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ABSTRACT

During its melt cycle, an arc furnacecausedisturbance®f the electricalsupply. Existing measurement
techniquedor this applicationleadto correctiveratherthan predictive compensationThe useof neural
networksto control the compensatioris being consideredijn particularreinforcementearningstrategies
which require no pre-training and which can adapt to a dynamically changing environment.

Several reinforcementlearning techniqueshave been consideredby examining their effectivenessin
learningto balancea pole on a moving cartwithout prior training. The networkis requiredto producean
appropriatecontrol actionin responseo the currentworld statein orderto maintainthe pole and cart
position within acceptablelimits. One reasonfor investigating this is the belief that many of the
characteristicof the pole-balancerare analogousto the problem of compensatingor reactive power
disturbances in the arc furnace.

This paper presents a comparative review of these reinforcement learning strategies.
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INTRODUCTION

The power transmission netwasksharedby both domesticandindustrialusers Howeversomeindustrial
installations such as the electric arc furnace can cause disturbances to this netwairiGighteof thearc
furnace is to short circuit theectricalsupplywhich heatsthe metalin the furnace,causingt to melt. The
resistanceof the metal continually changesas it progressedrom solid to molten state. This rapidly
changingresistancagives rise to voltagedips at the point of commoncouplingto the supply which are
passedo the domesticusers.Thesevoltage dips can affect sensitiveelectronicequipmentand generate
annoyingflicker on tungsterfilamentlamps.Compensatiorior the changingresistancecanbe performed

by adding a capacitive current to the systembut determiningthis level of capacitanceis difficult.
Compensatioralgorithmsexist which considera window of previouselectricalspectralvaluesand as a
result estimatethe required compensation.Through their reactive nature, the algorithms sometimes
produce compensatiorwhich is inappropriateto a rapidly changingworld. Also, if shownthe same
situation repeatedly,they will always generatethe same level of compensationregardlessof its
effectiveness. A more desirable mechanism would be one that could be predictive and that cduddnlearn
previous experience. It is hoped that neural networks could be of use in producing a better control strategy.
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A controllerto balancea pole upright on a movablecartis anisomorphof the problemof compensating

for the arc furnace disturbance.n the pole world the systemis requiredto examinethe parameters
describingthe world and producean appropriatecontrol action to minimise the angle of the pole by
pushingthe cartleft or right. In the arc furnaceproblem,a controlleralsoexamineghe world stateandis
thenrequiredto producea level of compensationvhich will minimisethe voltagedisturbanceThis paper
outlinesthe investigationanto neuralstrategiedor the control of the pole balancerisomorphand shows

how the findings of this work have been used in an initial implementation of an arc furnace compensator.

THE POLE BALANCING WORLD

Figure 1 showsa hingedpole mountedon a wheeledcart. The cart can move left or right along a rail,
startingfrom a centralpoint. In orderto balancethe pole, the systemmustapply force to the cartin either
directionto preventthe pole from falling pastan agreedfailure angle,whilst keepingthe cart within an
agreed distance from the central point on the track.
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Sincethe pole balanceiis anisomorphof the arc furnaceproblemthe thinking behindthe developmenbf
the neural controller is to treat the systemit controls as a black box (Seefig. 2). This allows the
replacement of the pole environment with the arc furnace or any other application areasrgjhideast,
homomorphsof the pole problem. Consequentlyjcommunicationbetweenthe controlled systemand its
controlleris keptto a minimum, world parametersare passednto the controller,and a resulting control
signalis returned.The behaviourof the black box pole world has beenmodelledby two differential
equationstakenfrom Barto et al (1983). Thesehavebeenimplementedusing a high speed high order
Runge-Kutta method developed by Dormand and Prince (1989).

NEURAL LEARNING

Probablythe most commonly usedneurallearning strategyis supervisedearning.A network is taught
throughrepeatedgresentationso learnandto generalisédrom a giventraining set. Middleton (1992) and
later Dixon (1993) havelooked at the applicationof supervisednetworksto the arc furnace problem.
Thesenetworkswere trained on input/outputmappingscollectedfrom an arc furnace simulator which
measureccompensatiorbasedupon static algorithmsdevelopedoy Etminanand Sotudeh(1987). These
algorithmsestimatethe level of reactivepower presentin the systemandfrom this compensatiortanbe
determinedIn both caseshe networklearnedto mimic the training and performednearly aswell asthe
algorithms.However, since the algorithmsproducingthe training datawere not predictive, nor able to
learnfrom their mistakesa supervisedack-propagatiometworkcould nevermeetthesecriteria either. If
a neuralnetworkis to performbetterthanthe algorithmic approachthenan alternativelearningstrategy
was needed.



Reinforcementlearning (RL) describesa learning paradigmwhere a systemattemptsto improve its

behaviourbasedon the resultsof previousactions(Sutton,1992). Theseresultsare returnedfrom the
outsideworld as a level of "reward". Eachtime the network controlleris called uponto makea control

decisionit choosesn actionwhich is expectedo yield the highestrewardbasedon its previousfindings.

In the arc furnaceworld compensatiorwhich resultedin no voltage drop could be seenas the optimal

performanceand so would yield the highestreward. Increasingly less effective compensationwould

increase the voltage drop, and the level of reward should decrease. Mapping tioisHdgale world, the
pole anglereplaceghe voltagedrop, and compensatiomproducingan upright pole would yield maximum
reward. Therefore in both problems we know what we wametworkto achieveandwe rewardit based
on its level of achievement, but the task of determining how bashieveit is left to the neuralcontroller
to learn.

Therearemanystrategiedasedon reinforcementearning,but they all follow the samegenericalgorithm
shownin fig. 3. It mustbe stressedhat reinforcementiearningis on-line adaptivelearning;it doesnot
have implicit training andecall stagesaswith supervisedearning,but insteadinterleavescontrol with the
modification of internal weights.

repeat
receive parameters describing the current world state
generate a control action for this state, based on internal weights
execute the action on the world
receive reward for the previous action
if favourable reward then
alter weights so as to promote this action in similar
situations in the future
else
alter weights so as to discourage this action in similar
situations in the future
forever

Fig. 3 A Generic Reinforcement Learning Algorithm

POLE BALANCING CONTROLLER IMPLEMENTATIONS

The pole balanceranalogyhas beenimplementedusing three different reinforcementearning strategies.
The first, AssociativeSearch,is includedas a mechanismwhich requiresminimal feedback,namely a
single signal on failure, to meet the control objective. Q-Learningis basedon Markovian dynamic
programming and Stochastic Real-Valued learning has the property of operating on a continuous world.

Associative Search Learning

An early model ofeinforcementearningwaspresentedy Barto, Suttonand Anderson(1983).The ASE,
or Associative Search Element talea®presentationf the environmentndlearnsto associatesuccessful
outputsto theseinputs after repeatedearningtrials. The original paperdemonstratedhat an RL system
could learn to balance a pole within given limits.

The systenrelieson a simplefeedbacksignalfrom the world. Whenthe polefalls over, or moreprecisely
moves outside the angularor cart distancebounds,the environmentsuppliesan error signal, to the
controller. On the basis of this signal, the systemlearnsto avoid failure. The dominant factor in

reinforcementearningsystemss the so-calledtemporalcreditquestionj.e. "what wasresponsiblgor the



currentsituation". In this casethe questionbecomes'which control decisionswere responsiblefor the
pole'sfalling over?". As only one failure signal arrives, the controller needsto apportionblameto the
movesleadingup to the eventualfailure. The final decisionis ultimately at fault, the decisionbeforethat
was nearly as responsibleand so on back throughthe control decisions. ASE learningimplementsthis
reasoning with a decaying eligibility trace, ieeresponsibilitywhich decaysasthe time from eachspecific
decision increases.

Distributed representation of the world
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Fig. 4 ASE Controller

Figure4 showsthe ASE controllersupplyingthe pole balancingworld with control actionsin responseo
the currentworld position. In return the world suppliesthe controller with the new world stateand the
cyclerepeatslf howeverthe pole shouldfall beyondthe predefinedimits, the environmentabarameters
would beresetto zero,i.e. an upright stationarypole on a non-movingcartin the middle of the track, and
then the system would modify its weights in the light of the recent failure.

The world stateis representedsthreerangesfor the cart position,threefor the cart velocity, six for the
pole angleandthreefor the angularvelocity resultingin 162 (3 x 3 x 6 x3) possiblesituationsto which
the controlleris expectedo react(SeeMichie andChambers1966). The world stateis presenteds 162
input lines, all setto zero exceptthe line representinghe currentworld state.For exampleif the cart
position fell into range one, the cart velocity into range two, the angle and avgjolzty into rangesour
andonerespectivelythe combinationwould setinputline 115to 1, andclearall of the otherinputsto 0.
The control action is derivedfrom the sign of y, a negativesign causingthe cart to be pushedright,
otherwise moving the cart left.
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y(t) = f( Z\Ni(t)xi (t)) @)

Theresultof this actionwill be reflectedin the new statepresentedo the controllerat time t +1. If the
pole falls outside the permitted bounds, the weiglitsbe modified subjectto multiplication by a learning
rate constant,0, setin thesetrials to be 0.95andthe failure signal, ' , setto -1. Equation2 showshow
the new weights are calculated.

w(t+1) = w(t) +ar(t)g(t) )

Theterm e in the equationrefersto eligibility, the ASE methodof solving the temporalcredit problem.
Each input line nobnly hasa weightonits inputline, but alsoan eligibility value.This valueis setto one
whenthe input line is used,i.e. whenthat stateis entered.At eachtime step,all eligibility weightsare
multiplied by a decay factod, in ourtrials setto 0.95.Fromthis weightthe blamefor anyfailure canbe
apportioned to the states leading to failure. The eligibility at timn&is now calculated:

e(t+1) = og(t) + (1-3)y(t)x (t) ®)



ASE Implementation Results

The first implementation of the ASE pole balancer wadeaslopedn Bartoet al. Initial weightswereall

set at 0.5, and limits for the pole andde,and cart distance from centi¢, set at 12 degrees and 2.4 units
respectively Figure 5 showsthe numberof time stepsto failure on eachtrial. After 20 trials the system
reacheda stablestatebalancingthe pole for in excessof threethousandsteps.lt mustbe notedthat the
levels are well within the limits given above.

Number of trials
Fig. 5 ASE learning over time

The X valuesettledat approximately0.08 units. In anattemptto improvethis, theinitial startingweights
of the systemwere kept at 0.5. but with a randomsign. When therewas a distribution of positive and
negative starting weights, thevalue settled between 0.015 and -0.025 in trials.

One further extensionto the ASE systemwas an attemptat shaping.Shapingis a psychologicalterm
whereby animals are trained to tackle increasingly harder problems, building on the skill they have
acquired.In the pole balancerthe failure limits were closedin after successfullymaintainingthe pole
within the limits for 1000 steps.However the systemwas unableto balancethe pole with any more
accuracythan+/- 2 degreesrom upright. Reasondor this could be the granularityof the control action,
set at +/- 10 Newtons or the number of boxes used.

The resultsof the ASE network showedthat a reinforcementlearning systemcan learn to control an
unknown system. The simplicity of the reward mechanism makes it attractive as a general control system.

Q-Learning

Watkins linked reinforcementiearning methodsand dynamic programming(Watkins, 1992; Whitehead

and Ballard, 1991). PresentingRL as a dynamic programmingproblem, the aim of a reinforcement
learningcontrolleris to maximisethe rewardit receivesat successivetatesthroughthe statespaceln a

states at time t the agentcanperformvariousactionswhich will takeit to new states.The mechanisnby

which it decideswhich actionto performis the policy function, andthe learningmechanisnshouldmove

this policy towardthe optimumpolicy, i.e. at everydecisionpoint, to selectthe actionwhich will resultin

the highest future reward. The hybrid method of RL and dynamic programming proposed was Q-Learning.

This policy is called, or theactionvaluefunction. Givena stateandanaction, Q will give the expected
return.Returncanberegardecasanimmediaterewardfor a state,plus an estimateof future rewardthat

canbe achievedfrom that state.In chess,a movewhich allows you to take your opponent'QQueenmay

havea high immediatereward, but thenallows your King to be check-matechasa very low long term

reward. Returm at timet is defined as:
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wherey is the discount factotypically 0.95.A functionV , the valuefunction canbe defined,which will
give the expectedeturnfor a statex at time t. Looking at the equationfor return(4), asn becomewery
large, y"*becomesvery small and the rest of the returnwill be negligible. ThereforeWatkins useda

methodcalled"correctedn-steptruncatedreturn” which calculateghe return up to time t+n andthenfor
the remainder finds the value of V, which will give future expectedreturn, for the stateat time t+n.
Thereforewhengiven n, the numberof time stepsto be calculatedthe correctedn-steptruncatedreturn
can be found as:

" = Zv“ F + Y"Ve(Xein) ()
=1

Initially the systemwill haveno informationasto which actionit shouldperform at eachstate.In this
implementationthe valueof Q, the actionvaluefunction, for eachactionand statepair will be random.

Oncethe action hasbeenexecutedthe real rewardwill be known, andthe error betweenthe predicted
return and the actual return can be found, givingQhealue at the next time step.

Qn(X.a) = Q(x,a) +a (r” - Q(x.a)) 6)

Watkins used 1-step Q-Learning, in which the action value funQi@updatedaftera delayof only one
step, i.e. as soon as the actual return for the next state is known.

Figure 6 shows an algorithm for Q-Learning.

repeat
receive current world state
if random action required then
generate a random control action
else
generate a control action based on the policy for the current state
execute the action on the world
receive reward from the previous action
calculate error between actual and expected reward
alter action value function in light of error
amend policy to ensure it still dictates action yielding maximum reward
forever

Fig. 6 Algorithm for Q-Learning

O-Learning Implementation Results

The Barto scenariowas duplicatedas much as possibleusing 1-steplook-aheadQ-Learningratherthan
ASE learning. Q-Learningrequiresa rewardvalueto be returnedfrom the environmentfter eachcontrol
actionandthe strategyadoptedusedthe value of (1/angularvelocity) asa reward.It washopedthat this
mechanismwould favour a more stablesystem.Howeverthe resultswere poor and the pole was never
successfullybalancedior morethan 940 time stepsin the repeatedrials undertakenSeveralalternative
reward strategies were used, including reward based on improvement since the last contrbLiantios,



of theseresultedin a significant improvement.Figure 7 plots 1000 trials of Q-Learningshowing the
number of time steps to failure on each.
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Fig. 7 Q-learning over time
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Stochastic Real Valued Learning

The previous learning strategies hagked on anenvironmensplit into discreteboxes.The granularityof
the box quantitisatiordetermineshe granularityof control.If afine level of controlis required,the boxes
are madesmaller,which considerablyincreaseghe numberof states.As the numberof statesbecomes
much larger, the system suffers as the computational overhead increases.

An alternativeis the StochastidReal Valued (SRV) approachproposediy Gullapalli (1990,1992) which
takesreal valuesof variablesdirectly from the environmentand usestheseto determinethe required
control action. The methoddoesnot suffer from heavy computationalburdensand permits continuous
values for the control action.

The SRV approachattemptgo determinethe optimal control actiona for the world statex presentedo it
attime t. Usingrandomsearchbasedon a normaldistributionto estimate the optimal action. Depending
on the success, the mean of tleemaldistributionis movedtowardactionswhich producehigherrewards

r(t), and the standard deviation is made smaller as the system begins to focus around the "correct" action.
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Fig. 8 An SRV unit constructed from two neural nodes

Figure 8 shows how an SRV unibnsistof two neuralnodesin parallel;the w-nodeattemptdo learnthe
desiredcontrol action, and the v-node, controls the amountof search.As with the previous learning
methods,the systemis shownfour parametergrom the pole balancingenvironmentthe cart position,
velocity, angleandangularspeedln responséhe controllerproducesa controlaction,which is appliedto



the world , resultingin a new world state and a measureof performance With four environmental
variablesfully interconnectedo two SRV nodesthereare eight weightsin total, four leadingto the w-
node, controlling the mean, and four to the v-node controlling the standard deviation.

The mean for the normal distribution is calculated from:
p‘ (t) = Z\M (t) Xi (t) + Wthres(t) (7)
1=1

The othernodeindirectly produceghe standarddeviation.In the early stagesof learning,onewould hope
the systenwould explore,searchingor the optimal control action.Beforethe optimal actionis found, the
reward associated with the sub-optimal actions is lower than could be expected with optimaldetions.
nodeattemptsto learnthe rewardassociatedvith eachcontrol action.As the error betweenthe expected
reward and real reward decreases, the standard deviation should be lowered, thus limiting tepassarch
The expected reinforcement is given as:

P =3 M%) + Vo ®

From this, the standarddeviationcan be found. Whenthe error in rewardestimationis zero, the system
hasfound the optimal actionfor the given world state,and no further searchis required.This is simply
achieved by forcing the standard deviation to be zero.

o (t) = max( (

10-7 (1)
=218 0.0
50 ),0.0) )

Giventhe meanand standarddeviationa normally distributedrandom numbegeneratomproducesa real
control action.

a(t) = w(u()o (1)) (10)

Like Q-Learning, SRV interleavescontrol with learning, using a two stage algorithm; the first half
generatinga control action; the secondmodifying the internalweightsbasedon the rewardreceivedfrom
the environment.Sincethereis a setof weightsleadingto eachof the neuralnodes,two setsof weight
modification equationsare required.The algorithmsare basedon the gradientdescenimethodsfound in
backerror propagationput the magnitudeof the error is implied by the differencebetweenexpectedand
actual reinforcement.

8,00 = (1) - ) 2R an

Theweightsandthresholdare thenmovedin the directionof the correctsolution,multiplied by a learning
rate parameter.

W(t+D) = w(t) + ab, () x (1) (12)

Wthres(t +1 = Wthres(t) + aAw(t) (13)
The v weights which are attempting to predict the expaeiatbrcemento aid in calculatingthe standard
deviationaretrainedin a similar way. The error is known here;it is the differencebetweenexpectedand
actual reward.

A, (t) = r(t) = f(t) (14)
Again the weights are modified to counteract this error, subject to a learning rate parameter.



vi(t+1) = v(t) + A, (1) x (1) (15)

SRV Implementation Results

By far the most successfubf the three implementationsvas the StochasticReal-Valuedlearning. The
improvementewardmechanisniried with Q-Learningwasused,rewardingthe systemif it decreasethe
pole angle,or movedthe cart closerto the centralpoint. The initial runsbalancedhe pole for asmanyas
100,000time steps.Howeverthe behaviourwhenin this so-calledbalancedstate was not stable,and
system exhibited a small degree of drift in the cart position, leading to eventual failure.

Thedrift wasexaminedanda solutionfound. The systemwas continuallysearchingor an optimal policy
and when very good behaviourwas exhibited the returnsfrom this searchwere found to be counter
productive,i.e. it was trying to be "too clever". A graduatedscale of searchwas overlaid onto the
mechanisncalculatingstandarddeviation.If the systemwas within 5% of the given angularlimit, the
standarddeviationwould be setto zeroirrespectiveof the value calculatedby the weights.As a resultof
this interventionpolicy the systemlearnedto balancethe pole for 2 million time steps,at which time the
trial was stopped. Figur@showsthe learningtrials in theimprovedsystemandfig. 10 showsa sampleof
500 time stepsfrom the balancedrun illustrating how the pole angle was maintainedwithin +/- 0.015
degrees of upright.
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Fig. 9 SRV learning over time
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ARC FURNACE CONTROLLER IMPLEMENTATION

Sincethe StochastidReal-Valuedearningstrategyperformedsignificantly betterthan the otherlearning
methodsin the pole balancingproblem,it was chosenfor the initial implementationof the arc furnace
controller. The black box neuralnetwork controllerwaslinked to an arc furnacesimulator.This pieceof
softwarewritten by SinaEtminan(1990) mimics the disturbancegeneratedy a furnaceduring its melt
cycle. The software was used during the development of the existing compensation algorithms.

In the implementationfour parametersvere passedrom the arc furnacesimulatorto the controller, the
voltageat the point of commoncoupling (p.c.c.),the supply current,and the ratesof changeof eachof
thesevalues.The neural net estimateghe level of compensatiorrequired,and the simulator returnsa
rewardlevel, indicating the succes®f the compensationln the early trials, the reward decreaseds the
RMS voltage at the p.c.c. increased.

Initial results show that theeuralcontrollercanlearnto maintainthe voltagewithin +/- 1% of the desired
level. Further enhancements to the system are now being developed to improve on this.
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