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Abstract

This paper describes the development of a fine-grained
meta-heuristic for solving large strip packing problems with
guillotine layouts. aCe, an architecture-adaptive environ-
ment, and the aCe C parallel programming language are
used to implement a massively parallel genetic simulated
annealing (GSA) algorithm. The parallel GSA combines
the temperature schedule of simulated annealing with the
crossover and mutation operators that are applied to chro-
mosome populations in genetic algorithms. For our prob-
lem, chromosomes are normalized postfix expressions that
represent guillotine strip packings. Preliminary resultsfor
some benchmark data sets are reported and indicate that
the parallel GSA method holds promise as a technique for
solving the strip packing problem.

1. Introduction

In recent years, PC clusters and networks of workstations
have been increasingly utilized as cost-effective alternatives
to traditional multiprocessors for solving a broad range of
problems, including scientific applications and combinato-
rial optimization problems. The most popular approaches
to programming these cluster systems usually assume a
coarse-grained, control parallel programming model where
C or Fortran programs are commonly written as SPMD
codes that employ the MPI message passing interface.

While this approach has been successfully used to solve
a number of challenging applications, MPI programmers
are restricted to the control parallel model when designing
solutions to their problems and often need to employ tech-
niques that address issues such as load imbalance and/or

task termination detection. As a result, systems such as
Treadmarks [1] and the UPC [20] model have emerged to
support the distributed shared memory paradigm in order to
ease the programmer’s burden.

In contrast to the shared-memory paradigm, we propose
the use ofaCe, an “architecture-adaptive computing envi-
ronment” [5, 6] which provides the programmer with both
data-parallel and control-parallel paradigms for developing
application algorithms. With aCe C,clusterscan be de-
fined where the elements within a cluster execute common
threads of execution while different clusters can execute dif-
ferent threads concurrently. Moreover, aCe is architecture-
adaptive because it also provides the capability to design
and utilize virtual architectures while hiding the underly-
ing physical architecture from the programmer. (The aCe
C compiler used in our work produces executable code that
runs on a Beowulf cluster.)

aCe C has been used to teach parallel programming to
students as reported in [7]. In addition, a number of test pro-
grams, including FFTs, finite element computation, bitonic
sorting, and Conway’s Game of Life have been coded and
tested on single and multiple PC’s at the NASA Goddard
Space Flight Center, Bucknell University, and George Ma-
son University.

In this paper, we report on our current efforts to develop
a fine-grain evolutionary algorithm for solving an optimiza-
tion problem known as the two-dimensional strip packing
problem. The solution method, referred to as a genetic sim-
ulated annealing (GSA) approach, has been successfully ap-
plied to a number of difficult optimization problems. The
GSA combines the temperature schedule that forms the ba-
sis of simulated annealing (SA) with the crossover and mu-
tation operations that are applied to chromosome popula-
tions in genetic algorithms (GAs). In this case, the popula-



tions represent solutions to the two-dimensional strip pack-
ing problem. The aCe paradigm is particularly suited for
implementing a parallel version of the GSA algorithm and
our preliminary testing has indicated that an aCe GSA algo-
rithm can produce good, and sometimes optimal, solutions.

In the remaining sections of the paper, we summarize
some of the features of the aCe C programming language,
describe the parallel GSA approach for strip packing and
outline its implementation in aCe C, and present the pre-
liminary results we have obtained for some benchmark data
sets. We conclude by discussing the work that remains to
be completed in order to fully investigate and evaluate our
aCe GSA algorithm.

2. The aCe C programming language

As a parallel programming language, aCe C allows pro-
grammers to explicitly specify what can be performed con-
currently by the means ofthreads. aCe assumes that every
algorithm is based on an inherent virtual architecture con-
sisting of one or morebundlesof threads. While an aCe
program is being executed, the same instruction stream is
applied to all threads within a bundle. However, an indi-
vidual thread does not have to execute all the instructions
of the bundle’s instruction stream. Using a conditional con-
trol structure, a thread may not be required to execute all of
the instructions. Similarly, different bundles of threadsmay
likely be performing different instruction streams.

aCe C is executed on the basis of thread activations:
there is always aMAIN thread that is automatically created
in every aCe program and threads are also declared glob-
ally. Information about executing threads can be obtained
through various pre-defined system constants. For exam-
ple,$$i is associated with each thread’s unique identifying
rank (ID) within its bundle. Further, a thread can communi-
cate with another thread in the same bundle or with one in a
different bundle. aCe also provides a feature calledthread
alignmentthat allows the user to specify the mapping of
the threads onto physical processors. Details about thread
declaration and usage are discussed in [7] and in the aCe
Tutorial [8].

One of the interesting features of aCe is that it allows
programmers to specify the communication paths between
the threads in a bundle. Many different forms of path de-
scriptions can be used, such as absolute addressing, univer-
sal addressing, relative addressing, and reduction address-
ing. Further, aCe provides the programmer with the ability
to define precomputed path descriptions (i.e. virtual topolo-
gies) in order to minimize the cost of routing messages at
run-time.

Figure 1 illustrates an aCe code segment that predefines
the paths from one thread to its neighbors for a grid topol-
ogy. Each thread has a total of four neighbors, and the code

#include <stdio.aHr>

threads A[100][100];

int main() {
A.{

int value, total = 0;

/*define communication paths*/
path(A) N, S, E, W, NW, NE, SW, SE;
N = .A[-1][0].;
S = .A[1][0].;
W = .A[0][-1].;
E = .A[0][1].;

total = @N.value + @S.value + @W.value + @E.value;
}

}

Figure 1. aCe example of a grid topology

#include <stdio.aHr>
#include <stdlib.aHr>

threads A[16];

int main() {
A. {

int value, sum;
int X = $$i;

/* Define neighbors */
path(A) cube0, cube1, cube2, cube3;
cube0 = .A[(Xˆ1)-X]. ;
cube1 = .A[(Xˆ2)-X]. ;
cube2 = .A[(Xˆ4)-X]. ;
cube3 = .A[(Xˆ8)-X]. ;

sum = value + @cube0.value;
sum = sum + @cube1.sum;
sum = sum + @cube2.sum;
sum = sum + @cube3.sum;

}
return 0;

}

Figure 2. aCe example of a hypercube topol-
ogy



Rectangle Width Height Rectangle Width Height
0 24 16 7 22 26
1 28 16 8 42 44
2 28 16 9 18 70
3 60 14 10 62 26
4 60 14 11 18 48
5 20 28 12 18 48
6 22 26

Table 1. The BK data set: n = 13, W = 80,
Total area = 11112

segment shows how it sums its neighboring cells’ values.
Similarly in aCe, the four neighbors of a thread in a 16-
node “hypercube” bundle can be determined by using an
XOR operation on the thread’s ID with the integers 1, 2, 4,
and 8. Each thread can then participate in the calculation of
the global sum of values in the code segment of Figure 2.

3. The Two–dimensional strip packing prob-
lem

We will utilize the data-parallel nature of aCe’s threads
to implement a parallel genetic simulated annealing solu-
tion for a resource allocation problem where a set of rect-
angles of given height and width are to be placed orthogo-
nally in a fixed width open-ended strip so that no rectangles
overlap and the total height of the packing is minimized.
The rectangle placements are limited to those which form
guillotine layouts, i.e. arrangements where the rectangles
can be obtained by using a series of vertical and horizontal
edge–to–edge cuts. Figure 3 illustrates an optimal guillo-
tine layout for the benchmark data set shown in Table 1.
Here, the number of rectangles isn = 13, the strip width
is W = 80, and the best known minimal-height packing is
140 as shown.

Many researchers have proposed packing heuristics
which produce guillotine patterns. For example, classi-
cal algorithms such as First-Fit Decreasing Height or Split
packing are discussed in [2, 4, 10, 19]. Other recent stud-
ies on strip packing [11, 12, 14] have applied genetic al-
gorithms to problems with fewer than 100 rectangles and
have reported superior performances for meta-heuristic al-
gorithms over the classical heuristics. In [17], however, it
was demonstrated that for very large size data sets, the clas-
sical heuristics can frequently produce better solutions than
meta-heuristics.

4. The aCe GSA algorithm

We have formulated a parallel genetic simulated anneal-
ing (GSA) algorithm in hopes of obtaining better solutions
than the classical heuristics for large sized problems. The
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Figure 3. The optimal guillotine packing for
the BK data set

GSA approach has been successfully applied to find good,
often optimal solutions to a number of difficult optimization
problems [3, 13, 15]. In particular, Chenet al. formulated
a massively parallel GSA for solving the travelling sales-
person and error correcting code problems in [3]. By using
their format with a genetic encoding scheme that we devel-
oped in [17, 21, 22], we have coded an aCe GSA algorithm.
As we will see, the preliminary experiments indicate that
this solution can obtain good layouts for “small” data sets.
However, much work remains to both improve the approach
and formally evaluate its effectiveness.

The high-level pseudo-code presented in Figure 4 out-
lines the data-parallel approach of our GSA algorithm. Us-
ing a virtual grid topology, a population of SIZE chromo-
somes is first generated; each chromosome is associated
with an aCe thread. Then, as commonly employed in sim-
ulated annealing algorithms, a schedule (i.e. initial temper-
ature and cooling factorα) is determined foreachthread
from the user-specified N (number of iterations) and initial
(P START) and final (P END) acceptance probabilities. The
parameter (INIT TIMES) sets the maximum number of ran-
dom trials that are made during the schedule determination
procedure. Note that all threads will perform N iterations of
the annealing schedule and use the same value ofα. Each
thread, however, will havedifferentstarting and ending tem-
peratures as suggested in [3].

In preparation for the crossover and mutation operations,
one thread (GRID[0]) randomly selects one of eight com-
pass directions (N, NE, E, SE, S, SW, W, NW) and a dis-
tance between 1 and (MAXDIST ). Each thread subsequently
receives the chromosome from its thread neighbor in the



#include<stdio.aHr>
#include<stdlib.aHr>

/* Total size of the chromosome population */
#define SIZE 1024
#define SQRT_SIZE 32

/* Max distance to neighbor = SQRT_SIZE-1 */
#define MAX_DIST 31

#define INIT_TIMES 5 /* No. times for delta averaging */
#define P_START 0.985 /* Starting probability */
#define P_END 0.0000000001 /* Ending probability */
#define N 3000 /* Number of annealing iterations */

/* Define a grid topology of threads */
threads GRID[SQRT_SIZE][SQRT_SIZE};

int main {

GRID. {
int j, direction, distance;
double temperature, alpha;

InitializeData();
CreateSequences();
InitializeTemperatures(&temperature,

INIT_TIMES, &alpha);
for (j=0; j<N; j++) {

if ($$i == 0) {
direction = Random(1,8);
distance = Random(1,MAX_DIST);

}
direction = GRID[0].direction;
distance = GRID[0].distance;

GetNeighbor(direction,distance);
Crossover_Mutation();
Selection(temperature);
temperature = temperature*alpha;

}
}

}

Figure 4. Outline of the aCe GSA code

chosen direction and distance. The resident and incom-
ing chromosomes become parents which generate two off-
spring. A mutation operation may then be performed on the
offspring. Next, theSelection procedure is applied. An
offspring may replace the resident parent if its cost is better;
if its cost is worse, it may still replace the parent if the in-
crease in cost is within an acceptance amount determined by
using the current temperature. Finally, the annealing tem-
perature is decreased by the cooling factor and the process
is repeated until the total number of iterations, N, has been
reached.

Guillotine packings for the GSA algorithm are encoded
as normalized postfix expressions [17, 21, 22] which utilize
the binary operators+ and∗ to represent the placement of
one rectangle on top of another (+), or one rectangle next
to another (∗). Alternatively,+ and∗ represent horizon-
tal and vertical cuts when viewed from a top-down cutting
perspective.Normalizedpostfix expressions are character-
ized by strings of alternating∗ and+ operators separating
the rectangle IDs. Figure 5 illustrates a slicing floorplan,its
slicing tree representation, and the corresponding normal-
ized postfix expression.
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Figure 5. Slicing Trees and Normalized Postfix
Strings

The chromosome representation stored with each thread
is order-based and consists of an array ofn records. Each
record contains three fields:

• a rectangle ID field: this identifies one of the basic
rectangles from the set{1, 2, 3,..., n}

• an op-type flag: this boolean flag distinguishes two
types of normalized postfix chains,+ = + ∗ + ∗ +

∗ + . . . and∗ = ∗ + ∗ + ∗ + ∗ . . .

• a chain length field: this field specifies the maximum
length of the operator chain consecutive with the rect-
angle identified in the first field.

From each array of records, a decoder constructs a legal
normalized postfix expression. The rectangle IDs in the first
field of each record are transcribed in the sequence spec-
ified; at the same time chains of alternating operators are



inserted following each ID as specified in the second field
of each record (i.e., either+ ∗ + ∗ + . . . or ∗ + ∗ + ∗ . . .).
The length of each individual chain of alternating operators
is the value in the third field of each record.

Whenever possible, the chain lengths in the records are
adopted. However, if such an adoption produces an ille-
gal postfix expression or partial expression, the decoder cor-
rects it either by adding operators to, or subtracting opera-
tors from, an offending chain. Below is an example showing
an encoded string and its normalized postfix interpretation:

rectangle 5 rectangle 2 rectangle 4 rectangle 1 rectangle 3
op-type∗ op-type+ op-type∗ op-type∗ op-type +
length 2 length 1 length 0 length 2 length 0

Postfix expression generated:5 2 + 4 1 ∗ + 3 +

The initial population of postfix expressions is created by
randomly generating the records described above for each
GRID thread. Rectangle IDs are chosen with uniform prob-
ability, as are the op-type flags, while the chain length fields
are generated from a Poisson distribution. As the population
is generated, postfix strings are rejected if they correspond
to packings that are too wide for the strip as dictated by the
value ofW for the data set. For each thread, strings will
continue to be generated until one is found whose width
constraint is satisfied.

At each annealing temperature, the aCe GSA code cur-
rently performs acycle crossover(CX) [18] on each thread’s
resident and incoming chromosomes. A single mutation is
then applied to each offspring: the mutation is selected from
three alternatives: M1, M2 or M3. M1 swaps the position
of two rectangles, M2 switches the op-type flag from+ to ∗
or vice versa, and M3 increments or decrements (with equal
probability) the length field.

In the Selection procedure, an improved solution is
always accepted and replaces a thread’s resident string.
To escape any local minimum which may be encountered
by accepting only improved solutions, simulated annealing
strategies permit the acceptance of poorer solutions. For
the aCe GSA algorithm, each solution was measured by its
cost, a linear combination of its packing height and packing
waste:

Cost = ν ∗ Packing height + ρ ∗ Packing waste.

By adjusting theν andρ parameters, it is possible to put
more or less emphasis on the relative importance of the
packing height versus the packing waste.

5. Preliminary experiments

Our current goal is to establish the viability of the aCe
GSA approach. We report on the results we have ob-
tained for five benchmark strip packing data sets that have
been used in the literature for comparing meta-heuristic ap-
proaches. Some of these data sets have optimal layouts that

Rectangle Width Height Rectangle Width Height
0 12 12 11 12 9
1 12 12 12 12 9
2 12 12 13 12 9
3 12 12 14 12 9
4 12 10 15 12 8
5 12 10 16 12 8
6 12 10 17 12 8
7 12 10 18 12 8
8 12 10 19 12 8
9 12 9 20 12 8
10 12 9

Table 2. The Dagli data set: n = 21, W = 60,
Total area = 2400

Rectangle Width Height Rectangle Width Height
0 12 6 13 4 5
1 4 7 14 2 4
2 6 7 15 8 4
3 10 2 16 8 6
4 2 5 17 8 3
5 6 4 18 6 3
6 4 2 19 2 6
7 4 6 20 8 2
8 7 9 21 3 5
9 4 5 22 2 5
10 6 4 23 3 4
11 4 6 24 2 4
12 6 3

Table 3. The J1 data set: n = 25, W = 40, Total
area = 600

are not guillotine. Thus, the best reported solutions for those
data sets may not be achievable when only guillotine ar-
rangements are permitted. Nevertheless, we found that our
GSA algorithm would often obtain reasonable solutions for
these data sets.

Three of the data sets used for our initial experiments
were obtained from the SICUP website [9] and are referred
to as the BK, Dagli, and J1 data sets. Two additional sets,
Test1 and Test2, were taken from [15]. The J1, Test1, and
Test2 data sets have been used in the literature to test serial
GAs and a GSA approach for solving non-guillotine strip
packing problems. The characteristics of these data sets are
listed in Tables 1 – 5.

The packing heights that our aCe GSA algorithm ob-

Rectangle Width Height Rectangle Width Height
0 200 100 5 100 60
1 100 50 6 60 60
2 100 50 7 40 100
3 100 100 8 160 40
4 100 120 9 200 40

Table 4. The Test1 data set: n = 10, W = 400,
Total area = 80000



Rectangle Width Height Rectangle Width Height
0 100 50 8 200 40
1 100 50 9 100 70
2 100 30 10 100 50
3 100 70 11 50 60
4 100 100 12 50 60
5 100 50 13 50 60
6 100 50 14 50 60
7 200 40

Table 5. The Test2 data set: n = 15, W = 400.0,
Total area = 80000

tained for these tests are displayed in Figures 6–10. As a
basis of comparison, we used the same parameter settings
for all executions. The only varying factors were the size of
the population (i.e. the number of threads) and the number
of annealing iterations N. For each test, the postfix expres-
sions in the initial population were generated from a Poisson
distribution with mean operator length of 1.5. The sched-
ule determination parameterINIT TIMES was set to 5. The
mutations M1 and M3 were applied to each offspring with
probability 0.4 and the mutation operator M2 was applied
with probability 0.2. For the cost function, the values of
ν = 2.0 andρ = 0.0375 were used.
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Figure 6. aCe GSA results for the BK data set

For the BK data set shown in Figure 6, the best solu-
tion was found using a population size of 1024. This pack-
ing height was within 12% of the optimal for the problem,
which was reasonable, but not as good as expected. How-
ever, for the Dagli data set, the aCe GSA code found the
optimal solution using the same population size (see Fig-
ure 7).

For the J1 data set, the reported optimal height of 15 is
achieved with a non-guillotine layout. When restricted to
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Figure 7. aCe GSA results for the Dagli data
set
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Figure 8. aCe GSA results for the J1 data set
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Figure 9. Results for the Test1 data set
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Figure 10. Results for the Test2 data set

guillotine layouts, the least height packing that the GSA ob-
tained was 16 (see Figure 8), a value that was also reported
earlier in [16, 17]. It is not known if this is the best possible
height under the guillotine restriction. A packing obtained
by our GSA with this height is shown in Figure 11.

Finally, for the Test1 and Test2 data sets which contain
justn = 10 andn = 15 rectangles, the aCe GSA algorithm
found a solution within 5% of the best possible height for
Test1 and was able to discover an optimal solution for the
Test2 set as shown in Figures 9 and 10.
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Figure 11. A GSA packing with height 16 and
width 40 for the J1 data set

6. Work in progress

While these initial results have been encouraging, they
are by no means rigorous enough to argue that the approach
is effective and scalable for larger packing problems and
population sizes. To accomplish this, we are conducting
further studies using a larger range of data sets from the
literature, including the very largenice andpath problem
sets used in [17]. We continue to examine different settings
for the aCe GSA code parameters and their effects on solu-
tion quality. Alternative crossover operators may also prove
beneficial, as might population reseeding strategies when
solutions converge too early.

The aCe GSA algorithm experiments were carried out
in virtual mode– that is, the aCe C compiler generated code
for a single AMD 1.7 GHz Athlon based workstation. The
execution time needed for the reported tests ranged from
several seconds to several hours for the larger populations
requiring N = 240,000 schedule iterations. We expect the
total time to reduce significantly when the parallel aCe
compiler is used; we have observed that this is the case
for some preliminary tests that we have conducted on a
12-node Beowulf cluster. In the long term, the run-time
performance of the method necessarily depends on the
aCe C compiler and its underlying data partitioning and
communication strategies. These issues are also currently



under study.
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