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Abstract

Results presented in recent papers demonstrate that
it is possible to produce high quality solutions to
TSP instances of up to several hundred cities using
simple greedy heuristics when a Genetic Algo-
rithm (GA) is used to perturb the city coordinates.
The present paper extends the earlier studies to
larger problems and a divide and conquer algo-
rithm in the style of Richard Karp. Using a GA to
perturb city coordinates in conjunction with a
divide and conquer algorithm the feasibility of
solving large problems to within a few percent of
optimality is demonstrated. The exceptionally
rapid execution times of Karp's algorithms to-
gether with their almost linear run-time scaling at
O(nlogn) set them apart from most other heuristic
algorithms.

1  INTRODUCTION

Simple tour construction heuristic algorithms applied to the
travelling salesman problem (TSP) tend to produce rather
poor quality solutions about 20% above the optimum tour
length. Results presented in recent papers, however,
demonstrate that it is possible to produce high quality
solutions to TSP instances of several hundred cities using
simple greedy heuristics such as nearest neighbour  (Bradw-
ell 1997) and multifragment (Valenzuela 1997a) when a
Genetic Algorithm (GA) is used to perturb the city coordi-
nates. The present paper extends the earlier studies to a
divide and conquer algorithm in the style of Richard Karp
(Karp 1977). Using a GA to perturb city coordinates in
conjunction with a divide and conquer algorithm the
feasibility of solving large problems to within a few percent
of optimality is demonstrated. The exceptionally rapid
execution times of Karp's algorithms together with their
almost linear run-time scaling at O(nlogn) set them apart
from most other heuristic algorithms. It is the impressive

run-time scaling combined with the simplicity of the
approach which motivates the study.

The TSP is probably the best known combinatorial optimi-
zation problem, and it has provided a challenging testbed
for GA researchers for many  years. Most authors have
chosen a genetic representation based on permutations of
cities, and several clever genetic operators have been
devised which are capable of combining useful features
from two parental tours into an offspring tour. Recent work
by Nagata and Kobayashi (Nagata 1997) has produced some
extremely impressive results using a crossover which they
devised called edge assembly crossover.

Current versions of my algorithms are not competitive with
state-of-the-art GAs for the TSP in terms of solution quality.
Although results for a few hundred cities are impressive, the
solution quality tends to ‘drift’ a little as the problems
become larger. The large numbers of experiments needed to
establish various parameters required for Karp’s algorithms
provides a serious barrier to progress. I believe, however,
that the approach is worthy of perseverance and further
study for the following reasons:

1) The scaling of Karp’s algorithms at O(nlogn) means the
approach holds promise for very large instances of the TSP.

2) The simplicity of the approach: no complicated heuristics
or operators are employed, yet the solution quality produced
using Karp’s algorithm is lifted from 20% excess to a few
percent at most.

3) The encoding scheme is novel: most GAs for the TSP use
representations based on permutations.

4) Finally, the divide and conquer paradigm has important
parallels in nature, for example the DNA complement of a
complex multicellular organism includes a blueprint for
cellular differentiation: different cell groupings forming
different organs to perform different functions in the
organism.



Figure 1 Typical solution to a 50 city problem produced
by the greedy heuristic algorithm

Figure 2 Improved solution obtained by perturbing the
city coordinates of the 50 city problem

Karp's algorithms subdivide a TSP instance in the Euclidean
plane by recursively bisecting the space to produce smaller
and smaller rectangles. Whenever the process encounters a
rectangle containing fewer cities than some predetermined
threshold, it stops bisecting the rectangles and solves the
subproblems. The solved subproblems are patched together
to produce a global tour through all the cities.

In the present study I use a greedy heuristic algorithm to
solve the subproblems, and a very simple patching proce-
dure to join the subproblems together in pairs as the recur-
sive process unwinds.

An earlier approach which combined a GA with Karp's
algorithm, which I shall refer to as Evolutionary Divide and
Conquer (I) (EDAC(I)) (Valenzuela 1994, 1995), proved
effective on instances of about 5,000 cities. Unfortunately
Karp's algorithms in their original form typically produce
solutions that are 20-30% above the optimal tour lengths
(Johnson 1990). The EDAC(I) algorithms, however, are able
to improve upon the solution quality quite considerably by
using a genetic algorithm to explore the space of problem
subdivisions, and by employing a range of enhanced repair
heuristics in an attempt to correct the typical ‘errors’  that
are inherent in Karp's divide and conquer scheme. Whilst
the addition of enhanced repair heuristics would appear to
maintain the near linear scaling qualities of the execution
time for problems in the range of 500 - 5,000 cities, they
unfortunately increase the actual run-time quite consider-
ably. For example a 500 city problem runs about five times
faster without the enhanced repair heuristics. Due to the
excessive run-time requirements, the scaling qualities of
EDAC(I) were not investigated beyond instances of 5,000
cities. Fortunately it would appear that the new approach
based on perturbed coordinates does not need any repair
heuristics and so it becomes feasible to explore its applica-
tion to much larger instances of the TSP. In this preliminary
paper the largest instance to which the new techniques have
been applied is 5,000 cities. Work is currently underway,
however, to extend this to much larger instances.

Weaknesses in many of the standard TSP heuristic algo-
rithms are easy to spot by examining typical solutions
produced by such techniques. Tour construction heuristic
algorithms, for example, tend to start off well, adding short
edges in the early stages of the construction process, but are
often left only with very long edges from which to select the
final portions of the tour. Figure 1shows a typical tour
produced using a tour construction algorithm called the
greedy (or multi-fragment) heuristic algorithm (see (John-
son 1990) for a survey of tour construction heuristics).

‘Good parts’ and ‘bad parts’ of the tour are clearly visible

in Figure 1, illustrating the reduced effectiveness of the
greedy heuristic when only a few cities remain to be
incorporated in the tour. I use the multifragment algorithm
in the present study to solve the subproblems in the rectan-
gles generated by Karp’s divide and conquer algorithm.

Figure 2 illustrates how the tour from Figure 1 can be
improved by running a GA to perturb the city coordinates to
‘fool’ the greedy heuristic algorithm. In Figure 2 the best
tour is denoted by solid lines, and the corresponding tour
through the ‘perturbed cities’ is denoted by the broken lines.
(Further details of the mutifragment study can be found in
(Valenzuela 1997a)).

In the present study I use a genetic algorithm to perturb city
coordinates for the TSP in such a way that a very simple
divide and conquer algorithm is ‘fooled’ into producing
excellent solutions. The use of perturbed coordinate sets for



Figure 3 100 city problem in the early stages of bisection.

Figure 4 Completed solution of 100 city problem.

solving the TSP was first suggested by Codenotti, Manzini,
Margara and Resta (Codenotti 1993, 1996) who incorpo-
rated the technique into their version of iterated local
search. Perturbing the cities only to enable their algorithm
to escape local optima, their approach remained primarily
focussed on the original coordinate set. My technique, on
the other hand, uses a GA to breed perturbed coordinate
sets, and the heuristic algorithms are applied exclusively to
these, the original coordinates serving only to evaluate
intercity distances for computing tour lengths.

2  THE DIVIDE AND CONQUER PARA-
DIGM FOR THE TSP

The divide and conquer algorithms pioneered by Richard
Karp for the TSP (Karp 1977) give some useful guarantees
of solution quality and time complexity.

Theorem (Karp 1977). For every � > 0 there is an algo-
rithm A(�) such that A(�) runs in time C(�)n+O(nlogn) and,
with probability 1, A(�) produces a tour of length not more
than 1+� times the length of a minimal tour.

Although in practice the early implementations of this
approach by Karp and others gave rather poor solutions,
typically 30% excess, the probabilistic asymptotic guaran-
tees of solution quality together with the time complexity of
O(nlogn) provides a promising starting point. The challenge
is to develop a suitable genetic search procedure which,
using a variation of Karp's algorithm as its heuristic engine,
is able to improve the solution quality considerably and do
so with a minimum of effort.

In essence Karp's algorithms repeatedly partition the
rectangle holding the TSP problem until the whole region
consists of a patchwork of small rectangles each containing
about t cities. An exact or heuristic method is then applied
to each subproblem and the resulting subtours are finally
patched together to yield a single tour through all the cities.

Imagine a rectangle containing a TSP instance. If we wish
to bisect this rectangle on area we can chose one of two
directions of cut. Either we bisect in an horizontal direction
or a vertical direction. Both produce two new rectangles, the
former an upper and a lower rectangle, and the latter a left
and a right rectangle. This process can be repeated for each
of the two new rectangles, then applied recursively to the
results. The choice a horizontal or a vertical cut has to be
made each time.

I refer the reader to an earlier paper (Valenzuela 1994) for
details of the various bisection techniques that were ex-
plored when EDAC(I) was developed. In the present study
I use bisection method 3 from this paper, in which rectan-

gles are bisected through the city nearest to the true area
bisection line. The presence of a shared city between each
pair of subsolutions means that it is possible to employ a
very simple patching algorithm. 

The patching algorithm used to join subtours together in
pairs involves breaking the four edges incident with the
‘shared city’ on the boundary of the two adjacent rectangles,
two edges in each of the rectangles. Once these links have
been severed, there are four different ways in which links
can be reconnected to form a single tour through all the

cities contained in the two adjacent rectangles. All four
ways are tried and the set of links which results in the
shortest tour is the one chosen. 

Figure 3 and Figure 4 depict stages in the recursive
bisection of a 100 city TSP instance and subsequent
construction of the global tour. The direction of cut is
always parallel to the shorter side of the bisected rectangle.



Karp showed that by minimizing the lengths of the perime-
ters of the rectangles in this way it was possible to minimize
the expected lengths of the tours. In the EDAC(I) algorithms
the decision to make horizontal or vertical cuts was made by
the genetic algorithm. In the present study Karp's original
criterion for bisection is adhered to and the genetic algo-
rithm is used to perturb the city coordinates in order to
‘fool’ the algorithm into eliminating the typical errors
inherent in Karp's approach.

3  THE METHOD OF PERTURBED COOR-
DINATES

The basic idea is to perturb the city coordinates slightly, and
use these perturbed coordinates to produce a tour using the
chosen heuristic algorithm. The cities in the permutation list
resulting from this tour are then moved back to their original
positions and a ‘true tour’ is produced.

As mentioned above Codenotti et al incorporated a similar
technique into their version of iterated local search, ran-
domly perturbing the city coordinates of the TSP instance I
by small amounts to give a new instance I' every time a
locally optimal tour, T,  was found on I. T will not normally
be locally optimum with respect to I', so local optimization
is then performed with respect to I' to give a new tour T'. T'
then provides a new starting point for locally optimizing the
TSP with respect to I. In this way the perturbed coordinates
provide a simple ‘mutation’ enabling the local search
algorithm to escape local optima. About half of the time is
spent applying the heuristic algorithm to the original
coordinates and half to the perturbed coordinates.

The present approach differs from that of Codenotti et al in
three very important ways:

 • In the present study the TSP heuristic is applied
only to perturbed coordinate sets.

 • A genetic algorithm is used to breed perturbed
coordinate sets.

 • The present approach can be applied to tour con-
struction heuristics as well as to local search
heuristics.

The perturbed coordinate sets are the chromosomes  in these
experiments, and Karp's algorithm produces an individual
tour for each of the perturbed coordinate sets in the popula-
tion at any one time. These tours can then be evaluated with
respect to the original city coordinates and actual intercity
distances. The ‘true’ tour lengths form the basis for the
fitness function of the GA. All the TSP instances that I use
here are uniform random points in a square region of the
Euclidean plane. These problems are deliberately chosen in

favour of standard problems from the literature (which often
consist of pathologically distributed cities in straight lines
or clusters) at this stage because it is vital that the distribu-
tions of cities should vary in a predictable manner with
increasing problem size/city density. Such properties are
essential if we are to attempt to draw any general conclu-
sions about the algorithms with regard to solution quality or
produce a formula for scaling the perturbation zone (see
later).

4  THE GENETIC ALGORITHM

The genetic algorithm used in this study  is a very simple
GA based on (Holland 1975) and uses Cavicchio's
preselection paradigm (Cavicchio 1970). Although it is very
similar to the GA described in the earlier papers on breeding
perturbed coordinate sets (Bradwell 1997) (Valenzuela
1997), in which an offspring either replaces a weaker parent
or dies, I found that the inclusion of some simple selection
probabilities (suggested by Gorges-Schleuter (Gorges-
Schleuter 1990)) based on a population ranked for fitness
gave slightly better results when used for mate selection
than did selection of mates from the uniform random
distribution used previously. 

Selecting individuals for reproduction on the basis of rank
is a nonparametric procedure first explored by Baker (Baker
1985). It involves first sorting the population according to
the objective function. In this scheme we then assign the
individual producing the worse phenotype (tour) a score of
1, and the individual producing the best phenotype a value
of N, where N is the population size. All other individuals
are assigned integer scores in between such that the second
worse receives  a score of 2 and the second best a score of
(N-1) etc. The scores are then converted into selection
probabilities by dividing each score by the sum of all the
scores for the population.

The chromosomal representation used is a string of (x, y)
coordinates. A two-point crossover is used and the coordi-
nate pairs are sequenced according to the ordering of cities
in the best tour found so far. The process for generating an
initial population of perturbed coordinates is essentially the
same as we employed in (Bradwell 1997) and (Valenzuela
1997a). In this scheme the city coordinates are perturbed
within a small, uniform preset rectangular region surround-
ing each city, letting a suitable size for this rectangular
region be determined by some early experimentation.
Mutation is applied to randomly selected x or y coordinates
by perturbing them within the small perturbation region
surrounding each city. However, in the case of mutation the
points defined by the virtual coordinate sets are considered



l 
 k
R p

n q
(1)

   Problem
 size

HK lower
 bound

Karp’s
algorithm

New GA
 (EDAC(II))

# generations EDAC(I)

100 96.37 109.58 96.7 243 96.8

200 99.04 121.85 101.9 394 102.3

500 96.01 122.54 100.9 560 100.6

1,000 95.22 124.21 101.9 1095 99.6

2,000 94.30 124.33 101.3* 2148 98.7

5,000 93.59 126.50 (108.8*) (633) 99.1

* denotes single run,  ( ) indicates incomplete run.

Table 1 Results for the new GA on random uniform points

to be located centrally in the perturbation rectangles, in
favour of the points defined by the real coordinate sets.

5  SCALING THE PERTURBATION ZONE

By how much should the cities be allowed to ‘move’ when
the coordinates are perturbed? Applying simple heuristic
algorithms, such as  the greedy algorithm, to random
uniform points, the size of the ideal perturbation zone is
likely to be related to R, the area of the (square) region
containing all the cities, and the problem size, n. More
formally if R represents the area of the region, and n the size
of the problem then,

relates the required dimension of the side of the perturbation
zone, l, to R and n through a constant, k. Earlier investiga-
tions (Valenzuela 1997a) suggested values of p = ½  q = 3/2
and  k = 60  gave the best results for our GA when using the
multifragment heuristic algorithm

New investigations are required in order to establish a
suitable regime for scaling the perturbation zone for Karp's
algorithm. The additional effect of varying the average
subproblem size, t, also needs to be taken into consider-
ation. Thorough empirical investigations of this nature are
bound to be extremely time consuming, so a rather less
demanding approach is taken for this initial study.

Some initial execution time measurements suggest values of
t between 15 and 50 to be reasonable as the run-times for
my version of Karp's algorithm are found to vary very little
when using subproblem sizes within this range.

Intuitively values of p = ½, q = ½ in equation (1) would
seem appropriate for Karp's algorithm when t is kept
constant, as these values would relate the linear proportion
of the perturbation zone directly to the inverse of the city
density. At least this scaling would seem applicable to the
solution of the subproblems, how it would relate to the
patching algorithm is rather less clear.

Full details of the experiments are omitted from the paper to
save space, but, in summary, the choice of t = 40, p = ½,
q = ½ produces good results for a 100 city problem with
k = 0.6. As the problem size is increased, however, better
results are produced with lower values for k. I use  k = 0.6,
0.4, 0.3, 0.2 and 0.1 for problems of size 200, 500, 1000,
2000 and 5000 cities respectively. It would appear that the
ideal value for k converges with increasing problem size,
although more extensive studies are needed to establish this

with certainty.

4  RESULTS

Some results for the new genetic algorithm on instances of
random uniform points are presented in Table 1. The test
instances vary in size between 100 and 5,000 cities
(column 1). The Held-Karp lower bound (Held 1970, 1971)
in column 2 represents a problem specific under-estimate of
the optimal tour lengths. The value of the lower bound is
estimated to be 0.08 % below the true optimum, on average,
see (Johnson 1996) and (Valenzuela 1997b). The tour
length produced running Karp's algorithm on the original
city positions is tabulated in column 3, and the best tour
lengths produced by running the new genetic algorithm can
be found in column 4. The best tour lengths are averaged
over five runs except where otherwise indicated. The result
for 5000cities is enclosed in brackets because the experi-
ment was incomplete at the time of going to press.  Popula-
tion sizes of 1,000 are used and mutation rates of 0.01 for
problems of 100 - 500 cities, and 0.005 for problems of
1,000 and larger. The number of generations the GA is
allowed to run is presented in column 5. The GA is halted
when it has run for 200 consecutive generations with no
new improvement found in the best tour. The average values
of tour lengths obtained with the most sophisticated version
of EDAC(I) (with heuristics based on the 3-opt algorithm)
on the same instances can be found in column 6.

5  CONCLUSIONS

My simple genetic algorithm which perturbs city coordi-
nates (EDAC(II)) has succeeded in lifting the solution
quality produced by an implementation of Karp’s algorithm
by about 20%. I believe this approach holds promise for
very large instances of the TSP (for 100,000 cities and
beyond) because Karp’s algorithms scale at O(nlogn).
Although EDAC(II) is not quite able to match the results of



EDAC(I) as yet for larger instances of the TSP,  I believe
that some parameter tuning will easily fill this gap.
EDAC(II), unlike its predecessor, uses no repair heuristics
and the scaling properties of Karp’s heuristic engine are
thus guaranteed at O(nlogn) for all values of n.

More generally it is possible that the idea of combining a
genetic algorithm with a divide and conquer paradigm is
potentially useful in other problem domains where run-time
scaling properties are an issue.
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