A Hierarchical Solve-and-Merge Framework for Multi-Objective Optimization

Christine L. Mumford

christine@cs.cardiff.ac.uk

Cardiff University

IEEE CEC 2005 – p. 1/22

Hierarchical solve-and-merge (HISAM) is a 2 stage process.

- Hierarchical solve-and-merge (HISAM) is a 2 stage process.
- Stage 1 consists of subpopulations running single objective GAs

- Hierarchical solve-and-merge (HISAM) is a 2 stage process.
- Stage 1 consists of subpopulations running single objective GAs
- Each with its own uniquely weighted linear scalarizing function to focus on a different region of Pareto space

- Hierarchical solve-and-merge (HISAM) is a 2 stage process.
- Stage 1 consists of subpopulations running single objective GAs
- Each with its own uniquely weighted linear scalarizing function to focus on a different region of Pareto space

 Stage 2 collects the best solutions from stage 1 and runs a hierarchical Pareto-based EMO

The two-stage framework of HISAM

Stage 2 of HISAM was presented in CEC 2004 - hierarchical SEAMO2

- Stage 2 of HISAM was presented in CEC 2004 - hierarchical SEAMO2
- Using subpopulations and a hierarchy produced a much better spread of solutions than SEAMO2 on a single large population

- Stage 2 of HISAM was presented in CEC 2004 - hierarchical SEAMO2
- Using subpopulations and a hierarchy produced a much better spread of solutions than SEAMO2 on a single large population
- The addition of the single objective stage 1 forces each subpopulation to focus on a different region of Pareto Space

Stage 1 uses multiple copies of a simple single objective GA

- Stage 1 uses multiple copies of a simple single objective GA
- Each copy runs on its own independent subpopulation

IEEE CEC 2005 – p. 5/22

- Stage 1 uses multiple copies of a simple single objective GA
- Each copy runs on its own independent subpopulation
- Each having a differently weighted linear scalarizing function

- Stage 1 uses multiple copies of a simple single objective GA
- Each copy runs on its own independent subpopulation
- Each having a differently weighted linear scalarizing function
- E.g. Objective function = weight1 X objective1 + weight2 X objective2 etc.

- Stage 1 uses multiple copies of a simple single objective GA
- Each copy runs on its own independent subpopulation
- Each having a differently weighted linear scalarizing function
- E.g. Objective function = weight1 X objective1 + weight2 X objective2 etc.
- The best individuals from each subpopulation are passed to stage 2

(1) Of good quality

(1) Of good quality(2) Widely spread

- (1) Of good quality
- (2) Widely spread
- (3) Evenly spread

- (1) Of good quality
- (2) Widely spread
- (3) Evenly spread

SEAMO algorithms good at (1) and (2), but not always at (3)

The hierarchical structure of stage 2 produced better results than a comparable non-hierarchical structure.

The hierarchical structure of stage 2 produced better results than a comparable non-hierarchical structure.

But...

- The hierarchical structure of stage 2 produced better results than a comparable non-hierarchical structure.
- But...
- Setting up multiple subpopulations with each covering the whole Pareto space would seem wasteful.

- The hierarchical structure of stage 2 produced better results than a comparable non-hierarchical structure.
- But...
- Setting up multiple subpopulations with each covering the whole Pareto space would seem wasteful.
- Question: Can we improve results further by concentrating the efforts of the subpopulations more locally?

IEEE CEC 2005 – p. 8/22

Single run of stage 1 with 6 subpopulation (lower), followed by a simplified stage 2. (upper). Without a hierarchical stage 2 we get discontinuities.

The Simple GA (stage 1)

Procedure SIMPLE GA

Begin

Generate N random individuals {N is the population size}

Evaluate the fitness function for each population member and store it

Repeat

For each member of the population

This individual becomes the first parent

Select a second parent at random

Apply crossover to produce single offspring

Apply a single mutation to the offspring

Evaluate the objective function produced by the offspring

if the offspring is better than weaker parent (and not a duplicate)

Then the offspring replaces it in the population

else it dies

Endfor

Until stopping condition satisfied

The SEAMO Framework (stage 2)

Procedure SEAMO

Begin

Generate N random individuals {N is the population size}

Evaluate the objective vector for each population member and store it

Repeat

For each member of the population

This individual becomes the first parent

Select a second parent at random

Apply crossover to produce single offspring

Apply a single mutation to the offspring

Evaluate the objective vector produced by the offspring

if offspring qualifies

Then the offspring replaces a member of the population else it dies

Endfor

Until stopping condition satisfied

Print all non-dominated solutions in the final population

End

(1) Does offspring dominate either parent?

- (1) Does offspring dominate either parent?
- (2) Does offspring produce a global improvement on any Pareto components?

- (1) Does offspring dominate either parent?
- (2) Does offspring produce a global improvement on any Pareto components?
- (3) Does offspring have a mutually non-dominating relationship with both its parents?

- (1) Does offspring dominate either parent?
- (2) Does offspring produce a global improvement on any Pareto components?
- (3) Does offspring have a mutually non-dominating relationship with both its parents?
- (4) Is offspring a duplicate?

Parameters for experimental runs

Table 1: Population parameters for experimental runs

Problem	Algorithm								
		SEAMO2							
	stage 1			stage 2					
	# subpops	subpopsize	generations	popsize	generations	popsize	generations		
kn500.2	12	200	200	600	800	960	1,000		
kn750.2	12	250	250	600	1000	1080	$1,\!250$		
kn750.3	15	250	300	750	1200	1350	1,500		
kn750.4	35	250	400	1,750	1600	3150	2,000		

Order-based representation with a first fit decoder

- Order-based representation with a first fit decoder
- Cycle Crossover (CX)

- Order-based representation with a first fit decoder
- Cycle Crossover (CX)
- A simple mutation operator swaps two arbitrarily selected objects within a single permutation list

HISAM is evaluated against 2 benchmarks:

IEEE CEC 2005 – p. 14/22

HISAM is evaluated against 2 benchmarks:

1. SEAMO2

IEEE CEC 2005 – p. 14/22

HISAM is evaluated against 2 benchmarks:

- 1. SEAMO2
- 2. MOGLS

HISAM is evaluated against 2 benchmarks:

- 1. SEAMO2
- 2. MOGLS
- 30 replicate runs carried out for each set of experiments, and all algorithms use the same number of objective function evaluations

Why SEAMO2 and MOGLS?

Why SEAMO2 and MOGLS?

HISAM is derived from SEAMO2

Why SEAMO2 and MOGLS?

HISAM is derived from SEAMO2

MOGLS results are very hard to beat on the MKP

Results for Multiple Knapsack Problems

IEEE CEC 2005 – p. 16/22

Results for Multiple Knapsack Problems

Comparing Dominated Space

Comparing Dominated Space

Comparing run times of the multi-objective algorithms (in seconds)

Algorithm	kn500.2	kn750.2	kn750.3	kn750.4
HISAM	59	105	207	1,097
SEAMO2	139	254	572	4,208
MOGLS	2,918	8,955	14,085	45,099

A new Hierarchical algorithm based on SEAMO2 has been presented

- A new Hierarchical algorithm based on SEAMO2 has been presented
- Which focusses subpopulations on different regions of the Pareto space.

- A new Hierarchical algorithm based on SEAMO2 has been presented
- Which focusses subpopulations on different regions of the Pareto space.
- It seems to be a great improvement on previous versions of SEAMO

- A new Hierarchical algorithm based on SEAMO2 has been presented
- Which focusses subpopulations on different regions of the Pareto space.
- It seems to be a great improvement on previous versions of SEAMO
- It outperforms MOGLS in terms of solution quality

- A new Hierarchical algorithm based on SEAMO2 has been presented
- Which focusses subpopulations on different regions of the Pareto space.
- It seems to be a great improvement on previous versions of SEAMO
- It outperforms MOGLS in terms of solution quality
- It runs very fast

Future Work

IEEE CEC 2005 – p. 22/22

Try HISAM on a wider range of problems

IEEE CEC 2005 – p. 22/22

Try HISAM on a wider range of problems

Tune parameters - population sizes, number of levels etc.

Try HISAM on a wider range of problems

- Tune parameters population sizes, number of levels etc.
- Implement on parallel hardware

