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Abstract—Traditionally, the uncapacitated facility location
problem (UFLP) is solved as a single-objective optimization
exercise, and focusses on minimizing the cost of operating
a distribution network. This paper presents an exploratory
study in which the environmental impact is modelled as a
separate objective to the economic cost. We assume that the
environmental cost of transport is large in comparison to the
impact involved in operating distribution centres or warehouses
(in terms of CO2 emissions, for example). We further conjecture
that the full impact on the environment is not fully reflected
in the costs incurred by logistics operators. Based on these
ideas, we investigate a number of “what if?” scenarios, using a
Fast Nondominated Sorting Genetic Algorithm (NSGA-II), to
provide sets of nondominated solutions to some test instances.
The analysis is conducted on both two-objective (economic cost
versus environmental impact) and three objective (economic
cost, environmental impact and uncovered demand) models.
Initial results are promising, indicating that this approach could
indeed be used to provide informed choices to a human decision
maker.

I. INTRODUCTION

In logistics network design, the facility location problem
(FLP) involves strategic level decisions with planning hori-
zons of several years. It identifies the optimum number and
locations of depots or warehouses, in a distribution network,
in which deliveries are made to local customers and/or goods
are collected from local suppliers (see Figure 1). In addition,
each customer (or supplier) must be assigned to exactly
one depot. In practice there are many variations of the
FLP, for example, storing inventory before it is transported
to customers, or including transshipment points, where the
goods are reloaded from the supplier to be forwarded to
the retail stores. Also the FLP is easily adapted to identify
the optimum number of recycling or collection facilities
in a network. The facility location problem is not new to
academia and has a very rich literature. In [7] the role of
facility location models within a supply chain context was
described as an “extremely interesting and fruitful application
area domain”.

Typical formulations for the FLP aim to minimize cost as a
single objective. In this approach, the total cost is frequently
expressed as a sum of various component expenses, most
simply as transportation and fixed costs. However, in many
practical situations, the optimum design may involve dealing

with multiple and sometimes conflicting objectives. In a re-
cent survey [7], 120 articles published in the last decade were
categorized: 75% had a single cost minimization objective,
16% had a single profit maximization objective and only 9%
were modelled with multiple and conflicting objectives. The
multiple objectives mentioned include resource utilization
and customer responsiveness, in addition to the standard eco-
nomic objectives. Recent concerns regarding climate change,
however, have shifted the focus of modelling to incorporate
environmental objectives.

There are different techniques for solving problems in-
volving multiple objectives. Classical multi-objective opti-
mization methods, such as ε - constrained [14], and goal
programming [15] suggest a way of transforming the multiple
objectives into a single one before solving the problem
using a single objective optimization algorithm [13]. The
usefulness of the single solution obtained following the
transformation, however, depends on making suitable choices
of the parameters in the conversion model. We can see that
some recent multi-objective models which incorporate envi-
ronmental measures are solved using classical methods. For
example, [8] present a generic mathematical programming
model for assisting the strategic long range planning and
design of a bulk chemical network. Their multi-objective
mixed-integer programming problem is solved using the ε
-constraint method [14], in which they minimize the envi-
ronmental impact resulting from the operations of the entire
network, and simultaneously maximize the profitability of the
network. Another example, assessing the trade-offs between
cost and environmental impact, is described in [12], where
the re-organization of a European pulp and paper logistic
network is described. In their model, the locations of the
facilities, such as paper recycling and paper production, are
fixed, which leads them to solve only the allocation problem,
unlike the FLP we solve in the present paper. They use multi-
objective optimization to make their assignments.

From our recent review [11], like [7], we identified only
a very small number of multi-objective models with envi-
ronmental objectives, and these were solved predominantly
using classical multi-objective methods. Classical techniques
rely on a priori judgements regarding the relative importance
of the various component objectives. In contrast, there are



other approaches that do not rely on such assumptions and
treat all objectives equally. Such techniques will generate a
set of solutions, with the objectives traded off in different
ways, instead of a single optimum with respect to a pre-
defined (perhaps arbitrary) trade-off situation. In this way
it is possible to provide a decision maker with sufficient
choices to make an informed judgement when trading off
the relative merits of the conflicting objectives. In this
research we explore an elitist multi-objective evolutionary
algorithm for the strategic modelling of a logistics network,
where economic and environmental objectives are considered
simultaneously.

Fig. 1. The Uncapacitated Facility Location Problem

In our paper we apply the Nondominated Sorting Genetic
Algorithm (NSGA-II) [3] to a multi-objective uncapacitated
facility location problem (MOUFLP) in the context of green
logistic design. Green logistics implies “an environmentally
friendly and efficient transport distribution system” [10].
The uncapacitated facility location problem (UFLP) is the
simplest form of FLP, and involves identifying which depots
to open, assigning the customers to open depots, and has no
constraints regarding the capacity of the facilities (Figure 1).
Our multi-objective model has two different settings: two-
objectives (min cost - min environmental impact) and three-
objectives (min cost, min environmental impact and min
uncovered demand). For this simple model, our environ-
mental objective is formulated in a similar way to our
objective measuring economic cost, and is made up of two
components: depot costs and transportation costs. However,
we weight these components differently for assessing the
environmental impact, working under the assumption that
the environmental cost of transport is large in comparison
to the impact involved in operating distribution centres or
warehouses (in terms of CO2 emissions, for example). We
further conjecture that the full impact on the environment
is not reflected in the costs incurred by logistics operators.
Based on these ideas, we investigate a number of “what if?”
scenarios, by varying the relative weighting of the impact of
transport versus depots on the environment to provide sets

of nondominated solutions to some test instances. This is
an exploratory study aimed at invesstigating the potential of
multi-objective optimization techniques for the FLP.

The remainder of the paper is organized as follows.
Section II introduces our multi-objective model for the UFLP
with an environmental objective and also describes the test
data which we use in the study. Section III outlines the
NSGA-II algorithm, and describes the operators and solution
representation that we use. In Section IV we describe our
experimental method, and in Section V we present our
results. Finally, we summarize our main findings and suggest
future work in Section VI.

II. OUR MULTI-OBJECTIVE OPTIMIZATION MODEL

The main drivers in traditional logistics network design
are to reduce total costs and improve customer service levels.
Due to recent concerns regarding climate change, minimizing
the environmental impact from depots and transport needs to
be addressed as well. Our proposed multi-objective unca-
pacitated facility location problem incorporates those three
goals. Therefore, the problem definition in this paper is a
mixture of three mathematical programming formulations:
the uncapacitated facility location problem, a revised UFLP
with environmental weightings, and the maximal covering
location problem (MCLP). The MCLP involves first assert-
ing a global (ideal) maximum distance between customer
and serving depot. Once customers have been assigned to
depots, covered demand can be measured as the percentage
of customer demand met within the given distance radius.
Customers assigned to depots that are further away than this
maximum, represent uncovered demand (100 % - covered-
demand-percentage).

The UFLP and MCLP models we use have been adapted
from [2] who originally based their formulation on [4]. [2]
present a bi-objective UFLP (min cost - max coverage)
in their paper. To solve the problem, they designed and
implemented three different algorithms to obtain a good
approximation of the Pareto frontier. The algorithms were
based on the Nondominated Sorting Genetic Algorithm,
the Pareto Archive Evolution Strategy and on mathematical
programming.

A. Problem formulation and objective functions

We will assume that the customers each have a certain
demand and that transportation costs and fixed costs for the
open depots are linear and additive.

We further assume that at least one depot from a set
of depots will be open, and that each depot will serve its
customers directly. The problem is to determine how many
depots to locate, where to locate them and which depot
serves which customer, in order to satisfy the three objec-
tives: minimize cost, minimize environmental impact and
minimize uncovered demand. Solving this problem requires
two main routines: one to determine which depots to open,
and the other to assign the customers to the open depots (the
assignment rule), where each customer is assigned to exactly



one depot. The values of the two or three objectives can be
computed once a network configuration has been defined.

The following notation is used in the formulation of the
model:

τ = {1...i} set of potential depots;
γ = {1...j} set of customers;
cij transportation cost of attending demand

from customer j to depot i;
fi fixed cost for opening depot i;
dj demand of customer j that could not be

attended within Dmax by particular depot i;
hij the distance between depot i

and customer j;
Dmax the maximal covering distance - the customers

within this distance to an open depot are
considered well served;

Θ set of depots that could not attend customer i
within the maximal covering distance Dmax;

The decision variables are:

xij equals 1 if the whole demand of customer j is
attended by depot i and 0 otherwise;

yi equals 1 is depot is chosen to operate
and 0 otherwise;

The following objectives functions are considered simul-
taneously as part of the location design:
• Minimising costs. The objective is to find the best

number and location of depots that minimizes total
transportation and fixed costs. The first term represents
the cost of attending demand of customers by the open
depots and the second term represents the fixed facility
cost of the open depots.

minimize[
∑
i∈τ

∑
j∈γ

cijxij +
∑
i∈τ

fiyi] (1)

• Minimising uncovered demand.
The objective measures total uncovered demand as a
sum of the demand of customers which could not be
attended by depot within maximal covering distance.

minimize[
∑
j∈γ

dj
∑
i∈Θj

xij ] (2)

• Minimizing the environmental impact from transport
and depots. The objective is to find the best num-
ber and location of facilities that minimizes the total
environmental impact from transportation and depots.
This is essentially the same formulation as we use to
minimize economic costs, but we introduce WT and WF

to weight the transport and fixed costs, respectively, for
environmental impact. In this model, higher values of
WT imply worse pollution from transport.

minimize[
∑
i∈τ

∑
j∈γ

cij ∗WT ∗xij+
∑
i∈τ

fi∗WF ∗yi] (3)

where WT is the factor which derives the environmental
impact from transport in relation to transportation costs

and WF is the factor which derives the environmental
impact from depots in relation to to fixed costs. For
the present study we used following values: WF = 1
and WT ∈ [1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24].

• Subject to following constraints:∑
i∈τ

xij = 1, j ∈ γ (4)

xij ≤ yi, j ∈ γ, i ∈ τ (5)

xij ∈ {0, 1}, j ∈ γ, i ∈ τ (6)

yi ∈ {0, 1}, i ∈ τ (7)

Constraints 4 and 6 ensure that each customer is attended
by only one depot. Constraint 5 assigns the customers to
open depots. Constraints 6 and 7 define decision variables as
binary.

For our analysis we looked at two different setting for
objectives:

1) for the two-objective UFLP: minimizing costs and
minimizing environmental impact;

2) for the three-objective UFLP: minimizing cost, mini-
mizing environmental impact and minimizing uncov-
ered demand.

B. Test data.

From our research, we confirmed findings published in
[2]: that there are no available MOUFLP test instances in
the public domain for benchmarking. Especially for our
research, we needed instances which consider environmental
information. To begin our research, we obtained bi-objective
problem instances (min cost and max coverage) from [2] of
two different types: instance A and instance B. The differ-
ence between the instances is that the locations have been
generated in different ways: uniformly distributed locations
within a square (instance A) or depot locations chosen from
customer locations (instance B). A and B instances come
in three different sizes: 10 depot-25 customers, 30 depots-
75 customers and 50 depots-150 customer. Each size also
differs in its fixed depot cost structure (uniformly distributed
(C1–C3) or the same fixed costs for all depots (C4–C6)).
For example, instance A10-25C3 is an instance of type A
with 10 available depots, 25 customers and a uniformly
distributed fixed depot cost structure. In total, 26 different
problem instances are provided. For our analysis, we have
chosen one instance of each type, size and cost structure - in
total 12 test instances. For example, the following instances
of type A were used for analysis: A10–25C3, A10–25C6,
A30–75C3, A30–75C6 etc.

The data sets described above model economic costs
and coverage but not environmental costs. To include an
environmental objective, we used the simple weighted model



described above, and applied it to the fixed costs and trans-
portation costs of the “standard” UFLP. We know that the
environmental impact from transport is closely related to fuel
consumption. However, there are other factors that have an
impact on the actual levels of emissions from transportation,
such as the speed and acceleration of the vehicle; the load
on the engine over the distance traveled; the type of fuel
used, vehicle condition, engine size etc. [5]. Of course, all of
these factors will also impact on economic cost. On the other
hand, other expenses, such as vehicle maintenance, road tax,
training costs, drivers’ wages etc., will not directly impact on
the environment in the same way. Regarding depot costs, the
environmental impact from depots comes from the electricity
and gas consumption by the buildings. Economic costs for
depots also include rent/rates and staffing costs. In this
paper we will assume that transport has a relatively greater
impact on the environment than depots, relative to economic
costs, and we will use our simple model to explore various
scenarios related to different weightings of the environmental
impact of transport.

III. THE EVOLUTIONARY MULTI-OBJECTIVE
ALGORITHM: NSGA-II

The evolutionary Nondominated Sorting Genetic Algo-
rithm NSGA-II [3] was chosen for implementation because
it has all the qualities which are needed to be taken into
consideration when solving a multi-objective problem. It is a
well tested algorithm in academia. It is elitist (preserving the
best solutions) and uses a diversification mechanism, called
a crowding distance, to ensure the solutions are widely and
evenly distributed. Fitness assignment in the algorithm uses
ranking, based on fast non-dominated sorting (see Algorithm
2).

In the fast non-dominated sort procedure (see Algorithm
2), the algorithm uses the concept of domination (see Defini-
tion 1), where two chromosomes are compared on the basis
whether one chromosome dominates another chromosome or
not.

Definition 1. A solution x1 is said to dominate the other
solution x2 (x1 ≺ x2), if both conditions 1 and 2 are true
[13]:

1) The solution x1 is no worse than x2 in all objectives,
or fj(x1) 7 fj(x2) for all j = {1, 2, ..,M}

2) The solution x1 is strictly better than x2 in at least
one objective, or fj̄(x1) / fj̄(x2) for at least one j̄ =
{1, 2, ..,M}

In Algorithm 2, the crowding comparison operator (≤nsga)
compares two solutions and returns the fitter of the two as
the “winner” (a binary tournament selection). It assumes that
every solution i in the population has a non-dominant rank
ri and a local crowding distance cdi.

Definition 2. The Crowded Tournament Selection Operator
[13]: A solution i wins a tournament with another solution
j if either of the two conditions below are true:

1) If solution i has a better rank, that is, ri < rj

2) If they have the same rank but solution i has a better
crowding distance than solution j, that is, ri = rj and
cdi > cdj

The NSGA-II algorithm for a multi-objective UFLP is
adopted from [2] and [3] and operates as outlined in Al-
gorithm 1. Firstly, an initial parent population P (0) of size
N is created, at random. Each parent solution is encoded
as a binary string (see below). For each chromosome in
P (0), the objectives (e.g. cost and impact) are evaluated by
applying the assignment procedure (see below). Then, a fast
non-dominated sort is applied to P (0) (see Algorithm 2),
which assigns a “front number” to each solution which is
equal to its non-dominant level, starting with 1 (1 is the
best). Binary tournament selection in the parent population
P (0) is followed by crossover and mutation to generate the
child population C(0) of size N . Each child solution in C(0)
is then evaluated.

Next, the following elitist procedure for t ≥ 1 described
below is repeated for T generations. At the start of this,
the parent and child populations are combined to form R(t)
= P (t)∪C(t) of size 2 ∗ N and a fast non-dominated sort
is applied to R(t). A new parent population, P (t + 1),
is then formed from R(t) by adding solutions beginning
with the first front onward to make up a population of size
N . Crowding distance is used to help make the last few
selections, if addition of all individuals from a particular
front would produce a population greater than N . Then,
the child population C(t + 1) of size N is created from
P (t+ 1) by applying binary tournament selection, crossover
and mutation. The overall complexity of the algorithm is
O(mN2).

Solution encoding. Each solution for MOUFLP is encoded
as a binary string of length equal to the total number of
(potential) depots, where each bit indicates whether depot is
open (value of 1) or closed (value of 0)(e.g. 1101100100).
However, a solution also involves the assignment of cus-
tomers to depots. This is performed by the assignment
procedure described below.

Assignment procedure. In location models it is very im-
portant to decide how the customers are assigned to the
particular facilities. In some circumstances, the assignment
depends on the distance or travel time, in other cases it could
depend on the range or quality of the products dispatched or
collected. Our model incorporates a customer service level
objective, therefore we used the assignment procedure de-
scribed in [2], which tries to minimize cost without impacting
on coverage. Provided a customer is located within a given
maximum distance radius, Dmax, then that customer is
assigned to the depot at the minimum transportation cost.
If a customer cannot be covered (i.e., the nearest depot is
further than Dmax) then it is assigned to the depot with the
smallest transportation cost, regardless of its distance. Ties
are broken on a first-come-first-served basis.

Mutation. For each solution (chromosome), a random
mutation pattern is generated. A uniform random number
between 0 and 1 is generated for each position in the solution.



Algorithm 1 NSGA-II algorithm for MOUFLP
Begin:
Randomly generate parent population P (0) of size N
Evaluate P (0) - calculate/record the value of objectives
Fast non-dominated sort (P (0))
Generate child population C(0) of size N from P (0) by
applying binary tournament selection with the selection
criterion based on ≤nsga, crossover and mutation
Evaluate C(0) - calculate/record the value of objectives
while t ≤ T do
R(t) = P (t)∪C(t)
F=fast non-dominated sort R(t) (see Algorithm 2)
Crowding-distance assignment (F ) (see Algorithm 3)
Sort R(t) using ≤nsga (see Definition 2)
Select Pt+1 from sorted Rt [0 : N ]
Generate child C(t + 1) of size N from P (t + 1) by
applying binary tournament selection with the selection
criterion based on ≤nsga, crossover and mutation
Evaluate C(t+ 1) - calculate/record the value of objec-
tives
t = t+ 1

Return all non-dominated solutions from first front F (1)

Algorithm 2 Fast non-dominated sort (P )
Input Parameters: population (P ), consisting of chromo-
soms, e.g. p, q
Begin:
for each p ∈ P do

for each q ∈ P do
if (p ≺ q) then
Sp = Sp ∪{q} {if p dominates q - save it in set of
solutions Sp, which p dominates }

else if (q ≺ p) then
np = np + 1 {if q dominates p - keep the count of
the solutions dominating p}

if np = 0 then
F1 = F1 ∪ {p} {if nobody dominates p then it joins
the first front }

i = 1
while Fi 6= 0 do
H = 0
for each p ∈ Fi do

for each q ∈ Sp do
nq = nq − 1 {reduce count of solutions which
dominates q}
if nq = 0 then
H = H ∪{q} {if nq is zero then q joins list H}

i = i+ 1
Fi = H {form current front with members of H }

Return a list of non-dominant fronts F

Algorithm 3 Crowding-distance assignment (F )
Input Parameters: solutions in front F
Begin:
l = |τ | {number of solutions in front F}
for each i do

set F [i]distance = 0 {initialize distance for each solution}
for each objective m do
F = sort(τ,m) { sort using each objective value}
F [1]distance = F [l]distance = ∞ {assign large values to
the boundary solutions}
for i = 2 to (l − 1) do
F [i]distance = F [i]distance+(F [i+1].m−F [i−1].m)

Return crowding distance for each point in front F

If this random number is less than mutation probability (pm),
the gene is flipped either from 0 to 1 or 1 to 0. After
initial experiments, pm = 0.06 was used for tuning mutation
parameters in NSGA-II.

Crossover. Binary tournament selection was used to choose
the parents for crossover, as described above. Two individuals
are randomly selected from the parent population P(t) and
the fitter one of the two is chosen as a parent, i.e., the one
which wins the crowded tournament selection (see Definition
2). This means that the chromosome wins if it has higher
non-domination level or if two chromosomes have the same
non-domination level, then we choose the one that has a
better crowding distance.

In some pilot experiments we compared three different
crossover operators: one-point, two-point, uniform crossover,
and also tried running NSGA-II with no crossover. The
performances of the crossovers were then assessed using
the S metrics described in [6]. For each crossover setting
we ran 20 independent trials for two and three objectives
on two test cases, A30-75C3 and A30-75C6. As a result of
these experiments we chose two-point crossover for the two-
objective problem and no crossover for the three objective
problem, as in the latter case the crossover had no significant
impact on the results.

IV. EXPERIMENTAL METHOD

The purpose of our experiments is to answer the following
questions for each MOUFLP: the two-objective problem
(min cost and min environmental impact) and the three-
objective problem (min cost, min uncovered demand and min
environmental impact):

1) Does this approach hold promise – do we obtain a
reasonable trade-off front?

2) What happens to the solution set as we explore sce-
narios in which the environmental impact of transport
increases disproportionately to its cost?

3) How do we select suitable trade-off solutions from the
approximate Pareto front?

As previously mentioned, six instances of type A and
six similar instances of type B were selected from the
test data taken from [2]. Recall that these instances have



data for a two-objective problem (economic cost, cover-
age), and we applied our environmental weightings, WT

and WF , to transport and fixed costs, respectively. The
plan is to assess the environmental impact for a range of
“what if?” scenarios, in which WF = 1 in all cases, and
WT ∈ [1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24]. We assume
that the environmental impact of transport outweighs the
environmental cost of maintaining depots. For each problem
instance we performed 12 experiments, one for each of the
above environmental factors for transport (WT ). In each run,
the initial solution was created randomly at the start.

The NSGA-II algorithm creates a child population from its
parent population using fast non-dominated sort, crossover
and mutation. The parent population (Pt) and child pop-
ulation (Ct) were set to the same size N=40 for our
experiments, and for each run, on every instance, the number
of generations was 250.

The crossover probability (pc) was used to determine the
number of chromosomes participating in the crossover. After
initial experiments, we settled on pc = 0.7 for the all tests.
Two-point crossover was used for two-objective problem and
no crossover for three objective problem, due to results which
are discussed in Section III. A mutation probability of pm =
0.06 was used across all the settings and all the test instances.
Experiments were conducted using Java 2, on a PC with an
Intel Pentium D CPU 3.4 GHz and 2 GB RAM.

Fig. 2. Total number of non-dominant solutions for different environmental
factors from transport for two-objective problem (cost-impact).

V. RESULTS

In this section we shall attempt to answer the questions
posed in the previous section. Consider a situation in which
WT = WF = 1. This corresponds to identical objectives
for environmental impact and economic cost. For this special
case, there is only one global optimum for the economic cost
versus environmental impact model, because the problem
reduces to a single objective. On the other hand, as the value
of WT is allowed to increase, one would expect to obtain sets
of non-dominant solutions in which high transport impact
favours higher numbers of open depots than are cost effective
when considered from the point of view of economic cost.

Figure 2 shows how the number of non-dominated so-
lutions obtained by NSGA-II changes as the environmental

factor increases from 1 to 24. This diagram illustrates the
situation for two of our instances (A30-75C3 and A30-75C6).
However, the pattern is similar for the other 10 instances.
We can see that when WT = 1, there is a single solution,
as expected. As WT increases, however, so does the size of
the non-dominated set. In the case of A30-75C6, the size
of the solution set stabilizes at about 15, while A30-75C3
settles at about 35. The maximum size of the approximate
Pareto set is, of course, capped at 40, which is the population
size. The curves represent single runs for each WT setting
(due to time constraints); hence, their lack of smoothness.
The solutions depend on the scale - more solutions are
found as the environmental impact from transport increases
(capped by the population size). Visual representation of
the approximate Pareto fronts can be seen in Figure 3 and
Figure 4 where a transport factor of 6 was used in the former
and a transport factor of 16 in the latter case. As expected,
we observe that more depots need to be opened to mitigate
the environmental impact than is desirable from the point of
view of economic cost. For example, in Figure 3 (WT = 6)
the extreme solutions require 2 depots for minimizing cost,
and 5 depots for minimizing the environmental impact. In
Figure 4 (WT = 16) even more depots (8) are required to
mitigate the environmental cost of transport.

Fig. 3. Instance A10-25C3 with environmental impact factor from depot
of 1 and impact factor from transport of 6

Now we are going take a more detailed look at how
increases in the environmental factor from transport impacts
on the required number of the open depots, for the two-
objective and three-objective problems. For each of the 12
settings for WT we will examine the extreme solution that
minimizes environmental impact at the expense of economic
cost (top left of Figures 3 and 4). Figure 6 shows how
the number of depots increase with increasing WT for two-
objective problem, and Figure 7 shows similar findings for
the three-objective problem.

Now, to answer the three questions posed in Section IV.
1) We do obtain a reasonable trade-off front with a range

of solutions, indicating that this approach is worth



Fig. 4. Instance A10-25C3 with environmental impact factor from depot
of 1 and impact factor from transport of 16

Fig. 5. Instance A10-25C3 with environmental impact factor from depot
of 1 and impact factor from transport of 16

Fig. 6. Total maximum number of depots open depending on environmental
impact factor from transport for two-objective problem

Fig. 7. Total maximum number of depots open depending on environmental
impact factor from transport for three-objective problem

pursuing further, until such time that environmental
cost is fully absorbed into the economic costs incurred
by the stakeholders.

2) As the environmental impact of transport increases
disproportionately with the cost of operating depots,
the environmentally friendly solution will require more
open depots than is cost effective from an economic
point of view.

3) We can spot good compromise solutions, for example
as indicated in Figures 3, 4, and 5. We can select
solutions with relatively low environmental impact, just
before the curve steepens towards very high economic
costs. At this stage there are only very small environ-
mental gains to be made at very high economic cost.

VI. CONCLUSION AND DISCUSSION

This paper describes a multi-objective uncapacitated fa-
cility location problem (MOUFLP) with an environmental
objective in the context of green logistics design. The model
includes traditional objectives, such as minimizing cost and
improving customer service level (minimizing uncovered
demand) and environmental objectives, such as minimizing
the environmental impact from transportation and depots.
We apply a multi-objective evolutionary algorithm, NSGA-
II, to the MOUFLP to assess the impact of the environmental
factor for a range of “what if?” situations, in which we
assume that the environmental impact of transport is not truly
reflected in the economic costs of running a fleet of vehicles.
The analysis was performed on two different settings: a two-
objective model (min cost - min environmental impact) and
a three-objective model (min cost, min environmental impact
and min uncovered demand). The investigation also included
the evaluation of the impact of the different scenarios on the
number of open depots.

From the two and three objective studies we conclude
that it may be desirable to open more depots than may be
optimal from a cost only perspective, in order to reduce the



environmental impact of transport. This is not a surprising
observation, but our studies indicate that an evolutionary
algorithm is a useful way to present trade-off solutions
to a human decision maker. It is possible to spot good
compromise solutions in this way.

Future plans include extending our exploratory study to a
capacitated FLP and a more realistic model. In this model,
the environmental impact from transportation and depot
management will be extracted using relevant carbon footprint
methodology.
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