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Abstract 

This paper describes a genetic algorithm for solving 
the minimum span frequency assignment problem (MS­
FAP). The MSFAP involves assigning frequencies to 
each transmitter in a region, subject to a number of con­
straints being satisfied, such that the span, i.e. range of 
frequencies used, is minimised. The technique involves 
finding an ordering of the transmitters for use in a se­
quential (greedy) assignment process. Results are given 
for several practical problem instances. 

1 Introduction 

The management of the radio spectrum would be 
eased if frequencies could always be assigned for a 
particular purpose in an optimum or near-optimum 
manner. However, the assignment of radio frequen­
cies for problems of a practical size remains a con­
siderable challenge. 

The primary objective in minimum span fre­
quency assignment is to assign radio frequencies to a 
number of transmitters subject to a number of con­
straints, such that no interference is suffered, and 
the range of frequencies used, i.e. the difference be­
tween the largest and smallest frequency used, is 
minimised (this is the span of the assignment). The 
general assignment problem is classified computa­
tionally as NP-hard. Hence, there is no known al­
gorithm that can generate a guaranteed optimal so­
lution in an execution time that may be expressed 
as a finite polynomial of the problem dimension. 

Computing methods based on exact algorithms 
and graph theory are successful for small problems 
but out of the question for large problems. Methods 
based on the so-called sequential heuristics, which 
mimic the way the problem might be solved man­
ually, are fast enough for large problems but give 
results which are well short of the best possible. 

The purpose of this paper is to explore the pos-

sibility of combining a genetic algorithm with se­
quential assignment methods. Traditionally, meta­
heuristics have been applied to an initial solution 
consisting of an assignment of frequencies to trans­
mitters and then attempting to minimise the num­
ber of constraint violations [2, 4, 8]. Here, the itera­
tive transformations are applied to permutations of 
transmitters. A simple sequential assignment algo­
rithm is then applied to each of these permutations 
to produce an allocation of frequencies that does 
not violate any constraints. 

1.1 Interference and Constraints 

In order to model interference, constraints are im­
posed on the assignment. Pairs of transmitters can 
interfere with each other when the assigned frequen­
cies are the same or close together. This can hap­
pen when transmitters are at the same location or 
within a few tens of metres of each other (co-site 
interference), or when equipment is at a distance of 
several kilometres or more (far-site interference). 

The constraints are due to the following inter­
ference mechanisms and can be expressed in terms 
of equalities or inequalities involving no more than 
four frequencies. 

Co-channel and Harmonic constraints: This is 
the most important factor in the consideration of 
far-site interference. A pair of transmitters located 
at different sites must not be assigned the same fre­
quency, or harmonics of each other, unless they are 
sufficiently geographically separated. This gives rise 
to constraints of the form: 

fi f:. n/j for n = 1,2,3, .... 

When n = 1 we have a co-channel constraint. 

Adjacent channel constraints: When a transmit­
ter and a receiver are tuned to similar frequen­
cies (normally within three channels of each other), 
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there is still the potential for interference. There­
fore a number of constraints arise of the following 
form: 

Iii -hi> m 

for some value of m, where m is the number of chan­
nels separation. 

Co-site frequency separation: Any pair of fre­
quencies at a site must be separated by a certain 
fixed amount, typically, for a large problem, 250 
kHz or 5 channels. If a channel is to be used by a 
high power transmitter then its frequency separa­
tion should be larger, say 500 kHz or 10 channels. 
The constraint can therefore be of the form: 

Iii -hi 2: m 

where m refers to the number of channels separation 
required between transmitters i and j. 

Other types of constraints that can arise include 
intermodulation products and spurious emissions 
and responses. However, in this paper we only 
consider co-site frequency separation constraints, 
and co-channel and adjacent channel constraints, 
as these constraints represent the most important 
interference problems to avoid. Also, we have as­
sumed that interference can be avoided if there is 
sufficient channel separation between the frequen­
cies assigned to pairs of transmitters. 

1.2 Sequential Assignment Algorithms 

Sequential assignment methods mimic the way the 
problem might be solved manually. They are fast 
enough for large problems but tend to give results 
which are well short of the best possible. The trans­
mitters are simply considered one at a time, succes­
sively assigning allowable frequencies as we proceed, 
until either we have assigned all transmitters or run 
out of frequencies. An important factor affecting 
the quality of solutions generated by this method is 
how the next transmitter is chosen. In addition, the 
initial ordering of the transmitters is important, as 
is the method by which the next frequency is chosen. 
We may therefore generate a series of assignment 
methods based on three components: 

• initial ordering, 
• choice of next transmitter, 
• assignment of frequency. 

The simplest way to choose the next transmitter 
is sequentially, simply picking the next one on the 
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list produced by the initial ordering. A more com­
plicated method, which has proved more effective 
than sequential selection with the various initial or­
dering methods, is called generalised saturation de­
gree. In this method the choice of the next trans­
mitter is influenced by the constraints imposed by 
all those transmitters that have already been cho­
sen. One could view the more complicated process 
as a mechanism for correcting those mistakes that 
have been made by the initial ordering technique. 

The simplest assignment technique is to assign 
the selected transmitter to the smallest acceptable 
channel i.e. the lowest numbered channel to which it 
can be assigned without violating any constraints. 
Variations upon this technique attempt to assign 
transmitters to channels that are already used in 
favour of those that are not. A detailed description 
of sequential assignment methods can be found in 
[10). 

In this paper a genetic algorithm is used to search 
the state-space of initial orderings. The choice of 
the next transmitter is made sequentially, and the 
smallest acceptable channel is assigned to each cho­
sen transmitter. 

2 The Genetic Algorithm 

A simple genetic algorithm (GA) which appeared 
in [12) is used for this work. It is derived from the 
model of [7) and is an example of a 'steady state' 
GA (based on the classification of [11)). It uses the 
'weaker parent replacement strategy' first described 
by [3). The GA applies the genetic operators to 
permutations of transmitters. The fitness values 
are based on the spans produced when the simple 
sequential assignment algorithm is applied to each 
permutation list produced by the GA. The first par­
ent was selected deterministically in sequence, and 
the second parent was selected in a roulette wheel 
fashion, the selection probabilities for each genotype 
being calculated using the following formula: 

selection 
probability = 

(population size + 1 - Rank) 
ERanks 

where the genotypes are ranked according to the 
values of the spans that they have produced, with 
the best ranked 1, the second best 2 etc. 

Mutation: The mutation chosen was to select two 
transmitters at random from a permutation list, and 
swap them. 



310 

Table 1: Test data characteristics. 
I No transmitters I No co-site constraints I No far-site constraints I edge density I 

test12 12 16 
test95 95 90 
test190 190 160 
test410 410 411 
hex481 481 0 

Permutation Crossovers: Permutation crossovers 
were originally developed primarily for the travel­
ling salesman problem (TSP), where the genotypes 
consist of lists of cities which are converted to TSP 
tours. Because TSP tours are circuits, it is irrele­
vant which city is represented first on the list. The 
permutation lists represent cycles and an edge in a 
TSP tour always joins the last city on the list to the 
first. Thus, for the TSP it is the relative sequence 
of cities that is important, rather than the abso­
lute sequence. In the frequency assignment prob­
lem (FAP), however, the permutation lists making 
up the genotypes represent lists of transmitters, and 
intuitively it would seem likely that absolute se­
quences are important in this case. 

The best known permutation operators from 
an historical standpoint (which are also amongst 
the simplest to implement) are partially matched 
crossover (PMX) , order crossover (OX) and cycle 
crossover (eX) [5]. PMX, OX and ex are the cho­
sen crossovers for this study on the FAP. Although 
many more sophisticated variations of permutation 
crossover have been developed over the years and 
these have proven far more successful on the TSP 
(for example, genetic edge recombination [13] and 
maximum preservative crossover [6]), unfortunately 
these variations rely almost entirely on problem­
specific heuristics for their improved performance. 

Pearson's correlation coefficient was used to 
assess how effective the various permutation 
crossovers were at propagating parental qualities to 
the offspring. Mid-parental values of "span" were 
correlated with the values for their respective off­
spring for a 95 transmitter problem. From an initial 
population of 1000 individuals, 1000 pairs of par­
ents were selected, and from them 1000 offspring 
were generated using one of PMX, OX or ex and 
no mutation. The values of the correlation coeffi­
cients for all three permutation crossovers proved 
to be highly significant at the 0.0001% level, with 
the value for ex the best (0.3937). 

21 0.56 
1124 0.27 
4882 0.28 
22346 0.27 
97835 0.85 

3 Results 

The test problems used are given in Table 1. The 
files testxxx refer to military frequency assignment 
problems that arise in irregular networks. The 
file hex481 refers to a cellular assignment problem 
which is loosely based on a regular network arising 
around the Philadelphia area in the USA [1]. 

Results based on single runs of the GA are pre­
sented in Table 3. The GA is compared with the 
best result obtained from using several state-of­
the-art sequential assignment algorithms [10]. The 
cosite value refers to the value of m used for the 
cosite frequency separation constraint (see section 
1.1). 

The 'optimum' column refers to the known op­
timum span (where available). (The optimum val­
ues are obtained either from using exhaustive search 
techniques where the problem is small enough, or 
where computed results match theoretical lower 
bounds [9]). The 'random search' column corre­
sponds to the best span produced by random search 
through permutation space for each of the prob­
lems, where each random search processed exactly 
the same number of individuals as the correspond­
ing GA. 

We can see that the GA, which starts with a 
population of random permutations of transmitters, 
produces an improvement over the results from the 
sequential assignment algorithms, and reaches the 

Table 2: Timing results. 

Problem Number of Time Time / 
constraints (secs) # constraints 

test12 37 30 0.81 
test95 1214 518 0.43 
test190 5042 2765 0.55 
test410 22757 20019 0.88 
hex481 97835 229916 2.35 
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Table 3: Comparison of results. 

Problem GA Best Sequential Random Search Optimum 
PMX OX ex 

test12 22 22 22 
test95 (cosite 4) 48 48 48 
test95 (cosite 5) 48 49 48 

test190 82 84 76 
test410 165 165 154 
hex481 443 442 426 

optimum value in several cases. The run times for 
the test examples are given in Table 2. In each case 
the G A was run using a population of 200 for 200 
generations. 

4 Concluding Remarks 

A genetic algorithm has been presented which finds 
an initial ordering of the transmitters. Each trans­
mitter in this ordered set is then assigned the small­
est frequency possible while still satisfying any as­
sociated constraints. Of the permutation crossover 
operations used, cycle crossover gives the best re­
sults in all the test cases and gives the optimum 
solution in four out of six cases. Further work is 
necessary to test the applicability of the technique 
to larger problems, and to develop efficient problem 
specific crossover operators. 
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