10 Applications of N-tuple sampling and
genetic algorithms to speech recognition
A. Badii

Schlumberger Technologies, Central Research Department, Farnborough,
UK

M. J. Binstead
17 Myddleton Road, Uxbridge, Middlesex, UK

Antonia J. Jones
Department of Computing, Imperial College of Science and Technoloyy,
University of London, London, UK

T.J. Stonham
Department of Electrical Engineering, Brunel University, Uxbridge,
Middlesex, UK

Christine L. Valenzuela

Department of Computer Science, Teesside Polytechnic, Middlesbrough,
Cleveland, UK

Abstract

N-tuple nets are conceptually a highly parallel architecture for pattern
recognition, implemented in hardware as a device called WISARD.
However, high-speed serial emulations of N-tuple nets offer considerable
advantages of flexibility and cost efliciency in applications, such as
speech recognition, requiring only moderate bandwidth.

In this chapter we first describe a software technique for designing
dynamically evolved N-tuple nets and illustrate the process whereby the
designed structure can be progressively mapped into hardware to a level
determined by the application requirements.

Next, we summarize some simulation studies which apply N-tuple nets
to isolated word recognition and vowel detection.

For isolated word recognitionitis shown that with raw data (non-pre-
emphasized, noisy speech), N-tuple recognition yields improvement over
dynamic time warping, while providing substantial savings in processing
time.

For vowel detection, two distinct, single-speaker studies are described.

172

Speech recognition

In the first experiment we attempt to accommodate to variation in the
length of articulation of a vowel by training six distinct discriminators for
each class of vowel, each of the six being trained over a different
timescale.

In the second experiment on vowel detection, results are presented for
a task specific optimization of a single mapping WISARD pattern
recognizer using Holland’s genetic algorithm.

1. Introduction

In this chapter we provide a synopsis of work, carried out by the authors
under the auspices of the Pattern Recognition Laboratory, Brunel
University, on the application of the N-tuple sampling paradigm of
Bledsoe & Browning! to speech recognition.*

Networks of the type under consideration are simulations of extremely
stylized models of biological neural networks. Such systems are usually
characterized by some very simple algorithm, frequently little more than
an inner product, replicated a large number of times as parallel,
sometimes loosely coupled, processes. Examples of such systems in the
literature include perceptrons,® WISARD nets,* Kohonen’s topologizing
nets,> the goal seeking components of Barto & Sutton® and, more
recently, the conformon nets of Fish.” In this chapter we will concentrate
on the implementation of WISARD nets, described below, applied to
speech recognition.

The advantages of the WISARD model for pattern recognition are:

e Implementation as a parallel, or serial, system in currently available
hardware is inexpensive and simple.

e Given labelled samples of each recognition class, training times are
very short.

e The time required by a trained system to classify an unknown pattern
is very small and, in a parallel implementation, is independent of the
number of classes.

The requirement for labelled samples of each class poses particular
problems in specch recognition when dealing with units smaller than
whole words; the extraction of samples by acoustic and visual inspection
is a labour intensive and time consuming activity. It is here that
paradigms such as Kohonen'’s topologizing network, as applied to speech
by Tattershall, show particular promise. Of course, in such approaches
there are other compensating problems; principally, after the network
has been trained and produced a dimensionally reduced and feature-

* Scction 2 is based on [2], and more detailed reports on the work described in Sections 3 and 4
will appcar ¢fscwhcere.

173

A. Budiiet al.

clustered map of the pattern space, it is necessary to interpret this map in
terms of output symbols useful to higher levels. One approach to this
problem is to train an associative memory on the net output together
with the associated symbol.

Applications of N-tuple sampling in hardware have been rather sparse,
the commercial version of WISARD as a visual pattern recognition
device able to operate at TV frame rates, being one of the few to date—
another is the optical character recognizer developed by Binstead &
Stonham. However, one can envisage a multitude of applications for such
pattern recognition systems as their operation and advantages become
more widely understood.

Typically the real-time system is preceded by a software simulation in
which various parameters of the theoretical model are optimized for the
particular application. We begin by describing a software framework
which is sufliciently general to cope with a large class of such net-systems,
while at the same time preserving a high degree of computational
efliciency. In addition, the structure produced has the property that it is
easily mapped into hardware to a level determined by the application
requirements.

The rationale for believing that N-tuple techniques might be
successfully applied to specch recognizers is briefly outlined by
Tattershall & Johnson,® who demonstrated that N-tuple recognizers can
be designed so that in training they derive an implicit map of the class
conditional probabilities. Since the N-tuple scheme requires almost no
computation it appears to be an attractive way of implementing a
Bayesian classifier. In a real-lime speech recognition system the pre-
processed input data can be slid across the retina and the system tuned to
respond to significant peaking of a class discriminator response, see
Fig. 4.

Two types of application to speech recognition are discussed. First,
comparative results for isolated word, single-speaker speech recognition
are presented for a variety of N-tuple recognizers. These results are then
contrasted with the observed performance for the same data using a
standard dynamic time warping algorithm used as a control in this
context.

Next, preliminary investigations in vowel detection are reported; two
distinct experiments are described. These experiments were restricted to
vowel detection for a single speaker. Both experiments used the same data.
In the first experiment we attempt to accommodate to variation in the
length of articulation of a vowel by training six distinct discriminators for
each class of vowel, each of the six being trained over a different
timescale. In the second experiment one mapping is used for all vowels,
each vowel having a single discriminator, and Holland's genetic

174

Speech recognition

contro train = write
! test = read
RAM

data out

—

P! calculator

RAM »

data out

RAM

discriminator 2

response 0
response 1 —docmon
response2 T). :

- >
confidence

Figure 1 Schematic of N-tuple recognizer.

algorithm is used in an attempt to optimize this map for the specific task
of vowel detection.

2. A simulation system
2.1 The WISARD model

WISARD (WIllkie, Stonham, Aleksander Recognition Device) is an
implementation in hardware of the N-tuple sampling technique first
described by Bledsoe & Browning.! The scheme outlined in Fig. 1 was
first proposed by Aleksander & Stonham.*

The sample data to be recognized is stored as a two-dimensional array
(the ‘retina’) of binary elements with successive samples in time stored in

175

A. Badii et al.

successive columns and the value of the sample represented by a coding
of the binary elements in each column. The particular coding used will
generally depend on the application. One of several possible codings is to
represent a sample feature value by a ‘bar’ of binary Is, the length of the
bar being proportional to the value of the sample feature.

Random connections are made onto the elements of the array, N such
connections being grouped together to form an N-tuple which is used to
address one random access memory (RAM) per discriminator. In this
way a large number of RAMs are grouped together to form a class
discriminator whose output or score is the sum of all its RAM’s outputs.
This configuration is repeated to give one discriminator for each class of
pattern to be recognized. The RAM’s implement logic functions which
are set up during training; thus the method does not involve any direct
storage of pattern data.

A random map from array elements to N-tuples is preferable in theory,
since a systematic mapping is more likely to render the recognizer blind
to distinct patterns having a systematic difference. Hard-wiring a random
map in a totally parallel system makes fabrication infeasible at high
resolutions. In many applications, systematic differences in input
patterns of the type liable to pose problems with a non-random mapping
are unlikely to occur since real data tends to be ‘fuzzy’ at the pixel level.
However, the issue of randomly hard-wiring individual RAMs is
somewhat academic since in most coniexts a totally parallel system is not
needed asits speed (independent of the number of classes and of the order
of the access time of a memory element) would far exceed data input
rates. At 512 x 512 resolution a semi-parallel structure is used where the
mapping is ‘soft’ (ie achieved by pseudo-random addressing with parallel
shift registers) and the processing within discriminators is serial but the
discriminators themselves are operating in parallel. Using memory
elements with an access time of 10~ s, this gives a minimum operating
time of around 70 ms, which once again is independent of the number of
classes.

The system is trained using samples of patterns from each class. A
pattern is fed into the retina array and a logical 1 is written into the
RAMs of the discriminator associated with the class of this training
pattern atthe locations addressed by the N-tuples. This is repeated many
times, typically 25-50 times, for each class.

In recognition mode, the unknown pattern is stored in the array and
the RAMs of every discriminator put into READ mode. The input
pattern then stimulates the logic functions in the discriminator network
and an overall response is obtained by summing all the logical outputs.
The pattern is then assigned to the class of the discriminator producing
the highest score.

176

Speech recognition

Where very high resolution image data is presented, as in visual
imaging, this design lends itself to easy implementation in massively
parallel hardware. However, even with visual images, experience tends to
suggest that a very good recognition performance can often be obtained
on relatively low resolution data. Hence in many applications, massively
parallel hardware can be replaced by a fast serial processor and
associated RAM, emulating the design in micro-coded software. This was
the approach used by Binstead & Stonham in optical character
recognition, with notable success. Such a system has the advantage of
being able to make optimal use of available memory in applications
where the N-tuple size, or the number of discriminators, may be required
to vary.

2.2 The development of N-tuple systems

Practical N-tuple pattern recognition systems have developed from the
original implementation of the hardware WISARD, which used regularly
sized blocks of RAM that store only the discriminator states. As memory
has become cheaper and processors faster, such heavily constrained
systems are no longer appropriate for many applications. Algorithms can
be implemented as serial emulations of parallel hardware and RAM can
also be used to describe a more flexible structure.

In such a system we might require a dynamically variable number of
classes, RAMs per class or mappings. N-tuple mappings need no longer
map each retinal pixel uniquely and might be varied during training and
across classes according to some heuristic supplied by the programmer—
for example, Holland’s genetic algorithm.® Having different mappings for
each class does require that each class be given a separate opportunity to
respond, but in some applications this may well be worth the extra
overhead in time or hardware.

One might easily imagine that the price to be paid for this enhanced
flexibility would be excessive complexity and slow performance.
However, this turns out not to be the case and we will briefly outline why
this is so.

2.3 Software system for dynamic reallocation of NV-tuples

Conceptually it is helpful to think of the entire experimental design
process of an N-tuple classifier as the growing and filling of a dynamic
tree.

Initially this tree will have a root from which all else will grow. In
practice ‘root’ is a pointer (down) to the first of the next level nodes, which
for now we may choose to think of as class zero. (However, first-level
nodes could equally be ‘machine types’ so that decomposition at the first
level would then be into a series of parallel machines.) At the class level,

177

A. Badiiet al.

each class has a pointer (across) to the next class and a pointer (down) to
the first RAM associated with that class.

We can iterate this process to create a tree—machine (ie data structure)
which consists of:

(1) Classes—which in turn form collections of RAMs;
(2) RAMs—which form collections of input pointers (mappings) and
pointers to the block of memory used to store the RAM state.

Fig. 2 illustrates the general structure of the tree. It is important to note
that the nodes can hold extra information, for example statistics of their
usage, a unique identifier and other pointers which can be used for
memory control. This last feature is an essential part of a dynamically re-
allocatable system.

Ultimately, memory will contain two types of information: the nodes
which are joined by pointers to create the tree structure, and the memory
which actually holds the taught information (the N-tuple storage). The
memory requirement is strongly dependent on the N-tuple address size—
adding an extra input to every RAM (although one could add an extra

root
machine 0
L~ [
class O class) class 2
/ -1 \ 0
RAM O RAM O RAM 1 RAM 2 RAM O RAM 1

N-tup

Figure 2 Tree structured N-tuple classifier,

178

Speech recognition

input to just one RAM il desired) will linearly increase the number of
nodes used but double the amount of N-tuple storage.

To access the memory it is necessary to traverse the tree to reach the
requisite point. For example, suppose it was required to add an extra
class. It becomes necessary to traverse the tree down to the class level and
then along to the last-used class node, where a new node may be
reclaimed from the ‘node pool’ maintained by memory control and added
to form a new class by manipulating the necessary pointers. The same
process may be repeated in order to add RAMs to the newly formed class.

In virtually every operation involving the tree a single very simple
recursive algorithm, the traverser, is used. When calling the traverser, two
parameters are passed: one is the base of the sub-tree to be traversed and
the other is a pointer to a table of actions to be performed at each node
visited. The table itself contains lists of actions for each possible node
type. At present only two actions are used; the first is called when the
node is entered and the other when the node is exited for the last time in
the current traversal. For example, if one wanted to perform a
classification: the first action on entering the node of type class would be
to clear that class’s response; upon leaving, the score (number of
addressed RAMs in the discriminator which contain a logic ‘1’) will have
been updated by the lower levels so that the second action might be to
printits value and to check if it is larger than the largest class score so far
encountered.

Depending on the network being modelled the node types and actions
can be chosen appropriately. For instance, if Kohonen’s topologizing
network were being modelled, one node type would be a node, in
Kohonen's sense, which stores a state vector of the dimensionality of the
data—his network is essentially an array of such nodes, and one action
would be to modify the states of ‘nearby’ nodes according to the response
of the current node to the data being presented.

A C-code listing of the traverser algorithm is given in Appendix 1.2 In
most cases it will not be necessary to visit all nodes of the trec. So the
traverser algorithm has extra switches that allow branches to be
bypassed or the traversal aborted. In this way, for example, the search
can be confined to a single level of the tree and aborted when a specific
condition or node is attained.

Thus a flexible and simple experimental system, having all the
proposed properties, has been created. It is now relatively
straightforward for the experimenter to implement his chosen heuristics
to control the evolution of the final system design. Moreover, since the
structure consists largely of threaded pointers, very little calculation is
required during the training and testing phases. Consequently,
simulation times are considerably reduced.

179

A. Badii et al.

Comparisons with earlier simulation systems, such as JAN, give an
improvement of a factor between 2 and 4. Direct comparison is difficult
since the earlier systems were so slow that they were modified to look
only at input data which had changed, and they only dealt with regular
sized discriminators, etc. If systems such as JAN had to deal with
variable-sized discriminators then accessing a multi-dimensional array,
say (class, RAM, element), could no longer be done using tables and
would involve two multiplications and one addition, whereas in the
present system access is via a pointer and involves no calculation.

When the fully trained system is complete the network of pointers will
have become rather tangled. However, this poses no real problem since
the structure of memory can be rationalized into appropriate blocks to
facilitate implementation into hardware. This process is easily
accomplished by a software module which reorders the pointers.

For historical reasons the final system has been named NEWJAM. It
promises to be the vehicle for much of the net-systems research work of
the adaptive systems and pattern recognition group at Brunel over the
next few years.

2.4 Mapping the real time system into hardware

An important advantage conferred by NEWJAM is that since the data
structure produced is tree-like it naturally decomposes into hardware at
several alternative levels. Thus the actual decomposition cian be chosen
depending upon the bandwidth and response time required for the real-
time system.

In Fig. 3 we sketch one possible approach for implementing the real-
time recognition system (envisaged as a co-processor connected to a
micro-computer host). The principal components of this system are:

68000/68020 CPU

This performs input-output functions and, initially, all actions called for
via the action table memory. Every action is intrinsically a very simple
process and consequently the most frequently called actions can be
progressively replaced by special purpose hardware (Node type A
processor, Node type B processor, etc., in Fig. 3).

Memory controller

This is the hardware which performs the traverser algorithm recursively.
It could easily be implemented as a gate array and requires a small stack
and access to a small number of status registers. In principle the traverser
accesses the system memory via a separate bus (the tree bus) and can
disable-enable the 68000 bus. In practice the traverser and the 68000
may share a common bus transparently, with the traverser able to
control priority and refresh.

180

Speech recognition

68000
4
L 68000 bus
i R !]
S=t18=| |35 : cti t |
S 2|5 3| ¢) action ree 1 N-—tuple store
2 e 2 R 59 : table store : P !
L &
t t t tree bus t
! ! ! :
r-
node node node 1
tree type type type 1
traverser A 8 =
processor processor processor L
Y 1 A
vectored
interrupt
logic

Figure 3 Tree traverser—block diagram.

Tree memory

The traverser locates a particular node of the tree by consulting a
particular base address in tree memory. The block of memory starting at
this address contains information describing the node (type, etc.). This
memory is not particularly large and could be implemented in fast RAM.

Action table memory

Having located a particular node and recovered the address of the
associated action type from tree memory the traverser consults this
address in the action table memory which acts essentially as a function
lookup table. As the number of action types is small this memory could
be implemented in fast RAM.

N-tuple storage memory
This is the largest block of memory and can be implemented in slower,
cheaper RAM.

When an action request is initiated, the corresponding module, or the
68000, must place an acknowledgement in the traverser status register.

181

A. Badii et al.

Upon completion of the action a return value is placed in the status
register.

Having decided upon the action type currently required the traverser
places the request onto the action bus where it is either vectored to the
68000, if no special purpose hardware exists to perform the action, or
passed to the appropriate action module. Initially there would be no
action modules and the 68000 would perform all these actions. As action
modules are slotted into the system they take over the corresponding role
from the 68000.

An additional advantage conferred by this design is that if an action
module fails, the 68000 can resume performance of the action until the
module can be replaced.

3. Isolated word recognition
3.1 Introduction

In this section comparative results for isolated word, single-speaker speech
recognition are presented for ten different N-tuple recognizers. These
results are then contrasted with the observed performance for the same
data using a standard dynamic time warping algorithm used as a control
in this context.

Samples of 16 words from a diagnostic rhyming test list were collected
from a single speaker on a carefully standardized data acquisition system
(Shure SM12A microphone, flat pre-emphasis profile and a Sony model
701ES tape recorder) for subsequent automatic retrieval and digital
processing using sample labelling and a modular A-D, D-A system with
16-bit resolution. This data was then stored on a VAX 11-750 to enable
precise comparison of diflerent recognition algorithms.

The speech data bank for the speech research includes the rhyming set,
the alpha-numerics, simple command words and their synonyms, and the
phonotactically permissible CVC-VCV constructs from a large speaker
population under both controlled and noisy environments.

However, for the preliminary stages of the investigation it was decided
to test N-tuple recognition systems under unfavourable signal conditions
and using the minimum of pre-processing (ie non-pre-emphasized, non-
normalized input speech). Thus if the performance of a simple system,
operating on minimally pre-processed data from the rhyming set, was
acceptable, then it could reasonably be expected that for a given corpus
the early results would improve with a more advanced N-tuple
recognizer using optimally tuned pre-processing and normalization
techniques.

Accordingly, the experiments described herc were run on data from the

182

Speech recognition

noisy environment samples, allowing recognition to take place on sample
data having no pre-emphasis or time normalization. Pre-processing was
limited to a 19-channel vocoder bank,'® simulated by fast Fourier
transform (FFT), and scaling the result as input to the N-tuple
recognizers.

The diagnostic test set was chosen so that the acoustic dissimilarity
within rhyming sets (eg one/run—short) is minimal and the range of
perceived phonological length did not markedly vary among the
confusable rhyming sets (eg one/run/want—short; wonder/rudder—
long). The 16-word diagnostic corpus was as follows:

Word set
0 one 8 shoce
1 run 9 toot
2 want 10 tattoo
3 begun 11 toothache
4 wonder 12 cooler
S rudder 13 tce
6 win 14 thrce
7 two 15 sce

Two important dimensions of assessment for a speech recognition
algorithm are: robustness in the face of a large speaker population and
the rolloff in recognition accuracy as the vocabulary size increases. These
aspects are not investigated in the present study, primarily because of
resource constraints. However, this work represents a necessary first step
in the evaluation of N-tuple sampling applied to speech recognition.

3.2 Experimental procedure for speech recognition

The strategy adopted for the present experiments was chosen to provide
flexibility and repeatability with the same data, thus enabling
comparison of differing recognition and pre-processing techniques. For
this reason, simulations of the training and recognition process for eight
different designs of N-tuple recognizer were performed on previously
stored data using a VAX 11-750 system. Real-time performance was not
a factor since it is known that the systems under consideration can be
implemented with a satisfactory real time response when a suitable
design has been proven.

3.3 Pre-processing algorithm

The raw-time domain files were subjected to a 10-ms wide FFT

183

A. Badii et al.

producing 19 8-bit samples of each filter channel every 5ms. In the first
six experiments the 8-bit value was reduced to a 4-bit value using one of
three encoding methods discussed below (encoding of data). The 4-bit
intensity can be considered as a weighting of each pixel on the retina and
the 19 samples as a single slice in time encoded as a vertical column on
the WISARD retina. In this way each word was reduced to a 120 x 19
array of 4-bit elements. The total duration being 0.6s.

After the first six experiments the 4-bit intensity of each filter channel
was replaced by a single bit which was set if a pre-determined threshold
(determined experimentally) was exceeded, thus reducing the word data
to a 120 x 19 array of single bits for the final four experiments.

3.4 The WISARD retina

The WISARD retina was sized at 100 (horizontal) by 19 (vertical), each
component consisting of four bits initially and one bit subsequently.

In the recognition stage of a real system the sample data can be
visualized as stepping across the retina in steps of one horizontal unit
(5ms). Precise alignment in comparison with the training data would
therefore not be a problem—as the data slid across, the system would be
looking for a sharp peaking of one discriminator, see Fig. 4. Of course,
one discriminator could bc trained on the ambient noise. Thus
segmentation of speech from background becomes an implicit property
of this paradigm.

TT—~ /\/————— e
—_— T three
\.———F\\W Nv tee
\/'_—,___//\/ycooler
— \-"_/““Mtoothache
\—’/\’/\/H/—-_tattoo
%,—\,’/N—//— toot
_’\"’\‘__,/'/\/‘_—‘ shoe
N—_//F——— two

__/\‘\w
M win
\—_—_,’-/\//f/%\/ﬁ—mdder
\—-v‘v wonder
:Q,__\-“\\d/p\\j:'“ﬁﬂ"
. \N f\\///,——:’-run
%,\\v /‘\/..——one

max time—=

Figure 4 Plot of all discriminator responses to ‘toothache’'.

184

Speech recognition

[.-

o5 -

b .o

H ? - -
Y ee amene
i 5 comese

T ey
2 . —bfey ame
.
. t- . se wm
- e ottt 0o Ttven oem -~ o
o vwA O . — o
v . * mwes
- e MAw * o= -
- - o
.

uatlearty
¥eisitE.
detestlif

Tene
t
|
1.

-

?
?

i

toothache

,__“.
.

"
Sesteg]t Ve

her
il
i

Figure 5 FFT images of the word ‘toothache’.

Because the computational cost of scanning the image across the retina
in S-ms steps is too high in a simulation of this type, the start of a word in
the sample frame was arbitrarily decided to occur when a 109 increase in
the ambient energy level (summed across all filter channels) was
observed. In training, each such sample was presented three times,
representing a ‘jitter’ of + 5 ms about the determined start point.

Fig. 5 shows FFT samples for the word ‘toothache’. The vertical line
indicates the time at which the threshold was exceeded; the subsequent
100 columns (500 ms) are taken as the retinal image.

3.5 Encoding and mapping

Four different kinds of encoding of the 8-bit samples produced by the
FFT were employed. In the first six experiments each encoding reduced
the 8-bit data to four bits. In the remaining two experiments the 8-bit
sample was reduced to a single bit (binary encoding).

(1) Linear-encoding: here the top four bits of the §-bit sample were
selected and their binary image slotted into the retinal column in the
position determined by which filter the output originated.

(2) Thermometer-encoding: for this encoding the interval [0, 255] was
partitioned into five equal sub-intervals and integers in each sub-interval
were mapped into a 4-bit value.

185

A. Badii et al.

(3) Gray-scale-encoding: here the interval [0, 255] was divided into 16
equal sub-intervals. Each sub-interval is indexed by a 4-bit value in such
a way that the Hamming distance between the indices of adjacent
intervals is always 1. This form of indexing amounts to traversing all the
vertices of a hypercube. The idea being that a small change in the value of
the signal being encoded will produce a small change of Hamming
distance in the encoded image.

(4) Binary encoding: finally the 8-bit sample was reduced to a single
bit by thresholding at an experimentally determined level.

In the initial six experiments N = 4 and so 19 x 100 x 4/4 N-tuples are
chosen from the 1900 x 4 bits of the retina to define the mapping. Two
types of mapping were used, namely linear, where N-tuple addresses are
taken from consecutive pixels in a column, and random, where the
addresses are composed from bits sampled randomly across the entire
retina.

3.6 Results and conclusions for the 4-bit—4-tuple recognizers

Single-speaker recognition results with the 16-word repertoire. 4-tuple,
40-ps sampling rate (25 kHz, BW 0-8 kHz):

In the 4-bit encoding, 4-tuple experiments the best overall performance
was obtained with linear encoding and a linear map or, equivalently, with
Gray-scale encoding and a linear map. Initially we found this result
rather unexpected in that the linear map employed took 4-tuple
addresses from a single time slice, whereas the random map also looked
across time. However, further comparison with the 1-bit encoding, 4-
tuple experiments suggests that 4-bit encoding may have been presenting
the system with excessive, relatively unrepeatable, detail.

It would appear that most learning occurs during the first five training
instances of any given class, at which point the system gives around 85%,
accuracy. Subsequent training tends initially to reduce recognition
performance and recovery is thereafter progressive but slow until
saturation becomes a significant effect. We will return to the question of
how the progress of the system towards saturation can be effectively
monitored. However, our results suggest that with these system
configurations, training on more than 25 instances from each class causes
overall recognition performance to degrade.

With 4-bit encoding, a linear mapping and a 25-word teach set, the
average performance of 90% looks quite promising as an initial result
under the unfavourable conditions of the experiment. But the accuracy
per word over the entire training sequence of 5, 10, 15, 20 and 25 patterns
respectively was as shown in Table 1. Each discriminator consisted of
100 x 19 16-bit RAMs, ie a 3.8 (8-bit) Kbytes per word. Since there were

186

Speech recognition

Table 1. 4-tuple-linear map—4 x 19 x 100-linear encoding

Training
5 10 15 20 25
Class % Accuracy

one 60 36 40 44 52
run 80 76 80 76 88
want 48 72 96 100 96
begun 100 96 96 96 96
wonder 92 92 88 92 92
rudder 100 92 92 96 100
win 80 84 80 76 76
two 88 84 84 84 84
shoe 92 100 100 100 100
toot 92 88 92 92 92
tattoo 100 100 100 100 100
toothache 96 96 96 100 96
cooler 100 100 100 80 100
tee 80 84 80 100 80
three 92 96 100 76 96
sce 60 4 60 88 92
Average 85.00 83.75 86.50 88.00 90.00

16 class discriminators this comprised a total of 60.8 Kbytes of RAM
used by the 4-bit—4-tuple recognizers.

Table I shows that the performance on the word ‘one’ (the worst case)
was plainly unsatisfactory. A graphical confusion matrix for this
experiment is given in Fig. 6. The confusion between the first three
utterances, which uttered with no context would be particularly
confusable even to the human listener, can mainly be ascribed to the fact
that both the phonological duration as well as word-final and word-
initial qualities are almost identical.

In an attempt to gauge the efficiency with which the discriminator
RAMs were being used, two sets of statistics were produced for the case
of 4-bit—4-tuple linear mapping with linear encoding. The first concerned
the number of bits set in each 16-bit RAM versus class. The second gave
the number of identical RAMs for all classes and the number of identical
RAMs in pairs of classes. We briefly summarize this information.

Almost all zero-addressed locations were set, indicating that virtually
every 4-tuple had seen (0,0,0,0), ie a complete absence of activity in the
retinal cells sampled, during training.

Typically, each discriminator had around 1000+400 RAMSs, from a
possible 1900, with exactly one bit set. The previous observation suggests
that in most of these it will be the zero-addressed bit which is set. So that

187

A. Badii et al.

set0

? class

recog

aligned linear lin. map

Figure 6 Confusion matrices with 5/10/15/20/25 training examples.

anywhere between 31 and 739 of the RAMs was each merely aflirming
the absence of some 16 particular activity features as a basis upon which
to classify.

The number of RAMs per discriminator with more than one bit set was
typically around 500. One might say that approximately 259, of RAMs
were providing a contribution to classification based on between one and
15 observed activity features.

There were 91 RAMs which were identical for all classes. Thus most
RAMs contributing on the basis of an observed activity feature were
providing useful classification information.

Typically the number of identical RAMs in pairs of classes was in the
range 500-1000, ie in any pairwise decision 50-75%; of all relevant RAMs
made a useful contribution, even if most of these were reporting absences
of activity features.

Of the 28 500 = 1900 x 15 non-zero-addressed bits per discriminator
around 3000 were normally set (about 109%;) as compared to a total
number of bits set in the range 5000-7000 (max. possible 30400). One
can interpret this in one of two ways: one can argue that 10%, RAM
utilization is ineflicient (in a 2-class system with ideal preprocessing the
probability of any discriminator bit being set after training should be
0.5, with no commonality between discriminator contests); or one can
say that this state of aflairs reflects our ignorance of precisely what
constitutes the critically significant features of the speech signal. (Such
debates have a certain air of circularity.)

188

Speech recognition

3.7 Results and conclusions for the 1-bit—/N-tuple recognizers

A WISARD net is saturated when all discriminators give maximal
response to sample data. This could occur, for example, as a result of
over-training. In practice one trains the system almost to the point where
the dynamic range of discriminator responses becomes insuflicient to
give an adequate margin upon which to base a classification decision.

To monitor the effectiveness of training in the last four experiments we
define the following parameters of the system response with respect to
any particular test sample:

Response = { the discriminator score expressed as a percentage of
{ maximum possible.

Min-response = the minimum response from any class.

Ave-response = the average response of all classes.

Let D(i) be the response of the ith discriminator. For any particular class j
let
d(j) = max {D(i): all i not equal to j}.

Thus d(j) is the best response from all discriminators excluding the jth.
Suppose now the data sample belonged to the jth class. Then D(j)—d(j)
is a measure of the margin by which the classification was made. If
D(j)—d(j)is negative then the sample was incorrectly classified.

Table 2. 4-tuple-lincar-map-19 x 100-hinary encoding

5 10 15 20 25
Class % Accuracy

one 96 72 52 76 64
run 56 64 64 76 76
want 88 92 96 96 96
begun 100 100 100 92 92
wonder 100 96 96 96 96
rudder 96 84 88 88 88
win 88 88 84 88 88
two 92 92 92 92 96
shoe 64 96 100 100 96
toot 92 100 100 100 100
tattoo 84 96 96 100 100
toothache 100 96 96 100 100
cooler 100 100 96 100 100
tee 76 72 80 84 84
three 92 96 100 96 96
sce 92 92 96 96 100
Average 88.25 89.75 89.75 92.50 92.00

189

A. Badii et al.

Table 3. 4-tuple—linear-map-19 x 100-binary encoding

5 10 15 20 25
Class Statistics
one 89.6 928 944 95.8 96.6 Response
56.4 672 71.2 745 75.8 Min-response
744 80.6 839 874 88.7 Ave-response
2.3 0.7 -0.2 03 04 Margin
cooler 85.6 904 923 949 96.3 Response
49.7 584 66.0 68.9 70.2 Min-response
68.8 75.7 79.0 81.5 829 Ave-response
79 6.8 6.2 6.0 6.1 Margin

As training and testing progresses, the quantity D(j)—d(j) can be
averaged over the test samples to provide a progressive picture of how
training gradually reduces the margin of decision. Over a test set T of
samples we can define for each class j:

In the last four N-tuple experiments these statistics were collected to
provide a running picture of the extent to which each class could benefit

Margin = the average of D(j)—d(j) over T.

from further training.

Table 4. 4-tuple-random-map—19 x 100-binary encoding

5 10 15 20 25
Class % Accuracy

one 88 88 64 72 68
run 52 72 56 72 76
want 96 96 96 96 96
begun 100 100 100 96 96
wonder 100 96 96 96 100
rudder 96 84 84 84 88
win 92 92 88 92 88
two 92 92 92 92 96
shoe 60 96 96 96 96
toot 92 92 92 92 92
tattoo 64 88 100 100 100
toothache 100 96 92 92 92
cooler 100 84 88 9% 100
tee 76 56 43 72 68
three 84 92 92 9% 96
see 92 92 100 100 100
Average 86.50 88.50 86.50 90.25 90.75

190

Table S. 4-tuple-random-map—19 x 100-hinary encoding

Speech recognition

5 10 15 20 25
Class Statistics
one 90.4 93.8 95.3 96.3 96.9 Responsc
314 40.6 482 59.4 619 Min-response
63.2 70.6 75.0 80.9 829 Ave-response
35 1.8 04 03 03 Margin
coolcr 84.2 89.0 91.1 94.8 96.8 Response
322 404 494 52.1 53.7 Min-response
58.9 68.1 71.9 754 710 Avc-responsc
104 7.0 6.2 5.7 6.5 Margin

The experiments were conducted for both 4-tuple and 8-tuple
mappings over a wide range of threshold values (10- to S0-channel
intensity). It was found that the systems were rclatively insensitive to the
threshold for the binary encoding over this range, there being almost no
detectable difference in performance. We will present the results for a
threshold of 20 as being typical in Table 2.

For the 1-bit-4-tuple recognizers the RAM cost is 950 bytes per
discriminator, giving a total of 14.84 Kbytes for all 16 classes. However
the margin of decision decreases very rapidly as training progresses. We
give the worst and best case figures in Table 3.

Table 6. 8-tuple-linear-map-19 x 100-binary encoding

5 10 15 20 25
Class 9% Accuracy

onc 92 88 80 84 72
run 64 76 84 88 84
want 88 96 96 92 92
begun 96 96 100 96 96
wonder 92 96 92 92 92
rudder 96 88 88 88 88
win 84 92 92 96 96
two 100 100 96 92 92
shoe 68 88 92 96 96
toot 92 92 100 100 100
tattoo 80 96 100 100 100
toothache 100 100 100 100 100
cooler 100 96 100 100 100
tee 76 60 76 84 84
three 92 96 100 100 100
sce 72 76 88 96 96
Average 87.00 89.75 92.75 94.00 93.00

A. Badii et al.

Table 7. 8-tuple-linear-map—-19 x 100-binary encoding

5 10 15 20 25
Class Statistics
one 7.1 826 85.0 878 89.6 Response
308 40.7 46.6 529 554 Min-response
54.8 623 66.4 712 729 Ave-response
38 32 1.9 24 26 Margin
cooler 67.0 74.5 78.5 82.7 86.3 Response
25.3 32.1 38.3 403 413 Min-response
459 526 56.3 59.4 61.2 Ave-response
109 1.1 12.1 13.7 158 Margin

The result given in Table 3 is significantly better than the
corresponding results for the 4-bit encoding experiments, at a fraction of
the RAM cost. It provides evidence that the 4-bit systems were being
presented with excessive detail. We next compare the corresponding

performance with a random map (Tables 4 and 5).

Once again the linear map provides consistently better results. Turning
now to the 1-bit-8-tuple results we have (Tables 6 and 7).

For the 1-bit—8-tuple recognizers the RAM cost is 7.42 Kbytes per
discriminator, giving a total of 118.75 Kbytes for all 16 classes. The

Table 8. 8-tuple-random-map-19 x 100-binary encoding

5 10 15 20 25
Class % Accuracy

one 88 92 92 88 84
run 56 76 84 84 88
want 80 96 96 96 96
begun 100 100 100 100 96
wonder 96 96 96 96 96
rudder 96 88 88 88 88
win 92 96 96 96 96
two 92 96 92 96 96
shoe 52 76 92 96 96
toot 92 92 92 92 92
tattoo 56 88 96 100 100
toothache 100 100 100 100 100
cooler 100 88 88 92 100
tee 76 48 52 80 80
three 60 100 100 100 100
see 72 92 100 100 100
Average 81.75 89.00 91.50 94.00 94.25

192

Speech recognition

Table 9. 8-tuple-random-map-19 x 100-binary encoding

5 10 15 20 25
Class Statistics
one 71.1 80.1 84.6 87.3 89.0 Response
3.7 5.8 8.2 19.2 220 Min-response
31.8 39.0 449 50.8 53.5 Ave-responsc
7.5 7.1 43 4.1 33 Margin
cooler 55.3 66.1 70.4 76.2 824 Response
44 7.1 11.0 12.0 12.9 Min-response
23.8 316 355 38.7 40.7 Ave-responsc
18.0 16.9 16.0 18.6 221 Margin

results are somewhat better and, as one might expect, the margin of
decision decreases less rapidly as training progresses (Tables 8 and 9).

These final results are marginally better for the random map. This
suggests that ability to perceive the logical conjunction of several
formant features (in this instance an 8-tuple recognizer) is required before
the expected advantage results from attempting to extract features across
the time domain of a sliding FFT.

3.8 Comparative results using conventional time-warping

We next describe the results obtained with the original 16-word set but
using conventional time-warping-template-matching recognition.
Comparison of these results with those of the N-tuple recognition system
shows that, on the same data, 8-tuple sampling provided significantly
improved recognition accuracy.

3.8.1 DTW algorithm description

Assume, for the moment, that words are not finite temporally ordered
sequences of spectra but continuously time-varying, vector valued
functions. Suppose a(t), b(¢) (0 < t < T) are two words which we wish to
compare. We may define a metric at the level of primitive patterns as

D(a,b) = JT d(a(t),b(¢))dt,
(4]

where d is some suitable metric of spectral difference.

We know that very large local variations in the rate of articulation of a
word can be tolerated without compromising its intelligibility. This
suggests that a better metric should be largely invariant to changes of
timescale. One way to accomplish this is to define a function ¢(t) which
maps the timescale of b(t) onto that of a(¢t). Modifying the previous

193

A. Badii et al.

equation accordingly we obtain

D*(a,b) = minJTd(a(t), b(q(2))dt.
q 0

Essentially this is an instance of a classical variational problem whose
solution is found by solving the corresponding Euler-Lagrange
equation. However, D* must not be calculated with respect to an
arbitrary change of timescale; we must place some constraints on ¢ and
these complicate the problem so as to make it, in general, analytically
intractable. Fortunately, as Bellman has shown,’! a numerical solution
can be efliciently obtained by means of dynamic programming. It was
this line of reasoning which first led Vintsyuk'? to apply dynamic
programming to speech recognition, often called dynamic time warping.
The DTW algorithm described below is based on the work of Sakoe &
Chiba.!?

Let a, (1 <i<u), b; (1 <j<r) be sequences of spectral vectors. If
d(a; b)) is a suitable measure of distance between a; and b; the DTW
algorithm finds a path connecting (1, 1) and (i, r) such that the cumulative
distance is minimal, the guiding principle being that if a locally correct
decision is made at every point then a globally correct path will be found
(this is often obscured by specific implementations). If the current point is
(i,7), then we choose the next point (i’,j') by examining the three possible
paths as illustrated below:

(,j+1) (i+1,j+1)
(i,Tj)-——' (i+1,))
and choosing a path corresponding to the minimum value of
d(a; by). d(a; 4y, bj4 1), d(a; 41, b)),
where any point outside the rectangular region is omitted. The
cumulative distance D*(i,j) is then updated:
D*(i",j') = D*(i,j)+d(a;,b;), D*(1,1) =d(a;,b,).

The final value D*(u, r) provides a time normalized measure of distance
between a and b. When performing recognition the unknown a is
compared against every b in the vocabulary and assigned the class for
which D* is minimal.

3.8.2 Results using conventional DTW

The DTW algorithm compares two arrays ref (the template—vertical
axis) and unknown (the test sample—horizontal axis). Figs. 7 and 8 show
complete cumulative distance contours and an optimal path for two runs

194

Speech recognition

Figure 7 DTW for two different sample of ‘toothache’.

127

Figure 8 DTIW for time-aligned ‘toothache’ against reference.

195

A. Badii et al.

of the program. In Fig. 7 the word ‘toothache’ is compared with a
different sample of the same word. As a test of these routines a sample of
‘toothache’ was compared with the reference ‘toothache’ and the
resulting path used to warp the sample to conform to the reference. In
Fig. 8 a second DTW is then performed, comparing the time-aligned
sample against the reference; the resulting optimal path is, as expected, a
straight line; this acts as a good test of the code.

In applying the algorithm, only one template is used for each reference
word, but that reference is based on 5, 10, 15, 20 or 25 words taken from
the teach sample. For example, in the first experiment five samples of the
same word were selected. The first was taken as the basic refercnce and
the remaining four were time normalized against the first in the usual
way. In the sample vs. sample distance array so produced, each diagonal
path was used as a time-distorting function to normalize the sample
against the basic reference. Having eliminated as much time variation as
possible all five samples were then averaged to produce the single
reference.

It seems likely that one would get better results for DTW if each word
in the teach set were used as a separate reference rather than by
combining them as described above. However, the computational
overhead in recognition would be so high that it is diflicult to imagine a
real-time system performing in this way.

Table 10. DTW results

Training —»
5 10 15 20 25
Class % Accuracy
one 76 80 84 84 84
run 80 88 88 88 88
want 92 92 92 92 92
begun 100 100 100 100 100
wonder 76 20 76 76 76
rudder 100 100 100 100 100
win 88 92 88 88 88
two 76 76 84 80 80
shoe 80 92 92 92 96
toot 80 80 80 80 80
tattoo 60 64 64 64 68
toothache 92 80 88 88 92
cooler 100 100 100 100 100
tee 92 92 92 92 92
three 92 92 92 92 92
sce 100 100 100 100 100
Average 86.5 842 88.7 88.5 89.2

196

Speech recognition

It would appear that the techmque of averaging (tlme normalized)
templates does provide some progressive improvement in accuracy as the
number of templates increases—at least within the framework of this
experiment— but that this improvement is not great (Table 10).

These are good results, admittedly at enormous computational cost,
and emphasize the value of time normalization. Nevertheless,
comparison with Table 8 shows that an 8-tuple WISARD recognizer
(having no time normalization and, in principle, virtually zero
computational overhead) obtained significantly better results on the
same data. The inference would seem to be that if it were possible to
provide a WISARD recognizer with time normalized data, at reasonable
computational cost, the resulting system should have a remarkably good
performance. This was confirmed by a later set of experiments.

3.9 Summary of results and conclusions

In this initial series of experiments in the application of N-tuple sampling
to the problem of speech recognition some interesting lessons were learnt
(Table11).

These experiments demonstrate that under the most unfavourable
conditions (noisy rhyming test utterances from a naive speaker, no pre-
emphasis, no signal conditioning, no time or amplitude normalization)
N-tuple sampling, applied to single-speaker isolated-word recognition
with a 16-word diagnostic vocabulary, yields an improvement in
accuracy of around 5% (in the range 90-100%) over conventional DTW
using the same data.

Table 11. Summary of results

Data
bits per RAM per %

Tuple Encoding channel Mapping word (bytes) Accuracy

4 Linear 4 Linear 38K 90*

4 Linear 4 Random 38K 88

4 Thermometer 4 Linear 38K 79.75

4 Thermometer 4 Random 38K 80.50

4 Gray 4 Linear 38K 90*

4 Gray 4 Random 38K 87.25

4 Binary 1 Linear 950 92

4 Binary 1 Random 950 90.75

8 Binary 1 Linear 742K 93

8 Binary 1 Random 742K 94.25

8-bit per channel — 19 channel DTW 89.20
®identical.

197

A. Badii et al.

With amplitude normalization and active range encoding of the
pattern vectors a further improvement can be expected to result.

Moreover, a WISARD implementation of N-tuple sampling has
virtually no computational overhead (as compared to the high
computational cost of DTW, or other recognition paradigms), and can,
in principle, be built so that the response time is independent of the
number of classes.

A [further advantage of this paradigm is that for a real system
discriminator responses monitored continuously can provide whole
word recognition of connected speech without the necessity for
segmentation.

4. Vowel detectors
4.1 Introduction

A desirable goal for a speech recognition system would be to identify
phonemic segments of continuous speech accurately. Phonemic
recognition need not be exccedingly accurate; accuracies around 80%
might well suffice, since relatively simple linguistic knowledge based
systems can detect something approaching 609 of randomly induced
errors in a phonemic stream of English utterances (Badii, Hui & Jones—
in preparation). Phonemic rule based error detection can also be
enhanced to provide some degree of error correction. Higher levels of
syntactic, semantic and contextual knowledge might then be used in a
similar fashion to process the phonemic stream into text. Such a system
could in principle cope with an unlimited vocabularly, in contrast to the
limited vocabulary word recognition systems currently in use.

Certainly the goal of speech recognition must be beyond isolated word
recognition towards the effective recognition of continuous speech.
Systems such as COHORT and TRACE (see [14], Chapter 15, for
example) point the way but do not promise cheap implementation in the
medium run.

Despite the fact that some authors'® report correct segmentation of
continuous speech into phonemes with up to 979, accuracy, Rumelhart
objects to segmentation before recognition:

Because of the overlap of successive phonemes, it is difficult, and we
believe counterproductive, to try to divide the speech stream up into
separate phonemes in advance of identifying the units. A number of
other researchers (eg Fowler, 1984; Klatt, 1980) have made much the
same point. ([14], pp. 60-61)

Rumelhart prefers the approach of allowing the phoneme identification

198

Speech recognition

process to examine the speech stream for characteristic patterns, without
first segmenting the stream into separate units.

It is interesting that either approach is practical usinga WISARD-type
device. The advantage of prior segmentation is that it permits some
degree of time normalization before presentation to the recognizer, and
work at the Pattern Recognition Laboratory at Brunel University has
shown that a very considerable improvement in recognition occurs if
WISARD is presented with time-normalized data.

We may define a static pattern recognition system to be one which
stores its training experiences in memory and refers to memory in seeking
to classify unknown patterns. This contrasts with a dynamic system
which continually undergoes state transitions and whose output depends
on the current (and possibly previous) state(s) and the input rather than
the input alone. While, dynamic pattern recognition systems are of
considerable interest, the current thcoretical situation is largely
speculative and it seems likely that it will be some time before any
practical system for vision or speech will be realized along these lines.

In a static pattern recognition system the goal is to optimize the map
between input patterns and memory while preserving the real-time
performance and keeping training to a minimum. In applications such as
speech, the situation is rendered more difficult by the fact that the
significant fzatures of the signal are not really well understood. Without
feedback, WISARD is a static model which makes no « priori
assumptions about the input patterns and is easily implemented to give a
suitable real-time performance.

As we have observed, WISARD is very simple and fast to train,
provided one has suitably labelled samples ol each class.

This last requirement creates serious logistical problems in applying
static pattern recognition models to speech at a level below whole words.
The speech signal must be examined visually and acoustically by a
human operator who defines the boundaries of & segment which
hopefully represents an example of the particular class. This sample can
then be used for training or testing. Since many such samples are required
for each class the construction of a suitable database is a very time
consuming process. However, once such a database has been prepared it
can be used for many diflcrent experiments and can enable dircct
comparison of different algorithms on identical data.

The experiments reported here were restricted to vowel detection for a
single speaker.

4.2 Vowecl detection using multiple discriminators per vowel

The words were pronounced in word pairs which instantiated the same

199

A. Badii et al.

vowel in an attempt to obtain the coarticulative effects which would
normally be present in continuous speech.

The sample speech was collected and passed through a 16-channel
filter bank to produce frequency domain data. The frequency
information was in 5-ms steps.

For both the training and test phases it was necessary to create a
parallel file containing an indication at each step as to which class the
Sms sample corresponded (or to no class). This second file was hand
crafted and identification was accomplished by traversing the time
domain data in small steps while playing back progressively nested
samples through the D-to-A. Consequently, there is an element of
subjectivity inherent in this identification process. One variant of each
vowel was selected, these were:

A asin fAte
E as in mEt
I asin blt
O asin gOat
UasindUe

The Concise Oxford English Dictionary was used as a guide in defining
which vowels were to be expected in the pronunciation of each word. It
should be noted that various dictionaries are by no means in agreement
as to the precise quality of each vowel that occurs in a given word and, of
course, there is considerable variation between speakers.

In an attempt to deal with the fact that samples of a given class are
liable to considerable variation of duration, each vowel segment in the
training frequency data (once identified as above) was, in this initial
experiment, linearly scaled to a uniform duration in order to fit a
standard 16 x 16 8-tuple WISARD retina with one thresholded bit per
pixel.

The variation in the vowel lengths was typically from 45 to 250 ms.
Although we actually know how long the vowel samples are in the test
phase, we cannot use this information during recognition, since the
ability to cope with such variation is intrinsically part of the recognition
process.

To deal with this we used six different scale factors. The incoming
sound was placed in a buffer long enough to accommodate at least
250 ms (the longest observed vowel length). Every Sms this bufler was
updated and six snapshots of differing lengths were presented to the
WISARD recognizer. The classifiers with their different scale factors were
treated as though they were separate classes so that during testing the
highest responses would hopefully detect both the correct vowel and its
duration.

200

Speech recognition

Table 12. Six discriminators for duration per class

Percentage recognition accuracy

Vowel Duration and class Class only
A 23.1 615
E 29.2 542
I 370 59.3
o 42 542
U 318 81.8
Average 252 61.8

4.2.1 Results and conclusions

As Table 12 might suggest, a confusion matrix for response against class
and duration shows that correct classification of class was more reliable
than correct classification of duration within the class. This is probably
explained by the fact that estimating the vowel duration while preparing
both the training and test data-classification file is a difficult and rather
imprecise affair.

A second confusion matrix looking only at response against correct
class is probably more significant and is given in Table 13. In general
terms the idea is to present a sliding window of the frequency domain
data from the test utterance to the WISARD net and determine whether
the vowel discriminator responses are detecting the embedded vowels.
Fig. 9 summarizes the result of one such simulation and consists of four
traces. The top two traces indicate the strength of response and the
confidence (the difference between the best and second-best classifica-
tions) for all window positions. The next trace details which vowel was
producing the largest response as the words slid past the window. The
bottom trace indicates where the vowel was found by the experimenter.

From these results it can be seen that single-speaker vowel detection
from within continuous speech can be performed by a WISARD net
using spectral energy data with a reasonable degree of accuracy.

Table 13. Confusion matrix for class response

Classified as —
A E I o U
A 23 4 6 1 6
E 3 14 7 2 -
Actual class I 1 1 16 — 12
(0] 20 - 1 15 1
U 1 4 7 - 30

201

A. Badii et al.

confidence

§g

response

0%

U

o

i P

E

A

1]

(o)

‘ pry

E

A [—
gh § © o Ft] ng

Figure 9 Summary of continuous response.

However, it should be emphasized that we are only altempting to
recognize one particular type of each vowel quality.

It is possible to envisage a number of improvements in the experiment
described above. For example, most of the energy in vowels is
concentrated in the lower frequencies. Therefore a suitable pre-emphasis
profile would no doubt improve the reliability of such a system.

The significance of these preliminary vowel detection results is
to demonstrate the feasibility of using WISARD nets to recognize
significant speech fragments within words of connected speech, but the
results would be more interesting if generalized to a comprehensive set of
building blocks such as phonemes or phoneme-like fragments.

4.3 Breeding vowel detectors using Holland’s genctic algorithm

Given that the initial mapping from the retina to memory, that is, the
assignment of N-tuple bits across the retina is random, the question
arises as to whether the mapping can be improved for a particular type of
application. For example, if the task were face recognition, then a better
performance might be expected if the N-tuples were sampling more
densely in that area of the retina where significant features such as the
eyes, hairline, and mouth are presented.

202

Speech recognition

As a vowel detector, a relatively difficult task, WISARD gives a
reasonably creditable performance considering the lack of time
normalization. Across the five classes, as we saw in the preceding section,
typical recognition accuracies exceed 507, and in particular classes are as
high as 80%, as against the expected 20%.of pure chance. Of course,
carefully crafted vowel detectors can do much better than this, Jassem'®
reports accuracies of 92-97% in his review of speech recognition work in
Poland. However, WISARD is a very simple recognition paradigm and
the question addressed by the present experiment is: by how much the

time (5 mssc steps)
112lalalsle}2]8]o]oli]i2]1afia]1s{18]17 J18 19|20
Y 2y
§)
d e
§ 8]
g
£ 101 / /
h21 \ /
141 v / /
1 4
1] ¢ /
he1| / L/ A
-
of 1Y ,
221 I\ W X
24" II \ ‘l’/ ‘/,
" r’ ‘ I/ ”‘v/ ’ /’,
/ . 7
E‘ ‘I b 'l /' 1‘ﬂ
' LA
{1ho1 @113111!ltll
e oo orisprapraprepreprrprepeg
i/ / / S s
I’ / /A e Ve
Do/ i s

/ / l,’ / //
/I '/,/A/
mapeing [1o{ o8 foosjrepprspoepsrfaz| | |] | | | e L LTI

swes1 o1 oo [[|1 ool l

L—-S—tuph #1—.L__-a_mp|.n_>| © e L——a-mpum—ol
Figure 10 Representing mappings as strings.

A. Badii et al.

performance can be improved using Holland’s genetic algorithm to ‘breed’
better mappings?

Holland’s algorithm® was chosen because it is a very powerful adaptive
search technique and because the mapping from retina to N-tuples is
easily described as a string: each position on the retina is numbered and
each block of N such numbers in the string describes the mapping for a
particular N-tuple, see Fig. 10. This is a particularly pleasant situation,
because the usual difficulty with genetic algorithms is representing the
objects being optimized as strings in such a way that after using a genetic
operator, eg mutation to alter an element, the resulting string still
represents a valid object. In the present case this is not a problem since
any string of integers in the correct range (in this case [1,320]) represents
a valid mapping.

4.3.1 Holland’s genctic algorithm

Simulated evolution had been tried before Holland with extremely poor
results. All of these were based on the ‘mutation and natural selection’
model of evolution. Holland's genetic algorithms are based on a ‘sexual
reproduction and selection’ model: his principal operator is crossing-
over, that is, the creating of a new object for the next generation by
combining parts from two independent objects in the current generation.
Mutation plays a minor role in genetic algorithms.

Many experiments have been done with genetic algorithms, and they
have proved to be remarkably effective and robust learning systems. For
the most part they have been tested as function optimizers, where the
objects in a generation are ‘numbers’ and their survival-reproductive
value is given by the function whose maximum we wish to find.

One of the most interesting aspects of genetic algorithms is that they
not only find the optimum object, but in doing so they discover
properties that are common to many near-optimal objects (so-called
higher-order schemata). In some instances, this information is at least as
valuable as the optimum itself.

As the name ‘genetic algorithm’ suggests, the inspiration for Holland's
work is taken from an analogy with biological systems. The mathematics
of genetic evolution is now a very sophisticated tool which has changed
our perception of how the evolutionary process works. For example, it is
now known that simple mutation alone is insuflicient to explain the rate
of biological adaptation. Instead, mutation plays the role of background
‘noise’ which, by occasional random perturbation, prevents a specie from
becoming frozen at a local optimum. Other factors explain the rapid rate
of adaptation.

Holland constructs adaptive plan programs based on the following
basic ideas. We are given a set, A, of ‘structures’ which we can think of in

204

Speech recognition

the first instance as being a set of strings of fixed length, / say. The object
of the adaptive search is to find a structure which performs well in terms
of a measure of performance:

v: A — real numbers = 0.

We have so far a knowledge base of competing structures and measure v
of the observed performance of generated structures. For example, if the
problem were one of function optimization the structures, or strings,
could be the binary expansion of a real number to some fixed number of
places, and the function v could be the function to be maximized. Then v
evaluated at the real number represented by a string would be a measure
of the string’s fitness to survive.
Representing strings as

a(Da(2)a(3)...a(l) (a(i) =1 or0),

we can designate sub-sets of 4 which have attributes in common, these
are called schemata, by using ‘*’ for ‘don’t care’ in one or more positions.
For example,

a(l)*a(3)**...*

represents the schemata of all strings with first element (1) and third
element a(3), all other elements being arbitrary. Thus any particular
string of length [is an instance of 2' schemata. If / is only about 20 this is
still over a million schemata. An evaluation of just one string therefore
yields information about a large number of schemata.

The next ingredients of Holland’s model are the operators by which
strings are combined to produce new strings. It is the choice of these
operators which produces a search strategy that exploits co-adapted sets
of structural components already discovered. The three principal
operators used by Holland are crossover, inversion, and mutation.

Crossover
Proceeds in three steps:

(1) Two structures a(l}...a(l) and b(1)... b(l) are selected at random
from the current population.

(2) A crossover point x, in the range 1 to I—1 is selected, again at
random.

(3) Twonew structures:

a(l}a(2)...a(x)b(x+ 1)b(x+2)...b(I)
b(1)b(2)...b(x)a(x+ Da(x+2)...a(l)

are formed.
In modifying the pool of schemata, crossing over continually

205

A. Badii et al.

introduces new schemata for trial whilst testing extant schemata in new
contexts. It can be shown that each crossing over affects a great number
of schemata.

Inversion
For some randomly selected positions x < y in the string we perform the
transformation:

a(l)a(2)...a(l) = a(1)...a(x)a(y—1aly—2)...a(x+1)a(y)...a(l).

Inversion increases the eflectiveness of crossover by promoting close
linkage between successful alleles (instantiations of string components).
Linkage occurs when co-adapted alleles are close together in the
genotype, thus reducing the probability that the group will be separated
by crossover. This requires an order [ree string representation and a
mechanism for making strings homologous before crossover (see [9]
p- 109). The eflects of inversion are only apparent over a relatively long
time scale, ie a large number of generations. For the purposes of the
present discussion inversion may be ignored; our inversion was merely a
rather brutal mutation.

Mutation

Each structure a(l)a(2)...a(l) in the population is operated upon as
follows. Position x is modified, with probability p independent of the
other positions, so that the string is replaced by

a(l)a2)...a(x—1)za(x+1)...a(l),

where z is drawn at random from the possible values. If p is the
probability of mutation at a single position, then the probability of &
mutations in a given string is determined by a Poisson distribution with
parameter p. Mutation is a ‘background’ operator, assuring that the
crossover operator has a full range of alleles so that the adaptive plan is
not trapped on local optima.

The basic paradigm of a program of this type is as follows:

(1) Randomly generate a population of M strings
S(0) = {s(1,0),...,s(M,0)}.

(2) For each s(i,t) in S(t), compute and save its measure of utility
v(s(i, 1))
(3) Foreach s(i,z) in S(¢) compute the selection probability defined by

p(i,t) = v(s(i,t))/(sum overi of v(s(i, 1))).
(4) Select a string s(j, t) in S(t) according to the selection probabilities:
e apply crossover with probability P_ to s(j,t) and s(j’,t), where s(j’,t) is

206

Speech recognition

again selected from S(t) according to the selection probabilities; select
one of the two resultants (equally likely) and designate it s(k, t);

e apply simple inversion with probability P; to s(k,t). Designate the
result s(k, t);

e with probability P, (small) apply mutation to each element of s(k, t).
Designate the result s(k, t).

(5) randomly select a string in S(t), where each string is equally likely
to be selected (probability 1/M), and replace the selected string by s(k, t).

(6) Compute t(s(k,t)) and replace the corresponding element in the
saved array of values of v.

(5) Goto 3.

The main advantages of this adaptive strategy are:

(a) It concentrates strings increasingly towards schemata that contain
structures of above average utility.

(b) Since it works over a knowledge base (i.e. the population of
structures) that is distributed over the search space, it is all but immune to
getting trapped on local optima.

4.3.2 Optimizing the \WWISARD mapping

Cavicchio!” first suggested that genetic algorithms might be used for the
selection of suitable detector sets for pattern recognizers. However,
Holland’s theoretical work® was based on representations of solutions as
strings, where each component of the string has a precise, position-
dependent meaning. WISARD mappings as solution strings (in common
with many other pattern detectors) substantially lack thesc semantics of
position. Brindle discusses the problem of set representation for the
application of genetic algorithms.'®

The patterns used in training and testing the WISARD simulation
consisted of 100 ms of speech data arranged on the retina as 20 columns,
each representing successive 5-ms segments, by 16 rows corresponding to
a 16-channel filter bank. The imaged data therefore represented a 100-ms
sample of speech in the frequency domain.

A WISARD model with N =8 was used. Strings representing
mappings therefore consist of 40 x 8-tuple = 320 elements, integers in the
range 1-320, sce Fig. 10. Unlike many WISARD experiments the
random maps used were not 1-1, ie were not necessarily permutations of
the integers 1,2,..., 320.

To provide a population 50 random strings were generated at the start
of an experimental run. The mapping defined by each string was used to
train and then test WISARD. The results of testing provide the necessary
information from which a measure of fitness can be calculated for each
string. By far the most computation time is spent on training and testing
in order to calculate the fitness.

207

A. Badii et al.

Each new string generated by the algorithm therefore requires a
complete train and test sequence, typically 40 or 50 training examples per
class and around 25 testing samples. It was decided to set the maximum
number of iterations to 2000. Even so, each experimental run took
around one week on a SUN workstation. With present levels of readily
available technology, processing speed and memory, limit the scope of
such experiments considerably.

In this context it is instructive to reflect upon the size of the search
space. There are 32032° possible strings, ie around 103°!. Although there
are a number of equivalence relations between strings, eg it does not
matter in which order the diflferent 8-tuples are placed in the string, or in
which order the individual elements of the 8-tuples are placed (these two
together effect a reduction by at most a factor of 10°2), these do not
substantially affect this figure. Generously, assuming a computer capablc
of testing 10'° strings per second it would take approximately 10732
years, a time vastly exceeding the estimated age of the universe (a
generally accepted upper bound for which is 1.2 times 10'! years) to
search the entire space exhaustively.

4.3.3 Experimental procedure

The sample speech was collected in the time domain as word pairs, in an
attempt to produce some co-articulation effects, and passed through a
16-channel filter bank to produce frequency domain data which was also
saved. The frequency information was in S-ms steps and stored on 2 VAX
11-750 as a file of unsigned bytes.

For both the training and test phases it was necessary to create a
parallel file containing an indication at each step as to which class the
Sms sample corresponded (A, E, I, O, U or ‘no class’). This second file
was hand crafted and identification was accomplished by traversing the
time domain data in small steps and inspecting a defined area of the file
both visually and acoustically.

Variation in vowel length was typically from 45-250ms, but most
vowels tended to be around the 100-ms mark—hence the choice of
100 ms for the retina. No attempt was made to time normalize the data.
Other experiments, mentioned earlier, using time normalized training
and test data suggest that time variation is the principal limitation on
accuracy for this type of task, and we were interested to see to what extent
the techniques discussed here could accommodate to this problem. Yet
another reason for this decision was that if the initial recognition
performance were too good it would not be possible to observe the
improvements, if any, effected by the genetic algorithm.

Below is a summary of the vowel sounds used in the word set (in British
‘English’ as opposed to N. American ‘English’).

208

Speech recognition

Vowel Number in training Numbecr in testing
A asinfAte 47 26
E asin mEt 46 24
lasinblt 53 27
O asin gOat 52 24
UasindUe 40 22

Total storage of the speech data in the frequency domain occupies about
10 Mbytes.

As a final stage in pre-processing the data, the 16 unsigned bytes
(0-255) at each 5-ms step, each byte representing the intensity of activity
in a frequency channel, were converted to a single thresholded bit.
Obviously in doing this, much of the original information is lost, but
speech recognition involves selective data reduction on a massive scale
and generally we have found that it is the presence or absence of activity,
rather than the intensity, which is significant in a particular frequency
channel.

To determine appropriate thresholds we calculated arithmetic means
for each class at each of the 16 frequencies over all the samples in the
training data. The processing of sample data in the experiment proceeded
by replacing a particular unsigned byte by 0 if its value was lower than
the corresponding threshold and by 1 if the value was greater than the
threshold.

Given the size of the retina, 320 pixels, the 8-tuple system requires one
set of 40 256-bit (eight address lines) RAMs for each of the five classes; a
mere 1280 bytes per recognizer or 6400 bytes altogether. One could
improve the performance of such a system by increasing the retinal
coverage, which is not in any event 1-1, and using more RAM. However,
in the context of the present experiment this would increase the length of
the string required to describe the mapping, exponentially increase the
size of the search space and significantly reduce the rate of convergence.
Since 50 WISARD systems are used (recall the population consists of 50
strings) in the experiment the total memory required for RAM is 312.5
Kbytes.

Twenty time slices of data from the frequency file were written onto the
retina and moved up one column at each stage. Training and testing were
done when the first column of the retina was positioned at the start of a
vowel as indicated by the parallel file.

The genetic algorithm, as sketched above, was applied to a population
of 50 strings with operator probabilities of

P.=0.06, P, = 0.06, P, = 0.005.

209

A. Badiiet al.

Two different measures of utility were tried:

(i) The first measure was chosen to select for ‘orthogonality’ of
discriminator responses, ie two conflicting requirements on each
discriminator, a high score on samples from the correct class and a low
score on samples from other classes, were combined into one global
measure of utility across all discriminators. We do this as follows.

For a given mapping M if r(i, j) = O is the score of discriminatori,on a
sample from classj, 1 < i,j < 5, normalized to the range [0, 1], then

cos A = r(j,j)Jr(1, D*+r2,)2+ ... +r(5, j))

is a measure of how far from ideal (cos 4 = 1) is the response of the whole
system to the sample from class j; it measures the angle A between the
vector of discriminator responses and the ideal vector. Let the average of
cos A for a singleclass jover the test samples be C(j). Then we define

UM) = (C(1)-1 C(2)+ ... + C(5))/5.

This is taken as the measure of utility of the mapping M; M would be an
ideal mapping if U(M)= 1. We note that any positive monotonic
transformation Q(U) of this function will also correctly measure the
utility of M.

(i) The second measure of utility was less subtle. In this case the strings
were bred simply to maximize the average accuracy of discriminator
responses across all classes. Thus for any particular mapping M the
response 1o the test samples in class jcan be taken as

N./T;

where N, is the number of correct classifications and T; is the total
number of test samples in class j. This figure averaged over all classes j
gives a measure of utility V(M) for the mapping M. Once more, M is
ideal if V(M) = 1.

We found the adaptive search procedure worked more efliciently if a
posilive monotonic transformation was carried out on the utility
measure in order to increase the probability of a superior string
contributing to the next generation and decrease the probability of an
inferior string contributing to the next generation. To do this we based
the probability of selection on utility raised to the power 16.

4.3.4 Summary of results

Orthogonality

Fig. 11 shows the measure of orthogonality across 2000 generations
(iterations). Breeding for orthogonality is a more difficult task than
merely breeding for accuracy. However it can be argued that this might
be more important in a real system which is scanning continuously rather

210

Speech recognition

T orthogonality

osl 409
0.8 -0.8
0.7¢ ~40.7
06| e -~ 0.6
05} <405
04} Joa
03} -4 03
02} 402

generation
0.1} —_— -40.1
| | |
500 1000 1500 2000

Figure 11 Breeding for orthogonality.

than just looking at test vowels, since it may help to suppress spurious
discriminator response to features that do not discriminate vowels, ie
increase selectively. In fact we found that, although there was measurable
improvement in orthogonality, from 0.583 51 to 0.638 75, this did not
correlate well with accuracy (which decreased).

Accuracy

In Fig. 12 the average percentage accuracy across all classes, for the best
string, is plotted against the current generation. The improvement is
significant but not startling—an improvement from 58.7-65.3%, across
2000 generations. Broken down across classes the results were as shown
in Table 14. Examination of the best string of the search showed that the

Table 14. Effect of Holland's yenetic algorithm

Percentage recognition accuracy

Vowel Initial best string Final best string
A 61.5 65.4
E 37.5 45.8
1 59.3 63.0
o 62.5 75.0
U 72.7 773
Average 58.7 65.3

211

A. Badii et al.

90
80

70

s0f
4ot

30

104

Tacauacy

generation
——

Figure 12 Breeding for accuracy.

pixels selected for the 8-tuples were evenly scattered over the retina. No

500

1000

1500

90

80

70

50
40

30

20

10

specific frequencies or time slots seemed to be particularly favoured.

The overall effect across the entire population, rather than individual
best strings, can be observed in the histograms of Fig. 13. The top row
represents the initial performance, on each vowel, of the entire

A

Figure 13 The overall effect on the entire popidation.

212

Ty

Speech recognition

population. Horizontal divisions are percentage accuracies in the ranges
0-10, 10-20,...,90-100. The vertical scale represents frequency (total—
50 strings in each case). Note there was one initial string giving a
recognition in the range 70-80%, for A (presumably a worse performance
on other vowels) but in the final population no such string existed. This
results from breeding for arverage accuracy across recognition classes.
How significant is this improvement in accuracy compared with that
which might be expected from a random search through 2050 strings?

Assuming that the distribution of average accuracy across the
population of random strings is normal (an assumption reasonably in
accordance with the observed facts) we can approximately gauge the
efficiency of the search as follows. We first calculate the mean, A, and
standard deviation, S, for the initial population of average accuracies and
then compute

(B—M)/S,

where B is the average accuracy for the best final string. The figure
obtained was 3.92 standard deviations.

The probability that at least one string is as good, or better, than the
best string found after a random search through 2050 strings is

1 —(Area to left of 3.92 on normal distribution)2°3°,

ie approximately 0.1. By this measure the genetic algorithm was about
ten times more efficient than an exhaustive search,

number of pixels number of pixels
— 128 ~
112 B .
) 2% .) —
best initial string 80 best final string]
64 —
48 —
32 —

L1 116

01t 23 45686 7 8 012 3 46567 829

number of times pixetl addressed number of times pixel addressed
Addressed | 0 1 2 3 4 5] 7 8 9
Initial 119 120 53 19 8 1 0 1} 0 0
Final 115 122 62 15 4 1 0 0 1 0
Poisson 118 118 59 20 5 1 0 0 0 0

Figure 14 [Initial and final distributions of pixel addressing.

213

A. Badii et al.

We were interested to see if there was a significant change in the
distribution of frequency with which individual retinal pixels are
sampled. Given an initially random selection of pixels one might expect
the frequency with which an individual pixel is addressed to be Poisson
with mean 1. In Fig. 14 the initial and final distributions for the best
strings are given and compared with the expected Poisson distribution.
From this it can be seen that no significant shift occurred after 2000
generations.

If there were a performance advantage to be gained from a 1-1
mapping one would expect the number of pixels addressed zero times to
decrease with the number of generations, whereas Fig. 14 shows that this
effect did not occur in any significant way.

4.4 Conclusions

If we compare the results of the multiple discriminator per vowel
experiment with the genetic algorithm experiment, some interesting
points emerge.

Vowel A E 1 (0] U

MDYV 61.5 542 59.3 54.2 81.8
IGA 61.5 375 593 62.5 72.7
FGA 65.4 45.8 63.0 75.0 773

MDYV = multiple discriminators per vowel.
IGA = initial performance in genctic algorithm experiment.
FGA = finul performancce in genctic algorithm experiment.

The ‘most diflicult’” vowel E and the ‘easiest’ vowel U have plainly
benefited in the first vowel experiment from having discriminators
trained over a variation of timescales. On the other hand, the genetic
algorithm was able to tailor a single mapping Lo compensate to a
significant degree for variations in rate of articulation of these vowels.

However, while some improvement in average accuracy of recognition
across classes can be effected using genetic algorithms, the bunching of
the population in the histograms of Fig. 13 demonstrates that for each
vowel there is a definite limit beyond which no improvement can be
expected using a single mapping for all classes. Indeed, from Fig. 13, we
can roughly estimate the upper bound for average accuracy for this
system as lying in the range 72-82%,.

The evidence seems to suggest that the principal reason for this upper
limit in performance is the time variation in the samples uscd. By using a
separate mapping for each class the results using genetic algorithms may
wcll improve to the point where it would not be necessary to have

214

Speech recognition

multiple discriminators per class. However, once the extra overhead of a
separate mapping for each class is accepted, then other, simpler,
possibilities exist for optimizing mappings which should be explored first,
possibly keeping the genetic algorithm in reserve for fine tuning at the
final stage.

Certainly genetic algorithms offer considerable gains in efliciency over
exhaustive search in tailoring pattern recognition systems operating on
real data. The improved mappings produced by the genetic algorithm
showed no tendency to become 1-1. We found this an interesting
observation but hesitate to draw a general conclusion.

Acknowledgement

The authors gratefully acknowledge the support of British Telecom
Research Laboratories R 18.3.2, Martlesham, under contract number
MSP3231A/25 Control 318028, for major parts of the work described in
this chapter. We are also indebted to IEE Proceedings for kind permission
to reproduce much of [2].

References

1. Bledsoe, W. W. & Browning, I. Pattern recognition and reading by machine, Proc.
Eastern Joint Computer Conf. (Boston, Mass: 1959).

2. Binstead, M. J. & Jones, A. J. A design technique for dynamically evolving N-tuple
nets, IEE Proceedings, Vol. 134, Part E, No. 6, pp. 265-269 (November, 1987).

3. Minsky, M. & Papert, S. Perceptrons— An Introduction to Computational Geometry
(Cambridge Mass: MIT Press, 1969).

4. Aleksander, I. & Stonham, T. J. A guide 1o pattern recognition using random-access
mcmorics, I EEE Journal Computers and Digital Techniques 2(1), 29-40 (1979).

5. Kohonen, T. Self-Organisation and Associative Memory (Berlin Springer Verlag,
1984).

6. Barto, A. G. & Sutton, R. S. Goal Seeking Components for Adaptive Intelligence: An
Initial Assessment (Untversity for Massachusctts, Amhurst: Tcchnical Report no.
AFWAL-TR-81-1070, 1981).

7. Fish, A. N. The conformon: a synaptic modcl of learning (Ph.D. thesis, University of
Manchester, Department of Psychology, 1981).

8. Tattershall, G. D. & Johnson, R. D. Spcech recognition based on N-tuple sampling,
Proc. Spring. Conf. Inst. Acoustics Swansea, Vol. 9, No. 2 (April, 1984).

9. Holland, J. H. Adaptation in Natural and Artificial Systems (University of Michigan
Press, 1975).

10. Holmes, J. N. The JSRU channel vocoder, IEE Proceedings, Vol. 127, Part F, No. 1,
pp- 53-60 (February, 1980).

{1. Bellman, R. E. Dynamic Programming (Princeton University Press, 1957).

12. Vintsyuk, T. K. Element by element recognition of continuous speech composed of
the words of a given vocabulary, Kibernetica 2, 133-143 (1971).

13. Sakoc, H. & Chiba, S. A dynamic programming approach to continuous spcech
recognition, Proc. of Int. Cong. of Acoust., Budapest, Hungary, pp. 200-213(1971).

14. McClelland, J. L. & Rumecihart, D. E. (eds) Parallel Distributed Processing, Vol. 2
(Cambridge Mass: MIT Press, 1986).

215

A. Badiiet al.

15.
16.

17.

216

Leszck, Kot. A syntax-controlled scgmentation of speech on the basis of dynamic
spectra, Int. Conf. on Acoustics, Speech and Signal Processing, pp. 2015-2017 (1982).
Jassem, W. Specch recognition work in Poland, Chapter 23 of Trends in Speech
Recognition (Prentice-Hall, pp. 499-511, 1980).

Cavicchio, D. J. Adaptive search using simulated evolution (PhD thesis, University of
Michigan, 1970).

. Brindle, A. Genetic algorithms for function optimization (PhD thesis, University of

Alberta, 1980).

