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A b s t r a c t .  We describe a Genetic Algorithm (GA) for solving the min- 
imum span frequency assignment problem (MSFAP).The MSFAP in- 
volves assigning frequencies to each transmitter in a region, subject to a 
number of constraints being satisfied, such that the span, i.e. the range 
of frequencies used, is minimized. The technique involves finding an or- 
dering of the transmitters for use in a sequential (greedy) assignment 
process. Results are given which show that our GA produces optimal so- 
lutions to several practical problem instances, and compares favourably 
to simulated annealing and tabu search algorithms. 

1 I n t r o d u c t i o n  

The frequency assignment problem is a difficult, NP-hard, problem of consider- 
able importance. The radio spectrum is a limited natural resource that is used in 
a variety of civil and military services. The most well known example would be 
in cellular mobile phone networks. Third generation mobile systems will achieve 
a world-wide mass market giving enhancements in the areas of quality and se- 
curity, incorporating broad-band and multi-media services, and offering higher 
capacity based on bandwidth on demand. These features will be supported by 
means of integrated terrestrial and satellite modes of delivery to provide com- 
prehensive coverage - ranging from the office environment, through street and 
urban areas, to complete coverage of rural and remote regions throughout the 
world. 

To facilitate this expansion the radio spectrum allocated to a particular ser- 
vice provider needs to be assigned as efficiently and effectively as possible. The 
minimum span frequency assignment problem (MSFAP) is one in which it is 
required to assign frequencies to a set of transmitters such that  certain com- 
patibility constraints, which model potential interference between pairs of trans- 
mitters, are satisfied. In addition to satisfying the constraints the objective is 
to minimise the span of the assignment i.e. the difference between the largest 
frequency used and the smallest frequency used. 

The purpose of this paper is to explore the possibility of combining a Genetic 
Algorithm (GA) with sequential (greedy) assignment methods. Traditionally, 
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GAs and other meta-heuristics have been applied to an initial solution consisting 
of an assignment of frequencies to transmitters, the techniques operating on 
the problem directly using local search to perturb the allocation of frequencies 
in an attempt to minimise the number of constraint violations [3, 11, 17]. In 
[11] a sequential method is used to find an initial assignment, which is then 
improved by simulated annealing or tabu search. With the GA described here the 
iterative transformations are applied to permutations of transmitters. A simple 
sequential assignment algorithm is then applied to each of these permutations 
to produce an allocation of frequencies that  does not violate any constraints. 
Thus the permutations of transmitters output by the GA are interpreted by the 
sequential algorithm to produce candidate solutions to the MSFAP. 

1.1 Interference and Constraints 

Interference can occur between a pair of transmitters if the interfering signal 
strength is sufficiently high. Whether a transmitter pair has the potential to 
interfere depends on many factors, e.g. distance, terrain, power, antenna design. 
The higher the potential for interference between a transmitter pair the larger 
the frequency separation that  is required. For example, if two transmitters are 
sufficently geographically separated then a frequency can be re-used i.e. the same 
frequency assigned. At the other extreme if two transmitters are located at the 
same site then they may require, say, five frequencies separation (this is called 
the co-site constraint). 

To model this interference a constraint graph is constructed which gives the 
separations needed between each transmitter pair. This graph is usually repre- 
sented by a N • N matrix, A, (N is the number of transmitters in the network) 
where each element aij defines the frequency separation between transmitters 
i and j i.e. if f~ and f j  are the frequencies assigned to transmitter i and j 
respectively then 

- > 

The MSFAP is to find a frequency assignment that  satisfies all the constraints 
and such that  the span of the assignment is minimised. 

1.2 Sequential Assignment Algorithms 

Sequential assignment methods mimic the way the problem might be solved man- 
ually. They are fast enough for large problems but tend to give results which are 
well short of the best possible. The transmitters are simply considered one at 
a time, successively assigning allowable frequencies as we proceed, until either 
we have assigned all transmitters or run out of frequencies. An important fac- 
tor affecting the quality of solutions generated by this method is how the next 
transmitter is chosen. We may therefore generate a series of assignment methods 
based on three components: 
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- initial ordering, 
- choice of next transmitter, 
- assignment of frequency. 

The simplest way to choose the next transmitter is sequentially, simply pick- 
ing the next one on the list produced by the initial ordering. A more complicated 
method, which has proved more effective than sequential selection with the var- 
ious initial ordering methods, is called general saturation degree. In this method 
the choice of the next transmitter is influenced by the constraints imposed by 
all those transmitters that have already been chosen. One could view the more 
complicated process as a method for correcting those mistakes that have already 
been made by the initial ordering technique. 

The simplest assignment technique is to assign the smallest acceptable chan- 
nel i.e. the lowest numbered channel to which it can be assigned without violating 
any constraints. Variations upon this technique attempt to assign transmitters 
to channels that are already used in favour of those that are not. A detailed 
description of sequential assignment methods can be found in [11]. 

In this paper we use our GA to search a state-space of initial orderings. The 
choice of the next transmitter is made sequentially using the ordering obtained, 
with the smallest acceptable frequency assigned to each transmitter. 

2 T h e  S e a r c h  S p a c e  G e n e r a t e d  b y  P e r m u t a t i o n s  o f  

T r a n s m i t t e r s  

It is important to establish that the state-space of initial orderings contains per- 
mutations capable of producing good (or even optimal) solutions following the 
application to the orderings of the chosen method for allocating frequencies to 
the transmitters. Some experiments on small problems are documented below. 
We allocate frequency channels to the initial orderings in the following way: the 
choice of the next transmitter is made sequentially and the smallest acceptable 
channel is assigned to each transmitter. All possible permutations of a simple 12 
transmitter problem are generated (479,001,600 in total) allowing the examina- 
tion of the entire state-space, and 1000 permutations are produced at random 
for a problem containing 95 transmitters. Graphs indicating the frequency of oc- 
currence of the spans evaluated for the permutations, using the simple frequency 
assignment algorithm outlined above, are plotted in Figure 1 and Figure 2. 

The graphs show a range of spans for both of the problems. The exhaustive 
search of the permutation space for the 12 transmitter problem locates the op- 
timum span of 22, whilst the random search carried out in the case of the 95 
transmitter problem locates a best span of 52, which is 4 channels above the 
optimum solution of 48 [17]. In both cases, however, these values represent im- 
provements over the best produced by combining together the various sequential 
assignment methods (initial ordering, selecting the next transmitter and selecting 
a frequency), where best solutions of 24 and 54 are obtained respectively for the 
12 and 95 transmitter problem. The above experiments demonstrate clearly that 
"good" permutations of transmitters can be converted into excellent solutions 
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Fig. 1. Spans evaluated from all permutations of a 12 transmitter problem 
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Fig. 2. Spans evaluated from 1000 permutations of a 95 transmitter problem 

to the MSFAP, at least in the case of small problem instances, thus providing 
the motivation to try a genetic search on larger problem instances. 

3 The  Genet ic  Algor i thm 

The simple genetic algorithm (GA) used here is based on that  which has ap- 
peared in [20]. It is derived from the model of Holland in [9] and is an example 
of a 'steady state' GA (based on the classification of Syswerda in [18]). It uses 
the 'weaker parent replacement strategy' first described by Caviechio in [2]. 
The GA, outlined in Figure 3, applies the genetic operators to permutations 
of transmitters. The fitness values are based on the spans produced when the 
simple sequential assignment algorithm is applied to each permutation list pro- 
duced by the GA. In Algorithm 1 the first parent is selected deterministically 
in sequence, but the second parent is selected in a roulette wheel fashion, the 
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Procedure GA1 

BEGIN 

Generate JVpop random permutations (Npop is the population size). 

Apply the Generalised Saturation Degree (GSD) algorithm to each 
individual to produce Npop frequency assignments and store each one. 
Store best-so-far. 
REPEAT 

FOR each member of the population 
this individual becomes the first parent; 
select a second parent using roulette wheel selection on ranks; 
apply cycle crossover to produce one offspring; 
apply mutation to offspring; 
evaluate span produced by offspring; 
if offspring better than weaker parent then it replaces it in 
population; 
if offspring better than best-so-far then it replaces best-so-far; 

ENDFOR 

UNTIL stopping condition satisfied. 
Print best-so-far. 
END 

Fig. 3. Algorithm 1 - The Genetic Algorithm 

selection probabilities for each genotype being calculated using the following 
formula: 

(population size + 1 - Rank o f  geneotype) 
genotype selection probability = ~ Ranks 

where the genotypes are ranked according to the values of the spans that 
they have produced, with the best ranked 1, the second best 2 etc. 

The GA breeds permutations of transmitters and frequencies are assigned to 
the resulting lists of transmitters by a simple sequential assignment technique 
(see section 1.2 above). 

Experiments have demonstrated that better results are obtained if the Gen- 
eralized Saturation Degree (GSD) algorithm is applied to the initial permutation 
lists produced by a pseudo-random number generator, prior to invoking the Ge- 
netic Algorithm. (These experiments will be documented elsewhere.) The GSD 
algorithm used in the second step of Algorithm 1 is described next. 

3.1 General ized Sa tu ra t ion  Degree (GSD) 

Let V be a set of transmitters and Vc be the transmitters of V already assigned 
frequencies. Frequency n is said to be denied to the unassigned transmitter v 
if there is a transmitter u in Vc assigned to frequency n such that transmitter 
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u and v would interfere i.e. assuming an edge exists between u and v in the 
constraint graph then there is insufficient frequency separation between them. 
If frequency n is denied to t ransmit ter  v, the influence of frequency n, denoted 
by Inv , is the largest weight of any edge connecting v to a transmitter  assigned 
to frequency n. The number 

Z• 
(where the sum is taken over all frequencies n denied to v) is called the gen- 

eralized saturation degree of v. The technique for selecting the next transmitter  
is as follows: Select a transmitter  with maximal generalized saturation degree 
(break ties by selecting the transmit ter  occurring first in the initial ordering). 

3.2 M u t a t i o n  

The mutation chosen was to select two transmitters at random from a permuta- 
tion list, and swap them. 

3.3 C yc l e  C r o s s o v e r  

Permutat ion crossovers were originally developed primarily for the travelling 
salesman problem (TSP),  where the genotypes consist of lists of cities which are 
converted to TSP tours. Because TSP tours are circuits, it is irrelevant which city 
is represented first on the list. The permutation lists represent cycles and an edge 
in a TSP tour always joins the last city on the list to the first. Thus for the TSP 
it is the relative sequence of cities that  is important,  rather than the absolute 
sequence. In the frequency assignment problem, however, the permutation lists 
making up the genotypes represent lists of transmitters,  and intuitively it would 
seem likely that  absolute sequences are important  in this case. 

The best known permutation operators from an historical standpoint (which 
are also amongst the simplest to implement) are Partially Matched Crossover 
(PMX) [8], Order Crossover (OX) [4, 5] and Cycle Crossover (CX) [13]. In test 
experiments if was found that  CX produced better  results on the MSFAP than 
either PMX or OX, thus it is the chosen operator here. (For a description of the 
three crossovers, PMX, OX and CX see [8]). 

In the next subsection we examine the ability of the cycle crossover to pass 
characteristics of parents onto their offspring. In order to do this Pearson's Corre- 
lation Coefficient has been calculated between the spans of 1000 offspring versus 
and the corresponding mid-parent values. 

3.4 Of f sp r ing  ve r sus  M i d - p a r e n t  C o r r e l a t i o n  

From an initial population of 1000 individuals, 1000 pairs of parents are selected 
using the selection mechanism defined in Figure 3, and from them 1000 offspring 
are generated using CX and one mutation. It is important  to establish that  
offspring resemble their parents and produce solutions with similar values for 
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the span. If this turns out not to be the case, then the GA is at best equivalent 
to a random search. 

Table 1 shows the values of Pearson's Correlation Coefficient, rxu, for a range 
of problems using CX for offspring versus mid-parent values of the span for 1000 
samples. Results are shown for six representative problem instances. 

Table 1. Examples of offspring versus mid-parent correlation 

Problem rxy 
P1 0.2703 
P2 0.2405 
P3 0.2419 
P4 0.2767 
P5 0.2061 
P6 0.2098 

The values for the correlation coefficient in the table are all highly significant 
at the 0.0001% level, showing that  parental features that  contribute to their span 
values are indeed passed on to their offspring. 

4 R e s u l t s  

For the GA the population size is 500. One mutation per offspring is used, 
and cycle crossover is the recombination operator. The GA terminates after 200 
generations have elapsed with no improvement to the best-so-far. The population 
is initially seeded with 500 random permutations. These are then subject to the 
Generalized Saturation Degree algorithm, and it is the new orderings produced 
by the application of this algorithm which form the starting population for the 
GA. 

The examples are based on the so-called Philadelphia problem which origi- 
nally appeared in [1], and was subsequently used by several authors [6, 7, 12, 14, 
21]. The problem is based on a cellular phone network consisting of 21 cells. The 
demands in each cell define the number of frequenices that need to be assigned 
to each of the cells. The distance between cell centres is taken to be 1. The 
hexagonal geometry is given in Figure 4 Constraints between transmitters  are 
generated by considering the distance between the transmitters.  

Additional variations on the Philadelphia problem can be also be defined 
to further test the performance of the GA. Table 2 defines the Philadelphia 
variations used for the test problems (dk denotes the smallest distance between 
transmitters which can use a separation of k channels, N denotes the total num- 
ber of frequencies that need to be assigned i.e. the number of transmitters  and C 
denotes the total number of compatability constraints that  need to be satisfied. 
Problem PS, described in [19], contains the same number of transmitters  and 
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Fig. 4. The Cellular Geometry of the Philadelphia Problems 

constraints as P1, the difference being some of the constraints require a higher 
separation (since the dl distance is smaller). The following cell demand vectors 
are used: 

m = (8,25,8,8,8,15,18,52,77,28,13,15,31,15,36,57,28,8,10,13,8) 
m2 = (5,5,5,8,12,25,30,25,30,40,40,45,20,30,25,15,15,30,20,20,25) 
m3  = (20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20) 
m4 = (16,50,16,16,16,30,36,104,154,56,26,30,62,30,72,114,56,16,20,26,16) 

Table  2. Philadelphia problem variations 

Problem do dl d~ d3 d4 d~ Cell demands N C 
P1 x / ~  v ~  1 1 1 0 in 481 97,835 
P2 x/7 v/3 1 1 1 0 in 481 76,979 
P3 ~ v/3 1 1 1 0 in2 470 78,635 
P4 V~ x/~ 1 1 1 0 m2 470 56,940 
P5 x / ~ x / 3  1 1 1 0 m3 420 65,590 
P6 x/~ v ~  1 1 1 0 m~ 420 44,790 
P7 v / ~ v ~  1 1 1 0 m4 962 391,821 
P8 x / ~  2 1 1 1 0 In 481 97,835 

The GA results are given in Table 3. Comparisons are given with Tabu Search 
(TS) and Simulated Annealing (SA) algorithms which are detailed in [11]. The 
TS and SA algorithms do not operate by generating a good permutaion of trans- 
mit ters  (as in the GA) but instead a t t empt  to iteratively improve a complete 
assignment. The value in parentheses indicates the number  of assignments pro- 
cessed by the SA, TS, and GA algorithms. T h e ' B e s t  seq" column gives the best 
span obtained from using a s tandard sequential (greedy) assignment method, 
details can be found in [11]. Lower bounds on the minimum span have been cal- 
culated in [16, 17, 15]. It  can be seen tha t  for the problems considered here the 
GA always equals or outperforms the SA algorithm and only fails to improve 
on the results of TS algorithm in one case (P6). The number  of assignments 
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Table 3. Genetic algorithm results (* denotes one run) 

Problem Lower Best TS SA GA GA (mean 
bound seq. 4 runs) 

P1 426 447 428 (76,902,785) 
P2 426 475 429 (76,843,178) 
P3 257 284 269 (74,920,399) 
P4 252 268 257 (81,215,422) 
P5 239 250 240 (66,941,918) 
P6 178 230 188 (70,277,837) 
P7 855 894 858 (9,617,414) 
P8 524 592 535 (190,046,283) 

428 (8,973,775) 426 (147,500) 426.25 
438 (81,066,945) 426 (186,000) 426* 
260 (103,073,177) 258 (225,500) 259.25 
259 (9,057,107) 253 (186,000) 253.75 
239 (9,494,007) 239 (275.500) 239.5 
200 (9,052,191) 198 (119,000) 198 
858 (162,899,774) 856 (212,000) 856* 
546 (410,198,288) 527 (650,000) 527* 

tested is considerably lower for the GA, although the time to generate a new 
assignment is much higher than TS or SA. 

It should be mentioned that the TS algorithm can outperform the GA in 
examples P3, P4, P6 and P8 (finding optimal solutions for P1,P2,P3,P4,P5,P7 
and P8) if a critical subgraph of the original constraint graph is identified and a 
minimum span assignment for this subgraph initially found and this assignment 
is used as the starting (partial) assignment for the complete problem. However, 
generating assignments using this subgraph approach remains exploratory and 
no firm foundation exists for its general applicability. Full details of the subgraph 
approach can be found in [10, 17, 15]. 

5 C o n c l u s i o n s  

A genetic algorithm which computes minimum span frequency assignments has 
been presented. Results of using the GA on a set of standard benchmark prob- 
lems show that the GA performs well against SA and TS algorithms that have 
appeared previously in the literature. It has been noted that the TS algorithm 
when used in conjuction with the assignment of critical subgraphs improves on 
the assignments generated by the GA. However, it is important to note that 
the the critical subgraph approach is exploratory. Consequently, algorithms are 
needed which compute frequency assignments from the constraint graph of the 
complete problem. However, future work will involve testing the performance of 
the GA on the critical subgraph approach. 
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