to time slots at or below the current
ceiling level, provided no hard constraint is violated.

Three greedy variations of greedy algorithm are compared here. The first one is the
‘standard’ approach used for minimizing timetable length, whilst avoiding hard constraint
violations. The second and third, however, attempt to reduce soft constraints, such as
proximity costs, while at the same time avoiding hard constraint violation and minimizing
the number of time slots in the timetable. Given the role of the greedy algorithms to
‘decode’ an ordering and produce a timetable, greedy algorithms are frequently described
as ‘greedy decoders’ in the evolutionary computing literature. Hence, we shall use this term
interchangeably with ‘greedy algorithms’ in what follows. The three decoders are described
in detail below.

3This can be deduced from the poor results obtained by ‘greedy 3’ in a subsequent section. One can
conjecture that timetable lengths producing zero proximity costs will be at least as poor as these.
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Greedy 1 This is the ‘standard’ greedy algorithm as commonly used for graph coloring.
For a given sequence of exams the algorithm starts at the beginning of the list and, working
through each one in turn, it allocates the earliest available time slot so that no constraint
is violated.

Greedy 2 This algorithm is similar to greedy 1, but allocation will not necessarily be
limited to the earliest feasible time slot. Instead, the algorithm will try all feasible time
slots that are currently ‘allowed’, and allocate the one that imposes the least proximity costs
(or possibly the least effect of other soft constraints) on the partially constructed timetable.
Time slots that are ‘allowed’ correspond to the those equal or below the current ‘ceiling’,
which begins at zero, before the first exam is allocated a time slot. Allocations are allowed
above the level of the current ceiling only to avoid violating hard constraints.

Under greedy 2, the first exam on the list will always be allocated time slot 1, and the
‘ceiling’ raised from ‘0’ to ‘1’. The second exam will then allocated to time slot 1, provided
no hard constraint is violated by doing so. Let us assume there is a clash between the first
and the second exams, the second exam will then be allocated time slot 2, and the ‘ceiling’
raised from ‘1’ to ‘2’. Suppose the third exam on the list does not clash with the first
exam, the earliest feasible slot for exam 3 will then be time slot 1. Nevertheless, greedy 2
will go on to check whether time slot 2, if feasible, would be a more favorable assignment
for exam 3. At this stage the choice for allocation is extremely limited. However, as
the algorithm progresses along the list, more time slots tend to be needed to avoid hard
constraint violation, giving more choice for future allocations. In this way the greedy
decoder has some freedom to allocate exams to time slots favorable to proximity, yet the
timetable length is nevertheless constrained.

Greedy 3 The greedy 3 algorithm begins by running greedy 1 on the ordered list of exams
presented, simply to establish a lower bound on the timetable length, LB, for the particular
ordering. The algorithm then starts afresh from position one of the ordering, proceeding in
exactly the same way as greedy 2, but with the whole range of time slots, {1, 2, . . . , LB},
available from the start. Additional time slots are introduced, LB+1, LB+2, . . ., if required,
to ensure a feasible timetable.

4.3 Adapting Reordering Heuristics to the UETP

Two difficulties are encountered with the iterated greedy grouping and reordering heuristics
as suggested by [19] when applied to the UETP:

1. The CL grouping heuristic conserves time slot allocations for greedy 1 only, but not
for greedy 2 or greedy 3.

2. Re-sequencing the time slot classes (for example using ‘largest first’) can radically alter
the spread of exams for individual students, and this can have serious consequences
for the proximity cost.

To illustrate ‘problem 1’, let us look at some outputs from a sample instance of the
UETP consisting of just 9 exams. Each sample output lists the time slot assignments made
to the exams in the sequence in which they appear in the ordering. The process begins with
a random ordering of exams, then the following sequence of operations was performed:

1. Generate a random ordering of exams

2. greedy decoder

3. group into time slots
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4. print assignments

5. greedy decoder

6. print assignments

Sample printed output (produced in lines 4 and 6 of the above sequence of operations)
is given below for greedy 1 and greedy 3. However, disruption is difficult to observe on
instances as small as this example (i.e., only 9 exams), so output for greedy 2 is omitted.

Time slot allocation using greedy 1

After grouping into time slots:

1 1 2 2 3 3 4 5 6, timetable length = 6

After second application of greedy 1

1 1 2 2 3 3 4 5 6, timetable length = 6

Note, with greedy 1 the time slot allocation of the exams does not change following the
application of ‘grouping’.

Time slot allocation using greedy 3

After grouping into time slots

1 1 2 3 4 5 5 6 6, timetable length = 6

After second application of greedy 3

1 1 6 3 5 2 4 7 7 , timetable length = 7

Time slot membership is severely disrupted by greedy 3 following ‘grouping’, and the
timetable length has increased from 6 to 7, invalidating the non-deterioration prop-
erty.

To guarantee the non-deterioration property, the reapplication of the greedy de-
coder following the ‘grouping’ process should not alter the assignments of exams to time
slots in any way (only the reordering process should be capable of doing this). Given that
our multiobjective evolutionary algorithm will rely heavily on the CL grouping heuristic,
the prognosis for greedy 3 does not appear to be good, based on this example. Greedy 2
, on the other hand, shows rather more promise, as no disruption was observed on small
instances and proved to be very slight, even on large instances.

We will now move on to the problems associated with re-sequencing the time slots.
Once examinations have been allocated to time slots, re-sequencing entire time slots in the
schedule will not introduce any new clashes, neither will it change the seating requirements.
On the other hand, the consequences for individual students could be highly significant,
with an entirely different ‘spread’ of exams being produced. It is worthy of note, however,
that some criteria for re-sequencing are more disruptive than others. For example, a random
reassortment of time slots could have dire consequences, yet reversing the time slot sequence
will have no effect at all on the average proximity cost.

Recall that Culberson and Luo apply the following heuristics to reorder their color
classes ‘largest first’, ‘reverse’ and ‘random’ in the ratio 50:50:30. For the present study
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the ‘largest first’ heuristic will be replaced by an heuristic that measures how heavily con-
strained time slots are. The measure we use is called decreasing total degree (DTD), and
it will be described later. The ‘random’ ordering heuristic, was also abandoned in favor of
an alternative which we will call ‘deletion and insertion’. This heuristic simply selects a
time slot (color), and deletes it from one part of the chromosome, reinserting it elsewhere
at random, respecting class boundaries. Deletion and insertion is less disruptive to the
proximity costs than randomly reordering all of the time slots. We will apply the heuristics
DTD, ‘reverse’ and ‘deletion and insertion’ in the ratio 25:25:50. This mix appears to work
well, although the scheme is fairly robust to changes.

4.4 The Multiobjective Framework

The general framework that we shall use for multiobjective optimization is outlined in
Algorithm 1. The main ideas are adapted from the SEAMO algorithm (simple evolutionary
algorithm for multiobjective optimization), [26, 33]. Recall the four phases outlined at
the start of Section 4: Initialization, MOO 1, MOO 2 and the Local search. Following
Initialization, Algorithm 1 illustrates a simple steady-state approach for MOO 1 and MOO
2, which sequentially selects every individual in the population for breeding. Once an
individual is selected, the grouping, reordering and mutation operations are applied, as well
as greedy 2, as specified in applyOperations (described later in Sections 8.1 and 8.2).
Note: there is no crossover used in this study.

Algorithm 1 Simple Multiobjective Framework

Generate N random strings {Phase 1: Initialization, N is the population size}
Initialize bestOB1 and bestOB2 to arbitrarily large values
{bestOB1 and bestOB2 store the best-so-far values for OB1 and OB2}
for all strings in the population do

Apply the greedy decoder
Group the exams into their consecutive time slots
Evaluate the objective vector and store it: (OB1, OB2)
{Phase 2: MOO 1, OB1 = P for the first 1/4 of totalGeneration}
{Phase 3: MOO 2, OB1 = T for the final 3/4 of totalGenerations}
Also evaluate and store the number of time slots, T

for (generation = 1; generation < totalGenerations; generation++) do
for all strings in the population do

Select each string in turn, it becomes parent
Call applyOperations
Evaluate the objective vector (and T ) for the offspring
if the offspring is a duplicate then

It dies
else if the offspring dominates its parent then

It replaces it in the population
else if the offspring neither dominates nor is dominated by its parent then

it replaces another individual that it dominates at random, if such an indi-
vidual exists

else if The offspring’s objective vector improves on bestOB1, or bestOB2 then
The offspring replaces the individual with the worse value for OB1 in the
population
bestOB1 or bestOB2 is updated, as appropriate

Apply Phase 4: local search, to non-dominated solutions for (T , proximity), {optional}
Output the non-dominated vectors, (T , proximity)

Following the application of the chosen operators, the new individual will be evaluated
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according to the performance measures, for timetable length (OB1) and proximity cost
(OB2). As previously discussed in Section 4, we will use different performance measures
for OB1 at different stages of the MOEA. We use P for the first 25 % of generations, and
T for the remaining 75 %. P encourages shorter timetables , and T is more flexible in
allowing exams to be moved from one time slot to another. (These measures are defined
and explained in detail in Section 4.5).

Once the new offspring has been evaluated, a decision will be made regarding its survival,
according to the conditions stated in Algorithm 1. Offspring that have identical values for
their objective vector, (OB1, OB2) with one or more member of the current population,
will be deleted immediately. An offspring that survives the ‘duplicates test’ will next be
compared to its parent, and if it dominates its parent, it will replace it in the population.
If, on the other hand, the offspring is dominated by its parent, then it will die. A final
possibility is that the offspring and its parent will prove mutually non-dominating. When
this is the case, a random search will be undertaken, without replacement, to try to find
any member of the current population dominated by the new offspring, and the first such
individual to be found will be replaced by the new offspring. If no such candidate for
replacement is found, however, the new offspring will die, unless either of the offspring’s
objective functions variables, OB1 or OB2, harbor a global best-so-far value. When this
happens, the MOEA will ensure that this offspring is not lost, by replacing the population
member with the worst value for OB1 with the new individual. This somewhat biased
replacement criterion has been chosen to try to prevent timetables from getting too long.
Please note that the precise replacement criteria for the simple MOEA framework are easily
changed.

In addition to the switch of performance measures for OB1, the transition between MOO
1 and MOO 2 also includes a mechanism to prune the objective space (not shown in the
psuedocode). This allows the user to restrict the range of timetable lengths produced in
the final set of solutions, and thus avoid time-wasting computations on solutions that are
considered out of range (e.g., timetables too long to be of practical interest). To achieve
this, the objective values for unwanted solutions are reset to arbitrarily high values, to allow
MOO 2 to eventually replace them all with timetables within the required range.

4.5 Performance Measures for the UETP

The dual objectives we wish to tackle involve the simultaneous minimization of the timetable
length, OB1, and the total proximity costs, OB2. For the early part of the multiobjective
optimization (MOO 1 ) we use a measure, OB1 ← P , that favors timetables with an uneven
spread of exams among the time slots, to encourage reassignment from sparsely occupied
time slots so that they can be eliminated to produce shorter timetables. Once the MOEA has
achieved a good spread of timetable lengths, however, P can be rather restrictive, allowing
examinations little mobility between time slots. Thus, during the latter part of execution,
the MOEA will switch to direct measurement of the number of time slots, OB1 ← T , giving
more scope for exams to move between time slots. Proximity costs, OB2, are calculated
using weights to penalize examination schedules that require individual students to sit
examinations that occur in time slots that are close together. The closer together they are,
and the larger the number of students affected, the higher the total proximity cost will be.
More details of the performance measures used are given below.

4.5.1 Minimizing the Number of Time Slots

As mentioned above, the idea in MOO 1 is to devise a function, P , capable of making some
kind of distinction between ‘good assignments’ and ‘bad assignments’ of examinations to
time slots, for a given length of timetable.

Assume that we have T time slots and rank them according to some criterion that
measures the ‘fullness’ or ‘inertia’ of that time slot, such as the number of exams scheduled
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within it, or the degree sum for that time slot, for example. Suppose that the time period
that is deemed the most difficult to eliminate is ranked ‘1’, and the second most difficult is
ranked ‘2’, and so on, with the one that is considered the easiest to eliminate ranked ‘T’.
Equation 1 defines such a performance measure based on degree sums within each time slot:

P =
T∑
1

riDi + T
T∑
1

Di (1)

In Equation 1, Di =
∑

j∈Si
dj represents the degree sum for time slot i, with dj denoting

the exam degree of the jth exam (i.e., the total number of exams that cannot be scheduled
in the same time slot as exam j). ri is the rank of time slot i, and T represents the total
number of time slots, as before. P favors solutions with large numbers of highly constrained
exams concentrated in the same time slot. Under this regime it is assumed that weakly
constrained exams in sparsely populated time slots will gradually be reassigned, eventually
driving down the total number of time slots. P was inspired by a measure introduced by
Culberson and Luo, [19], for the graph coloring problem, in which the sum of the values
of the integer color labels was modified by a term nc (the number of vertices times the
number of colors). In this earlier measure the colors are not ranked, making the quantity
rather unstable due to its heavy dependence on the arbitrary assignments of integer labels
to colors. On the other hand, the measure introduced in the present paper does not suffer
in this way, as it uses ranks (indicating the level of constraints) in place of arbitrary time
slot labels.

If the time slots are ranked according to different criteria (other than degree sums),
other performance measures can be designed along similar lines to Equation 1. Pilot studies
indicate that degree sum is indeed a good criterion to use for ranking, when compared with
others, such as counting the number of examinations or students in each time slot. Of
course we are not at all interested in the P values for our final solution set, only timetable
lengths, T and proximity.

4.5.2 Minimizing Proximity Costs

The proximity costs described by Laporte and Desroches in [23] and used by Carter et al in
[14] have been chosen for the present study. In this scheme a cost, ws, is imposed, whenever
a student has to sit two examinations scheduled s periods apart. The weights applied are
as follows: w1 = 16, w2 = 8, w3 = 4, w4 = 2 and w5 = 1. Using these weights, cost values
can be evaluated for each student and all of these are then added together to give a total
cost accumulated for all students. We will call this accumulated cost our proximity cost,
with OB2 ← proximity/Number of students.

4.6 Mutations

We use two mutation operators to provide extra diversity in the search. One mutation
operator used is the insertion mutation (also known as position based mutation) described
by Davis, [20]. This operator simply involves selecting two exams at random from a per-
mutation list, and placing the second before the first.

The second mutation is more sophisticated and aims to swap groups of exams between
pairs of time slots, where this can be done without violating any hard constraints. The
previously mentioned Kempe chain interchange forms the basis of this operation. However,
in order to reflect time slot swaps in an order-based representation, it is necessary to re-
sequence the exams in the permutation lists, following a successful Kempe chain interchange.
We use the grouping operation of Culberson and Luo, as illustrated in Figure 1 (c), to do
this.

Kempe chain mutation proceeds as follows: first, a connected edge (i, j) is selected at
random. This simply involves choosing a pair of examinations where at least one student is
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taking both. The routine then constructs a connected subgraph to include all linked exams
currently assigned to the time slots occupied by exams i and j, t(i) and t(j) respectively.
Next, all the time slots in this subgraph are relabelled, so that t(i) becomes t(j) and
vice versa. For the uncapacitated problem, new timetables resulting from such Kempe
interchanges will always be conflict free, as long as the original timetable was conflict free.
If additional constraints are involved however, further checks will probably be needed. For
the capacitated problem, for example, rearrangement of examinations into different time
slots may produce a violation in seating capacity, with too many students and not enough
seats for a time slot. Thus, it is essential to check for such constraint violations before any
Kempe interchanges are made permanent. Should a Kempe interchange be rejected on the
ground of capacity (or other constraint) violation, the process is repeated until a suitable
candidate is found.

4.7 Local Search using Kempe Chain Reductions

In addition to its use for mutation, the Kempe chain interchange process is also applied
at the end of our process to try to improve the proximity costs of the non-dominated
individuals in the final population. However, this time the Kempe interchanges are seeded
repeatedly and methodically, instead of selecting a single edge at random on a ‘one off’
basis. Each connected edge in the original graph becomes the focus of attention for our
simple hillclimber, and Kempe interchanges that result in improvements to the proximity
cost are saved, provided that no constraint is violated by the new candidate timetable.
Poor and illegal solutions are discarded. The stopping criterion that we use involves at
most three iterations through the above routine. It has been noticed that improvements
become progressively smaller as time goes on. Furthermore, the local search is halted even
earlier, following a full iteration in which no permanent changes resulted.

5 Characteristics of the Data Sets

The Toronto benchmarks [14] have been chosen for the present work. As pointed out in
[29], however, there are two versions of this data in circulation. The benchmarks identified
as version I in [29] is the most popular of the two sets, and this version has been used in
the present paper. However, for all but six of these instances a maximum seating capacity
for the sessions is not defined in the original data. In addition, no session restrictions are
included. To model these additional constraints, we use data created by L. Merlot and his
colleagues, members of the Operational Research Group at the University of Melbourne.
This data can be found at:

http://www.or.ms.unimelb.edu.au/timetabling/ttframe.html?ttexp4.html

Merlot et al obtained capacity values for the Toronto instances, for which this quantity was
undefined in the original data, by first dividing the total number of student-exams by the
number of time slots used in the research at Melbourne. They then added another 5 %
capacity in order to allow a small amount of slack. For session restrictions the timetable
length was also fixed in advance, and approximately 10 % of exams were selected to have
their number of sessions restricted. For each of the chosen exams, a random integer between
one and five was generated to determine the level of restriction to be imposed. Finally,
specific time slots were chosen to match the restrictions.

The main characteristics of the data are summarized in Table 1. Note: the instance pur-
s-93 has been omitted from the study, because of time limitations (it is very much larger
than all the other Toronto instances). The present author included results for pur-s-93 in
the earlier conference paper [28], as part of a much smaller study involving the capacitated
problem and just 6 data sets. The first five columns of Table 1 are self explanatory, and
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Table 1: Characteristics of the Toronto Instances

Instance exams students edges seats
GCP
slots

BPP
slots

UBav

Prox
car-f-92 543 18419 20305 2000 28 28 44
car-s-91 682 16926 29814 1550 28 37 54
ear-f-83 190 1125 4793 350 22 24 164
hec-s-92 81 2823 1363 650 17 17 64
kfu-s-93 461 5349 5893 1955 19 13 90
lse-f-91 381 2726 4531 635 17 18 69
rye-s-93 486 11483 8872 2055 21 22 70
sta-f-83 139 611 1381 465 13 13 230
tre-s-92 261 4362 6131 655 20 23 55
uta-s-92 622 21266 24249 2800 30 22 39
ute-s-92 184 2750 1430 1240 10 10 77
yor-f-83 181 941 4706 300 19 21 140

Column 6 lists the best known solutions to the underlying graph coloring instances. The
uta-s-92 best is taken from [12]. All the other graph coloring solutions can be found in
[14]. Column 7 presents solutions to the underlying bin packing instances, as calculated
by the present author, [28]. Interestingly, the seating capacity limitation is identical to the
weight capacity constraint for the bin packing problem: the items of various sizes (bin pack-
ing) being replaced with examinations having various numbers of candidates (timetabling).
Thus, a feasible solution to the timetabling problem that avoids all clashes and seats all
students requires the simultaneous solution to the underlying graph coloring and bin pack-
ing problems. Column 8 specifies an upper bound for the proximity cost for each instance.
This is evaluated by generating the worst possible examination schedule for each individual
student, and then adding together the corresponding proximity costs. Assuming no clashes,
pathological schedules for individual students consist of a sequence of his/her exams with
no gaps. The total pathological proximity costs are divided by the number of students to
give an average, UBav, as quoted in Column 8. This UB measure simply assumes that each
student has all of his/her exams in one continuous sequence. Instances with the highest
values in Column 8 (i.e., sta-f-83, ear-f-83 and yor-f-83) correspond to universities where the
students have the most examinations to sit.

6 Incorporating the Hard Constraints

Hard constraints need to be checked carefully by the greedy algorithm when it is assigning
examinations to time slots, and the algorithm should not allocate a time slot to an exam if
it produces an infeasible timetable that violates one or more of the hard constraints.

6.1 The Uncapacitated Problem

The uncapacitated problem imposes only one hard constraint: no student is allowed to sit
more than one examination at a time, i.e., the ‘clash’ constraint. Thus, the greedy algorithm
will only have to check for clashes, with each attempt to allocate a time slot to an exam.

6.2 The Capacitated Problem

In addition to the ‘clash’ constraint above, the capacitated problem restricts the number of
students per session (i.e., applies a ‘bin packing’ constraint), in order to ensure that each
student has a seat in an examination room. With this version of the problem it is necessary
for the greedy algorithm to ensure that there are no clashes and that there are enough seats
for all the students, with each allocation of exam to time slot.
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6.3 The Capacitated Problem with Session Restrictions

In this final version of the problem, the greedy decoder has three separate constraints to
check: clashes, seats, and restricted sessions. As mentioned above, the restricted sessions
data obtained from the University of Melbourne fixed the timetable lengths in advance
(usually allowing more sessions than the minimum), then selected 10 % of exams to have
their number of sessions restricted.

Unfortunately there is a potential problem with timetable feasibility, if restricted sessions
are imposed. Although hard constraints generally pose no problem for order-based (i.e.,
sequential) approaches using greedy decoders, restricted sessions prove to be an exception.
Consider an ordering of examinations and a greedy algorithm that has progressed part way
through the list, to produce a partially constructed timetable. Assume that the next exam
encountered on the list is one of the 10 % with restricted sessions. It is entirely possible
that none of the allowable time slots is feasible for the exam currently under consideration
- it may clash with other exams already allocated to those time slots, or perhaps produce
a violation of seating restrictions. Recall that each exam with restricted sessions, has only
between 1-5 time slots available to it. If none of those sessions work for a particular exam,
given previous allocations to those time slots, the current exam will remain unscheduled,
and the greedy decoder will fail to produce a solution.

To try to help matters, the initial population is seeded with permutation lists in which
the exams with restricted sessions appear first, so that these exams can be assigned before
the others (at least in the initial population). More robustly, the feasibility issue is addressed
by relaxing the ‘restricted sessions’ constraint, to allow exams with restricted sessions to
be allocated to time slots late on in the timetable, if they cannot be accommodated in one
of their specified slots. To discourage this from happening, however, we impose a penalty
whenever an exam has to be placed in one of these ‘late slots’. In the present context,
timetables with ‘late slots’ simply refer to timetables that are longer than those fixed in the
University of Melbourne study, for example hec-s-92 is limited to 19 time slots, and sta-f-83
to 14, and so on.

The penalty we impose involves counting the number of exams with restricted session
violations in a particular solution, then scaling this value according to OB1. Thus, we
use either OB1 ← P + P × Nex or OB1 ← T + T × Nex where Nex denotes the number
of exams with violated restrictions. As an example consider the instance hec-s-92, which
has 19 session imposed in the University of Melbourne database. Suppose that the greedy
algorithm in the present order-based approach is unable to allocate a particular exam having
restricted sessions to any of the slots specified for that exam. To avoid a solution with an
unassigned exam, the restrictions will be relaxed to allow the greedy algorithm the earliest
time slot, occurring later than time slot 19, that it is able to choose without violating clash
or seating constraints.

7 Performance of the Greedy Algorithms on Random Order-
ings

It is a useful exercise to compare the results produced by the three greedy algorithms
applied to random orderings. Figures 2(a) and 2(b) show the dual objective plots obtained
by running each algorithm on 30 random orderings of two benchmark problems, tre-s-92
and car-f-92 respectively, taken from the Toronto data sets. Clearly, greedy 1 produces
the shortest timetables with the worst proximity costs and greedy 3 the longest timetables
with the best proximity costs, and the greedy 2 results in between the other two.
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Figure 2: Comparing greedy 1, greedy 2 and greedy 3, each run 30 times on random
orderings for tre-s-92 and car-f-92 on the uncapacitated problem
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8 The Greedy Algorithms in a Multiobjective Framework

Section 7 illustrates how a different profile of results can be obtained if the greedy decoder
considers the proximity costs when assigning time slots to random orderings of examinations.
We shall now turn our attention to examine how well the three greedy algorithms perform
when applied to intelligent orderings obtained by iterative improvement in a multiobjective
framework. We will begin by incorporating the CL grouping and reordering heuristics into
a multiobjective framework, and then we shall examine the added advantage of including
mutation operators and the final local search. Experiments with crossover operators have
been omitted from the present study. Although successful order-based crossovers (POP
and MIS) for the related graph coloring problem [27] have been developed by the present
author, and one of them (POP) used for multiobjective timetabling in [28], further tests
failed to demonstrate their effectiveness in the present context.

8.1 Multiobjective Framework with Grouping and Reordering Heuristics

The first set of experiments involve the use of grouping and reordering heuristics as described
in Section 4.1. Details of the iterative procedure are presented below in Function 1. As
can be observed, one reordering heuristic is chosen at random in the given proportion, from
{insert, reverse, decreasing-total-degree} for each iteration, and then the greedy decoder
is applied (either greedy 1, greedy 2 or greedy 3). Finally, the exams are regrouped into
their consecutive time slot sequence. Following the application of the operators, the new
individual will replace a parent, replace another individual or die, following the precise
conditions stated in Algorithm 1. Please note that OB1 switched between P and T once 25
% of the generations were completed, as stipulated in Algorithm 1.

Function 1 ApplyOperations: Single iteration of grouping and reordering

Choose a reordering heuristic at random (insert 50 %, reverse 25 % or decreasing-
total-degree 25 %) and apply it to create a single offspring
Apply the greedy decoder
Group the exams into a consecutive time slot sequence

The traces in Figures 3(a) and 3(b) represent the non-dominated solutions extracted
from five replicate runs of the multiobjective framework incorporating the grouping and
reordering heuristics, on tre-s-92 and car-f-92 respectively. A population size of 400 was used
for these experiments and the algorithms run for 2,000 generations (note: no limitation on
the range of timetable lengths is imposed on phase MOO 2 for these experiments). From
the results we can see that that the greedy 1 algorithm produces the shortest timetables
and the highest proximity costs, while the greedy 3 operator favors lower proximity costs,
but produces a poor spread of timetable lengths. Greedy 2, on the other hand, appears to
produce a good set of compromise solutions. Notably, each set of results is evenly spread
indicating uniform coverage of the approximate Pareto trade-off surfaces.

8.2 Grouping and Reordering with Mutations and Final Local Search

For this set of experiments the same timetabling instances were used. This time the muta-
tions were added and a local search applied to the best individuals in the final population.
Once again, the non-dominated results were extracted from 5 replicate runs and graphs
plotted. A population of 400 was used. This time, however, the MOEA was allowed to run
for 5000 generations, because the addition of mutation operators produced a slower conver-
gence rate. OB1 switched from P to T 1/4 way through, as before (once again, no limitation
on the range of timetable lengths is imposed on phase MOO 2 for these experiments). The
exact mechanism for selecting the operators is detailed in Function 2.
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Figure 3: Comparing greedy 1, greedy 2 and greedy 3 in a multiobjective framework for
tre-s-92 and car-f-92 on the uncapacitated problem, incorporation grouping and reordering
heuristics 19



20 22 24 26 28 30
5

6

7

8

9

10

11

12

Number of time slots

P
ro

xi
m

ity
 c

os
t

 

 

Greedy 1
Greedy 2

(a) tre-s-92 with the MOEA

25 30 35 40 45
2.5

3

3.5

4

4.5

5

5.5

6

Number of time slots

P
ro

xi
m

ity
 c

os
t

 

 

Greedy 1
Greedy 2

(b) car-f-92 with the MOEA

Figure 4: Comparing greedy 1 and greedy 2 on tre-s-92 and car-f-92 on the uncapacitated
problem in a multiobjective framework with grouping, reordering, mutation and local search
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Function 2 ApplyOperations: Single iteration, choosing grouping or mutation

Choose either reordering (Probreord) or mutation (Pm = 1 − Probreord) {Probreord =
100%, at start of MOEA, and 0% at the end, decreasing evenly throughout the execution
of the MOEA}
if reordering is chosen then

Choose a reordering heuristic at random (insert 50 %, reverse 25 % or largest-
total-degree-first 25 %) and apply it to create a single offspring

else
Choose a mutation (insertion 50 % or Kempe mutation 50 %)

Apply the greedy decoder
Apply grouping

In Function 2 the reordering heuristic is selected from the same menu as before, with
the same relative probabilities. With mutation, the proportion is 50 % : 50 % for insertion
and Kempe mutation. For each iteration only one operator is selected, either a grouping
operator or a mutation. If grouping is chosen, then mutation is not applied, and vice versa.
The relative rate of application of grouping versus mutation is allowed to vary, depending
on the stage of execution of the MOEA algorithm. At the start, grouping is applied at 100
% and mutation at 0 %, but at the end these proportions are reversed. This regime seemed
to work well, although it is possible that other mixes of the operators prove equally effective.
However, fine tuning these proportions is beyond the scope of the present study. For the final
population, the non-dominated individuals are selected and a final local search, consisting
of Kempe chain interchanges (see Section 4.7), is applied to these superior individuals. This
final stage does not involve any order-based greedy operations - improvements to proximity
costs are simply made where it is possible to do so without violating any hard constraints.

The plots for the MOEA are illustrated in Figure 4. This time, greedy 3 has been
omitted from the experiments because it produced a poor range of timetable lengths in
the previous experiments. In the current set, it is clear that a better spread of results is
obtained if greedy 2 is used, rather than greedy 1. For this reason the main experiments,
documented in the next section, will use the MOEA with the operations from Function 2.
Once again, the results show an even spread over the approximate Pareto trade-off surfaces.

Please note that extensive tests verified that each of the four stages (Initialization, MOO
1, MOO 2 and local search) of the multiobjective approach make a useful contribution to
the final results. Replacing MOO 2 with an extension of the local search stage (i.e., Kempe
chain reductions), for example, produced consistently poorer results. The final local search
when it follows MOO 2, generally improves proximity costs by about 0.2 %.

9 The Main Results

This section documents the results obtained by running the MOEA described in Algorithm
1, with the greedy 2 decoder on the Toronto benchmarks. A population size of 200 was used
and the MOEA run for 10,000 generations on all instances. To demonstrate the robustness
of the new method the same parameters were used throughout, with no special tuning for
the different instances. Three variations of the UETP are solved, as described in Section
6: the uncapacitated problem, the capacitated problem and the capacitated problem with
some exams having restricted sessions. In all cases the MOEA attempts to simultaneously
minimize the timetable length and the proximity cost, producing a set of trade-off solutions.
The range of timetable lengths is purposely restricted in the stage MOO 2, to the shortest
timetable found + 4 time slots. This is to concentrate the MOEA on shorter timetables
and also avoid excessive tabulation of results. Where possible the results are compared with
those obtained by other recent dual objective approaches. All the current experiments were
carried out using Visual C++ with a Windows XP operating system, on an Intel Pentium
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Table 2: MOEA results for uncapacitated problem

Slots
Greedy 2
Ave (Bst)

Côté et al
Ave (Bst) Slots

Greedy 2
Ave (Bst)

Côté et al
Ave (Bst)

car-f-92 rye-s-93

30 5.1 (5.0) 4.9 (4.9) 21 11.4 (11.3) -
31 4.8 (4.7) 4.7 (4.5) 22 10.3 (10.1) 10.1 (9.8)
32 4.5 (4.5) 4.3 (4.2) 23 9.2 (9.1) 9.1 (8.8)
33 4.3 (4.2) 4.5 (4.2) 24 8.3 (8.2) 8.1 (7.8)
34 4.0 (4.0) 4.1 (3.9) 25 7.5 (7.4) 7.2 (7.0)

car-s-91 sta-f-83

32 6.4 (6.3) 6.2 (6.1) 13 157.1 (157.0) 157.1 (157.0)
33 6.1 (5.9) 5.9 (5.7) 14 140.4 (140.3) 140.4 (140.2)
34 5.7 (5.6) 5.5 (5.4) 15 126.0 (125.6) 126.0 (125.2)
35 5.4 (5.3) 5.5 (5.4) 16 113.7 (112.9) 113.2 (112.7)
36 5.1 (5.0) 5.3 (5.2) 17 102.7 (102.1) 101.6 (101.4)

ear-f-83 tre-s-92

22 42.4 (41.5) - 21 10.3 (10.2) 10.5 (10.3)
23 38.2 (37.3) 39.0 (38.0) 22 9.4 (9.3) 9.4 (9.4)
24 34.8 (34.2) 35.6 (34.2) 23 8.6 (8.5) 8.8 (8.6)
25 32.1 (31.5) 31.9 (31.6) 24 8.0 (7.8) 8.1 (7.9)
26 29.8 (29.2) 29.7 (28.8) 25 7.4 (7.2) 7.3 (7.2)

hec-s-92 uta-s-92

17 12.1 (12.0) 12.1 (12.0) 33 4.3 (4.2) -
18 10.5 (10.3) 10.5 (10.4) 34 3.9 (3.8) 3.9 (3.7)
19 9.3 (9.1) 9.3 (9.3) 35 3.8 (3.7) 3.6 (3.5)
20 8.3 (8.1) 8.2 (8.1) 36 3.6 (3.5) 3.4 (3.3)
21 7.5 (7.3) 7.5 (7.3) 37 3.4 (3.3) 3.2 (3.2)

kfu-s-93 ute-s-92

19 15.8 (15.5) 16.2 (15.8) 10 25.3 (25.2) 25.5 (25.3)
20 14.1 (13.9) 14.4 (14.3) 11 20.8 (20.6) 21.2 (20.7)
21 12.5 (12.3) 12.8 (12.1) 12 17.2 (17.0) 17.1 (16.8)
22 11.4 (11.2) 11.6 (11.0) 13 - 14.2 (13.9)
23 10.3 ((10.1) 10.3 (10.0) 14 - 11.6 (11.5)

lse-f-91 yor-f-83

17 13.1 12.8) 12.6 (12.3) 19 - 45.6 (44.6)
18 11.6 (11.3) 11.5 (11.3) 20 40.9 (40.6) 41.0 (40.6)
19 10.2 (10.0) 10.1 (9.7) 21 37.4 (37.2) 37.6 (36.4)
20 9.1 (8.8) 9.3 (8.5) 22 34.2 (34.0) 34.5 (33.8)
21 8.2 (8.0) 8.1 (7.7) 23 31.4 (31.1) 31.9 (31.6)
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4 PC with a 3.6 GHz processor and 1 GB RAM.

9.1 Uncapacitated Results

Results for the uncapacitated problem are presented in Table 2, where they are compared
with those obtained by Côté et al, [18]. In both cases the average and best are recorded from
five replicate runs for a range of timetable lengths. Bold entries in the table signify which
of the two approaches obtain the better average or ‘best’ value. Run times are difficult
to compare when experiments are carried out on different platforms. However, they are
broadly similar and will be discussed later. Examination of the results in Table 2 shows
the results of Côté et al are, on balance, a little better than those obtained in the current
study. However, they are very close and the new MOEA equals or outperforms the other
study in several places.

Table 3 compares proximity scores obtained using the current MOEA (on the Toronto
data set number I) with some recent results from state-of-the-art algorithms. Apart from
the present MOEA and the algorithm from Côté et al, all the other results have been
produced using single objective approaches, with the timetable lengths fixed in advance.
Thus, the new MOEA does not break any records for the uncapacitated instances, but the
results are competitive, nevertheless.

Table 3: Comparing some uncapacitated results with other work: Côté et al [18], Yang and
Petrovic [36], Abudullah et al [1] and Burke et al [8]. The bracketed value in Column 1
indicated the number of time slots

Data set MOEA Côté Yang Abdullah Burke

car-f-92 (32) 4.5 4.2 3.93 4.4 4.0
car-s-91 (35) 5.3 5.4 4.5 5.2 4.6
ear-f-83 (24) 34.2 34.2 33.7 34.9 32.8
hec-s-92 (18) 10.3 10.4 10.83 10.3 10.0
kfu-s-93 (20) 13.9 14.3 13.82 13.5 13.0
lse-f-91 (18) 11.3 11.3 10.35 10.2 10.0
rye-s-93 (23) 9.1 8.8 8.53 8.7 -
sta-f-83 (13) 157.0 157.0 158.35 159.2 159.9
tre-s-92 (23) 8.5 8.6 7.92 8.4 7.9
uta-s-92 (35) 3.7 3.5 3.14 3.6 3.2
ute-s-92 (10) 25.2 25.3 25.39 26.0 24.8
yor-f-83 (21) 37.2 36.4 36.35 36.2 37.28

9.2 Capacitated Results

Results obtained for the capacitated problem are compared in Table 4 with the best ob-
tained in an earlier conference paper by the present author [28], where this is possible.
Unfortunately thorough benchmarking is not possible, due to an absence of work on the
capacitated problem using the proximity measure of [23]. The only other similar dual objec-
tive work is by Wong et al [35]. However, they obtained timetables that were mostly much
longer than is the case for the present study (see Table 5). In addition, previously mentioned
issues regarding proximity cost measures caused added difficulties, and made it impossible
to make comparisons in the few places where there was an overlap in ranges of timetable
lengths. Clearly the results using the newer version of the MOEA are far superior to those
produced in the earlier study by the same author. The earlier MOEA used crossover and
the simpler greedy decoder, greedy 1, rather than the greedy 2 decoder used for the present
work. Furthermore, the newer version benefits from a Kempe chain mutation and finishes
off with a local search. Additionally, the fact that the timetables obtained in the present
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Table 4: MOEA results for capacitated problem

Slots
greedy 2
Ave (Bst)

Mumford
Bst Slots

greedy 2
Ave (Bst)

Mumford
Bst

car-f-92 rye-s-93

31 - 6.6 23 12.0 (11.6) -
32 4.9 (4.9) 6.3 24 10.4 (9.9) -
33 4.7 (4.6) 6.1 25 9.0 (8.9) -
34 4.3 (4.3) 6.0 26 7.9 (7.8) -
35 4.1 (4.0) 5.8 27 7.2 (7.1) -

car-s-91 sta-f-83

37 - 7.2 13 167.1 (166.9) -
38 5.6 (5.5) 6.8 14 147.8 (147.5) -
39 5.2 (5.1) 6.6 15 131.5 (131.2) -
40 4.9 (4.9) 6.5 16 117.9 (117.4) -
41 4.7 (4.5) 6.3 17 106.2 (105.8) -

ear-f-83 tre-s-92

24 45.0 (45.0) - 24 9.3 (9.2) 10.0
25 39.8 (39.1) - 25 8.3 (8.1) 9.5
26 35.9 (34.9) - 26 7.5 (7.4) 9.3
27 33.0 (32.5) - 27 6.8 9.1
28 30.0 (29.6) - 28 6.4 (6.3) -

hec-s-92 uta-s-92

20 9.6 (9.4) - 33 4.2 (4.2) 5.5
21 8.5 (8.3) - 34 4.0 (4.0) 5.4
22 7.4 (7.3) - 35 3.8 (3.7) 5.2
23 6.6 (6.5) - 36 3.6 (3.6) -
24 - - 37 3.4 (3.4) -

kfu-s-93 ute-s-92

19 16.9 (16.9) 23.3 10 31.2 (30.8) -
20 15.1 (14.9) 21.2 11 25.2 (25.0) -
21 13.4 (13.3) 21.2 12 20.6 (20.4) -
22 12.1 (11.9) 20.5 13 16.9 (16.8) -
23 10.9 (10.8) 20.2 14 -

lse-f-91 yor-f-83

18 13.8 (13.6) - 21 42.7 (42.7) -
19 12.1 (11.9) - 22 39.1 (38.2) -
20 10.4 (10.2) - 23 35.5 (35.3) -
21 9.3 (9.2) - 24 32.4 (31.6) -
22 8.4 (8.3) - 25 29.7 (28.7) -

Table 5: Timetable length ranges illustrating that the current approach produces shorter
timetables for the capacitated problem

Instance Current Wong 2004

car-f-92 32 - 35 39 - 43
car-s-91 38 - 41 51 - 55
kfu-s-93 19 - 23 20 - 24
tre-s-92 24 - 27 34 - 38
uta-s-92 33 - 37 37 - 41
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study are so much shorter than those obtained in [35] is encouraging. To highlight this
difference, the ranges for the two studies are compared in Table 5.

9.3 Restricted Sessions Results

Table 6: MOEA results for restricted sessions problem, ‘*’ denotes an infeasible solutions

Slots
greedy 2
Ave (Bst) Slots

greedy 2
Ave (Bst)

car-f-92 rye-s-93

45 2.9 (2.9) 29 6.7 (6.7)
46 2.7 (2.7) 30 5.9 (5.8)
47 2.6 (2.6) 31 5.4 (5.2)
48 2.5 (2.5) 32 4.9 (4.8)
49 2.4 (2.4) 33 4.5 (4.4)

car-s-91 sta-f-83

50 3.3 (3.2)* 15 133.0 (132.5)
51 3.1 (3.1)* 16 118.5 (118.2)
52 3.0 (3.0)* 17 106.9 (106.3)
53 2.9 (2.9)* 18 97.1 (96.6)
54 2.8 (2.8)* 19 88.6 (67.5)

ear-f-83 tre-s-92

30 28.5 (28.0) 30 6.3 (6.1)
31 26.3 (26.0) 31 5.9 (5.8)
32 24.5 (23.8) 32 5.6 (5.5)
33 23.1 (22.6) 33 5.3 (5.2)
34 21.6 (21.2) 34 5.0 (4.7)

hec-s-92 uta-s-92

21 9.6 (9.4) 46 2.5 (2.5)
22 8.2 (8.0) 47 2.4 (2.4)
23 7.2 (7.0) 48 2.3 (2.3)
24 6.3 (6.1) 49 2.3 (2.2)
25 5.6 (5.6) 50 2.2 (2.1)

kfu-s-93 ute-s-92

25 10.2 (10.0) 11 26.0 (25.9)
26 9.4 (9.1) 12 21.2 (20.9)
27 8.5 (8.3) 13 17.4 (17.2)
28 7.9 (7.7) 14 14.5 (14.4)
29 7.5 (7.2) 15 12.3 (12.1)

lse-f-91 yor-f-83

23 9.0 (8.7) 26 30.0 (30.0)
24 7.7 (7.5) 27 27.6 (27.3)
25 7.2 (6.8) 28 25.5 (25.2)
26 6.6 (6.3) 39 24.0 (23.6)
27 6.1 (5.8) 30 22.4 (22.1)

The final set of results, presented in Table 6, are for the capacitated problem with some
exams restricted to a very limited range of time slots. No comparisons have been included for
this set of results - they are merely presented as a challenge to other researchers. However,
it is encouraging to note that values are very close to those presented for the capacitated
problem in Table 4 where the ranges of timetable lengths overlap (see hec-s-92, sta-f-83,
and ute-s-92). Although some proximity values for fixed timetable lengths are given on the
Melbourne University web site, these are limited to a single result for each data set, for
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which the timetable length is mostly outside the range of those obtained in the current
study. In addition, the present author was a little uncertain of the precise details used to
calculate the proximity measure quoted on Melbourne web site. Note that the results for
car-s-91 are marked in the Table as ‘infeasible’. The reason for this is that a final check on
the non-dominated solutions identified exams with allocations made outside their restricted
set of sessions, in all cases, for the five replicate runs on this instance. Inspection of the
data revealed a higher than normal number of exams restricted to a single time slot. For
all other solutions presented in the Table the restricted exams have been allocated legally.

9.4 Run Times for the MOEA

Table 7: Average run times for MOEA in minutes
Problem # Exams Uncap Cap Restrict

car-f-92 543 295 291 372
car-s-91 682 478 391 503
ear-f-83 190 37 35 41
hec-s-92 81 10 10 10
kfu-s-93 462 268 262 311
lse-f-91 381 195 180 206
rye-s-93 486 276 237 318
sta-f-83 139 22 22 30
tre-s-92 261 70 80 82
uta-s-92 622 432 452 513
ute-s-92 184 49 43 50
yor-f-83 181 35 35 36

The average run times (in minutes) for all three versions of the current MOEA are listed
in Table 7. These are found to be broadly comparable with the run times obtained by Côté
et al [18]4

It is interesting to note that the run times for the capacitated version of a problem are
for the most part faster than those for the uncapacitated version in the present study. It
would appear certain that imposing the additional constraint (seating capacity) will reduce
the size of the search space, probably reducing the time required by the final local search.
On the other hand, addition of a further constraint, in the form of examination time slot
restrictions, produces longer run times than can be observed for either of the other variations
of the problem. It would be an interesting exercise to insert some check points and carry
out some empirical measurements to determine relative timings.

10 Conclusions and Discussion

The current paper presents a set of ideas embedded in a multiobjective framework capable of
producing a range of good trade-off solutions to heavily constrained timetabling problems.
The following list identifies the key components of the new approach:

• a simple multiobjective framework,

• solutions represented as orderings,

• a greedy algorithm that successfully optimizes timetable length and proximity cost,
simultaneously,

4Their run times varied between 25 and 816 minutes, but they used a different platform with a slower
processor (2.2 GHz, compared with the 3.6 GHz used in the present study).
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• effective grouping and reordering techniques for iterative improvement,

• alternative performance measures for timetable length,

• two mutations - insertion and Kempe chain interchange, and

• a local search (also based on Kempe chain interchanges), applied to the very best
solutions following the MOEA.

It is well known that that sequential methods are very good at handling timetabling
constraints, when simple constructive techniques are used. This present paper illustrates
further possibilities for order-based methods by introducing a range of ideas capable of
producing iterative improvements.

Results are presented for three versions of the university examination timetabling prob-
lem: 1) the uncapacitated problem, 2) the capacitated problem (with seating restrictions)
and 3) the capacitated problem with some exams having restricted sessions. Although re-
sults for 1) compare reasonably well with recent results for multiobjective approaches in
the literature, it is for the more heavily constrained problems like 2) and 3) that the new
approach appears to show the most promise: timetables tend to be very much shorter than
have been presented elsewhere, yet the proximity costs are not much greater than have been
obtained for 1), where comparisons are possible. Furthermore, run times do not appear to
become excessive, with additional constraints.

The ease with which the order-based MOEA copes with multiple constraints makes it
an ideal candidate for development on bespoke examination timetabling problems: every
institution has its own individual idiosyncracies. Furthermore, the approach has potential
for many other real-world scheduling problems with several objectives for optimization and
multiple constraints. Such problems include staff rostering, assembly line balancing, vehicle
scheduling, and many more.
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[18] P. Côté, A. Wong, and R. Sabourin. A hybrid multi-objective evolutionary algorithm
for the uncapacitated exam proximity problem. In E. Burke and M. Trick, editors,
PATAT 2004, volume 3616 of LNCS, pages 294–312. Springer-Verlag Berlin Heidelberg,
2005.

[19] J. Culberson and F. Luo. Exploring the k-colorable landscape with iterated greedy. In
D. S. Johnson and M. A. Trick, editors, Cliques, Coloring and Satisfiability: Second
DIMACS Implementation Challenge, volume 26 of DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, pages 499–520. American Mathematical
Society, 1996.

[20] L. Davis. Order-based genetic algorithms and the graph coloring problem. In Handbook
of genetic algorithms, chapter 6, pages 72–90. Van Nostrand Reinhold, New York, 1991.

[21] D.Brélaz. New methods to color the vertices of graphs. Communications of the ACM,
24(4):251–256, 1979.

[22] Kalyanmoy Deb. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,
Chichester, United Kingdom, 2001.

28



[23] Gilbert Laporte and Sylvain Desroches. Examination timetabling by computer. Com-
put. Oper. Res., 11(4):351–360, 1984.

[24] D.W. Matula, G. Marble, and J.D. Isaacson. Graph coloring algorithms. In R.C. Read,
editor, Graph theory and computing, pages 104–122. Academic Press, New York, 1972.

[25] L.T.G. Merlot, N. Borland, B.D. Hughs, and P.J. Stuckey. A hybrid algorithm for the
examination timetabling problem. In E. K. Burke and P. De Causmaecker, editors,
Practice and Theory of Automated Timetabling IV, volume 2740 of LNCS, pages 207–
231, Berlin / Heidelberg, 2003. Springer.

[26] C. L. Mumford. Simple population replacement strategies for a steady-state multi-
objective evolutionary algorithm. In Proceedings of the 2004 Genetic an Evolution-
ary Computation Conference (GECCO), pages 1389–1400, Seattle, Washington, USA,
2004.

[27] C. L. Mumford. New order-based crossovers for the graph coloring problem. In T. P.
Runarsson, H-G Beyer, E. K. Burke, J. J. Merelo Guervós, L. D. Whitley, and Xin
Yao, editors, Parallel Problem Solving from Nature - PPSN IX, 9th International Con-
ference, Reykjavik, Iceland, September 9-13, 2006, Procedings, volume 4193 of LNCS,
pages 880–889, Berlin/Heidelberg, 2006. Springer.

[28] C. L. Mumford. An order based evolutionary approach to dual objective examination
timetabling. In Proceedings of the 2007 IEEE Symposium on Computational Intelli-
gence in Scheduling (CI-Sched 2007), pages 179–186, 2007.

[29] R. Qu, E. Burke, B. McCollum, L.T.G. Merlot, and S.Y. Lee. A survey of search
methodologies and automated system development for examination timetabling. 2008.
(To appear in Journal of Scheduling).

[30] A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13:87–
127, 1999.

[31] J. M. Thompson and K. A. Dowsland. A robust simulated annealing based examination
timetabling system. Comput. Oper. Res., 25(7-8):637–648, 1998.

[32] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[33] C. L. Valenzuela. A simple evolutionary algorithm for multi-objective optimization
(SEAMO). In Proceedings of the 2002 IEEE Congress on Evolutionary Computation
(CEC2002), pages 717–722, Honolulu, Hawaii, 2002. (C.L. Valenzuela is now known
as C.L. Mumford).

[34] D.J.A. Welsh and M.B. Powell. An upper bound for the chromatic number of a graph
and its application to timetabling problems. The Computer Journal, 10:85–86, 1967.
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