
REINFORCEMENT LEARNING IN CONTROL

M. Sheppard1, A. Oswald2, C. Valenzuela, G. Sullivan and R. Sotudeh

University of Teesside, Middlesbrough, Cleveland, TS1 3BA, UK

ABSTRACT

During its melt cycle, an arc furnace causes disturbances of the electrical supply. Existing measurement
techniques for this application lead to corrective rather than predictive compensation. The use of neural
networks to control the compensation is being considered, in particular reinforcement learning strategies
which require no pre-training and which can adapt to a dynamically changing environment.

Several reinforcement learning techniques have been considered by examining their effectiveness in
learning to balance a pole on a moving cart without prior training. The network is required to produce an
appropriate control action in response to the current world state in order to maintain the pole and cart
position within acceptable limits. One reason for investigating this is the belief that many of the
characteristics of the pole-balancer are analogous to the problem of compensating for reactive power
disturbances in the arc furnace.

This paper presents a comparative review of these reinforcement learning strategies.
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INTRODUCTION

The power transmission network is shared by both domestic and industrial users. However some industrial
installations such as the electric arc furnace can cause disturbances to this network; the principle of the arc
furnace is to short circuit the electrical supply which heats the metal in the furnace, causing it to melt. The
resistance of the metal continually changes as it progresses from solid to molten state. This rapidly
changing resistance gives rise to voltage dips at the point of common coupling to the supply which are
passed to the domestic users. These voltage dips can affect sensitive electronic equipment and generate
annoying flicker on tungsten filament lamps. Compensation for the changing resistance can be performed
by adding a capacitive current to the system but determining this level of capacitance is difficult.
Compensation algorithms exist which consider a window of previous electrical spectral values and as a
result estimate the required compensation. Through their reactive nature, the algorithms sometimes
produce compensation which is inappropriate to a rapidly changing world. Also, if shown the same
situation repeatedly, they will always generate the same level of compensation, regardless of its
effectiveness. A more desirable mechanism would be one that could be predictive and that could learn from
previous experience. It is hoped that neural networks could be of use in producing a better control strategy.
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A controller to balance a pole upright on a movable cart is an isomorph of the problem of compensating
for the arc furnace disturbance. In the pole world the system is required to examine the parameters
describing the world and produce an appropriate control action to minimise the angle of the pole by
pushing the cart left or right. In the arc furnace problem, a controller also examines the world state and is
then required to produce a level of compensation which will minimise the voltage disturbance. This paper
outlines the investigations into neural strategies for the control of the pole balancer isomorph and shows
how the findings of this work have been used in an initial implementation of an arc furnace compensator.

THE POLE BALANCING WORLD

Figure 1 shows a hinged pole mounted on a wheeled cart. The cart can move left or right along a rail,
starting from a central point. In order to balance the pole, the system must apply force to the cart in either
direction to prevent the pole from falling past an agreed failure angle, whilst keeping the cart within an
agreed distance from the central point on the track.
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Fig. 1  The Pole/Cart System    Fig. 2  Black box approach to controlled system

Since the pole balancer is an isomorph of the arc furnace problem the thinking behind the development of
the neural controller is to treat the system it controls as a black box (See fig. 2). This allows the
replacement of the pole environment with the arc furnace or any other application areas which are, at least,
homomorphs of the pole problem. Consequently communication between the controlled system and its
controller is kept to a minimum, world parameters are passed into the controller, and a resulting control
signal is returned. The behaviour of the black box pole world has been modelled by two differential
equations, taken from Barto et al (1983). These have been implemented using a high speed, high order
Runge-Kutta method developed by Dormand and Prince (1989).

NEURAL LEARNING

Probably the most commonly used neural learning strategy is supervised learning. A network is taught
through repeated presentations to learn and to generalise from a given training set. Middleton (1992) and
later Dixon (1993) have looked at the application of supervised networks to the arc furnace problem.
These networks were trained on input/output mappings collected from an arc furnace simulator which
measured compensation based upon static algorithms developed by Etminan and Sotudeh (1987). These
algorithms estimate the level of reactive power present in the system and from this compensation can be
determined. In both cases the network learned to mimic the training and performed nearly as well as the
algorithms. However, since the algorithms producing the training data were not predictive, nor able to
learn from their mistakes, a supervised back-propagation network could never meet these criteria either. If
a neural network is to perform better than the algorithmic approach, then an alternative learning strategy
was needed.



Reinforcement learning (RL) describes a learning paradigm where a system attempts to improve its
behaviour based on the results of previous actions (Sutton, 1992). These results are returned from the
outside world as a level of "reward". Each time the network controller is called upon to make a control
decision it chooses an action which is expected to yield the highest reward based on its previous findings.
In the arc furnace world compensation which resulted in no voltage drop could be seen as the optimal
performance and so would yield the highest reward. Increasingly less effective compensation would
increase the voltage drop, and the level of reward should decrease. Mapping this idea to the pole world, the
pole angle replaces the voltage drop, and compensation producing an upright pole would yield maximum
reward. Therefore in both problems we know what we want the network to achieve and we reward it based
on its level of achievement, but the task of determining how best to achieve it is left to the neural controller
to learn.

There are many strategies based on reinforcement learning, but they all follow the same generic algorithm
shown in fig. 3. It must be stressed that reinforcement learning is on-line adaptive learning; it does not
have implicit training and recall stages as with supervised learning, but instead interleaves control with the
modification of internal weights.

repeat
receive parameters describing the current world state
generate a control action for this state, based on internal weights
execute the action on the world
receive reward for the previous action
if favourable reward then

alter weights so as to promote this action in similar
situations in the future

else
alter weights so as to discourage this action in similar
situations in the future

forever

Fig. 3  A Generic Reinforcement Learning Algorithm

POLE BALANCING CONTROLLER IMPLEMENTATIONS

The pole balancer analogy has been implemented using three different reinforcement learning strategies.
The first, Associative Search, is included as a mechanism which requires minimal feedback, namely a
single signal on failure, to meet the control objective. Q-Learning is based on Markovian dynamic
programming and Stochastic Real-Valued learning has the property of operating on a continuous world.

Associative Search Learning

An early model of reinforcement learning was presented by Barto, Sutton and Anderson (1983). The ASE,
or Associative Search Element takes a representation of the environment and learns to associate successful
outputs to these inputs after repeated learning trials. The original paper demonstrated that an RL system
could learn to balance a pole within given limits.

The system relies on a simple feedback signal from the world. When the pole falls over, or more precisely
moves outside the angular or cart distance bounds, the environment supplies an error signal, to the
controller. On the basis of this signal, the system learns to avoid failure. The dominant factor in
reinforcement learning systems is the so-called temporal credit question, i.e. "what was responsible for the



current situation". In this case the question becomes "which control decisions were responsible for the
pole's falling over?". As only one failure signal arrives, the controller needs to apportion blame to the
moves leading up to the eventual failure. The final decision is ultimately at fault, the decision before that
was nearly as responsible, and so on back through the control decisions. ASE learning implements this
reasoning with a decaying eligibility trace, i.e. a responsibility which decays as the time from each specific
decision increases.
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Figure 4 shows the ASE controller supplying the pole balancing world with control actions in response to
the current world position. In return the world supplies the controller with the new world state and the
cycle repeats. If however the pole should fall beyond the predefined limits, the environmental parameters
would be reset to zero, i.e. an upright stationary pole on a non-moving cart in the middle of the track, and
then the system would modify its weights in the light of the recent failure.

The world state is represented as three ranges for the cart position, three for the cart velocity, six for the
pole angle and three for the angular velocity resulting in 162 (3 x 3 x 6 x 3) possible situations to which
the controller is expected to react (See Michie and Chambers, 1966). The world state is presented as 162
input lines, all set to zero except the line representing the current world state. For example if  the cart
position fell into range one, the cart velocity into range two, the angle and angular velocity into ranges four
and one respectively, the combination would set input line 115 to 1, and clear all of the other inputs to 0.
The control action is derived from the sign of y , a negative sign causing the cart to be pushed right,
otherwise moving the cart left.
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The result of this action will be reflected in the new state presented to the controller at time t +1. If the
pole falls outside the permitted bounds, the weights will be modified subject to multiplication by a learning
rate constant, α , set in these trials to be 0.95 and the failure signal, r , set to -1. Equation 2 shows how
the new weights are calculated.

w t w t r t e ti i i( ) ( ) ( ) ( )+ = +1      α (2)

The term e in the equation refers to eligibility, the ASE method of solving the temporal credit problem.
Each input line not only has a weight on its input line, but also an eligibility value. This value is set to one
when the input line is used, i.e. when that state is entered. At each time step, all eligibility weights are
multiplied by a decay factor, δ , in our trials set to 0.95. From this weight the blame for any failure can be
apportioned to the states leading to failure. The eligibility at time t +1 is now calculated:

e t e t y t x ti i i( ) ( ) ( ) ( ) ( )+ = + −1 1    δ δ (3)



ASE Implementation Results

The first implementation of the ASE pole balancer was as developed in Barto et al. Initial weights were all
set at 0.5, and limits for the pole angle, θ , and cart distance from centre, x , set at 12 degrees and 2.4 units
respectively. Figure 5 shows the number of time steps to failure on each trial. After 20 trials the system
reached a stable state balancing the pole for in excess of three thousand steps. It must be noted that the
levels are well within the limits given above.
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Fig. 5  ASE learning over time

The x  value settled at approximately 0.08 units. In an attempt to improve this, the initial starting weights
of the system were kept at 0.5. but with a random sign. When there was a distribution of positive and
negative starting weights, the x  value settled between 0.015 and -0.025 in trials.

One further extension to the ASE system was an attempt at shaping. Shaping is a psychological term
whereby animals are trained to tackle increasingly harder problems, building on the skill they have
acquired. In the pole balancer the failure limits were closed in after successfully maintaining the pole
within the limits for 1000 steps. However the system was unable to balance the pole with any more
accuracy than +/- 2 degrees from upright. Reasons for this could be the granularity of the control action,
set at +/- 10 Newtons or  the number of boxes used.

The results of the ASE network showed that a reinforcement learning system can learn to control an
unknown system. The simplicity of the reward mechanism makes it attractive as a general control system.

Q-Learning

Watkins linked reinforcement learning methods and dynamic programming (Watkins, 1992; Whitehead
and Ballard, 1991). Presenting RL as a dynamic programming problem, the aim of a reinforcement
learning controller is to maximise the reward it receives at successive states through the state space. In a
state s at time t the agent can perform various actions which will take it to new states. The mechanism by
which it decides which action to perform is the policy function, and the learning mechanism should move
this policy toward the optimum policy, i.e. at every decision point, to select the action which will result in
the highest future reward. The hybrid method of RL and dynamic programming proposed was Q-Learning.

This policy is called Q, or the action value function. Given a state and an action, Q will give the expected
return. Return can be regarded as an immediate reward for a state, plus an estimate of future reward that
can be achieved from that state. In chess, a move which allows you to take your opponent's Queen may
have a high immediate reward, but then allows your King to be check-mated has a very low long term
reward. Return r at time t is defined as:
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where γ  is the discount factor, typically 0.95. A function V , the value function can be defined, which will
give the expected return for a state x at time t. Looking at the equation for return (4), as n becomes very
large, γn−1becomes very small and the rest of the return will be negligible. Therefore Watkins used a
method called "corrected n-step truncated return" which calculates the return up to time t+n and then for
the remainder, finds the value of V , which will give future expected return, for the state at time t+n.
Therefore when given n, the number of time steps to be calculated, the corrected n-step truncated return
can be found as:
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Initially the system will have no information as to which action it should perform at each state. In this
implementation, the value of Q, the action value function, for each action and state pair will be random.
Once the action has been executed, the real reward will be known, and the error between the predicted
return and the actual return can be found, giving the Q value at the next time step.
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Watkins used 1-step Q-Learning, in which the action value function Q is updated after a delay of only one
step, i.e. as soon as the actual return for the next state is known.

Figure 6 shows an algorithm for Q-Learning.

repeat
receive current world state
if random action required then

generate a random control action
else

generate a control action based on the policy for the current state
execute the action on the world
receive reward from the previous action
calculate error between actual and expected reward
alter action value function in light of error
amend policy to ensure it still dictates action yielding maximum reward

forever

Fig. 6  Algorithm for Q-Learning

Q-Learning Implementation Results

The Barto scenario was duplicated as much as possible using 1-step look-ahead Q-Learning rather than
ASE learning.  Q-Learning requires a reward value to be returned from the environment after each control
action and the strategy adopted used the value of (1/angular velocity) as a reward. It was hoped that this
mechanism would favour a more stable system. However the results were poor and the pole was never
successfully balanced for more than 940 time steps in the repeated trials undertaken. Several alternative
reward strategies were used, including reward based on improvement since the last control action, but none



of these resulted in a significant improvement. Figure 7 plots 1000 trials of Q-Learning showing the
number of time steps to failure on each.
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Fig. 7  Q-learning over time

Stochastic Real Valued Learning

The previous learning strategies have relied on an environment split into discrete boxes. The granularity of
the box quantitisation determines the granularity of control. If a fine level of control is required, the boxes
are made smaller, which considerably increases the number of states. As the number of states becomes
much larger, the system suffers as the computational overhead increases.
.
An alternative is the Stochastic Real Valued (SRV) approach proposed by Gullapalli (1990, 1992) which
takes real values of variables directly from the environment and uses these to determine the required
control action. The method does not suffer from heavy computational burdens and permits continuous
values for the control action.

The SRV approach attempts to determine the optimal control action a for the world state x presented to it
at time t. Using random search based on a normal distribution to estimate  the optimal action. Depending
on the success, the mean of the normal distribution is moved toward actions which produce higher rewards
r(t), and the standard deviation is made smaller as the system begins to focus around the "correct" action.
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Fig. 8  An SRV unit constructed from two neural nodes

Figure 8 shows how an SRV unit consists of two neural nodes in parallel; the w-node attempts to learn the
desired control action, and the v-node, controls the amount of search. As with the previous learning
methods, the system is shown four parameters from the pole balancing environment, the cart position,
velocity, angle and angular speed. In response the controller produces a control action, which is applied to



the world , resulting in a new world state and a measure of performance. With four environmental
variables fully interconnected to two SRV nodes, there are eight weights in total, four leading to the w-
node, controlling the mean, and four to the v-node controlling the standard deviation.

The mean for the normal distribution is calculated from:
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The other node indirectly produces the standard deviation. In the early stages of learning, one would hope
the system would explore, searching for the optimal control action. Before the optimal action is found, the
reward associated with the sub-optimal actions is lower than could be expected with optimal actions. The v
node attempts to learn the reward associated with each control action. As the error between the expected
reward and real reward decreases, the standard deviation should be lowered, thus limiting the search space.
The expected reinforcement is given as:
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From this, the standard deviation can be found. When the error in reward estimation is zero, the system
has found the optimal action for the given world state, and no further search is required. This is simply
achieved by forcing the standard deviation to be zero.
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Given the mean and standard deviation a normally distributed random number generator produces a real
control action.

a t t t         ( ) ( ( ), ( ) )= ψ µ σ (10)

Like Q-Learning, SRV interleaves control with learning, using a two stage algorithm; the first half
generating a control action; the second modifying the internal weights based on the reward received from
the environment. Since there is a set of weights leading to each of the neural nodes, two sets of weight
modification equations are required. The algorithms are based on the gradient descent methods found in
back error propagation, but the magnitude of the error is implied by the difference between expected and
actual reinforcement.
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The weights and threshold are then moved in the direction of the correct solution, multiplied by a learning
rate parameter.

w t w t t x ti i w i( ) ( ) ( ) ( )+ = +1       α ∆ (12)
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The v weights which are attempting to predict the expected reinforcement to aid in calculating the standard
deviation are trained in a similar way. The error is known here; it is the difference between expected and
actual reward.

∆ v t r t r t( ) ( ) $( )    = − (14)

Again the weights are modified to counteract this error, subject to a learning rate parameter.
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SRV Implementation Results

By far the most successful of the three implementations was the Stochastic Real-Valued learning. The
improvement reward mechanism tried with Q-Learning was used, rewarding the system if it decreased the
pole angle, or moved the cart closer to the central point. The initial runs balanced the pole for as many as
100,000 time steps. However the behaviour when in this so-called balanced state was not stable, and
system exhibited a small degree of drift in the cart position, leading to eventual failure.

The drift was examined and a solution found. The system was continually searching for an optimal policy
and when very good behaviour was exhibited the returns from this search were found to be counter
productive, i.e. it was trying to be "too clever". A graduated scale of search was overlaid onto the
mechanism calculating standard deviation. If the system was within 5% of the given angular limit, the
standard deviation would be set to zero irrespective of the value calculated by the weights. As a result of
this intervention policy the system learned to balance the pole for 2 million time steps, at which time the
trial was stopped. Figure 9 shows the learning trials in the improved system and fig. 10 shows a sample of
500 time steps from the balanced run illustrating how the pole angle was maintained within +/- 0.015
degrees of upright.
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Fig. 9  SRV learning over time
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ARC FURNACE CONTROLLER IMPLEMENTATION

Since the Stochastic Real-Valued learning strategy performed significantly better than the other learning
methods in the pole balancing problem, it was chosen for the initial implementation of the arc furnace
controller. The black box neural network controller was linked to an arc furnace simulator. This piece of
software written by Sina Etminan (1990) mimics the disturbances generated by a furnace during its melt
cycle. The software was used during the development of the existing compensation algorithms.

In the implementation, four parameters were passed from the arc furnace simulator to the controller, the
voltage at the point of common coupling (p.c.c.), the supply current, and the rates of change of each of
these values. The neural net estimates the level of compensation required, and the simulator returns a
reward level, indicating the success of the compensation. In the early trials, the reward decreased as the
RMS voltage at the p.c.c. increased.

Initial results show that the neural controller can learn to maintain the voltage within +/- 1% of the desired
level. Further enhancements to the system are now being developed to improve on this.
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