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Abstract The Multiple Vehicle Pickup and Delivery Problem with Time Windows (MV-PDPTWs)

is an important problem in logistics and transportation. However, this problem is characterized by

having a large number of constraints that are difficult to deal with in a solution algorithm. Indeed,

merely constructing a feasible solution to this hard problem is a challenge in itself. In this research,

we compare several construction algorithms that generate initial feasible solutions to the problem.

The suggested algorithms all utilize a simple routing heuristic to create individual vehicle routes.

The algorithms differ, though, in whether routes are generated sequentially or in parallel. They also

have different criteria for selecting requests and the routes in which they will be inserted. Inserting a

request in a route is either based on a first acceptance criterion, in which a request is inserted in the

first route where a feasible insertion is found, or a best acceptance criterion, in which a request is

inserted in the estimated best route for insertion. Experimental results on several benchmark

problem instances indicate that the sequential construction heuristic may be the most suitable
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construction algorithm for this problem, in terms of simplicity of coding, solution quality as well as

processing speed.1

ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The Multiple Vehicle Pickup and Delivery Problem with Time
Windows (MV-PDPTWs) is a variant of the well-known Vehi-
cle Routing Problem with Time Windows (VRPTWs). The

problem deals with a number of customer requests that are
to be served by a fleet of vehicles, while a number of con-
straints must be observed. Each vehicle has a limited capacity

(the capacity constraint). A vehicle route usually starts and
ends at a central depot. A request must be picked up from a
pickup location to be delivered to a corresponding delivery

location. Naturally, the pickup and delivery pair must be
served by the same vehicle (the coupling constraint) and the
pickup must precede the delivery (the precedence constraint).
In addition, every request must be served within a predeter-

mined time window interval (the time window constraint). If
the vehicle arrives earlier than the allowed service time, it
should wait until the beginning of the specified period. A solu-

tion to the problem should assign requests to vehicles and find
a route for each vehicle, such that the total service cost is min-
imized and all problem constraints (coupling, precedence,

capacity and time windows) are adhered with.
Possible practical applications of the MV-PDPTWs in-

clude: transportation of raw materials from suppliers to facto-
ries, internet-based pickup from sellers and delivery to buyers,

pickup and delivery of charitable donations from homes to dif-
ferent organizations, and the transport of medical samples
from medical offices to laboratories. In addition, an important

related variant is the dial-a-ride problem, where people instead
of goods are transported.

As a generalization of the travelling salesman problem, the

MV-PDPTWs is known to be NP-hard (Ropke and Pisinger,
2006), and the presence of many constraints makes the prob-
lem particularly complicated. Exact algorithms are too slow

for large problem sizes. In addition, generating feasible and
good quality solutions to the problem in a reasonable amount
of time is often a hard challenge for researchers. The MV-
PDPTWs is both a grouping problem (assigning requests to

vehicles), and a routing problem (finding the best route for each
vehicle). Thus, an intelligent solution methodology should be
able to handle these two aspects efficiently. Researchers in

the area usually try to solve the problem in two stages: the first
stage constructs one or more initial solutions to the problem,
while the second stage tries to improve these solutions using

a heuristic or a meta-heuristic approach.
To construct a solution for the MV-PDPTWs, each step of

the algorithm usually selects an un-assigned request whose

insertion is predicted to cause the least increase in the overall
cost of the solution. The selected request is then inserted in
its best (least cost) feasible insertion position found among
all available routes. This kind of insertion may require compli-
is of the first author (Hosny,

he MIC2009 conference paper
cated calculations to estimate the effect of the insertion, in
terms of the increase in travel distance and time delay, on all

requests already existing in the route who could be affected
by the insertion. Additional decisions during the construction
of the solution include whether to build routes sequentially

or in parallel, and how to order requests prior to the insertion
process.

While these considerations also apply to the general
VRPTWs, where all requests are of the same type (either

pickups or deliveries), the pickup and delivery problem in it-
self entails additional considerations. This is due to the pres-
ence of a pair of related locations for each individual

request and the precedence and coupling issues resulting
thereof. For example, the decision regarding the best inser-
tion position for a certain request should ideally take both

the pickup and the delivery into account. The sorting crite-
ria for requests, prior to insertion, may likewise be based on
either the pickup or the delivery location, or perhaps com-

bine both. It is also frequently the case with the MV-
PDPTWs that the initial solution is drastically changed dur-
ing the improvement phase. For example (Bent and Van
Hentenryck, 2006 and Ropke and Pisinger, 2006) reported

very good results using an algorithm that is based on a
Large Neighbourhood Search (LNS). The algorithm removes
and then relocates a large number of requests (30–40%) in

each iteration. This could possibly indicate that sophisticated
construction algorithms, that are usually time consuming,
parameter dependent, and hard to implement, may not actu-

ally warrant their cost, as opposed to more straightforward
and faster algorithms.

In an attempt to overcome the difficulties inherent in the

construction of a feasible solution, which are mainly due to
the hard problem constraints and the complex problem-spe-
cific decisions, we propose in this paper four different con-
struction heuristics that aim to build initial feasible solutions

to the MV-PDPTWs. All our algorithms utilize a simple and
efficient routing algorithm to generate feasible individual vehi-
cle routes. These algorithms, nevertheless, differ in whether the

construction of vehicle routes is performed sequentially or in
parallel. They also differ in the criteria according to which
the next un-routed request is selected for insertion in a partic-

ular route. The aim of the research is to decide which construc-
tion algorithm has more potential as a preliminary step
towards a complete solution methodology to the problem. A
promising construction algorithm should demonstrate a suit-

able balance between quality of the generated solution, pro-
cessing speed and simplicity of implementation. In order to
evaluate the suggested algorithms, we have tested them on sev-

eral benchmark problem instances and the experimental results
are reported in this paper.

The rest of the paper is organized as follows: Section 2 for-

mally defines the MV-PDPTWs. Section 3 summarizes some
related work. Section 4 explains the routing algorithm embed-
ded within the different construction heuristics used. Section 5

details the construction heuristics suggested in this research.
Section 6 reports the experimental results of the algorithms
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tested. Section 7 sheds light on some implementation issues

and complexity analysis of the suggested algorithms Finally,
Section 8 concludes with a brief summary of the research.

2. The multiple vehicle pickup and delivery problem

with time windows

Let G = (N,A) be a digraph. The node set is N = {ni 2 NŒi=
0,1,2, . . . ,m}, such that m is an even index. The node n0 de-
notes the depot, and each ni, i= 1,2, . . . ,m denotes a customer
location. Since for each customer request we have a pair of

pickup and delivery locations, we can assume, without loss
of generality, that the set N+ = {ni 2 NŒi = 1,2, . . . ,m/2} rep-
resents pickup locations, and the set N�= {ni 2 NŒi= (m/

2) + 1, . . . ,m} represents delivery locations, such that the pick-
up location ni has the corresponding delivery location ni+(m/2).
Thus, N = N+ [ N� and ŒN+Œ = ŒN�Œ = m/2.

Each location ni is associated with:

� A customer demand qi, such that qi > 0 for a pickup loca-
tion, qi < 0 for a delivery location and qi + qj = 0 for the

same customer’s pickup and delivery locations (q0 = 0).
� A service time si (s0 = 0), which is the time needed to load
or unload a customer demand.

� A time window [ei, li] during which the location must be
served, and li P ei.

For each pair of nodes Æni,njæa travel time tij and/or a travel
distance dij are specified. Only edges satisfying the time win-
dow constraint are allowed. Thus the arc set is A = {Æni, njæŒni,
nj 2 N, ni „ nj, t0i + si + tij < lj}.

Each vehicle has a limited capacity C. We assume a homo-
geneous fleet of vehicles, where all vehicles have the same
capacity. The capacity constraint ensures that the total load

carried by each vehicle at any given time does not exceed its
capacity.

A vehicle’s journey should start and end at the depot, while

each location should be visited exactly once. In addition, a
location must be serviced within the specified time window
(TW), i.e., if the vehicle reaches the location before the earliest

service time ei, it must wait until ei. The precedence constraint
requires that each pickup location must precede the corre-
sponding delivery location, while the coupling constraint re-
quires that the same customers’s pickup and delivery

locations must be served by the same vehicle.
The objective function varies depending on the application.

In general, one or more of the following objectives are mini-

mized: the number of vehicles used, the total travelling dis-
tance, and the total schedule duration.

3. Related work

Solution construction can be done either sequentially or in paral-

lel. A sequential construction builds routes one after another,
while a parallel construction builds a number of routes simulta-
neously. To construct initial solutions for the MV-PDPTWs

sequentially, researchers usually adapted Solomon’s sequential
insertion heuristics of the VRPTWs (Solomon, 1987).Aweighted
sum of the extra travel distance and total time delay resulting
from the insertion is often used to estimate the cost of the inser-

tion. This type of construction was used by Li and Lim (2001)
for theMV-PDPTWs, and was followed by a solution improve-

ment phase called a tabu-embedded simulated annealing.
A parallel construction heuristic, on the other hand, was

first introduced in Potvin and Rousseau (1993) for the
VRPTWs. In a parallel construction, several routes are initial-

ized with seed customers and requests are subsequently in-
serted into any of the initialized routes. Accordingly, the
algorithm needs an initial estimate of the number of vehicles

to be used. Routes are later added as needed if the initial esti-
mate does not yield a feasible solution. The authors also intro-
duced an additional complex measure in the cost function,

which is a generalized regret value comparing the difference
between the cost of an immediate insertion verses a postponed
insertion. Customers with a large regret value must be consid-

ered first. This regret measure was also used by Ropke and
Pisinger (2006) for the MV-PDPTWs, and was embedded
within an Adaptive Large Neighbourhood Search (ALNS)
technique to improve the solution quality.

The work in Lim et al. (2002) presents a sequential construc-
tion algorithm for the MV-PDPTWs. The algorithm repeats a
cycle of three components. The first component is a constructor,

which uses a sequential greedy algorithm to add pairs of custom-
ers in the order they appear in a priority sequence that is initially
random. The analyser afterwards analyses the solution and as-

signs a certain ‘blame’ value for each customer based on its con-
tribution to the total solution cost. Finally, the prioritizer
reorders the customers, such that customers with a high blame
value are moved forward in the priority sequence.

A parallel construction heuristic that solves the MV-
PDPTWs is presented in Lu and Dessouky (2006). The initial
set of routes is created by finding the largest set of customers,

where it is impossible to serve any two customers with the
same vehicle. Each initial route is then initialized with one cus-
tomer from this set. To insert the remaining customers after-

wards, the algorithm takes into consideration the effect of
insertion on both the classical increase in distance measure,
and also the remaining time window slack in the route, i.e., pri-

ority is given to insertions that do not use much of the avail-
able time slack, allowing for more feasible latter insertions.
The authors also use a non-standard measure of the visual
attractiveness of the route to select the most desired insertions.

An important survey of the general pickup and delivery
problem and approaches developed to handle it was presented
in Savelsbergh and Sol (1995). A more recent surveys is pre-

sented in Parragh et al. (2008). A survey of the important re-
lated dial-a-ride problem is in Cordeau and Laporte (2003).

We noticed during our literature survey that researchers

who adopt a 2-phase approach (i.e, construction of an initial
solution, followed by an improvement phase) to solving the
problem often pay more attention to the solution improvement

phase, such that the results of the initial solution construction
phase are seldom reported. This makes it difficult to assess the
contribution of the construction method to the success or the
failure of the overall algorithm. It is also important to note

that the role of the construction algorithm is not only limited
to the initialization phase. The construction algorithm is often
utilized at various stages during the improvement phase to cre-

ate or modify new or partial solutions, as done for example in
Bent and Van Hentenryck (2006) and Pankratz (2005). In this
situation, a good choice of the construction algorithm is vitally

important.



1: Given a route r

2: repeat

3: for (Each possible pair of locations in r) do

4: if (The latter location is more urgent in its upper time

window bound) then

5: Swap the current two locations in r to get a new route r0
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To the best of our knowledge, our research is the first attempt

to compare different initial solution construction methods for
the MV-PDPTWs. The research will help identify the construc-
tion heuristic(s) that seems to bemost appropriate for this prob-
lem, and decide whether sophisticated and computationally

expensive methods actually perform a better job in constructing
good quality initial solutions, as opposed to other simpler and
less expensive algorithms. In the following section we explain

our simple routing algorithm, which is the core of the different
construction algorithms proposed in this research. Section 5
then discusses in detail these construction algorithms.
6: D ‹ cost(r0) � cost(r)

7: if (D < 0) then

8: r ‹ r0

9: until (Done) {Stop when no improvement achieved in the

previous pass}
4. The routing algorithm

A crucial part of the MV-PDPTWs is the routing algorithm
that will generate a feasible route for each individual vehicle.

A major concern is how to handle all problem constraints effi-
ciently. Our routing algorithm, first introduced in Hosny and
Mumford (2010), has proven very effective for solving the Sin-

gle Vehicle PDPTWs. This algorithm is based on an iterative
improvement of individual routes, which is embedded in the
overall constructive algorithm that could either be sequential

or parallel. The main difference between our routing algorithm
and other routing (insertion) heuristics in the literature is that
our algorithm does not try to find the best insertion position
for each request in the route, but accepts any feasible insertion.

As a result, many complex calculations and problem-specific
decisions, that are related to the association between the pick-
up and the delivery, can be avoided. For example, our algo-

rithm eliminates the bias towards either the pickup or the
delivery location, which is one of the major drawbacks of ‘clas-
sical’ insertion methods. Clearly, when the best insertion posi-

tion for one request (pickup or delivery) is chosen first, the
choices available for its partner will be restricted accordingly.

Our routing algorithm adopts a simple route representa-

tion. Rather than representing the visiting order of requests
by a one-dimensional permutation of all the different loca-
tions, we treat both the pickup location and its associated
delivery as one unit. In other words, we assign the same code

(number) to both the pickup and its delivery. We then rely on a
simple decoder to always identify the first occurrence as the
pickup and the second as the delivery. An example of a route

with four requests following this representation is: (2 1 1 3 4 2 3
4), where pickups are shown in boldface and deliveries in
italics.

Also, to deal with the hard time window constraint, our
routing algorithm adopts an intelligent neighbourhood move
that uses the time window as a guidance. The idea is to try
to improve the current route by creating a new neighbouring

route. To avoid the frequent creation and evaluation of infea-
sible routes, though, our neighbourhood move only swaps
locations that are out of order in terms of their late time win-

dow bounds, i.e., if the latter location has a deadline that pre-
cedes the earlier one. Having dealt with the precedence and the
time windows constraints, the capacity constraint is the only

remaining issue. However, due to the nature of the problem,
the capacity constraint is often easily satisfied, since half of
the locations in the route are delivery locations whose loads

are removed from the vehicle. This simple representation and
neighbourhood move are employed in a classical Hill-Climbing
(HC) route-improvement heuristic, which tries to gradually
modify the current route until no further improvement is pos-

sible. Algorithm 1 describes this simple heuristic.

Algorithm 1. The HC routing algorithm.
The cost function used in Step 6 of the HC algorithm to
evaluate the quality of each route tries to minimize the total
route duration as well as the degree of infeasibility in capacity
and time windows constraints. The cost function of a route r is

described by the following equation:

FðrÞ ¼ w1 �DðrÞ þ w2 � TWVðrÞ þ w3 � CVðrÞ; ð1Þ

where D(r) is the total route duration, including the waiting
time and the service time at each location. TWV(r) is the to-

tal number of time window violations in the route, and
CV(r) is the total number of capacity violations. The con-
stants w1, w2, and w3 are weights in the range [0,1], and

w1 + w2 + w3 = 1.0. The choice of appropriate weights de-
pends on the importance of each term in the objective func-
tion. We found that in order to get feasible solutions, the

largest penalty should be imposed on the time window
violations.

5. Solution construction heuristics

In all our construction heuristics we first start by sorting cus-
tomers according to the distance from the depot (farthest first).

However, since in our approach we deal with customers in
pairs, where each pair consists of a pickup location and its
associated delivery, the distance measure, in relation to the de-

pot, could either be the distance between the depot and the
pickup location, or the distance between the depot and the
delivery location. We arbitrarily chose the distance separating

the depot and the delivery location for the initial order of
requests.

5.1. The sequential construction algorithm

The sequential construction heuristic tries to build routes one
after another. Requests are taken one by one in order, and

each request (pickup and delivery pair) is initially inserted at
the end of the current route. Our HC routing heuristic (Algo-
rithm 1) is then called to try to improve the current route. If

the HC algorithm returns an improved route that can ‘feasibly’
accommodate the newly inserted pair, this insertion is accepted
and we move on to the next request. However, if the ‘im-

proved’ route is still infeasible, the newly inserted pair is re-
moved from the current route to wait for another insertion
attempt in a new route. Thus, unlike the ‘traditional’ insertion
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methods, our algorithm relies on the HC heuristic to improve

the quality of the current route, without actually having to cal-
culate the cost of each and every possible insertion position in
order to select the best one among them.

Algorithm 2 describes the sequential construction proce-

dure. It is important to note in Step 7 of this algorithm that,
besides overcoming the precedence and the coupling issues,
inserting a request (a pickup and delivery pair) at the end of

the route has the added advantage of speeding up the insertion
process, since two locations instead of one are simultaneously
inserted.

Algorithm 2. The sequential construction.
1: Let M ‹ 0 {M is the number of vehicles used}

2: repeat

3: Initialize an empty route r

4: M=M+ 1

5: for (All unassigned requests) do

6: Get the next unassigned request i

7: Insert the request i at the end of the current route r

8: Call the HC routing heuristic (Algorithm 1) to improve r

9: if (r is a feasible route) then

10: Mark i as inserted

11: else

12: Remove i from r

13: until (All requests have been inserted)
5.2. The parallel construction algorithms

As mentioned previously, for a parallel construction, several

routes are considered simultaneously for inserting a new re-
quest, and an initial estimate of the number of vehicles is re-
quired. Potvin and Rousseau in their parallel construction
algorithm for solving the VRPTWs (Potvin and Rousseau,

1993), estimate the initial number of vehicles by first running
Solomon’s sequential construction (Solomon, 1987). The num-
ber of vehicles in the resulting solution is then used as an esti-

mate of the initial number of vehicles for the parallel heuristic.
In our research, we adapted the parallel construction heu-

ristic of the VRPTWs in Potvin and Rousseau (1993) to the

MV-PDPTWs. However, to avoid unnecessary extra process-
ing time, we estimated the initial number of vehicles using a
simple formula that divides the total demand of the pickup re-

quests in the problem instance by the capacity of the vehicle, as
shown in (2).

M ¼
X
i2Nþ

qi

 !,
C

$ %
; ð2Þ

where M is the estimated initial number of vehicles, N+ is the
set of pickup customers, qi is the demand (load) of a pickup re-
quest, and C is the capacity of the vehicle. However, this esti-

mate seems to be more suitable for instances with a critical
(short) schedule horizon. Instances with more flexible time
window intervals, on the other hand, may require fewer vehi-

cles to start with. As a result, we introduced a small modifica-
tion to this formula for some problem instances, as will be
explained in Section 6.

Similar to the parallel approach for the VRPTWs in Potvin

and Rousseau (1993), which initializes each route with a seed
customer, our parallel algorithms initialize each route with a

seed request (pickup and delivery pair) from the sorted list of
requests. We then take the remaining requests in order and at-
tempt to insert the next request in one of the partial routes cre-
ated. If the next request cannot be feasibly inserted in any of

the already created routes, a new route is added to accommo-
date this request. This process is repeated until all requests
have been inserted.

As mentioned previously, ‘traditional’ parallel construction
algorithms for both the VRPTWs and the PDPTWs, usually
select the request who has the current minimum insertion cost

among all remaining un-routed requests to be inserted next.
This cost is often a measure of the extra travel time and dis-
tance, which would result from inserting the request in the best

possible (feasible and minimum cost) insertion position found
in all available routes. Our parallel algorithms, on the other
hand, differ among each other in how they select the next re-
quest to be inserted, and also the route in which this request

will be inserted. Following is an explanation of the different
parallel construction algorithms proposed in our research.

5.2.1. Parallel construction – first route
In our first parallel construction algorithm, the next request in
order is inserted in the first route in which a feasible insertion

of this request is found, i.e., no attempt is made to find the best
route for the current request. Thus, our first parallel construc-
tion uses a fast first acceptance criterion for insertion. Algo-

rithm 3 describes this procedure.

Algorithm 3. Parallel construction: first route.

1: Calculate M (the initial estimate of the number of vehicles)

2: Initialize M routes with seed customer pairs from the sorted list

of customers

3: for (All remaining unassigned requests) do

4: Get the next unassigned request i

5: r = 0 start with the first route

6: while ((r<M) and (i not yet inserted)) do

7: Insert the request i at the end of the current route r

8: Call the HC routing heuristic (Algorithm 1) to improve r

9: if (r is a feasible route) then

10: Mark i as inserted

11: else

12: Remove i from r

13: r= r+ 1

14: if (i was not inserted) then

15: Initialize a new route r0

16: M=M+ 1 {increase the number of vehicles}

17: Insert the request i in the new route r0

18: Mark i as inserted
5.2.2. Parallel construction – best route
In our second parallel construction algorithm, the next request
in order is inserted in the best route in which a feasible inser-
tion of this request is found. The best route for each request

is the route that causes the least increase in the overall cost
of the solution (the routing schedule) due to the insertion
process.

To calculate the overall cost of the solution, we used an

objective function that is suggested by Bent and Van Hen-
tenryck in Bent and Van Hentenryck (2006). The objective
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function consists of three components: the first component

tries to minimize the number of vehicles used in the solution,
the second component tries to minimize the total distance trav-
elled, while the third component is a measure that tries to max-
imize the square of the number of nodes visited by each

vehicle. This last component is intended to favour routes that
are rather full and those that are rather empty, as opposed to
an even distribution of nodes among routes. The idea is to try

to get rid of some vehicles that are under-utilized during sub-
sequent route improvement phases. The objective function of a
solution S is described by (3).

OðSÞ ¼ a�Mþ b�
X
r2S

DistðrÞ � c�
X
r2S
jrj2; ð3Þ

where M is the number of vehicles used in the current solution,
Dist(r) is the total distance travelled by each vehicle, and ŒrŒ is
the number of nodes visited by each vehicle. The constants a,
b, and c are weights in the range [0,1] assigned to each term in
the objective function, and a + b + c = 1.0. In our research
we try to minimizing the number of vehicles as our primary

objective followed by the total distance, thus we chose
a > b > c. Algorithm 4 describes the second parallel construc-
tion algorithm.

Algorithm 4. Parallel construction: best route.
1: Calculate M (the initial estimate of the number of vehicles)

2: Initialize M routes with seed customer pairs from the sorted

list of customers

3: for (All remaining unassigned requests) do

4: Initialize LocalMin to an arbitrary large value

5: for (r= 0;r <M;r++) do

6: Get the next unassigned request i

7: Insert the request i at the end of the current route r

8: Call the HC routing heuristic (Algorithm 1) to improve r

9: if (r is a feasible route) then

10: calculate Dcost {Dcost is the change in solution cost

due to the insertion}

11: if (Dcost < LocalMin) then

12: LocalMin= Dcost
13: r* = r {r* is the current best vehicle for request i}

14: Remove i from r {temporarily remove i until insertion

costs of the current request in all routes have been

calculated}

15: if (r* is found) then

16: Insert i in r*

17: Mark i as inserted

18: else

19: Initialize a new route r0 {Since no feasible insertion is

found for i in any of the available routes, allocate a

new route}

20: M=M+ 1 {increase the number of vehicles}

21: Insert the request i in the new route r0

22: Mark i as inserted
It is important to note, in Step 10 of Algorithm 4, that since
the insertion process only affects one route, the calculation of
the new solution cost does not require evaluating all routes in
the current solution. The calculation is simply done by remov-

ing the old cost of the current route (before the insertion), and
adding the new cost resulting from the insertion.
5.2.3. Parallel construction – best request
Our next parallel construction heuristic does not only try to
find the best route for each request, but also tries to select
the best un-routed request to be inserted next. The best un-rou-

ted request is the one whose insertion (in its best route) causes
the least increase in the overall cost of the solution. To evalu-
ate the cost of the solution, the same objective function used in

Algorithm 4, i.e, (3), is used. Algorithm 5 describes this
procedure.

Algorithm 5. Parallel construction: best request.

1: Calculate M (the initial estimate of the number of vehicles)

2: Initialize M routes with seed customer pairs from the sorted list

of customers

3: repeat

4: Initialize GlobalMin to an arbitrary large value

5: for (All remaining unassigned requests) do

6: Initialize LocalMin to an arbitrary large value

7: for (r= 0;r<M;r++) do

8: Get the next unassigned request i

9: Insert the request i at the end of the current route r

10: Call the HC routing heuristic (Algorithm 1) to improve r

11: if (r is a feasible route) then

12: calculate Dcost {Dcost is the change in solution cost due

to the insertion}

13: if (Dcost< LocalMin) then

14: LocalMin= Dcost
15: r* = r {r* is the current best route for request i}

16: Remove i from r {temporarily remove i until insertion

costs of all requests in all routes have been calculated}

17: if (r* is found) then

18: if (LocalMin < GlobalMin) then

19: GlobalMin= LocalMin

20: i* = i {i* is the current best request}

21: v* = r* {v* is the best vehicle (route) for i*}

22: else

23: Initialize a new route r0 {because no feasible insertion is

found for i in any of the available routes}

24: M= M+ 1

25: Insert i in the new route r0

26: Mark i as inserted

27: if (i* is found) then

28: Insert i* in v*

29: Mark i* as inserted

30: until (All requests have been inserted)
6. Computational experimentation

6.1. Characteristics of the data set

To test our algorithms, we used several instances from the
benchmark data of the MV-PDPTWs created by Li and Lim

in Li and Lim (2001). The authors of Li and Lim (2001) cre-
ated this data set based on Solomon’s test cases of the
VRPTWs in Solomon (1987). There are six different categories

of problem instances in this data set: LR1, LR2, LC1, LC2,
LRC1, and LRC2. Problems in the LR category have ran-
domly distributed customers, problems in the LC category

have clustered customers, and problems in the LRC category
have partially random and partially clustered customers. On
the other hand, problems identified with the number ‘1’ have



Table 1 Test files.

Category 100 customers 200 customers 400 customers

LC1 LC101 to LC106 LC1-2-1 to LC1-2-6 LC1-4-1 to LC1-4-6

LC2 LC201 to LC206 LC2-2-1 to LC2-2-6 LC2-4-1 to LC2-4-6

LR1 LR101 to LR106 LR1-2-1 to LR1-2-6 LR1-4-1 to LR1-4-6

LR2 LR201 to LR206 LR2-2-1 to LR2-2-6 LR2-4-1 to LR2-4-6

LRC1 LRC101 to LRC106 LRC1-2-1 to LRC1-2-6 LRC1-4-1 to LRC1-4-6

LRC2 LRC201 to LRC206 LRC2-2-1 to LRC2-2-6 LRC2-4-1 to LRC2-4-6

600 customers 800 customers 1000 customers

LC1 LC1-6-1 to LC1-6-6 LC1-8-1to LC1-8-6 LC1-10-1 to LC1-10-6

LC2 LC2-6-1 to LC2-6-6 LC2-8-1to LC2-8-6 LC2-10-1 to LC2-10-6

LR1 LR1-6-1 to LR1-6-6 LR1-8-1 to LR1-8-6 LR1-10-1 to LR1-10-6

LR2 LR2-6-1 to LR2-6-6 LR2-8-1 to LR2-8-6 LR2-10-1 to LR2-10-6

LRC1 LRC1-6-1 to LRC1-6-6 LRC1-8-1 to LRC1-8-6 LRC1-10-1 to LRC1-10-6

LRC2 LRC2-6-1 to LRC2-6-6 LRC2-8-1 to LRC2-8-6 LRC2-10-1 to LRC2-10-6
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a short scheduling horizon (tight time window width), while
problems identified with the number ‘2’ have a long scheduling

horizon (large timewindowwidth). Each category has six differ-
ent problem sizes: 100, 200, 400, 600, 800, and 1000 customers.2

There are between 56–60 files from each problem size. The total

number of files in the data set is 354. The data and the best
known results can be downloaded from http://www.sintef.no/
Projectweb/TOP/Problems/PDPTW/Li–Lim-benchmark/. For

the purpose of testing our algorithmswe selected the first six files
from each category for each problem size. The total number of
files used to test our algorithms is 216. The files used for testing
our algorithms are summarized in Table 1.

As mentioned in Section 5.2, we used a simple formula (2)
to estimate the initial number of vehicles needed for the paral-
lel construction heuristics. However, during our preliminary

experimentation, we found that this estimate does not suit all
the different types of problem instances. Apparently, problems
that have a long schedule horizon allow for a more flexible vis-

iting schedule, and generally require fewer vehicles. We also
found during our experimentation that an under-estimate of
the initial number of vehicles is usually preferred to an over-

estimate, since reducing the total number of vehicles used is
our primary concern. As a result, to estimate the initial number
of vehicles for problems with a long schedule horizon (prob-
lems of category ‘2’) we reduced our initial estimate by 50%.

Thus, (4) was used instead of (2).

M ¼ ð1=2Þ
X
i2Nþ

qi

 !,
C

$ %
: ð4Þ

However, this estimate is to some extent arbitrary and remains
under consideration for future reassessment.

6.2. Comparing the construction heuristics

Throughout the following discussion, we use the following
notations to refer to each algorithm

1. Sequential construction: SEQ
2. Parallel construction – first route: PFR
2 The original data set in Li and Lim (2001) contained only 56 100-

customers problems. Larger problem sizes were later added to the

original data set.
3. Parallel construction – best route: PBR

4. Parallel construction – best request: PBQ

The algorithms were implemented using Visual C++under
a Windows XP operating system, on Intel Pentium (R)D CPU

3.40 GHz and 2 GB RAM. Since the construction algorithms
are all deterministic, each algorithm was run only once on each
test file.

Table 2 shows the average number of vehicles, the average
total distance, and the average processing time (in seconds),
produced by each algorithm for each problem size separately.

Table 3 shows the percentage of time each algorithm produced
the minimum number of vehicles and the minimum total dis-
tance (as found in the current experiment), over all 216 prob-
lem instances.3

The following observations can be realized from Tables 2
and 3:

� Regarding the number of vehicles generated, SEQ and PBQ
produced the best results, with SEQ producing better
results than PBQ in large size problems, while both PFR

and PBR were slightly inferior in this respect.
� Regarding the total distance travelled, PBQ was able to
beat all other algorithms, followed by PBR and SEQ.

� PFR produced the worst average distance in all test cases,
but it was slightly better than PBR in the average number
of vehicles used.
� SEQ and PFR have compatible average processing time in

all test cases. Their processing time on average is faster than
the other two algorithms, with PBQ being the slowest
among all.

In summary, the results in Tables 2 and 3 suggest that PFR
and PBR are inferior to SEQ and PBQ, both in terms of the

number of vehicles used and the total distance travelled. How-
ever, PBR was able to slightly improve upon PFR with respect
to the total distance travelled, while PFR was slightly better
than PBR in the number of vehicles used. As a result, PFR

and PBR can be eliminated from further consideration, and
we can focus our attention on SEQ and PBQ.
3 Some ties are produced and counted in the results.



Table 4 Average relative distance to best known.

Problem size Vehic-Gap Dist-Gap

SEQ (%) PBQ (%) SEQ (%) PBQ (%)

100-customers 58 57 146 137

200-customers 63 61 187 163

400-customers 66 67 207 173

600-customers 64 69 206 185

800-customers 66 70 205 181

1000-customers 65 74 191 178

Average 64 66 191 170

Table 2 Average results for all algorithms.

Problem size SEQ PFR

Vehic Dist Time Vehic Dist Time

100-customers 11.78 2662.92 0.02 11.83 2767.19 0.02

200-customers 17.33 8887.08 0.08 17.69 8954.06 0.08

400-customers 33.56 22215.14 0.32 34.64 23010.53 0.3

600-customers 48.22 44949.4 0.72 49.89 46644.49 0.69

800-customers 63.53 74650.07 1.24 65.94 77895.32 1.23

1000-customers 77.25 108513.19 1.88 81.97 115106.93 1.93

Average 41.95 43646.30 0.71 43.66 45729.75 0.71

PBR PBQ

Vehic Dist Time Vehic Dist Time

100-customers 11.83 2711.89 0.03 11.69 2564.09 0.34

200-customers 18.17 8816.33 0.1 17.14 8132.84 3.62

400-customers 34.69 21898.96 0.38 33.72 19758.38 26.93

600-customers 50.69 45234.96 0.86 49.53 41791.82 147.57

800-customers 66.44 74056.45 1.65 64.89 68713.31 438.97

1000-customers 81.75 108662.01 2.54 81.58 103751.31 952.34

Average 43.93 43563.43 0.92 43.09 40785.29 261.62

Table 3 Frequency of generated best solutions.

Algorithm Min-Vehic (%) Min-Dist (%)

SEQ 48 31

PFR 24 6

PBR 19 8

PBQ 49 56
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As can be noticed from the overall average results shown in
Table 2, SEQ produced better results than PBQ in the number

of vehicles used. The PBQ algorithm, however, was able to
beat the SEQ algorithm in minimizing the total distance trav-
elled. This was obviously due to the fact that the SEQ algo-
rithm was more concerned with fitting the largest possible

number of requests in each vehicle before allocating a new
one, while the PBQ algorithm relied on a cost function that
has the total travel distance among its components. The

PBQ algorithm was, nevertheless, much slower than the SEQ
algorithm. The average processing time of the SEQ algorithm
ranged from 0.02 s for 100-customers problems to 1.88 s for

1000-customers problems. The PBQ algorithm, on the other
hand, had a processing time ranging from 0.34 s to 952.34 s
for the same problem types, which indicates beyond doubt
the huge difference in the computational effort needed for both

algorithms.
We also performed a one-way analysis of variance of the

average results produced by both the SEQ and the PBQ algo-

rithms. The analysis showed that there is no statistically signif-
icant difference in the average results produced by the two
algorithms, both in terms of the number of vehicles and the to-

tal distance. This further indicates that the SEQ algorithm, de-
spite its simplicity and its exceptional speed, produced
comparable results to the results of the PBQ algorithm. It

should also be noted that the SEQ algorithm neither requires
an initial estimate of the number of vehicles, nor does it need
a solution evaluation mechanism during the construction pro-
cess. The only advantage that the PBQ algorithm offers, which
is a slight reduction in the total travel distance, does not seem
to justify its added cost in terms of the complexity of the algo-

rithm and the increase in processing time. Another advantage
of the SEQ algorithm is that it can be easily adapted to popu-
lation-based heuristics or meta-heuristics by randomizing the

initial order of requests to generate different diverse solutions.
The PBQ algorithm, on the other hand, is expected to produce
a limited diversity, even if the initial order of requests is ran-

domized, because of the selection criteria and the cost function
it relies on during the insertion process. Most likely, requests
that are hard to insert, and thus cause a large increase in the
solution cost, will always remain the same, despite the change

in the insertion order.

6.3. Comparing with previous best known

Although our algorithms are not intended to provide final
good quality solutions to the MV-PDPTWs, it would still be

useful to compare our results with the best known solutions.
This would give us a general idea about the expected effort
needed in the solution improvement phase. We tried to analyse

the relative gap (difference) to best known results, produced by
the SEQ algorithm for each benchmark category separately.
The best known results are reported in http://www.sintef.no/
projectweb/top/.
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Figure 1 SEQ algorithm – average vehicle gap for all problem

categories.
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Figure 2 SEQ algorithm – average distance gap for all problem

categories.

Table 5 Average processing time (s) of the SEQ algorithm for

all tasks.

Category Problem size

100 200 400 600 800 1000

LR1 0.02 0.06 0.22 0.53 0.95 1.54

LC1 0.02 0.05 0.22 0.48 0.92 1.43

LRC1 0.02 0.06 0.21 0.50 0.93 1.44

LR2 0.03 0.13 0.43 1.04 1.71 2.72

LC2 0.03 0.06 0.39 0.61 1.06 1.57

LRC2 0.02 0.12 0.47 1.12 1.84 2.53
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Table 4 shows the relative distance (in percentage) between
the average results produced by both the SEQ algorithm and
the PBQ algorithm and the average best known results. The

relative distance (gap) is measured with respect to both the
number of vehicles and the distance.4 The table shows that
the SEQ algorithm produced, on average, a slightly smaller

gap with respect to the number of vehicles, and a slightly larger
gap with respect to the total distance. Together with the fact
that the SEQ algorithm is quite simple and fast compared to
the PBQ algorithm, the results in Table 4 would again seem

to justify its preference as a solution construction method over
the PBQ algorithm.

It would also be beneficial to try to analyse the results pro-

duced by the construction heuristics for each benchmark cate-
gory separately. This may give an insight into what problem
types would require more effort in the solution improvement

phase. Fig. 1 shows the average gap produced by the SEQ
algorithm for all tasks, organized by problem categories.
Fig. 2 shows the average gap produced by the same algorithm

with respect to the distance travelled.
4 For example, a gap of 50% in the average number of vehicles

means that the result of the construction heuristic produced 50% more

vehicles than the best known result.
Both figures show that the SEQ construction heuristic
seems to be more ‘successful’ in instances with a short sche-

dule horizon, i.e., instances identified with ‘1’ in the data set,
since these instances always have a smaller gap than in-
stances of type ‘2’. Regarding the primary objective, which

is the number of vehicles used, the algorithm seems to do
a better job for instances that have clustered customers, as
opposed to instances that have random or partially random
customers. It is clear that instances in the LC category al-

ways have the smallest gap compared to the other problem
types. Problems with random customers and a long time
window interval appear to be the most challenging for the

SEQ algorithm, and possibly all solution algorithms. The
reason could be that the solution space for these problems
seems to be larger, due to the randomness of locations

and the large width of time windows involved in this case.
It also appears from both graphs that the gap in the number
of vehicles is inversely proportional to the gap in the total

travel distance, in most test cases. This indicates that a solu-
tion that uses more vehicles may result in an overall shorter
travel distance compared to a solution that uses less number
of vehicles.

It is also worth mentioning that the results in Table 4 and
Figs. 1 and 2 clearly indicate that there is a lot of work still
to be done in the improvement phase, in order to reach the

anticipated standard for the final problem solutions. This is
evident by the relatively large gap between the current initial
solutions and the final best known results. Designing an ‘intel-

ligent’ improvement phase seems to be inevitable, in order to
cope with the difficult problem constraints and the various
types of problem instances.

Finally, Table 5 shows the average processing time of the

SEQ algorithm, for each problem size in each benchmark cat-
egory. It appears in this table that problems involving random
customers with a long schedule horizon, LR2 and LRC2, gen-

erally require a longer processing time than the other problem
categories, which sustains our previous observation regarding
the large solution space for these problems.

7. The SEQ algorithm: complexity analysis and implementation

issues

We present in this section some remarks concerning the com-

plexity and feasibility checking of the SEQ algorithm in rela-
tion to the common construction methods. Analysing our
SEQ algorithm we find that: the routing heuristic in Algorithm
1 needs O(n2) time for accessing each pair of locations in the

route, where n is the number of requests in the problem in-
stance. Also, the cost function (1), which checks the feasibility
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of the whole route as well, needs O(n) time. The SEQ algo-

rithm (Algorithm 2) needs O(n) since its major iteration pro-
cesses all requests in order. This will make the run-time
complexity of the whole algorithm O(n4).

For the sake of comparison, Algorithm 6 describes a basic

construction method for vehicle routing problems in general.
The algorithm appears in Campbell and Savelsbergh (2004).

Algorithm 6. Basic construction algorithm for the VRP

(Campbell and Savelsbergh, 2004)
1: N= set of unassigned customers

2: R= set of routes {initially contains one route}

3: while N „ ; do
4: p* = �1
5: for j 2 N do

6: for r 2 R do

7: for (i � 1,i) 2 r do

8: if (Feasible(i,j) and Profit(i,j) > p*) then

9: r* = r

10: i* = i

11: j* = j

12: p* = Profit(i,j)

13: Insert(i*,j*) {insert j* between (i* � 1) and i*}

14: N= Nnj*
15: Update(r*)

5 The interested reader may follow up this research in a recently

published paper (Hosny, 2011), where an example of using the SEQ

algorithm within two meta-heuristic approaches (a GA and an SA) for

solving the MV-PDPTWs is presented.
According to Campbell and Savelsbergh (2004), Algorithm
6 is of O(n3), provided that the feasibility and profitability can
be performed in constant time. Feasibility makes sure that the
current position adheres to all problem constraints, while Prof-

itabilityis usually measured as a weighted combination of extra
travel distance and time delay resulting from the insertion.
When it is more profitable to insert a customer in a new route,

a new route will be allocated. As explained in Campbell and
Savelsbergh (2004), a special algorithm can be applied to re-
duce the TW feasibility test of the VRPTWs from a linear time

to a constant time. The same algorithm can also be applied to
the PDPTWs. Nevertheless, this algorithm requires that extra
information is kept for each customer already existing in the
route. In general, two quantities have to be maintained: the

earliest and the latest possible times the service can take place,
relative to the customer’s current location in the route. This
information is not fixed and subject to change after each inser-

tion, which accounts for the existence of an update function to
maintain the desired quantities (Step 15 of Algorithm 6).

Unlike the VRPTWs, however, checking the capacity feasi-

bility for the PDPTWs can only be done in linear time (Hun-
saker and Savelsbergh, 2002), due to the presence of two
different types of customer services in the route. As a result,

the basic construction algorithm when applied to the PDPTWs
also results in O(n4) complexity. The algorithm can also in-
clude a selection of seed customers for route initialization,
which usually does not change the complexity of the

algorithm.
As mentioned above, it is possible to reduce the TW feasi-

bility check for the PDPTWs from a linear time to a constant

time, by maintaining and frequently updating extra route
information, as done for example in Derigs and Döhmer
(2008). However, since our route cost function (1) tests the fea-

sibility of both the TW and the capacity concurrently, it would
be redundant to calculate and store additional service timing

information to accelerate the TW feasibility test, since an
O(n) testing would still be needed for the capacity feasibility.

In addition, since our SEQ algorithm accepts any feasible
insertion, it does not have to check the feasibility nor estimate

the profitability of each and every possible insertion position,
as done in Algorithm 6. In our algorithm, the cost of the route
as a whole will be calculated, if at all, only if the route has been

changed. This is due to the restriction imposed by the TW con-
dition in Step 4 of Algorithm 1.

Finally, during the insertion process, i.e., Step 7 of the SEQ

algorithm (Algorithm 2), two locations (a pickup and delivery
pair) are simultaneously inserted, then Algorithm 1 handles the
feasibility checking and the improvement of the underlying

route altogether. Besides overcoming the precedence and the
coupling issues, this insertion has the added advantage of
accelerating the solution construction process, since only half
the number of locations is processed in the main iteration of

Algorithm 2.
On the other hand, the parallel construction algorithms

implemented in this research seem to be one order of magni-

tude higher than the SEQ algorithm, due to the presence of
an extra loop that passes through all available vehicles,
although the number of vehicles is always less than n (the num-

ber of nodes in the data set).

8. Summary and conclusions

In this research we investigated several initial solution con-
struction heuristics for the MV-PDPTWs, aiming to identify
the best heuristic that can be used as part of a comprehensive

solution methodology. In our opinion, existing approaches in
the literature often overlook and perhaps underestimate this
vital component of the overall solution algorithm.

The experimental results on a large number of benchmark
instances indicate that the sequential construction heuristic
(SEQ) seems to be the most favourable solution construction

method, which can be by easily embedded in a heuristic or a
meta-heuristic technique to reach final good quality solutions.
With just a few simple lines of code, and without a pre-deter-

mined number of vehicles or a solution evaluation mechanism,
this algorithm produced good quality results, that are some-
times even better than the results obtained by the most sophis-
ticated parallel algorithm tested in our research (the PBQ

algorithm). The SEQ algorithm also had an impressive speed,
with a processing time that is at most 6% of the time needed by
the PBQ algorithm, making it even more suitable for popula-

tion-based solution algorithms.
The construction algorithms developed in this research are

distinguished by their simplicity and ease in coding and repli-

cation, compared to many construction methods that are
adopted from the VRPTWs literature. All of our algorithms
are general portable frameworks that can be used within other

heuristics and meta-heuristics that solve the PDPTWs and its
related variants.5
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