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ABSTRACT
To the best of our knowledge, only a few researchers have ex-
perimented with genetic algorithms (GAs) to tackle the sin-
gle vehicle pickup and delivery problem with time windows,
possibly due to the large number of constraints involved and
the difficulty in handling them. In particular, there is the
difficulty in designing an appropriate genetic representation
and intelligent genetic operators that are able to transfer the
ordering characteristic of the parents to the offspring, while
preserving the feasibility of the solution. In this research,
we will experiment with a genetic encoding and operators
specially designed to deal with the problem in hand. We will
present a duplicate gene encoding that guarantees the satis-
faction of the the precedence constraint, between the pickup
and the delivery requests, throughout the search. We aim to
show that GAs, if guided by some problem-specific informa-
tion, will be able to handle this hard problem and possibly
other similarly highly constrained problems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search—Heuristic methods; F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumer-
ical Algorithms and Problems—Routing and Layout

General Terms
Performance

Keywords
Pickup and Delivery with Time Windows, Dial-a-Ride, Ge-
netic Algorithms, Vehicle Routing

1. INTRODUCTION
The single vehicle pickup and delivery problem with time

windows (PDPTW ) is an important practical problem, hav-
ing applications such as mail delivery, newspaper distribu-
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tion, school bus routing and the transportation of employees.
Indeed, in the view of the present authors the PDPTW will
assume even greater prominence in the future, if we are to
design more efficient transport systems and reduce the en-
vironmental impact of the ever increasing volumes of goods
transported on our roads. Greater cooperation between the
various stakeholders in manufacturing and distribution sup-
ply chains could significantly reduce the number of “empty
running” journeys undertaken by heavy goods vehicles, for
example, which is currently recorded at 27.4 % by UK gov-
ernment statistics in [19].

The PDPTW deals with a number of customer requests
that must be satisfied by one vehicle with a known capac-
ity. The route of the vehicle usually starts and ends with a
central depot. A request must be collected from a pickup lo-
cation before being dropped off at a corresponding delivery
location, and every pickup and delivery request is associated
with a specific time window during which it must be served.
If the vehicle arrives earlier than the beginning of the des-
ignated time window interval, it must wait until the service
time begins. All requests must be served in a way that min-
imizes the total travel cost of the vehicle, without violating
precedence, capacity and time windows constraints.

The PDPTW is known to be NP-Hard, with the presence
of time windows making the problem particularly compli-
cated. Since exact algorithms are too slow for large prob-
lem sizes, heuristic and meta-heuristic approaches seem to
be good alternatives. Amongst meta-heuristics, genetic al-
gorithms (GAs) are well known for their robustness, par-
allelism, and their ability to perform reasonably well on a
wide variety of problems, including ordering and grouping
problems, as well as highly constrained problems. Thus,
exploring GAs to solve the PDPTW would seem to be a
justified option. Besides their ability to widely explore the
search space, GAs are easy to implement and do not de-
pend so much on the quality of the initial solution as some
other heuristic and meta-heuristic techniques. Nevertheless,
we aim to explore alternative heuristics and meta-heuristic
options as part of our future research. The present paper
focusses only on the first stage of our planned programme
of work.

2. LITERATURE REVIEW
There are many variations of the pickup and delivery

problem (PDP) in the literature, and approaches developed
to handle them tend to be rather problem-specific. One
classification distinguishes static from dynamic problems:
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static problems requiring that all requests are determined
in advance of the route construction process, with dynamic
allowing some requests to arrive during the execution of the
route(s).

Some PDP problems have neither capacity nor time win-
dow constraints, for example [16]. Some researchers, as will
be detailed shortly, deal with only a single vehicle, while oth-
ers deal with a more general multiple vehicle case [10, 11, 12,
13, 18]. An important variant of the PDP is the dial-a-ride
problem, in which people instead of goods are transferred,
giving rise to customer inconvenience issues that should be
taken into consideration during the construction of a solu-
tion [4, 5, 8].

As previously mentioned, approaches to handle the PDP
problems tend to be rather problem-specific: some are ex-
act and guarantee to solve the problem to optimality, while
others are approximation and attempt to find an accept-
able solution in a reasonable amount of time. Examples of
approximation algorithms for the multiple vehicle case are
the evolutionary approach of [2] and the grouping genetic
algorithm of [14].

For the single vehicle case, an exact algorithm is the dy-
namic programming approach of Psaraftis in [15]. However
this technique has a time complexity of O(n23n), and for this
reason is limited to solving small problems of up to about
10 requests (20 locations). On the other hand, Desrosiers,
Dumas and Soumis in [3] solve the single vehicle dial-a-
ride problem, with precedence, capacity and time windows
constraints, exactly using dynamic programming. This al-
gorithm can solve problem sizes up to 40 requests (80 loca-
tions), where the capacity and time windows constraints are
rather tight. Narrowing the constraints seems to transform
the exponential running time of dynamic programming to a
linear running time.

Approximation algorithms, in which a heuristic or a meta-
heuristic is developed to deal with the problem, make it
possible to cope with much larger problem sizes even than
this.

For the single vehicle PDPTW, the heuristic in [20] in-
volves a 2-phase approach. In the initial phase a feasible
solution is constructed, and in the second phase this so-
lution is improved. In both phases a variable depth arc
exchange procedure is performed, in which the number of
arcs to be exchanged is not determined in advance, but cal-
culated dynamically during the search. In the route con-
struction phase, time constraints may be violated as long as
precedence and capacity constraints are satisfied. In addi-
tion, a simulated annealing alternative approach is used as
a precaution against poor or infeasible solutions that may
result from the above heuristic algorithm.

The work reported in [7] also deals with a single vehi-
cle PDPTW. This time, however, a hybrid strategy is pro-
posed which combines an exact method with a genetic al-
gorithm and both static and dynamic cases are considered.
The approach consists of three consecutive stages: a pre-
planned module, a dynamic programming module, and a
genetic algorithm module (GA). The pre-planned module
arranges requests and prepares information for the dynamic
programming module. The role of the dynamic program-
ming module is to create a set of sub-routes, which it will
eventually pass on to a temporary result pool, where the
genetic algorithm module will pick them up, installing these
unfinished sub-routes to establish its initial population. In

the GA module, a solution is encoded as a permutation of
locations, and four crossover operators are compared: two
traditional order based crossover operators, and two merge
crossover operators, MX1 and MX2, that use a global prece-
dence vector to guide the inheritance process, as explained
in [1]. The mutation operator is applied only when the
offspring is identical to one of its parents.

In a more recent work, the same genetic operators used
in [7] are examined in the context of a family competition
genetic algorithm (FCGA) [6]. Here again, an order based
representation is adopted. The idea is to allow each individ-
ual of the population to play the role of a family father in
turn. Another randomly selected individual plays the role
of mate for the family father. The two individuals are com-
bined to produce an offspring in a regular GA fashion. The
selection of the mate and the reproduction is repeated for
a chosen number of iterations to produce a family of off-
springs. Only the best offspring in the family survives and
is added to a temporary population of champions. The new
generation is chosen from among the best individuals in both
the original population and the champions of the families.

The authors in [9] present a tabu search to solve the sin-
gle vehicle PDPTW. The algorithm first creates a route re-
specting precedence and capacity constraints, using a simple
insertion heuristic. Then, two local search methods, simple
and probabilistic tabu search, are conducted to construct
a feasible route with minimum distance traveled. To con-
struct an initial route, pickup locations are sorted in increas-
ing order of earlier time window intervals. Locations are
then inserted in the route as they are encountered in that
order, with a delivery location inserted immediately after
its corresponding pickup location, while taking the capacity
constraint into consideration. The generated route may be
infeasible in terms of the time window constraint, however.
A tabu search is then conducted to improve the initial solu-
tion. Two tabu search heuristic algorithms were applied: a
deterministic tabu search, in which classical neighborhood
moves are performed, and a probabilistic tabu search, which
is based on the same principals as the deterministic one with
the addition of a buffered memory of potential moves, and
introducing some probabilistic criteria for the selection of
next move.

For the interested reader [17] provides an excellent and
detailed survey on the general pickup and delivery problem
and existing techniques to handle it in the literature.

3. THE SINGLE VEHICLE PDPTW
Assume we have a set of nodes N = {n0, n1, n2, ..., nm}, n0

denotes the depot and the last index m is an even number.
Each location ni, i 6= 0 is associated with:

• A customer demand qi, such that qi > 0 for a pickup
location, qi < 0 for a delivery location and qi + qj = 0
for the same customer’s pickup and delivery locations.

• A time window [ei, li] during which the location must
be served.

For each possible edge < ni, nj > a distance dij or a travel
time tij are specified. Only edges satisfying the time window
(TW ) constraint should be considered, i.e., t0i + tij < lj .

The vehicle has a limited capacity C. The capacity con-
straint ensures that the total load carried by the vehicle at
any given time does not exceed its capacity.
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The vehicle’s journey should start from the depot and
could end at any of the delivery locations1, while each loca-
tion should be visited exactly once.

A location must be serviced within the specified time win-
dow, i.e., if the vehicle reaches the location before the earli-
est TW ei, it must wait until ei. The precedence constraint
requires that each pickup location must precede the corre-
sponding delivery location.

The objective function varies depending on the applica-
tion. In general, one or more of the following parameters
are included: The total traveling distance, the total route
duration, or the driver’s total waiting time.

4. THE RESEARCH
In this research we investigate the potential of using ge-

netic algorithms to solve the single vehicle pickup and de-
livery problem with time windows. In particular, we exper-
iment with a duplicate gene encoding that guarantees the
satisfaction of the the precedence constraint, between the
pickup and the delivery, throughout the search. In addi-
tion, several problem-specific genetic operators are tested
and compared on a number of data sets ranging from 10
to 200 requests. The operators tested are: a modified 2-
child merge crossover operator guided by two time window
precedence criteria, a new crossover operator that depends
on the order of pickup and delivery locations appearing in
parent solutions, a simple gene swap mutation, and a time
window oriented swap mutation. The results obtained indi-
cate that due to the difficulty in satisfying the time window
constraint, the most successful operators are the ones that
take into account the time window precedence order while
manipulating genes. These operators were able to obtain
feasible solutions even for large data sets tested in our re-
search.

4.1 The Encoding
The genetic encoding of this kind of problem is not as ob-

vious as it seems. The PDP problem is an ordering problem
in which a genetic solution (a chromosome) could be encoded
as a permutation of locations, representing an order in which
these locations will be visited. In the PDP problem, how-
ever, the issue of precedence must be addressed in the en-
coding of a solution, because no delivery location is allowed
to precede its corresponding pickup location. Nevertheless,
this precedence order may not be maintained following the
application of a genetic operator to the chromosome. For ex-
ample, any simple genetic operator (like a simple gene swap
mutation) could disturb the precedence order and result in
an infeasible solution. Consequently, a repair method would
be needed to restore the feasibility of the solution; and this,
of course, would increase the processing time and complicate
the algorithm.

We have developed a genetic encoding which avoids the
precedence issue: we simply assign the same code to both
the pickup and its associated delivery location, and rely on a
simple decoder to identify its first occurrence as the pickup
and the second as the delivery. This simple and obvious en-
coding will eliminate the problem of backtracking to repair

1It is assumed here that the vehicle’s journey is open path,
to enable a comparison with the results reported in [6] that
follow this assumption. An alternative would be for the
vehicle to return to the depot after servicing all requests.

an infeasible solution, and solves the precedence constraint
issue in a simple and effective way. As a result, more effort
can be directed towards harder constraints such as capaci-
ties and time windows. An example of a chromosome with 4
requests following this encoding is: (2 1 1 3 4 2 3 4 ), where
pickups are shown in boldface and deliveries in italics.

4.2 The Fitness Function
Following [6], the fitness function treats the constraints

as soft constraints, meaning that an infeasible solution that
violates either the capacity and/or the time window con-
straint will be penalized by an added term in the fitness
function. The fitness function of a route r is:

F (r) = w1 ×D(r) + w2 × TWV (r) + w3 × CV (r)

Where D(r) is the total route duration including the wait-
ing time, TWV (r) is the total number of time window viola-
tions in the route, and CV (r) is the total number of capacity
violations; w1, w2, and w3 are weights in the range [0, 1] as-
signed to each term in the fitness function, and w1 + w2 +
w3 = 1.

The fitness function will try to minimize infeasibility as
well as the total route duration. The choice of appropriate
weights depends on the importance of each term in the fit-
ness function. In this research we found that in order to get
feasible solutions, more penalty should be imposed on the
time window violations than the capacity violations or the
total route duration.

4.3 The Operators

4.3.1 Crossover
Several problem-specific genetic operators were considered

potentially suitable for this kind of problem. The first ge-
netic operator we tried follows the merge crossover opera-
tors suggested in [1] for the the vehicle routing with time
window problems, and used in [6] for the PDPTW. Unlike
traditional crossover operators for ordering problems, which
depend only on chromosome contents and local ordering of
genes in the chromosome, the merge crossover operators de-
pend on a global precedence among genes, such as the time
window or distance ordering.

Traditional order based crossover operators are not very
effective for highly constrained problems like the PDPTW
problem, since they frequently produce infeasible solutions.
Merge crossover operators, however, were shown to be su-
perior to the traditional ones in these types of problems [1,
6, 7].

In the current research we have slightly modified the MX1
operator used by [6]. Instead of creating just one child,
giving priority to the parent’s gene having an earlier time
window lower bound, we have created two children: the first
child favoring genes that have an earlier lower bound, while
the second child favors genes that have an earlier upper
bound. The idea is that visiting a location just before its
deadline could be more beneficial than visiting it as early
as possible in its allowed interval. This may help to reduce
the waiting time that would result if the vehicle arrives too
early at a location, and, as a consequence, could reduce the
total route duration. Creating two children instead of one
was suggested in [1] and may also improve the quality of
the new generation and speedup the optimization process.

To illustrate how the MX1 operator works, assume that
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the following vector defines the precedence order, in terms
of lower bound of time window, among all pickup and de-
livery locations, (for clarity, pickups are followed by a + and
deliveries are followed by a - )
(2+ 1- 3+ 1+ 4- 2- 3- 4+)
Now, assume we have the following two parent solutions:
P1: 2+ 1+ 3+ 3- 1- 2- 4+ 4-
P2: 3+ 1+ 1- 2+ 2- 4+ 4- 3-
Since 2+ has a higher precedence than 3+, the child will in-
herit 2+ as the first gene.
C1: 2+ - - - - - - -
To maintain feasibility, 2+ in P2 will be swapped to the first
location.
P1: 2+ 1+ 3+ 3- 1- 2- 4+ 4-
P2: 2+ 1+ 1- 3+ 2- 4+ 4- 3-
The second gene in both parents is identical, so it is copied
to the child and we move on to the next gene in order.
C1: 2+ 1+ - - - - - -
1- has a higher precedence than 3+, so 1- is copied to the
child, and 1- is swapped with 3+ in P1.
P1: 2+ 1+ 1- 3- 3+ 2- 4+ 4-
P2: 2+ 1+ 1- 3+ 2- 4+ 4- 3-
C1: 2+ 1+ 1- - - - - -
Continuing in the same manner, we obtain the child:
C1: 2+ 1+ 1- 3+ 2- 3- 4- 4+

The last 2 genes are out of order, but this is of no concern
since the first one is automatically considered as the pickup.
So, the child in its final form will be:
C1: 2 1 1 3 2 3 4 4
The second child is created in a similar manner but with
the precedence vector defined by the upper bound of time
window intervals instead.

In addition, we designed a new problem-specific crosso-
ver operator for the PDP problem. The idea is that, since
any crossover operator roughly tries to create a child that
inherits half of its genes from the first parent and half of its
genes from the second parent, we will try to transmit pickup
locations to the child in an order close to the order of their
appearance in the first parent, and try to transmit deliv-
ery locations to the child in an order close to the order of
their appearance in the second parent. A second child is cre-
ated by reversing the role of parents. This kind of crossover
might prove useful in satisfying the capacity constraint in
particular, since the satisfaction of this constraint is mainly
dependent on the ordering of pickups and deliveries. To il-
lustrate this crossover operator, which we will call PDPX,
consider the following two parent solutions:
P1: 2 1 3 3 1 2 4 4
P2: 3 1 1 2 2 4 4 3
First all pickups (first occurrences of genes) will be copied to
the child in the exact order and locations as the first parent.
C1: 2 1 3 - - - 4 -
Now, we want to take the order of delivery locations from
the second parent. Since a delivery is always the second oc-
currence, we will start processing parent 2 from the last gene
rather than the first. If we encounter a gene that appeared
in the child only once, i.e., it has already been picked up, we
will copy it in the first available location in the child (also
processed starting from the last gene). If, on the other hand,
we encounter a gene that has already appeared twice in the
child, this gene will be ignored because pickup and delivery
has already occurred for this gene, and we move on to the
next gene in order. Following this we obtain the child:

C1: 2 1 3 1 2 4 4 3
the second child is obtained by taking the pickups order
from the second parent and the deliveries order from the
first parent, as shown below.
C2: 3 1 - 2 - 4 - -
C2: 3 1 3 2 1 4 2 4

4.3.2 Mutation
We experiment with two mutation operators in our ge-

netic algorithm. The first is a random gene swap mutation,
which selects 2 genes at random and swaps them. The use
of duplicate gene encoding eliminates the possibility of in-
feasible solutions, in terms of precedence order, that may
result following such swap.

We also implemented, a new problem oriented mutation
operator, named directed mutation. As mentioned above,
it appears that the time window constraint is the hardest
to satisfy among all other problem constraints, given the
precedence constraint is dealt with using the simple dupli-
cate gene encoding, and the capacity constraint is easy to
satisfy, because each delivery request represents a negative
load that is removed from the vehicle. To deal with the
time window constraint, a mutation operator could attempt
to bring a location that may be more urgent earlier in the
visiting order. This may result in a better ordering of lo-
cations, which should be beneficial in satisfying the time
window constraint. Instead of a traditional random swap
of two genes, this new mutation operator only swaps genes
if they are out of order in terms of their late time window
bounds, i.e., if the later one has a deadline that precedes the
earlier one.

4.4 The Genetic Algorithm Implementation
The genetic algorithm was implemented in C++ with the

aid of an MIT genetic algorithm library, GALIB. A steady
state GA was selected, with a replacement percentage of
100% and a population size of 1000. More details will be
given of the other important parameters we used for the
GA in Section 6.

5. TEST DATA
The genetic algorithm was tested on a data set obtained

from the authors of [6]. This data set has a number of cus-
tomer requests ranging from 10 to 100 (20 to 200 locations).
In addition, for a more extensive and thorough testing of
the operators, we have created a new data set with larger
numbers of customer requests ranging from 100 to 200 (200
to 400 locations).

To create test data for the PDPTW, we must ensure the
existence of at least one solution that satisfies all problem
constraints. The following steps were followed to create the
test data:

1. For the set of nodes N = {n0, n1, n2, ..., nm}, where
m is an even index, assume n0 is the depot, the set
{n1, ..., nm/2} represents pickup locations, and the set
{n(m/2)+1, ..., nm} represents delivery locations, such
that the pickup location ni has the associated delivery
location ni+(m/2).

2. Generate a random vehicle capacity within a certain
predetermined range.

3. Generate random x and y coordinates for the depot, in
the range [0, 200].
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4. For all pickup and delivery locations:

(a) Generate random x and y coordinates, each in the
range [0, 200].

(b) Generate a random demand (load) within a cer-
tain allowable range, such that the demand of a
delivery is the same as the the demand of the cor-
responding pickup but with a negative sign.

(c) Assume a very large time window interval that
could not possibly be violated.

5. Run the genetic algorithm to obtain a feasible solu-
tion. Note that, due to the nature of the problem, the
satisfaction of the capacity constraint can be easily ac-
complished by any of our genetic operators. The time
window constraint can also be easily satisfied because
the TW intervals are very large at this point.

6. Calculate the arrival time at each location in the fea-
sible route obtained.

7. Create a random time window interval for each loca-
tion such that the arrival time falls within the created
time window. The width of the time window interval
should be determined in advance2.

6. EXPERIMENTAL RESULTS
To test the genetic algorithm, different combinations of

crossover and mutation operators were compared on two
data set samples. The first sample, which we will call SET
1, is the sample obtained from [6] and includes 30, 80, 90
and 100 customer requests. The second sample, which we
will call SET 2, is obtained from the data set created by
us, and includes 130, 170, and 200 customer requests. Note
that the number of locations is always double the number
of requests.

The algorithm was run 10 times on each test case, with
a crossover rate of 1.0 and a mutation rate of 0.43. The
following combinations of crossover and mutation operators
were compared:

1. MX1 crossover and random swap mutation.

2. MX1 crossover and directed mutation.

3. PDPX crossover and random swap mutation.

4. PDPX crossover and directed mutation.

5. Directed mutation without any crossover.

6. MX1 crossover without any mutation.

2The allowable ranges for the random values were deter-
mined empirically. Due to lack of space, no more elabora-
tion on the ranges can be given here. However, all the ranges
were scaled according to the number of requests currently
generated, i.e., the larger the number of requests, the larger
the allowable range for the vehicle capacity, the demand and
the width of time window interval.
3A higher than usual mutation rate was found necessary
to avoid being trapped in a local optimum. One reason
could be the duplicate encoding, a side effect of which is
that mutation may swap identical genes producing the same
offspring.

The Genetic algorithm was run to convergence or for a
maximum of 3000 generations if no convergence can be reac-
hed. The results for the 10 runs are recorded as follows, for
each test case: the best score found (total route duration),
the number of generations needed to reach this score, and
the percentage of feasible solutions obtained during the 10
runs. The results are summarized in tables 1 through 6,
where the last column of each table shows the best known
result. For SET 1, the best known results are the ones re-
ported in [6]4, while for SET 2, the best known results are
the best results achieved by our genetic algorithm. A score
followed by a * indicates that this solution is infeasible in
terms of time window constraint violation.

As can be observed, the best results are obtained from the
MX1 crossover and random swap mutation as shown in table
1. Together they achieved a 100% feasibility rate in all test
cases except for the largest task (200 requests) in which the
feasibility rate was 80%. In two cases the results obtained
were even better than the best known results reported in [6].
These are the results for test cases 30 and 80. Our GA
with MX1 combined with random swap also converges quite
quickly, in terms of the number of generations needed to
reach the best solution. For example, only 13 generations
for test case 100.

The worst results are obtained by PDPX crossover and
swap mutation, as shown in table 3. These two operators
together failed to achieve any feasible results, in terms of
time window constraint, even for small sized tasks. This
can be explained by noticing that both PDPX crossover
and swap mutation lacked any guidance towards the time
window ordering. Although they were able to satisfy the ca-
pacity constraint in all test cases, they failed to satisfy the
time window constraint. Clearly, they worked blindly with
respect to the timing order, and consequently were not able
to find an ordering that services all requests in their desired
intervals.

When directed mutation replaced the random swap muta-
tion, however, the results dramatically improved for PDPX.
Table 4 shows that PDPX together with directed muta-
tion were able to obtain feasible solutions in all test cases.
The feasibility ratio ranged from 40% for the largest task to
100% for the smallest task. The results, though, were not
able to beat the results obtained from the MX1 crossover
and swap mutation. Figure 1 shows how directed mutation
was able to guide the search towards much better solutions
for the largest task tested.

The situation is different, however, when directed muta-
tion replaced random swap mutation with the MX1 crosso-
ver. As shown in table 2, these two operators together pro-
duced lower quality solutions than those obtained by MX1
crossover with the random swap mutation. Possibly, the in-
troduction of directed mutation here caused the algorithm
to rapidly converge to a local optimum without a chance for
improvement. Figure 2 bears this out, and shows clearly the
rapid conversion of the MX1 crossover with directed muta-
tion compared to the gradual conversion of the MX1 crosso-
ver with the random swap mutation. The MX1 crossover
seems capable of guiding the GA towards feasible solutions
without the help of an “intelligent” mutation operator. Its
success is possibly due to the fact that it creates not only
one but two children that have a better visiting order than

4the results shown are truncated as they appear in [6].
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Table 1: Results for MX1 & Swap Mutation
Task Best Gener % Feas Best Known
30 3696.51 43 100 3713
80 7838.21 47 100 7849
90 8619.01 15 100 8618
100 10600.1 13 100 10600
130 13856.2 377 100 13856.2
170 19861.3 414 100 19861.3
200 24512.8 919 80 24512.8

Table 2: Results for MX1 & Directed Mutation
Task Best Gener % Feas Best Known
30 3738.73 13 100 3713
80 7858.72 13 100 7849
90 8619.01 14 100 8618
100 10600.1 12 100 10600
130 15913.1 167 20 13856.2
170 20674.5 705 60 19861.3
200 26058.1 300 60 24512.8

their parents. These children are biased towards the more
urgent requests in terms of the allowed service time. All that
this crossover needs is a simple random swap to introduce
a bit of a diversity in the population. Any more intelligent
interference does not seem to help and actually appears to
drive the search away from the better solutions. The impor-
tance of a random swap mutation to help introduce diversity
can also be shown in table 6 in which MX1 worked alone
without any mutation. The results show that MX1 failed to
find some previously achieved optimum results in the small
tasks (SET 1), and even failed to achieve any feasible results
in all large tasks (SET 2).

Finally, when directed mutation was tested without any
crossover, the results obtained were, to some extent, sur-
prising. As shown in table 5, this mutation alone was able
to obtain feasible solutions for all test cases. The feasibility
rate was 90% or 100% for all test cases except for the largest
one in which the feasibility rate was 70%. Although the
quality of the results obtained are slightly worse than the
those obtained when directed mutation operated together
with one of the two crossovers tested, the feasibility ratio
indicates that this mutation is an intelligent operator that
has a great potential. Clearly, it was able to obtain good
quality and feasible solutions without the help of any crosso-
ver operator, albeit with a larger number of generations. It
should be noted, though, that when directed mutation was
tested with MX1 crossover, only one swap movement was
needed to inject the necessary level of diversity and to re-
duce the chance of being trapped in a local optimum. On
the other hand, when directed mutation was tested alone or
with the PDPX crossover, it was found that a larger num-
ber of swaps was needed to achieve good results. For these
cases, the number of swaps was taken to be a random num-
ber between 1 and the number of customer requests in the
data set.

Table 7 shows processing time in seconds needed to ob-
tain best and feasible solutions for data sets 100 and 200,
on a Pentium (R) 3.40 GHz processor.

Table 3: Results for PDPX & Swap Mutation
Task Best Gener % Feas Best Known
30 3863.27* 633 0 3713
80 9163.92* 932 0 7849
90 10057* 1958 0 8618
100 11886.1* 1482 0 10600
130 19185.4* 1000 0 13856.2
170 25817.1* 2000 0 19861.3
200 32009.7* 2000 0 24512.8

Table 4: Results for PDPX & Directed Mutation
Task Best Gener % Feas Best Known
30 3734.54 46 100 3713
80 7838.21 294 100 7849
90 8623.23 375 100 8618
100 10608.2 634 80 10600
130 14791.7 789 60 13856.2
170 20359.3 1418 90 19861.3
200 24911.2 2245 40 24512.8

Table 5: Results for Directed Mutation
Task Best Gener % Feas Best Known
30 3747.47 32 100 3713
80 7879.35 275 90 7849
90 8662.2 444 100 8618
100 10608.2 405 90 10600
130 14679.2 1854 100 13856.2
170 20470.2 2235 90 19861.3
200 25091.7 2773 70 24512.8

Table 6: Results for MX1
Task Best Gener % Feas Best Known
30 3741.1 6 100 3713
80 7867.68 14 80 7849
90 8619.01 12 100 8618
100 10600.1 13 90 10600
130 21626* 65 0 13856.2
170 30575.6* 46 0 19861.3
200 37148.5* 51 0 24512.8

Table 7: Processing Time for Tasks 100 and 200
Operators Task 100 Task 200
MX1 & Swap 12 sec 988 sec
MX1 & Directed 11 sec 317 sec
PDPX & Swap 1148 sec no feasible result
PDPX& Directed 493 sec 2158 sec
Directed 253 sec 1939 sec
MX1 12 sec no feasible result
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Figure 1: PDPX & Swap vrs. PDPX & Directed
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7. CONCLUSIONS AND FUTURE WORK
This research investigated problem-specific genetic encod-

ing and operators for the single vehicle pickup and delivery
problem with time windows, aiming to efficiently conquer
the difficult constraints of the problem. The order based rep-
resentation we used is a duplicate gene encoding that guar-
antees the satisfaction of the precedence constraint through-
out the search, alleviating the need for backtracking to solve
the infeasibility that may result following any genetic ma-
nipulation.

Four genetic operators were tested: a modified 2-child
merge crossover (MX1) guided by precedence of both time
window bounds, a new PDPX crossover operator that de-
pends on the order in which the pickup and delivery lo-
cations appear in parent solutions, a regular random swap
mutation, and a directed mutation that swaps genes accord-
ing to urgency in terms of the deadline of service time. The
experimental results on the two data sets indicate that MX1
crossover and directed mutation are each effective as genetic
operators (although they do not work very well together).
We believe their success is due to the guidance they take
from the time window information. On the other hand, the
PDPX crossover was not able to find feasible solutions to
any of the test instances, when tested in combination with
the random swap mutation. This was probably due to the
absence of guidance towards the desired service time. How-
ever, the results for PDPX dramatically improved, when
used in combination with directed mutation. Indeed, the
directed mutation operator seems to show great promise,
and would appear to be useful in guiding the search towards
feasible solutions, in cases where a crossover operator is dis-
ruptive, ineffective or absent. Future research will attempt
to investigate the potential of this operator for the PDPTW
in the context of other meta-heuristic algorithms, such as
simulated annealing and tabu search. We also plan to ex-
periment with simple hill-climbing.
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