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Abstract 

N-tuple nets are con ceptually a highly parallel architecture for pattern 
recogn ition, implemented in hardware as a device called WISARD. 
However, high-speed serial emulations of N -tuple nets afTer considerable 
advantages of flexibility and cost efficiency in applications, such as 
speech recognition, requiring only moderate bandwidth. 

In this chapter we first describe a software technique for designing 
dynamically evolved N-tuple nets and illustrate the process whereby the 
designed structure can be progressively mapped into hardware to a level 
determined by the application requirements. 

Next, we summarize some simulation studies which apply N-tuple nets 
to isolated word recognition and vowel detection. 

For isolated word recognition it is shown that wit h  raw data (non-pre
emphasized, noisy speech), N-tuple recognition yields im provement over 
dynamic time warping, while providing substantial savings in processing 
time. 

For vowel detection, two distinct, single-speaker studies are described. 

172 



Speech re('og 11 it ion 

In the first experiment we attempt to accommodate to variat ion in the 
length of a rticulat ion of a vowel by training six disti nct d iscrimi nators for 
each class of vowel, each of the six being trained over a d ifTerent 
timescale. 

In the second experiment on vowel detection, results  are presented for 
a task specific o ptimization of a si ngle mapping WISARD pattern 
recognizer using Holland's genet ic algorithm. 

1. Introduction 

In this chapter we provide a synopsis of work, carried out by the authors 
u nder the auspices of the Pat tern Recognition Laboratory, Bru neI 
Universi ty, o n  the application of the N-tuple sampling paradigm of 
Bledsoe & Browni ng! to speech recognit ion.* 

Networks of the type under considerat i o n  are simulations of ext remely 
stylized models of biological neu ral networks . Such systems are usually 
characterized by some very simple algorithm, frequently little more than 
an inner product, replicated a large number of times as parallel, 
sometimes loosely coupled, processes. Examples of such systems in the 
l i terature include perceptrons,3 WISARD nets,4 Kohonen's topol ogizing 
nets,S the goal seeking components of Barto & S utton6 and, more 
recently, the conform on net s  of Fish. 7 I n  this chapter we will concentrate 
on the implementation of WISARD nets,  described below, applied to 
speech recognition. 

The advan tages of the WISARD model for pattern recognitio n  are: 

• Implementation as a parallel, or serial, system in cu rrently available 
hardware is i nexpensive and sim ple. 

• Given label led sa mples of each recognition class, training times are 
very short. 

• The time required by a trained system t o  classify an u nknown pattern 
is very small  and, in  a parallel implementation, is independent of the 
number of classes. 

The requirement for label led samples of each class poses particular 
problems i n  speech recognition when dealing with uni ts smaller than 
whole words; the ext raction of samples by acoustic and visual inspect ion 
is  a labour int ensive and t ime consuming activity. It is here t hat 
paradigms such as Kohonen's topologizing network, as applied to speech 
by Taltershall, show particular promise. Of course, in such approaches 
there a re ot her compensating problems; princi pal ly, after the network 
has been tra ined and produced a dimensionally reduced and feature-

• Section 2 is based on [2], and more detailed reports on the work described in Sections 3 and 4 
will appear elsewhere. 
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clustered map of the pattern space, it is necessary to interpret this map in 
terms of outpu t symbols useful to higher levels. One approach to this 
problem is to t rain an associative memory on the net output together 
with the associated symbol . 

Applications of N-tuple sampling in hardware have been rather sparse, 
the commercial  version of WISARD as a visual pattern recognition 
device able to operate at TV frame rates, being one of t he few to date
another is the optical character recognizer developed by Binstead & 
Stonham. However, one can envisage a multitude of applications for such 
pattern recognition systems as their operation and advantages become 
more widely understood. 

Typically the real-time system is preceded by a software simulation in 
which various parameters of the theoretical model are optimized for the 
particular application. We begin by describing a software framework 
which is sufficiently general to cope with a large class of such net-systems, 
while at the same time preserving a high degree of computat ional 
efficiency. In addition, the structure produced has the property that it is 
easily mapped into hardware to a level determined by the app licat ion 
req u iremen ts. 

The rationale for believing that N-tuple  techniques might be 
successfully applied to speech recognizers is briefly out l ined by 
Tattershall & Johnson,S who demonstrated that N-tuple recognizers can 
be designed so that in train i ng they derive an implicit map of the class 
conditional probabilities. Si nce the N-tuple scheme requires almost no 
computation it appears to be an  attractive way of implement ing a 
Bayesian c lassifier. In a real-time speech recognition system the pre
processed input data can be slid across the ret ina and the system tuned to  
respond to significant peaking of a class discriminator response, see 
Fig. 4. 

Two types of a pp l ication to speech recognition  are d iscussed. First, 
comparative results for isolated word, single-speaker speech "(,("09I1ition 
are presen ted for a variety of N-tuple recognizers. These resul ts are then 
contrasted with the observed performance for the same data using a 
standard dynamic time warping algorithm used as a control in this 
context. 

Next, preliminary investigations in vowel detect ion are reported; two 
distinct experiments are described. These experiments were restricted to 
rowel detection for a silly/e speaker. Both experiments used the same data. 
In the first experiment we attempt to accommodate to variation in the 
length of articulation of a vowel by training six distinct discriminators for 
each class of vowel, each of the six being trained over a difTerent 
timescale. In the second experiment one mapping is used for all vowels, 
each vowel having a sing l e  discriminator, and Holland's genetic 
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algorithm is used in an attempt to optimize this map for the specific task 
of vowel detection. 

2. A simulation system 
2.1 The \VISARD model 

WISARD (WIlkie. Stonham, Aleksander Recognition Device) is an 
implementation in hardware of the N-tuple sampling technique first 
described by Bledsoe & Browning. J The scheme outlined in Fig. 1 was 
first proposed by Aleksander & Stonham.4 

The sample data to be recognized is stored as a two-dimensional array 
(the 'retina') of binary elements with successive samples in time stored in 
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successive columns and the value of the sample represented by a coding 
of the binary elements i n  each column. The particu lar coding used will 
generally depend on the application. One of several possible codings is to  
represent a sample feature valu e  by a 'bar' of binary 1 s, t he lengt h  of the 
bar being proportional to  the value of the sample feature. 

Random connections are made onto the elements of the array, N such 
con nections being grou ped together to form an N-tuple which is used to 
address one random access memory (RAM) per discriminator. In this 
way a large number of RA Ms are grouped together to form a class 
discriminator whose output or score is the sum of all its RAM's out puts. 
This configura tion i s  repeated to give one discriminator for each class of 
pat tern to be recognized. The RAM's implement logic functions which 
are set up during training; thus the method does not i nvolve any direct 
storage of pattern data. 

A random map from array elements to N-tuples is preferable i n  theory , 
since a systematic mapping is more likely to render the recognizer bl ind 
to distinct patterns having a systema tic difference. Hard-wiring a random 
map in a totally parallel system makes fabrication infeasible at high 
resolut ions. In many applicatio ns, systematic difTerences in input 
patterns of the type l iable to pose problems with a non-random mapping 
are unl ikely to occur since real data tends to be 'fuzzy' at the pixel level. 
However, the issue of randomly h ard-wiring individual RAMs is 
somewhat academic s ince in most contexts a total ly parallel sys tem is not  
needed as  i ts  speed (in dependent of  the number of classes and of the order 
of the access time of a memory element) would far exceed data input  
rates. At 512 x 512 resolu tion a semi-parallel structu re is  used where the 
mappi ng is  'soft' (ie achieved by pseudo-random addressi ng with parallel 
shift registers) and the processing withi n discriminators is serial but the 
discriminators themselves are operating in parallel. Using memory 
elements with an access time of 10 - 7 s, this gives a mini mum operating 
tim e  of arou nd 70 ms, which once again is independent of the number of 
classes. 

The system is trained u sing sam ples of patterns from each class. A 
pattern is fed into the retina array and a logical 1 is written into the 
RAMs of the discriminator associated with the class of this training 
pat tern at the locations addressed by the N-tuples. This is repeated many 
t imes, typically 25-50 times, for each class. 

In recogn ition mode, the unknown pattern is stored in the array and 
the RAMs of every discriminator put into READ mode. The inpu t 
pattern then stimulates the logic fu nctions in the discriminator  netwo rk 
and an  overall response is obtained by summing all the logical outputs. 
The pattern is then assigned to the class of the discrimi nator  producing 
the highest score. 
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Where very high resolu tion image data is presen ted, as in  visual 
imaging, this design lends itself to easy implementation in massively 
parallel hardware. However, even with visual images, experience tends to 
suggest that a very good recognition performance can often be obtained 
on relat ively low resolut ion data. Hence in many applications, massively 
parallel hardware can be replaced by a fast serial processor and 
associated RA M ,  emulating the design in micro-coded software. This was 
the approach used by Binstead & Stonham in optical character 
recogni t ion, with notable success. Such a system has the advantage of 
being able to make optimal use of  available memory in  applicat ions 
where the N-tuple size, or the number of d iscriminators, may be required 
to vary. 

2.2 The development of N-tuple systems 

Practical N-tuple pattern recognit ion systems have developed from the 
original implementation of the hardware WISARD, which used regularly 
sized blocks of RAM that store only the discriminator states. As memory 
has become cheaper and processors faster, such heavily const rained 
systems are no longer appropriate for many applicat ions. Algorithms can 
be implemented as serial emulat ions of parallel hardware and RAM can 
also be used to describe a more flexible structu re. 

In such a system we might require a dynamically variable number of 
classes, RAMs per class or mappings. N-tuple mappings need no longer 
map each retinal pixel uniquely and might be varied during training and 
across classes accord ing to some heurist ic supplied by the programmer
for example, Holland's genet ic  algorithm.9 Having d ifferent mappings for 
each class does require that each class be given a separate opportunity to 
respond, but in  some applications this may well be worth the extra 
overhead in time or hardware. 

One might easily imagine t hat the price to be paid for this enhanced 
flexibil i ty would be excessive complexi ty and slow performance. 
However, this turns  out not to be the case and we wil l  briefly out l ine why 
this is so. 

2.3 Software system for dynamic reallocation of N-tuples 

Conceptually i t  is helpful to  think of the ent i re experimental design 
process of an N-tuple classifier as the growing and filling of a dynamic 
tree. 

Initially this tree wil l  have a root from which all else will grow. In 
pract ice 'root' is  a pointer (down) to the first of the next level nodes, which 
for now we may choose to think of as class zero. (However, first-level 
nodes could equally be 'machine types' so that decomposition at the first 
level would t hen be into a series of parallel machines.) At the class level, 
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each class has a pointe r (across) to the next class and a pointer (down) to 
the first RAM associated with that class. 

We can iterate this process to create a tree-machine (ie data structure) 
which consists of: 

(1) Classes-which in turn form collections of RAMs; 
(2) RAMs-which form collections of input pointers (mappings) and 

pointers to the block of memory used to store the RA M state. 
Fig. 2 illustrates the general structure of the tree. It is important to note 
that the nodes can hold extra information, for example statistics of their 
usage, a un ique identifier and other pointers which can be used for 
memory control. This last feature is an essential part of a dynamically re
allocatable system. 

Ultimately, memory will contain two lypes of information: the nodes 
which are joined by pointers to create the tree structure, and the memory 
which actually holds the taught information (the N-tuple storage). The 
memory requirement is strongly dependent on the N-tuple address size
adding an extra input to every RAM (although one could add an extra 

root 

Figure 2 T,.ee structl/I'ed N -lliple classifier. 
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input  to just one RAM if desired) will linearly increase the  number of  
nodes used but  double the amount of N-tuple storage. 

To access the memory it is necessary to traverse the tree to  reach the 
requisi te point. For example, suppose it was required to add an extra 
class. I t becomes necessary to t ra verse the tree down to the class level and 
then along to the las t-used class node, where a new node may be 
reclaimed from the 'node pool' main tained by memory control and added 
to form a new class by manipulating the necessary pointers. The same 
process may be repeated in order to  add RAMs to the newly formed class. 

In virtually every operation involving the tree a single very simple 
recursive algorithm, the tr(/t'erser, is used. When calling the traverser, two 
parameters are passed: one is  the base of the sub-tree to be traversed and 
the other is a pointer to a table of actions to be performed at each node 
visited . The table itself contains l ists of act ions for each possib le node 
type. At present only two actions are used; the first is called when the 
node is entered and the other when the node is exited for the last time in 
t he current t raversal . For example, if one wanted to perform a 
classification: the first action on entering the node of type class would be 
to  clear that class's response; upon leaving, the score (number of 
addressed RAMs in the discriminator which con ta in a logic ' 1 ') wi ll have 
been updated by the lower levels so that the second action might be to 
print i ts  value and to check if i t  is larger  than  the largest class score so far 
encountered. 

Depending on the network being modelled the node types and actions 
can be chosen appropriately. For instance, if Kohonen's topologizing 
ne twork were being modelled, one node type would be a /lode, in 
Kohonen's sense, which stores a state vector of the dimensionality of the 
data-his network is essen tially an  array of such nodes, and one action 
would be to modify the states of , nearby' nodes according to the response 
of the current node to the data being presented . 

A C-code l is t ing of the t raverser algorithm is given in Appendix I. 2 In 
most cases it will not be necessary to  visit all nodes of the tree. So the 
traverser algorithm has extra switches that allow branches to be 
bypassed or the traversal aborted . In this way, for example, the search 
can be confined to a single level of the tree and aborted when  a specific 
condition or  node is attained. 

Thus a flexible and simple experimental system, having all the 
proposed properties, has been created. It is now relatively 
straightforward for the experimenter to implement his chosen heuristics 
to control the evolution of the final system design. Moreover, since the 
structure consists largely of threaded pointers, very little calculation is 
required during the training and testing phases. Consequent ly, 
simulation t imes are considerably reduced. 
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Compa risons with earl ier  sim ulation systems, such as JAN, give an 
improvement of a factor  between 2 and 4. Direct comparison is difficult 
since the earlier systems were so slow tha t they were m odified t o  l o ok 
only at i n put data which had changed, and they only dealt with regular 
sized discriminators, etc. If systems such as JAN had to deal with 
variable-sized discriminators t hen accessing a multi-d imensional a rray, 
say (class, RAM, element), could no longer be done using tables and 
would in volve two multiplications and one addition, whereas i n  the 
present  system access is via a pointer and invol ves no calculation.  

When the fully t rai ned system is com plete the netwo rk of pointers will 
have become ra ther tangled. However, t his poses no real problem s ince 
the st ructure of memory can be rat ionalized into appropriate blocks to 
facilitate implementation into hardwa re. This process is easily 
accomplished by a software mod ule which reo rders the pointers. 

For historical reasons the final system has been named NEWJAM. It 
pro m ises to be the vehicle for much of the net -systems research work of 
the adaptive systems and pattern recognition group at BruneI over the 
next  few years. 

2.4 Mapping the real time system into hardware 

An important advantage conferred by NEW JAM is that since the data 
structure produced is tree-like it naturally decomposes in to  hardware at 
several alternat ive levels. Thus the actual decom position can be chosen 
depending upon the bandwidth and response t ime requ ired for the real
time system. 

In Fig. 3 we sketch one possi ble approach for im plementing the real
time recogni t ion system (envisaged as a co-processor connected to a 
micro-computer host). The princi pal components of this system are: 

68000/68020 CPU 
This performs input-output functions and, initially, all act i ons called for 
via the action table memory. Every action is intrinsically a very simple 
process and consequently the most frequently called actions can be 
progressively replaced by special purpose hardware (Node type A 
processor, Node type B processor, etc., in Fig. 3). 

Memor}, controller 
This is the hardware which performs the traverser algori thm recursively. 
It could easily be implemented as a gate array and requires a small stack 
and access to a small number of stat us registers. In pri nci ple the traverser 
accesses the system memory via a separate bus (the t ree bus) and ca n 
disable-enable the 68000 bus. [n pract ice t he traverser and the 68000 
may share a common bus transparently, with the traverser able to 
con t rol  priority and refresh. 
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The traverser locates a particular node of the  tree by consulting a 
particular base address i n  tree memory. The block of memory starting at 
th is address contains information describing the node (type, etc.). This 
memo ry is not particularly large and could be implemented in  fast RAM. 

ActiolJ table memory 
Having loca ted a particular node and recovered the address of the 
associated action type from tree memory the traverser co nsults this 
address in the action  table memory which acts essent ially as a function 
looku p table. As the number of action types is small this memo ry co uld 
be implemented in fast RAM. 

N-tup/e storaye memory 
This is the largest block of memory and can be implemented in slower, 
cheaper RAM. 

When an action request is initiated, the corresponding module, or the 
68000, m ust place an acknowledgement in the traverser status register. 
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Upon complet ion of the actio n a return value is placed i n  the status 
register. 

Having decided upon the action type currently required the t raverser 
places the request onto the action bus where it is e i ther vectored to the 
68000, if  no special purpose hardware exists to perform the action, o r  
passed to  t he appropriate act i o n  module. Initially there would b e  n o  
act ion modules and the 68000 would perform all these acti ons. A s  action 
modules are slotted into the system they t ake over the corresponding role 
from the 68000. 

An additional advantage conferred by this design is that if an action 
module fai ls, the 68000 can resume performa nce of  the action  u ntil the 
module can be replaced. 

3. Isolated word recognition 
3.1 Introduction 

In this section com parative results for isolated word, sil1gle-speaker speech 
reco{jllition are presented for ten difTerent N-tu ple recognizers. These 
results are then contrasted with the observed performance for the same 
data using a s tandard dynamic time warping algori thm used as a control 
in this  context. 

Samples of  16 words from a diagnostic rhyming test l ist were collected 
from a single speaker on a carefully standardized data acquisition system 
(Shure S M  12A microphone, fla t pre-emphasis profile and a Sony model 
70 I ES tape recorder) for subsequent automatic retrieval and d igital  
processing using sample labelling and a modular A-D, D-A system with 
16-bit resolution. This data was then stored on a VAX 11-750 to enable 
precise comparison of difTerent recognition algori t hms. 

The speech data bank for the speech research includes the rhyming set, 
the alpha-numerics, simple command words and their synonyms, and the 
phonotactically permissible CVC-VCV constructs from a large speaker 
popUlatio n  u nder both controlled and noisy envi ronments. 

H owever, for the p rel imina ry stages of the investigat ion it was decided 
to test N-tuple recognition systems under unfavourable signal conditions 
and using the m inimum of pre-processing (ie non-pre-em phasized, non
normalized in put speech). Thus if the performance of a sim ple system, 
operating on minimally pre-processed data from the rhym i ng set, was 
acceptable, then it could reasonably be expected that for a given corpus 
t he early results would im prove with a more advanced N-tu pIe 
recognizer using optimally t uned pre-processing and normalizat ion 
techniques. 

Accordingly, t he experiments described here were run on data from the 
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noisy environment samples, allowing recognition to take place on sample 
data having no pre-emphasis or time normalization. Pre-processing was 
limited to a 19-channel vocoder bank,lo simulated by fast Fourier 
transform (FIT), and scaling the result as input to the N-tuple 
recognizers. 

The diagnostic test set was chosen so that the acoustic dissimilarity 
within rhyming sets (eg one/run-short) is minimal and the range of 
perceived phonological length did not markedly vary among the 
confusable rhyming sets (eg one/run/want-short; wonder/rudder
long). The 16-word diagnostic corpus was as follows: 

Word set 

0 one 8 shoe 
1 run 9 toot 
2 want 10 tattoo 
3 begun II toothache 
4 wonder 12 cooler 
5 rudder 13 tee 
6 win 14 three 
7 two IS see 

Two important dimensions of assessment for a speech recogmtlOn 
algorithm are: robustness in the face of a large speaker popUlation and 
the rolIofT in recognition accuracy as the vocabulary size increases. These 
aspects are not investigated in the present study, primarily because of 
resource constraints. However, this work represents a necessary first step 
in the evaluation of N-tuple sampling applied to speech recognition. 

3.2 Experimental procedure for speech recognition 

The strategy adopted for the present experiments was chosen to provide 
flexibility and repeatability with the same data, thus enabling 
comparison of differing recognition and pre-processing techniques. For 
this reason, simulations of the training and recognition process for eight 
different designs of N-tuple recognizer were performed on previously 
stored data using a VAX 1 1-750 system. Real-time performance was not 
a factor since it is known that the systems under consideration can be 
implemented with a satisfactory real time response when a suitable 
design has been proven. 

3.3 Pre-processing algorithm 

The raw-time domain files were subjected to a lO-ms wide FFT 
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producing 19 8-bit samples of each filter channel every 5 ms. In the first 
six experiments the 8-bit value was reduced to a 4-bit value using one of 
three encoding methods discussed below (encoding of data). The 4-bit 
intensity can be considered as a weighting of each pixel on the retina and 
the 19 samples as a single slice in time encoded as a vertical column on 
the WISARD retina. In this way each word was reduced to a 120 x 19 
array of 4-bit elements. The total duration being 0. 6 s. 

After the first six experiments the 4-bit intensity of each filter channel 
was replaced by a single bit which was set if a pre-determined threshold 
(determined experimentally) was exceeded, thus reducing the word data 
to a 120 x 19 array of single bits for the final four experiments. 

3.4 The \VISARD retina 

The WISARD retina was sized at 100 (horizontal) by 19 (vertical), each 
component consisting of four bits initially and one bit subsequently. 

In the recognition stage of a real system the sample data can be 
visualized as stepping across the retina in steps of one horizontal unit 
(5 ms). Precise alignment in comparison with the training data would 
therefore not be a problem-as the data slid across, the system would be 
looking for a sharp peaking of one discriminator, see Fig. 4. Of course, 
one discriminator could be trained on the ambient noise. Thus 
segmentation of speech from background becomes an implicit property 
of this paradigm, 

max time-· 

Figure 4 Plot oJ(lf/ discriminatur responses to 'coot hache'. 
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Because the computa t ional cost of scanning the image across the retina 
in  5-ms steps is too high in  a simulation of this type, the start of a word in 
the sample frame was arbitrarily decided to occur  when a 10% increase in 
the ambient energy level (summed across all  fi l ter channels) was 
observed. In training. each such sample was presented three tiines, 
represen t ing a 'ji tter' of ± 5 ms about the determined start point. 

Fig. 5 shows FFT samples for t he word 'toothache', The vertical l ine 
ind icates the time at which the threshold was exceeded; the subsequent 
100 columns (500ms) are taken as the retinal image. 

3.5 Encoding and rna pping 

Four different kinds of encoding of the 8-bit samp les produced by the 
FFT were employed. In the  first six experiments each encoding reduced 
the 8-bit data to four bits. In the remaining two experiments  the 8-bit 
sample was red uced to a single bit (binary encoding), 

(I) Lillear-encodiny: here the top four bits of the 8-bit sample were 
selected and their binary image slotted into the retinal column in the 
position determined by which filter the output originated. 

(2) Thermometer-ellcodill{j: for this encoding the interval [0,255] was 
partitioned into five equal sub-intervals and integers in each sub-interval 
were mapped into a 4-bit value. 
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(3) Gray-scale-ellcodin{}: here the interval [0, 255] was divided into 16 
equal sub-intervals. Each sub-interval is indexed by a 4-bit value in  such 
a way that the Hamming distance between the indices of adjacent 
i ntervals is always 1. This form of indexing amounts to t raversing all the 
vertices ofa hypercube. The idea being that a small change in the value of 
the signal being encoded wi l l  produce a small change of Hamming 
distance in the encoded image. 

(4) Billaryencodill{}: finally the 8-bit sample was reduced to a single 
bi t  by threshold ing at an experimentally determined level. 

In the initial six experiments N = 4 and so 19 x 100 x 4/4 N-tuples are 
chosen from the 1900 x 4 bits of the retina to  define the mapping. Two 
types of mapping were used, namely linear, where N-tuple addresses are 
taken from consecut ive p ixels in  a col umn, and random, where the 
addresses are composed from bits sampled randomly across the entire 
retina. 

3.6 Results and conclusions for the 4-bit-4-tuple rccognizcrs 

Single-speaker recognition results with the 16-word reperto ire. 4-tuple, 
40-�s sampl ing rate (25 kHz., BW 0-8 kHz): 

In t he 4-bit  encoding, 4-tuple experiments the best overall performance 
was obtained with l inear encoding and a l inear  map or, equivalently, with 
Gray-scale encoding and a l inear map. I nitially we found this result 
rather unexpected in that the l inear map employed took 4-tuple 
addresses from a single t ime slice, whereas the random map also looked 
across time. However, further comparison with the I-bit encoding, 4-
tuple experiments suggests that 4-bit encoding may have been presenting 
the system with excessive, relatively unrepeatable, detail. 

It would appear that most learn ing occurs during the first five training 
instances of a ny given class, at which point  the system gives around 85% 
accuracy. Subsequent t raining tends in i t ia l ly  to reduce recognition 
performance and recovery is thereafter progressive but slow until 
saturation becomes a significant effect . We will  return to the quest ion of 
how the progress of the system towards saturation can be effectively 
monitored. However, our results suggest that with these system 
configurations, t raining on more than 25 instances from each class causes 
overall recogn i t ion performance to degrade. 

With 4-bit encoding, a linear mapping and a 25-word teach set, the 
average performance of 90% looks quite promis ing as an initial result 
under the unfavourable conditions of the experiment. But t he accuracy 
per word over the entire t raining seq uence of 5, 10, 15,20 and 25 patterns 
respectively was as shown in Table 1. Each d iscriminator cons isted of 
100 x 19 16-bit RAMs, ie a 3.8 (8-bit) Kbytes per word. Since there were 
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Table I. 4-lllple-lillear map-4 x 19 x IOO-lilleal" ellcodillg 

Training 
5 10 15 20 25 

Class % Accuracy 

one 60 36 40 44 52 

run 80 16 80 16 88 

want 48 12 96 100 96 
begun 100 96 96 96 96 
wonder 92 92 88 92 92 
rudder 100 92 92 96 100 

win 80 84 80 16 76 
two 88 84 84 84 84 
shoe 92 100 100 100 100 

toot 92 88 92 92 92 
tattoo 100 100 100 100 100 

toothache 96 96 96 100 96 

cooler 100 tOO 100 80 100 

tee 80 84 80 100 80 
three 92 96 100 76 96 

see 60 44 60 88 92 
Average 85.00 83.15 86.50 88.00 90.00 

1 6  class discriminators this comprised a total of 60.8 Kbytes of RAM 
used by the 4-bit-4-tuple recognizers. 

Table 1 shows that the performance on the word 'one' (the worst case) 
was plainly unsatisfactory. A graphical confusion matrix for this 
experiment is given in Fig. 6. The confusion between the first three 
utterances, which uttered with no context would be particularly 
confusable even to the human listener, can mainly be ascribed to the fact 
that both the phonological duration as well as word-final and word
initial qualities are almost identical. 

In an attempt to gauge the efficiency with which the discriminator 
RAMs were being used, two sets of statistics were produced for the case 
of 4-bit-4-tuple linear mapping with linear encoding. The first concerned 
the number of bits set in each 16-bit RAM versus class. The second gave 
the number of identical RAMs for all classes and the number of identical 
RAMs in pairs of classes. We briefly summarize this information. 

Almost all zero-addressed locations were set, indicating that virtually 
every 4-tuple had seen (0,0,0,0), ie a complete absence of activity in the 
retinal cells sampled, during training. 

Typically, each discriminator had around 1000±400 RAMs, from a 
possible 1900, with exactly one bit set. The previous observation suggests 
that in most of these it will be the zero-addressed bit which is set. So that 
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Figu re 6 COllfusioll matrices with 511 011 5120125 trailling examples. 

anywhere between 3 1 and 73% of the RA M s  was each merely affirming 
the absellce of some 16 particular activity features as a basis upon which 
to classify. 

The number of RAMs per d iscriminator with more than one bit set was 
typically around 500. One might say that approximately 25% of RAMs 
were providing a contribution to classification based on between one  and 
1 5  observed activity features. 

There were 9 1  RAMs which were identical for al l  classes. Thus most 
RAM s contribu ting on the basis of an observed activity feature were 
providing useful  classification information. 

Typically the number of ident ical RAMs  in pairs of classes was in  the 
range 500- 1000, ie i n  any pai rwise decision 50-75% of all relevant  RAMs 
made a useful contribut ion, even if most of these were reporting absences 
of activity features. 

Of the  28 500 = 1900 x 1 5  non-zero-addressed bits per discriminator 
around 3000 were normally set (about 1 0%) as compared to a to tal 
number of bits set in the range 5000-7000 (max. possible 30 400). One 
can interpret this in  one of two ways: one can argue that 1 0% RAM 
utilization  is inefficient ( in a 2-c1ass system with ideal preprocessing the 
probability of any d iscriminator bit  being set after training should be 
0.5,  with no commonality between discriminator contests); or one can 
say that this state of affairs reflects our ignorance of p recisely what 
consti tu tes the cri tically significant fea tures of the speech signal. (Such 
debates have a certain  air  of ci rcularity.) 
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3.7 Results and conclusions for the I -bit-N-tupIc recognizers 

A WISARD net is saturated when all d iscriminators give maximal 
response to sample data. This could occur, for example, as a resul t  of 
over-training. I n  practice one t rains the system almost to the point where 
the dynamic range of discriminator responses becomes insufficient to 
give an adequate margin upon which to base a classificat ion decision. 

To monitor t he effect iveness of training in the last four  experiments we 
define the following parameters of the system response with respect to 
any particular test sample: 

Response = { the discriminator score expressed as a percentage of 
maximum possible. 

Min-response = t he minimum response from any class. 
Ave-response = the average response of al l  classes. 

Let D(i) be the response of t he ith discriminator. For any particular class j 
let 

d(j) = max {D(i); all i not eq ual to j} .  
Thus (/(j) is t h e  best response from a l l  discriminators exclud ing the jth .  
Suppose now the data sample belonged to the jth class. Then D(j )- d(j ) 
is a measure of the margin by which the classification was made. I f  
D(j )-d(j) i s  negative then the sample was incorrectly classified. 

Table 2. 4·tup[e-[ill{'ar-/I/ap- J 9 x J OO-hillary ('IICI}([ill?l 

5 1 0  15 20 25 
Class % Accuraey 

one 96 72 52 76 64 
run 56 64 64 76 76 
want 88 92 96 96 96 
begun 1 00  1 00  1 00  92 92 
wonder 1 00  96 96 96 96 

rudder 96 84 88 88 88 

win 88 88 84 88 88 
two 92 92 92 92 96 

shoe 64 96 1 00 1 00 96 
toot 92 1 00 1 00 1 00 1 00 
tattoo 84 96 96 1 00 1 00 
tooth'lche 1 00 96 96 1 00 1 00 
cooler 1 00 1 00 96 1 00 1 00 
tee 76 72 80 84 84 

three 92 96 1 00  96 96 
sec 92 92 96 96 1 00  
Average 88. 25 89.75 89.75 92.50 92.00 
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Table 3. 4-tllple-lmear-map-19 x lOO-binary encoding 

5 to IS  20 2S 
Class Statistics 

one 89.6 92.8 94.4 95.8 96.6 Response 
56.4 61.2 11.2 14.5 75.8 Min-response 
74.4 80.6 83.9 81.4 88.1 Ave-response 

2.3 0.1 -0.2 0.3 0.4 Margin 
cooler 85.6 90.4 92.3 94.9 96.3 Response 

49.1 58.4 66.0 68.9 70.2 Min-response 
68.8 15.7 79.0 81 .5 82.9 Ave-response 

1.9 6.8 6.2 6.0 6. 1 Margin 

As training and testing progresses, the quantity DU) - dU) can be 
averaged over the test samples to provide a progressive picture of how 
training gradually reduces the margin of decision. Over a test set T of 
samples we can define for each class j: 

Margin = the average of DU) - dU) over T. 

In the last four N-tuple experiments these statistics were collected to 
provide a running picture of the extent to which each class could benefit 
from further training. 

Table 4. 4·tuple-random-map-1 9  x lOO-binary encoding 

5 10 IS  20 25 
Class % Accuracy 

one 88 88 64 72 68 
run 52 72 56 72 16 
want 96 96 96 96 96 
begun 100 100 100 96 96 
wonder 100 96 96 96 100 
rudder 96 84 84 84 88 
win 92 92 88 92 88 
two 92 92 92 92 96 
shoe 60 96 96 96 96 
toot 92 92 92 92 92 
tattoo 64 88 100 100 100 
toothache 100 96 92 92 92 
cooler 100 84 88 96 100 
tcc 16 56 48 72 68 
three 84 92 92 96 96 
see 92 92 100 100 100 

Average 86.50 88.50 86.50 90.25 90.75 
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Table 5. 4-l liple-rlllll[olll-lIIup- 1 9  x r oO-hillar)' I!llcot/iIlq 

5 1 0  1 5  20 25 
Class Statist ics 

one 90.4 93.8 95.3 96.3 96.9 Rcsponse 
3 1 .4 40.6 48.2 59.4 6 1 .9 Min-response 
63.2 70.6 75.0 80.9 82.9 Ave-response 

3.5 1 . 8  0.4 0.3 0.3 Margi n 
cooler 84.2 89.0 9 1 . 1  94.8 96.8 R esponse 

32.2 40.4 49.4 52. 1 53.7 Min -response 
58.9 68. 1 7 1 .9 75.4 77.0 A ve-response 
1 0.4 7.0 6.2 5.7 6.5 Margin 

The experiments were conducted fo r both 4-t u ple  and 8-t uple 
mappings over a wide range of t h reshold val u es ( 1 0- to 50-chan nel 
intensi ty). It was fo und t h a t  the sys tems were relat ively i nsensit ive to  the 
t h reshold fo r the  bi n a ry encod ing ove r this  ra nge, t here being a lmost no 
detectable difference in performance. We will present  the resu l ts  fo r a 
threshold of 20 as be i ng typica l in Ta ble 2. 

For the l -b i t-4-tu ple recognizers the RAM cost is 950 bytes per 
discriminator, giving a total  of 1 4.84 K bytes for a ll 1 6  classes. However 
the margin of decision d ecreases very ra pidly as t ra i n ing progresses . We 
give the worst and best  case figures in Table 3. 

Table 6.  8-l rtl'iC'-lill(,(lr-Ill(lI'- 1 9  x I O()-hirlllr)' I!lIcvciilllJ 

5 1 0  1 5  20 25 
Class % Accu racy 

one 92 88 80 84 72 
run 64 76 84 88 84 

want 88 96 96 92 92 
begun 96 96 1 00  96 96 

wonder 92 96 92 92 92 
rudder 96 88 88 88 88 

win 84 92 92 96 96 

two 1 00  1 00 96 92 92 

shoe 68 88 92 96 96 

toot 92 92 1 00 1 00 1 00 
tat too 80 96 1 00 1 00 1 00 
toot hache 1 00 1 00 1 00 1 00  1 00  
cooler 1 00 96 1 00 1 00 1 00 

tee 76 60 76 84 84 
three 92 96 1 00  1 00 1 00 

see 72 76 88 96 96 

Average 87.00 89.75 92.75 94.00 93.00 
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Table 7. 8-tuple-linear-map-19 x l00-binary encoding 

5 10 1 5  20 25 

Class Statistics 

one 77. 1 82.6 85.0 87.8 89.6 Response 
30.8 40.7 46.6 52.9 55.4 Min-response 
54.8 62.3 66.4 71 .2 72.9 Ave-response 

3.8 3.2 1 .9 2.4 2.6 Margin 

cooler 67.0 74.5 78.5 82.7 86.3 Response 
25.3 32. 1 38.3 40.3 4 1 .3 Min-response 
45.9 52.6 56.3 59.4 6 1 .2 Ave-response 
10.9 I t . I  1 2. 1 1 3.7 1 5.8 Margin 

The result given in Table 3 is significantly better than the 
corresponding results for the 4-bit encoding experiments. at a fraction of 
the RAM cost. It provides evidence that the 4-bit systems were being 
presented with excessive detail. We next compare the corresponding 
perfonnance with a random map (Tables 4 and 5). 

Once again the linear map provides consistently better results. Turning 
now to the I-bit-8-tuple results we have (Tables 6 and 7). 

For the I-bit-8-tuple recognizers the RAM cost is 7.42 Kbytes per 
discriminator, giving a total of 1 18.75 Kbytes for all 16 classes. The 

Table 8. 8-tuple-random-map-19 x l00-binary encoding 

5 10 15 20 25 

Class % Accuracy 

one 88 92 92 88 84 

run 56 76 84 84 88 
want 80 96 96 96 96 

begun 100 100 100 100 96 

wonder 96 96 96 96 96 
rudder 96 88 88 88 88 
win 92 96 96 96 96 
two 92 96 92 96 96 
shoe 52 76 92 96 96 
toot 92 92 92 92 92 

tattoo S6 88 96 100 100 

toothache tOO 100 100 100 100 

cooler 100 88 88 92 100 

tee 76 48 52 80 80 
three 60 100 100 1 00  tOO 

see 72 92 100 100 100 

Average 81 .75 89.00 91 .50 94.00 94.25 
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Table 9. 8-luple-randolll-/llap- J 9  x I OO-billary I'llcot/illff 

5 1 0  1 5  20 25 
Class Statist ics 

o n e  7 1. 1  80. 1 84.6 87.3 89.0 Response 
3.7 5.8 8. 2 1 9.2 22.0 M in-response 

3 1 .8 39.0 44.9 50.8 53.5 A ve-response 
7.5 7. 1 4.3 4. 1 3.3 M a rgi n 

cooler 55 .3  66. 1 70.4 76.2 82.4 R esponse 
4.4 7. 1 1 1 .0 1 2.0 1 2.9 M in-response 

23.8 3 1 .6 35.5 38.7 40.7 A ve-response 
1 8 .0 1 6.9 1 6.0 1 8.6 22. 1 M a rgi n 

results are somewhat better and, as one migh t expect, the margin of 
decision d ecreases less rapidly as training progresses (Tables 8 and 9) .  

These final resul ts  are marginally better for the random map. This 
suggests tha t a bi l i ty to perceive the logical conj unction of several 
formant  fea tures (in this instance an 8-tu ple recognizer) i s  requ ired before 
the expected advantage results from attempting to ex t ract features across 
the time domain of a sliding FFT. 

3.8 Comparath'c results using comcntional time-warping 

We next describe the results o bta ined with the original  1 6-word set but 
using conventional t ime-warping-template-matching recogni tion. 
Comparison of t hese results with those of the N-tuple recognit ion system 
shows that, on the same da ta, 8-tuple sampl ing provided significantly 
improved recognit ion accuracy. 

3.8. 1 DTW algorithm description 
Assume, for the moment, that word s  are not finite temporal ly ordered 
sequences of spectra but continuously t ime-varying, vector  valued 
functions. Suppose aCt ), b(t) (0 � t � T) are two words which we wish to 
compare. We may define a metric a t  the level of primitive pat terns as 

D(a, b) = foT d(a (t), b(t» dt, 

where d is  some suitable metric of spectral dilTerence. 
We know that very large local variations in the ra te of articulation of a 

word can be tolerated without compromising i ts intelligibi l i ty. This 
suggests that a bet ter metric should be largely invariant to changes of 
t imescale. One way to accomplish th is  is to define a function q(t) which 
maps the timescale of bet) onto that of a (t }. M odifying the previous 
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equation accordingly we obta in 

D*(a, b) = min f T d(a (t), b(q(t))d t. 
q 0 

Essentially this is an instance of a classical variat ional problem whose 
solution is found by solving the corresponding Euler-Lagrange 
equat ion.  However, D* must not be calculated with respect to an 
arbi t rary change of t imescale; we must  place some const raints on q and 
these complicate the problem so as to make it ,  in general, analytically 
intractable. Fortunately, as Bellman has shown, 1 1  a numerical solut ion 
can be efficiently obtained by means of dynamic programming. I t  was 
t his line of reasoning which first led Vintsyuk 1 2  to apply dynamic 
programming to speech recognition,  often called dynamic t ime warping. 
The DTW algorithm described below is based on the work of Sakoe & 
Chiba. 1 3  

Let a j  ( 1  � i � tI), bj ( 1  � j  � r) be sequences of spectral vectors. I f  
d(a j ,  b) i s  a suitable measure of d istance between 3 j  and bj the DTW 
algori thm finds a path  connect ing ( 1 ,  I )  and (II, r) such that the cumulative 
d istance is minimal, the gu id ing principle being that if a locally correct 
decision is made at every point then a global ly correct path will be fou nd 
(this is often obscured by specific implementations). I f  the current poin t  is 
(i,j), then we choose the next point ( i / ,j') by examining the three possible 
paths as il lustra ted below: 

(i/� (i + l , j + l ) 

(i, } )  I (i + l , j) 

and choosing a path corresponding to the minimum value of 

d(aj, bj t I }' d(aj t I '  bj t I )' d(aj t l '  b), 
where any point outside the rectangular region IS  omit ted. The 
cumulative d istance D*(i,j) is t hen u pdated: 

D*(i',j') = D*(i,j) + d(aj . ,  bj.), D*( 1 ,  1) = d(a l , b l ). 
The final value D*(u, r) provides a l ime normalized measure of distance 
between a and b. When performing recognition  the unknown a is 
compared against every b in the vocabulary and assigned the class for 
which D* is minimal. 

3.8.2 Results using con\"cnt ional DTW 
The DTW algori thm compares two arrays ref (the tem plate- vertical 
axis) and unkl lowll (the test sample -horizontal axis). Figs. 7 and 8 show 
complete cumulative d istance con tours and an opt imal path for two ru ns 
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of the program . In Fig. 7 the word 'toothache' is compared with a 
different sample of the same word. As a test of these rout ines a sample of 
' toothache' was compared with the reference 'toothache' and the 
resulting path used to  warp the sample to conform to the reference. In 
Fig. 8 a second DTW is t hen performed, comparing the t ime-aligned 
sample against the reference; the resulting optimal path is, as expected, a 
straight l ine; this acts as a good test of the code. 

In applying t he algorithm, only one template is used for each reference 
word, but that reference is based on 5, 1 0, 1 5, 20 or  25 words taken from 
the teach sample. For example, i n  the first experiment five samples of  the 
same word were selected. The first was taken as the basic reference and 
the remaining four  were time normal ized against the first in the usual 
way. In the sample vs. sample distance array so prod uced, each diagonal  
path was used as a t ime-distorting function to normalize the sample 
against the basic reference. Having eliminated as much t ime variation as 
possible all five samples were then averaged to prod uce the single 
reference. 

I t  seems l ikely that one would get better results for DTW if each word 
in  the teach set were used as a separate  reference rather than by 
combining them as described above. H owever, the computational 
overhead in recognit ion would be so h igh that it is difficult t o  imagine a 
real-time system performing in  this way. 

Table 1 0. D T W  results 

Train ing  --+ 
5 1 0  1 5  20 25 

Class % Accu racy 

one 76 80 84 84 84 
run 80 88 88  8 8  88  
want 92 92 92 92 92 
begun 1 00  1 00  1 00 1 00 1 00 
wonder 76 20 76 76 76 
rudder 1 00 1 00 1 00 1 00 1 00 

win 88 92 88 88 88 
two 76 76 84 80 80 
shoe 80 92 92 92 96 
toot 80 80 80 80 80 
tattoo 60 64 64 64 68 
toothache 92 80 88 88 92 

cooler 1 00 1 00 1 00  1 00  1 00 
tce 92 92 92 92 92 
three 92 92 92 92 92 

see l Oa 1 00 1 00 1 00 1 00 

Average 86.5 84.2 88.7 88.5 89.2 
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It would appear that the technique of averaging (time normalized) 
templates does provide some progressive improvement in accuracy as the 
number of templates increases-at least within the framework of this 
experiment-but that this improvement is not great (Table 10). 

These are good results, admittedly at enormous computational cost, 
and emphasize the value of time normalization. Nevertheless, 
comparison with Table 8 shows that an 8-tuple WISARD recognizer 
(having no time normalization and, in principle, virtually zero 
computational overhead) obtained significantly better results on the 
same data. The inference would seem to be that if it were possible to 
provide a WISARD recognizer with time normalized data, at reasonable 
computational cost, the resulting system should have a remarkably good 
performance. This was confirmed by a later set of experiments. 

3.9 Summary of results and conclusions 
In this initial series of experiments in the application of N-tuple sampling 
to the problem of speech recognition some interesting lessons were learnt 
(Table 1 1). 

These experiments demonstrate that under the most unfavourable 
conditions (noisy rhyming test utterances from a naive speaker, no pre
emphasis, no signal conditioning, no time or amplitude normalization) 
N-tuple sampling, applied to single-speaker isolated-word recognition 
with a 16-word diagnostic vocabulary. yields an improvement in 
accuracy of around 5% (in the range 90-100(10) over conventional DTW 
using the same data. 

Table I I . Summary of results 

Data 
bits per RAM per % 

Tuple Encoding channel Mapping word (bytes) Accuracy 

4 Linear 4 Unear 3.8 K 90* 
4 Linear 4 Random 3.8 K 88 
4 Thermometer 4 Unear 3.8 K 79.75 
4 Thermometer 4 Random 3.8 K SO.50 

4 Gray 4 Unear 3.8 K 90* 
4 Gray 4 Random 3.8 K 87.25 
4 Binary I Unear 950 92 
4 Binary I Random 950 90.75 
8 Binary 1 Uocar 7.42 K 93 
8 Binary 1 Random 7.42 K 94.25 
8-bit per channel - 19 channel DTW 89.20 

• identical. 
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With amplitude normalizat ion and active range encoding of the 
pattern vectors a further improvement can be expected to result .  

Moreover, a WISARD implementation of N-tuple sampling has 
virtually no computational overhead (as compared to the h igh 
computational cost of DTW, or other recognit ion paradigms), and can, 
in  principle, be built  so that the response time is independent of the 
number of classes. 

A further advantage of th is paradigm is  that for a real system 
discriminator responses monitored continuously can provide whole 
word recognition of connected speech without the necessity for 
segmentation. 

4. Vowel detectors 
4.1 Introduction 

A desi rable goal for a speech recognit ion system would be to identify 
phonemic segments of cont inuous speech accurately. Phonemic 
recognition need not be exceedingly accu rate; accuracies around 80% 
might well suffice, since relat ively s imple l inguistic k nowledge based 
systems can detect something approaching 60% of randomly induced 
errors in a phonemic stream of English u t terances ( Dadi i ,  H ui & Jones
in preparation). Phonemic rule based error detect ion can also be 
enhanced to provide some degree of error correct ion.  H igher levels of 
syntact ic, semantic and contextual k nowledge might then be used i n  a 
similar fashion to process the pho nemic stream in to  text. S uch a system 
could in  principle cope with an u n l i m i ted voca bula rly, in contras t to the 
l imi ted voca bula ry word recogni t i o n  systems cu rrent ly  in use. 

Certainly the goal of speech recogni t ion  must be beyond isolated word 
recogni t ion towards the effective recognit ion of con t inuous speech. 
Systems such as CO H O RT and TRACE (see [ 1 4] ,  Chapter 1 5, for 
example) poi n t  the way but do not  promise cheap im plementation in the 
medium run. 

Despite the fact that some authors 1 5 report correct segmentation of 
continuous speech into phonemes with u p  to 97% accuracy, Rumelhart 
objects to segmentation before recognition: 

Because of the QL'erlap of successiL'e phollemes, it is difficult, Qnd we 
heliere coullterproductit'e, to try to diride the speedl stream lip into 
separate phonemes ill advallce of identifyill�J the lIll itS. A 1l1ll1lher of 
other researchers (eg Fowler, 1 984: Klatt, 1 98() hare made milch the 
same poillt. ( [ 1 4J ,  pp. 60�6 1 )  

Rumelhart p refers t h e  approach o f  al lowing the phoneme identification 
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process to examine the speech stream for characteristic patterns, without 
first segmenting the stream into separate units. 

I t  is interesting that either approach is practical using a WISAR D-type 
device. The advantage of prior segmentation is that i t  permits some 
degree of time normal ization before presen tation to the recognizer, and 
work at the Pat tern Recognit ion Laboratory at BruneI University has 
shown that a very considerable improvement in recogn i t ion occurs if 
WISA R D  is  presented with t ime-normal ized data.  

We may define a static pat tern recogni tion system to be one which 
stores its t raining experiences in memory and refers to memory in seeki ng 
to classify unknown patterns. This contrasts with a dynamic: system 
which continually undergoes s tate t ransit ions and whose ou tput  depends 
on the current (and possibly previous) state(s) and the input rather than 
the i nput alone. While, dynamic pattern recognit ion systems a re of 
considerable interest, the current theoretical s i tuation is largely 
specu lat ive and it seems l ikely that  it wi ll be some t ime before any 
practical sys tem for vis ion or  speech wil l be realized along t hese l i n es. 

I n  a static pat tern recognition system the goal is to optim ize the map 
between input patterns and memory while preservi ng the rea l-t ime 
performance and keeping t raining to a minimum. In appl icat ions such as 
speech, the situat ion is rendered more difficult  by the fact t hat the 
significant fea tures of  the signal are not  really well understood. Without 
feed back, WISAR D is a static model which makes no 1I priori 
assumpt ions about the input  patterns and is easily implemented to give a 
su itable real- t ime performance. 

A s  we have observed,  W I S A R D is very simple and fast t o  t ra in ,  
provided one  has su i tably label led samples of each class. 

Th i s  last requirement creates serious logis tical problems in applying 
stat ic  pattern recognit ion models to speech at a level below whole words. 
The speech signal must be examined visually and acoustically by a 
human operator who defines the boundaries of a segment which 
hopefully represents an example of the particular class. This sample can 
then be used for t raining or testing. Since many such samples are required 
for each class the construction of a su i table database is a very time 
consuming process. However, once such a database has been prepared it 
can be used for many d ifferent experiments and can enable d i rcct 
comparison of d i fferent algori thms on identical data. 

The experiments reported here were restricted to L"01rel detect ion ror a 
silTgle speake/'. 

4.2 Vowel detection using multiple discriminators per vowel 
The words were pronounced in word pairs which instantiated the same 

199 



A.  Badii el al. 

vowel in an a t tempt to obtain the coarticulat ive eITects which would 
normally be present in continuous speech. 

The sample speech was collected and passed through a 1 6-channe1 
filter bank to p roduce frequency domain  d ata. The frequency 
information was in 5-ms steps. 

For both the t raining and test phases it was necessary to create a 
paral lel file conta in ing an indication a t  each step as t o  which class the 
5 ms sample corresponded (or to no class). This  second file was hand 
crafted and iden t ifica tion was accomplished by traversing the t ime 
domain  data in small steps while playing back progressively nested 
samples through the D-to-A. Consequent ly, there is an element of 
subjectivity inherent in this identification process. One variant of each 
vowel was selected, these were: 

A as in fAte 
E as in mEt 
I as in bIt  

o as in gOat 
U as in d Ue 

The Concise Oxford EI1{}lisl! Dictiollary was used as a guide in defin ing 
which vowels were to be expected in the pronunciat ion of each word. I t  
should be noted that various dictionaries are by no means in  agreement 
as to the precise qual ity of each vowel that occurs in a given word and, of 
course, there is considerable variation between speakers. 

In an  attempt to deal with the fact that samples of a given class are 
l iable to considerable variat ion of duration, each vowel segment i n  the 
t raining frequency data (once identified as above) was, in this  in itial 
experiment, l inearly scaled to a uniform duration in order to fit a 
standard 1 6  x 1 6  8-tuple WISAR D  retina with one thresholded bit per 
pixel .  

The variation in  the vowel lengths was typically from 45 to 250 ms. 
Although we actually know how long the vowel samples are in the test 
phase, we cannot use this informat ion during recognit ion, since the 
abil ity to cope with such variation is intrinsically part of the recogn i t ion  
process. 

To deal with this we used six d iITerent scale factors. The incoming 
sound was placed in a buITer long enough to accommodate at least 
250 ms (the longest observed vowel length). Every 5 ms this buITer was 
updated and six snapshots of d iITering lengths were presented to the 
WISA RD recognizer. The classifiers with thei r difTerent scale factors were 
t reated as though they were separate classes so that during testing the 
highest responses would hopeful ly detect both the correct vowel and i ts  
duration. 
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Table 1 2  Six discriminators for duration per class 

Pen::cntage recognition accuracy 
Vowel Duration and class Class only 

A 
E 
I 
o 
U 

Average 

4�1 Results and eooclusioDS 

23.1 
29.2 
37.0 

4.2 
31 .8 
25.2 

61.5 
54.2 
59.3 
54.2 
8 1 .8 
6 1 .8 

As Table 12  might suggest, a confusion matrix for response against class 
and duration shows that correct classification of class was more reliable 
than correct classification of duration within the class. This is probably 
explained by the fact that estimating the vowel duration while preparing 
both the training and test data-classification file is a difficult and rather 
imprecise affair. 

A second confusion matrix looking only at response against correct 
class is probably more significant and is given in Table 1 3. In general 
terms the idea is to present a sliding window of the frequency domain 
data from the test utterance to the WISARD net and determine whether 
the vowel discriminator responses are detecting the embedded vowels. 
Fig. 9 summarizes the result of one such simulation and consists of four 
traces. The top two traces indicate the strength of response and the 
confidence (the difference between the best and second-best classifica
tions) for all window positions. The next trace details which vowel was 
producing the largest response as the words slid past the window. The 
bottom trace indicates where the vowel was found by the experimenter. 

From these results it can be seen that single-speaker vowel detection 
from within continuous speech can be performed by a WISARD net 
using spectral energy data with a reasonable degree of accuracy. 

Table 1 3. Corifu.sion mQlrix for class resfKNIM 

Classified as ... 
A E I 0 U 

A 23 4 6 I 6 
E 3 14 7 2 

Actual class I 1 1 16 12 
0 20 1 1 5  1 
U I 4 7 30 
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Figure 9 SlImmary of COli! iIII/o liS respoll.�e. 

However, i t  should be emphasized that we are only a t tempting to 
recognize one part icular type of each vowel quality. 

It i s  possible to envisage a number of improvements in  the experiment 
described above. For examp le, most of the energy in  vowels is 
concent rated i n  the lower frequencies. Therefore a suitable pre-emphasis 
profile would no doubt improve the rel iabi lity of such a system. 

The significance of these preliminary vowel detect ion results is 
to demonstrate the feasibi lity of using WISA R D  nets to recogn ize 
significant  speech fragments within words of connected speech, but the 
results would be more in teresting if genera l ized to a comprehensive set of 
bui lding b locks such as phonemes or phoneme-l ike fragments. 

4.3 Breeding vowel detectors using I lolland's genetic algorithm 

Given that the i nit ial mapping from the retina to memory, that is, the 
assignment of N-tu ple bi ts  across the retina is  random , the question 
arises as to whether the mapping can be improved for a particu lar type of 
application. For example , if the task were face recognition, t hen a bet ter 
performance might be ex pected i f  the N-tuples were samp l ing more 
densely in that area of the ret ina where significant fea tures such as the 
eyes, hairline, and mouth are presented. 

202 



Speech recognition 

As a vowel detector. a relatively difficult task. WISARD gives a 
reasonably creditable performance considering the lack of time 
normalization. Across the five classes. as we saw in the preceding section. 
typical recognition accuracies exceed SOUIo, and in particular classes are as 
high as 80010, as against the expected 20%. of pure chance. Of course, 
carefully crafted vowel detectors can do much better than this, Jassem 1 6  

reports accuracies of 92-97% in his review of speech recognition work in 
Poland. However, WISARD is a very simple recognition paradigm and 
the question addressed by the present experiment is: by how much the 
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performance can be impl"Ot"ed usill{} Holland's yelletic a{oorithm to 'breed ' 
better mappin{js? 

Holland's algori thm9 was chosen because it is a very powerful adapt ive 
search technique and because the mapping from ret ina to N-tuples is 
easily described as a string: each position on t he retina is numbered and 
each block of N such numbers i n  t he string describes the mapping for a 
particular N-t uple, see fig. 10. This is a part icula rly pleasant situation, 
because the usual d ifficulty with genetic algorithms is representing the 
objects being optimized as strings in such a way that after using a genet ic 
operator, eg mutation to  alter an element,  the result ing string stil l  
represents a valid object. I n  the presen t  case this is not a problem s ince 
any string of integers in the correct range ( in  this case [ 1 , 320] ) represents 
a valid mapping. 

4.3. 1 H olland's genetic algorithm 
Simulated evol ut ion had been tried befo re H olland wit h ex t remely poor 
results.  All of these were based o n  t he 'mutation a nd natural selection' 
model of evol ution. Holland's genetic algorithms are based o n  a 'sexual 
reproduction and selection' model:  h is pri ncipal operator is crossing
over, that  is, t he creat ing of a new object fo r the next genera t ion by 
combi ning parts from two independent objects i n  the current generation. 
M utat ion plays a mino r  role i n  genet ic algorit hms. 

M any ex periments have been done wit h  genetic algori thms, and they 
have proved to be remarkably effective and robust learning systems. for 
t he most part they have been tested as function optimizers, where t he 
objects i n  a generation are 'num bers' and thei r survival-reproductive 
value i s  given by the funct ion whose maximum we wish to fi nd. 

One of the most interesting aspects of genetic algori thms is that  they 
not  only find the optimum object, but i n  doing so t hey discover 
properties that are common to many near-optimal o bjects (so-called 
higher-order schemata). In some i nstances, this information is at least as 
valuable as the optimum itself. 

As the name 'genetic algori thm' suggests, the i nspira t i o n  for Holland's 
work is taken from an analogy with biological systems. The mathemat ics 
of genetic evol ut ion is now a very sophist icated tool which has changed 
our percept ion of how the evol utionary p rocess works. for exam ple, i t  is 
now known that simple mutation alone is insufficient to  explain the rate 
of biological adaptat ion. I nstead, mutation plays the role of background 
'noise' which, by occasional random perturbation, p revents a specie from 
becoming frozen a t  a local optim um. Other factors expla i n  the rapid rate 
of ada ptation. 

H olland constructs adaptive plan programs based on the following 
basic ideas. We are given a set,  A, of 'structu res' which we can think of in 
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the first instance as being a set of strings of fixed length, I say. The object 
of the adap tive sea rch is to find a structure which performs wel l in terms 
of a measure of performance: 

v: A -+ real  numbers � O. 

We have so far a knowledge base of compet ing structu res and measure v 
of the observed perfo rmance of generated st ructu res. For examp le, if the 
problem were one of funct ion opt imization the st ructures, or strings, 
could be the binary expansion of a real number to some fixed number of 
places, and the function v could be the functi on to be maximized . Then v 
evaluated at the real number represented by a string would be a measu re 
of the string's fi t ness t o  survive. 

Representing strings as 

a( 1 ) a(2)a(3) . . .  a(l) (aU) = 1 or 0), 
we can designate sub-sets of A which have attributes in common , these 
are ca lled schemata, by using '.' for 'don't care' in one or more posi t ions. 
For example, 

a( 1 ) * a(3) * *  . . .  * 

represents t he schemata of all strings with fi rst  element (/( 1 )  and thi rd 
element (/ (3), all other elemen t s  being arbi trary. Thus any particular 
string of length I is an inst ance of 2' schemata. If J is only about 20 this i s  
s t i l l  over  a mi l l ion schemata. An evaluat ion of just one s tr ing therefore 
yields in forma t i o n about  a large number of schemata. 

The next ingredien ts of Holland's model are the ope ra to rs by wh ich 
strings are combined to produce new strings. I t  is the cho ice of t hese 
operators which prod uces a search st rategy that  exploi ts  co-adapted sets 
of s t ruct u ral components al ready d iscovered.  The three principal 
operators used by Holland are crossover, inversion, a nd mutation. 

Crossover 
Proceeds in three steps: 

( 1 ) Two structures a{ l ) . . .  a (l) and b( 1 )  . . .  b(l) are selected at random 
from the current populati o n. 

(2) A crossover po int x, in  the range 1 to / - 1 is selected, again at 
random. 

(3) Two new structures: 

a(1)a(2) . . . a(x) b(x + l ) b (x + 2) . . . b(l) 
b( l )b(2) . . .  b(x) a (x + l ) a(x +  2) . . .  a(l) 

are formed. 
In modifying the pool of schemata, crossi ng over con tinual ly 

205 



A .  Badii et ai. 

introduces new schemata for t rial whilst test ing extant schemata in new 
contex ts . It can be shown that each cross ing over  affects a great number 
of schemata. 

Inversion 
For some random ly selected posi t ions x < y in the stri ng we perform the 
t ransformation: 

a( l ) a(2) . . . a(l) -+ a( 1 )  . . . a(x)a(y - 1 la Cy - 2) . . .  a (x + 1 ) a(y) . . . a(l). 

Inversion increases the effectiveness of crossover by promot ing close 
l inkage between successful alleles ( instantiat ions of str ing components). 
Linkage occurs when co-adapted alleles are close toget her in the 
genotype, thus reducing the probab i l i ty that the group will  be separa ted 
by crossover. This requ ires an order free s tri ng representation and a 
mechanism for making strings homol ogous before crossover (see [9] 
p. 1 09). The efTects of invers i on are only a pparent o ver a relatively l ong 
time scale, ie a la rge number of generations.  For the purposes of the 
presen t discussion inversion may be ignored; our i nversion was merely a 
rather bru tal mutat ion. 

Mutation 
Each st ruct ure a ( 1 )a(2} . . . £1(/) in the popU lat ion is  operated upo n as 
follows. Posi tion x is mod ified , with probability p independent of the 
other posi t ions, so that the string is replaced by 

a( 1 )  a(2) . . . a(x - 1 ) za(x + 1) . . . a(l}, 
w h ere z is drawn at random from the possible values. I f  p is the 
probabil i ty of mutation at a single pos i t i o n, then the probab i l i ty of II 
mutat ions in a given st ring is determined by a Poisson distr ibution with 
parameter p. M utation is a 'background' o perator, assuri ng that the 
crossover operator has a ful l  range of al leles so that the adapt ive plan is 
not trapped on local opt ima. 

The basic parad igm of a p rogram of this  type is as fol lows: 

( 1 )  Randomly genera te a popu la t ion of At s t rings 

S(O) = {s( l , O), . . .  , s(l\1, O)} .  
(2) For each s(i. t )  in  Set), compute and save i ts measure o f  ut i l i ty  

r(s(i, t». 
(3) For each sCi ,  t )  in S(c) compute the selection proba bi l i ty defi n ed by 

p(i, t )  = r(s(i, t» /(sum over i of r(s(i, t))). 
(4) Select a string s(j, t) in S(t )  accord ing to the se lect ion pro ba bil i t ies:  

• apply crossover with probability Pc to sU, t) and s(j', t), where sU', t) is 
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again selected from Set) acco rd ing to the select ion p robabil i t ies; select 
one of t he two res ultants (equally likely) and designate it  s(k, t); 

• apply sim ple inversion w i t h  probabil ity Pi to s(k, t). Designate the 
result s(k, t); 

• with probabil ity Pm (small) apply m u tation to each element of s(k, t ). 
Designate the result s(k, l ). 
(5) randomly select a s tring i n  Set), where each st ring i s  equally l i kely 

to be selected (probabi l i ty 1 /  At ), and replace the selected string by s(k, t ). 
(6) Compute z:(s(k, t )) and replace the correspondi ng elemen t i n  the 

saved array of values of v. 
(5) Goto 3. 

The main advantages of this adaptive stra tegy are: 

(a) I t  concentrates strings i ncreasingly towa rds schemata that contain 
structures of above average ut il ity.  

(b) Si nce i t  works over a k nowledge base ( i .e. the popu lat ion of 
stru c t u res) that  is  distributed over the search space, it  i s  al l  but immune to 
gel l ing trapped on local op tima. 

4.3.2 Optimizing the WISA RD mapping 
Cavicchio 1 7  first suggested that genetic algori t hms migh t be used for the 
select ion of su i table detector sets for pattern recogn izers. H owever, 
Holland's theoretical work 9 was based on representations of solut ions as 
stri ngs, where each component of the  string has a precise, posi t ion
dependen t meaning. WISA R D  mappings as  sol ut ion st rings (in common 
with many o t her pat tern detectors) su bstantially lack t hese semant ics of 
position. Brindle  discusses the problem of set representation for the 
applicat ion of genetic algori thms. i s  

The pat terns used i n  t raining and testing the W I SA R D  simulation 
consisted of 1 00 ms of speech data arranged o n  the ret ina as 20 col umns, 
each represent ing successive 5-ms segments,  by 1 6  rows correspond i ng to 
a 1 6-channel fil ter  ban k.  The i maged data therefo re represented a 1 00-ms 
sa mple of speech in t he frequency domain.  

A W I SA R D  m odel with N = 8 was used. S trings represent ing 
mappi ngs therefore consist of 40 x 8-tuple = 320 elements, integers i n  t he 
range 1 -320, sce Fig. 1 0. Unl ike  many W I SA R D  experiments t he 
random maps used were not  1- 1, ie were not  necessarily permu tat ions of 
the in tegers 1 , 2, . . . , 320. 

To provide a populat ion 50 random st rings were generated at the start 
of an experimental run.  The mapping defined by each stri ng was used to 
t rain and then test W I SA R D. The results of test ing provide the necessary 
info rmation from which a measu re of fi t ness can be ca lculated for each 
string. By far the most computation time is spent on t raining and testing 
in order to calculate  the fitness. 
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Each new string generated by the algori thm therefore requires a 
complete train and test sequence, typically 40 or 50 training examples per 
class and around 25 testing samples. I t  was decided to set the maximum 
number of i terations to 2000. Even so, each experimental  run took 
around one week on  a S U N  workstat ion.  With present levels of readily 
available technology, processing speed and memory, l imi t  the scope of 
such experiments considerably. 

In  this context i t  i s  instructive to reflect upon the size of the search 
space. There are 3203 20  possible s trings, ie a round lOBO 1 .  Although there 
are a number of equivalence relations between strings, eg it does not 
matter in which order the d ifferent 8-tuples are placed in  the string, or in 
which order the individual elements of the 8-tuples are placed (these two 
together effect a reduct ion by at most a factor of 1 05 2 ), these do not 
substantially affect this figure. Generously, assuming a computer capable 
of testing 1 0 1 0  strings per second it would take approximately 1 07 3 2  

years, a t ime vastly exceeding the  est imated age o f  t he  universe (a 
genera lly accepted upper bound for wh ich is 1 .2 t imes 1 0 1 1 years) to 
search the ent ire space exhaust ively. 

4.3.3 Experimental procedure 
The sample speech was collected in the t ime domain as word pairs, in an 
attempt to produce some co-articulation effects, and passed through a 
16-channel fi l ter bank to produce frequency domain data which was also 
saved . The frequency information was in  5-ms steps and stored on a V AX 
1 1 -750 as a file of unsigned bytes. 

For both the training and test phases it  was necessary to create a 
parallel file containing an ind ication at each step as to  which class the 
5 ms sample corresponded (A, E, I, 0, U or ·no class'). This second file 
was hand crafted and identificat ion was accomplished by traversing the 
time domain data in small steps and inspect ing a defined area of the file 
both visually and acoustically. 

Variation in vowel length was typically from 45-250 ms, but most 
vowels tended to be arou nd the 1 00-ms mark-hence the choice of 
100 ms for the ret ina. No attempt was made to time normalize the data. 
Other experiments, ment ioned earl ier, using t ime normalized t raining 
and test data suggest that time variat ion is the principal l im i tation on 
accuracy for this type of task, and we were in terested to see to what extent 
the techniques discussed here could accommodate to  this problem. Yet 
another reason for this  decision was that if the initial recogni t ion 
performance were too good i t  would not be possible to observe the 
improvements, i f  any, effected by the genetic algori thm. 

Below is a summary of the vowel sounds used in  the word set  ( in  B ri t ish 
·English' as opposed to N. American 'English'). 
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Vowel 

A as in fAte 
E as in mEt  
I as in bit  
O as in gOat 
U as in dUe 

Number in t ra i n ing 

47 
46 
53 
52 
40 

Speech recognition 

Number in test ing 

26 
24 
27 
24 
22 

Total storage of  the speech data i n  the frequency domain occu pies about 
10 Mbytes. 

As a final stage in pre-processing the data, the 1 6  uns igned bytes 
(0-255) at each 5-ms step, each byte represen t ing the intens i ty of act ivity 
in a frequency channel, were converted to a single thresholded bit. 
Obviously in d oing this, much of the original information is l ost, but 
speech recognition i nvolves selective data reduction on a mass ive scale 
and gene rally we have found that  i t  is the presence or absence of activi ty, 
rather than the i ntensi ty, which is significant  in a particu lar  frequency 
channel. 

To determine appropriate thresholds we calcu lated arithmetic means 
for each class at each of the 1 6  frequencies over al l  the samples in  the 
training data. The processing of sample data i n  the experiment proceeded 
by replacing a part icular unsigned byte by 0 if its value was lower than 
t he correspond ing threshold and by 1 if the  value was greater than the 
threshold . 

Given the size of the ret i na, 320 pixels, the 8-tuple system requires one 
set  of  40 256-bit (eight address l ines) RAMs for each of the five classes; a 
mere 1 280 bytes per recogn izer or  6400 bytes altogether. One co uld 
improve the performance of such a system by increasing the ret i n a l 
coverage, which is not  in  any event I - I ,  and us ing more RAM. However, 
in the context o f  the present experiment this would increase the length of 
the st ring required to  describe the mapping, exponential ly increase the 
size of the search space and significantly red uce the rate of convergence. 
Since 50 W I S A R D  systems are used ( recall the popu lation consists of 50 
stri ngs) in the experiment the total memory required for RAM is 3 1 2. 5  
Kbytes. 

Twenty t ime slices of data from the frequency file were wri t ten onto the 
ret ina and moved u p  one column at each stage. Training and testing were 
done when the first column of t he ret ina was posi t ioned at the start of a 
vowel as indicated by t he paral lel  fi le. 

The genetic algori thm, as sketched above, was appl i ed to a popu la t ion 
of 50 strings with opera tor probabili ties of 

Pc = 0.06, Pj = 0.06, Pm = 0.005. 
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Two different measures of ut ility were tried: 

(i) The first measure was chosen to select for 'ort hogonali ty' of 
d iscriminator responses. ie two conflicting requirements on each 
discriminator. a high score on sam ples from the correct class and a low 
score on samples from o ther classes, were combined into one global 
measure of u t i lity across all discriminators. We do t h is as fol lows. 

For a given mapping 1\1 if r(i, j) � ° is the score of d iscriminator i, on a 
sample from c1assj, 1 � i,j � 5, normal ized to the range [0, 1 ], then 

cos A = r(j,j)fJ(r( l ,  112 + r(2. j}2 + . . . + r(5. jf) 
is a measure of how far from ideal (cos A = 1 )  is the response of the whole 
system to the sample from class j; it measures the angle A between the 
vector  of  discriminator responses and the ideal vector. Let t he average of 
cos A for a single class j over the test sam ples be C(j). Then we define 

U(1\1) = (C( I )  -I  e(2) + . . . + C(5» /5. 

This is taken as the measure of ut i l i ty  of t he m a pping 1\1; l\I would be a n  
ideal mapping if U(1\1) = 1 . We note that any posit ive monotonic 
t ransformation Q( U) of this funct ion will also correct ly measure the 
uti l i ty of 1\1. 
(ii) The second measure of ut i l i ty was less subtle. In th is case the strings 
were bred simply to maximize t h e  average accu racy of discriminator  
responses across al l  classes. Thus for any part icular mapping 1\1 the 
response to the test  samples in  c lass  j can be taken as  

Nc/Tj. 
where Nc i s  the number of co rrect c lass ifica tions and � is the total  
n u mber of test  samples in class j.  This  figure averaged over a l l  classes j 
gives a measure of u t il i ty V(l\1) for the mappi ng M. Once m o re, 1\1 is 
ideal if V(l\1) = 1 .  

We found t h e  adaptive search proced u re worked more emciently i f  a 
posit ive mono ton ic transformation was carried out on the uti l i ty  
measure in order to i ncrease the proba bi l i ty  of a superior string 
contributing t o  the next genera t ion and decrease the probabil i ty of an 
i nferior string cont ributing to the next generation. To do this we hased 
the probabil i ty of select ion on ut i l i ty  raised to the power 1 6. 

4.3.4 Summary of results 
OrtlloKonaiit)' 
Fig. 1 1  shows the measure of orthogonal ity across 2000 generations 
( i terat io ns) . Breeding for orthogonality is a more difficul t task than 
merely breed ing for accuracy. However i t  can be argued that this  might 
be more important in a real system which is scanning continuously rather 
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Figure 1 1  Breedingfor ortllOgOlwlity. 

than  just looking a t  test vowels, since i t  may help to suppress spurious 
discriminator response to fea tures that do not discriminate vowels, ie 
increase selectively. In fact we found that, al t hough there was measurable 
improvement in  orth ogonal i ty, from 0.583 5 1  to 0.638 75, this d id n o t  
correla te well wi th  accuracy (which decreased). 

Accu,.acy 
I n  Fig. 1 2  the average percentage accuracy across al l  classes, for the best 
string, is plot ted against the current generation.  The improvement is 
significant but not start l ing-an improvement from 58.7- 65.3% across 
2000 generations. Broken down across classes the resul ts  were as shown 
in  Table 14. Examinat ion of the best string of the search showed that the 

Table 1 4. Effect of l/ollmlt/'s gen!!Cic algorithm 

Vowel 

A 
E 
J 

o 
U 

Average 

Percentage recognition accuracy 
Initial best string Final best string 

6 1 .5 
37.5 
59.3 
62.5 
72.7 

58.7 

65.4 
45.8 
63.0 
75.0 
77.3 
65.3 
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90 t accuracy 90 

80 80 

70 70 

60 60 

50 50 
40 40 

30 30 

20 generat ion 20 

1 0  -- 1 0  

500 1 000 1 500 

Figure 1 2  Breedingfor accuracy. 

pixels selected fo r the 8·tuples were evenly scattered over the retina.  N o  
speci fic frequencies or l ime slots seemed t o  b e  part icu larly favoured. 

The overal l effect across the ent i re population, rather than individual 
best strings, can be observed i n  the histograms of Fig. 1 3 . The top row 
represents the in itial  perfo rmance, on each vowel, of the ent i re 

A E o 

Figure 1 3  Tlte overall effect 011 the entire pOPlllation. 
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u 



Speech recogllition 

popu lat ion.  Horizontal divisions are perce ntage accuracies i n the ranges 
0- 1 0, 1 0-20, . . . , 90- 1 00. The vertical scale represents frequency ( to tal -
50 strings in each case). N o te there was one in i t ia l  string giving a 
recognition in the range 70- 80% for A (presumably a worse performan ce 
on other vowels) bu t in  the  final popula t ion no such s t ri ng ex isted. This 
resu lts fro m breeding for aLWCl{je accu racy across recognit ion classes. 
How signi ficant  i s  this improvement in accuracy compared wi th  that 
wh ich might be expected from a ra ndom sea rch through 2050 stri ngs? 

Assu ming that the distribution of average accuracy across the 
population of ran dom strings is normal (an assumpt ion reasonably i n  
accordance with t h e  obse rved facts) we ca n appro x i m ately gauge the 
efficiency of the search as fol l ows. We first calculate the  mean, M, and 
standard devia tion, S, for the ini t ial  popu lat ion of average accuracies and 
then compute 

(B - M)jS, 

where B is the  average accuracy for the bes t final string. The figure 
ob tai ned was 3 .92 standard deviations. 

The probability that at least one str ing is  as good, o r  bet ter, than the 
best st ring found after a random search t h rouf,h 2050 st rings is 

l - (Area to left of 3.92 on normal distributi on)20 50, 

ie a pproximately 0. 1 .  By this measure the genetic algorithm was a bo u t 
ten t imes more efficient than an exhaust ive search. 

number of pixels 

best in i t ia l st r ing 

1 28 
1 1 2  
96 
80 
64 
48 
32 

o 1 2 3 4 5 6 7 8 
number of times pixel addressed 

Addre$$ad 0 1 2 3 
I n itial 1 19 120 53 19 
F inal 1 1 5 122 62 15 
PoistOn 1 18 1 1 8  59 20 

number of pixels 

best f ina l  str ing 

0 1 2 3 4 5 6 7 8 9 
number of times pixel addressed 

4 5 6 7 8 9 
8 1 0 0 0 0 
4 1 0 0 1 0 
5 1 0 0 0 0 

Figure 1 4  IlIi( ia/ ami filial dis( rihll( iOlls of pixel atfdressil l!J. 
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We were interested to see if there was a significant change in the 
distribut ion of  frequency with which individual retinal p ixels are 
sampled . Given an in it ial ly random selection of pixels one might expect 
the frequency with which an individual pixel is addressed to be Poisson 
with mean 1.  In Fig. 14 the in i t ial and final dis tri b u t ions for the best 
strings are given and compared with the expected Poisson distribution. 
From this i t  can be seen that no significant sh ift occurred after 2000 
generat ions. 

I f  there were a performance ad van tage t o  be ga i ned from a 1 - 1  
mapping one would ex pect the number of pixels addressed zero times to  
decrease wi th  the  number of generations, whereas Fig. 1 4  shows that this 
effect did n o t  occur in any sign ifican t way. 

4.4 Conclusions 

If we compare the resul ts of the mult iple d iscriminator  per vowel 
experiment with the genetic algori thm experiment, some interesting 
points emerge. 

VowcJ 

M DV 
lOA 
FGA 

A 

6 1 .5 

6 1 .5 

65.4 

E 

54.2 

37.5 

45.8 

M DV = multiple discriminators per vowel .  

59.3 

59.3 

63.0 

o 

54.2 

62.5 

75.0 

IGA = init ial perrormance in  genetic algorit h m  experi ment. 
FGA = final performance in genetic algori thm experiment. 

u 

8 1 .8 
72.7 
77.3 

The 'most d ifficul t' vowel E and the 'easiest' vowel U have plainly 
benefited in the first vowel experiment from having d iscriminators 
t ra ined over a variat ion of timescales. On the o ther hand, the genetic 
algorithm was able to tailor a sillu/e mapping to  compensate to  a 
significant degree for varia tions in rate of articulation of t hese vowels. 

However, while some improvement in average accuracy of recognition 
across classes can be effected using genetic algorithms, the bunching of 
t he popula t ion in the histograms of  Fig. 1 3  demonstrates that  for each 
vowel there is a definite l imit  beyond which no improvement  can be 
expected using a s ingle mapping for all classes. I ndeed, from Fig. 1 3, we 
can rough ly estimate the upper bou nd for average accuracy for this 
system as ly ing in the range 72-82%. 

The evidence seems to suggest that the principal reason for this upper 
l imit in  performance is the t ime variat ion in the samples used. By using a 
separate mappil1?} for each class the results using genetic algori thms may 
well improve to  the point  where it would not be necessary to  have 
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multiple discriminators per class.  H owever, o nce the extra overhead of a 
separate mapping for each class i s  accepted, then other,  s impler, 
possibi l i t ies exist for optimizing mappings which should be ex plored fi rst ,  
possibly keeping t he genetic algorit hm i n  reserve for fine tuning at the 
final stage. 

Certainly genetic algori thms o ffer considerable gains in efficiency over 
exhaustive search in tai loring pat tern recognit ion systems o perating on 
real data. The improved mappings prod uced by the genetic a lgorithm 
showed no tendency to become 1 - 1 . We found th is an in teresting 
observation but hesitate to  d raw a general conclusion.  
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