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Introduction
Hierarchical solve-and-merge (HISAM) is a 2
stage process.

Stage 1 consists of subpopulations running
single objective GAs

Each with its own uniquely weighted linear
scalarizing function to focus on a different
region of Pareto space

Stage 2 collects the best solutions from stage
1 and runs a hierarchical Pareto-based EMO
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The two-stage
framework of HISAM
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Stage 2

Stage 2 of HISAM was presented in CEC
2004 - hierarchical SEAMO2
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Stage 2

Stage 2 of HISAM was presented in CEC
2004 - hierarchical SEAMO2

Using subpopulations and a hierarchy
produced a much better spread of solutions
than SEAMO2 on a single large population

The addition of the single objective stage 1
forces each subpopulation to focus on a
different region of Pareto Space
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Stage 1

Stage 1 uses multiple copies of a simple
single objective GA
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Stage 1

Stage 1 uses multiple copies of a simple
single objective GA

Each copy runs on its own independent
subpopulation

Each having a differently weighted linear
scalarizing function

E.g. Objective function = weight1 X
objective1 + weight2 X objective2 etc.

The best individuals from each subpopulation
are passed to stage 2
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Solution sets should be

(1) Of good quality
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Solution sets should be

(1) Of good quality

(2) Widely spread

(3) Evenly spread

SEAMO algorithms good at (1) and (2), but not
always at (3)
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Why do we need
stage 1?

The hierarchical structure of stage 2
produced better results than a comparable
non-hierarchical structure.
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Why do we need
stage 1?

The hierarchical structure of stage 2
produced better results than a comparable
non-hierarchical structure.

But...

Setting up multiple subpopulations with each
covering the whole Pareto space would seem
wasteful.

Question: Can we improve results further by
concentrating the efforts of the
subpopulations more locally?
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Why do we need
stage 2?
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Why do we need
stage 2?
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The Simple GA
(stage 1)

Procedure SIMPLE GA
Begin

Generate N random individuals {N is the population size}
Evaluate the fitness function for each population member and store it
Repeat

For each member of the population
This individual becomes the first parent
Select a second parent at random
Apply crossover to produce single offspring
Apply a single mutation to the offspring
Evaluate the objective function produced by the offspring
if the offspring is better than weaker parent (and not a duplicate)

Then the offspring replaces it in the population
else it dies

Endfor

Until stopping condition satisfied
End
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The SEAMO
Framework (stage 2)

Procedure SEAMO
Begin

Generate N random individuals {N is the population size}
Evaluate the objective vector for each population member and store it
Repeat

For each member of the population
This individual becomes the first parent
Select a second parent at random
Apply crossover to produce single offspring
Apply a single mutation to the offspring
Evaluate the objective vector produced by the offspring
if offspring qualifies

Then the offspring replaces a member of the population
else it dies

Endfor
Until stopping condition satisfied
Print all non-dominated solutions in the final population

End
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Replacement
Strategy for SEAMO2

(1) Does offspring dominate either parent?
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Replacement
Strategy for SEAMO2

(1) Does offspring dominate either parent?

(2) Does offspring produce a global
improvement on any Pareto components?

(3) Does offspring have a mutually
non-dominating relationship with both its
parents?

(4) Is offspring a duplicate?
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Parameters for
experimental runs
Table 1: Population parameters for experimental runs

Problem Algorithm

HISAM SEAMO2

stage 1 stage 2

# subpops subpopsize generations popsize generations popsize generations

kn500.2 12 200 200 600 800 960 1,000

kn750.2 12 250 250 600 1000 1080 1,250

kn750.3 15 250 300 750 1200 1350 1,500

kn750.4 35 250 400 1,750 1600 3150 2,000
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Representation for
the MKP
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Representation for
the MKP

Order-based representation with a first fit
decoder

Cycle Crossover (CX)

A simple mutation operator swaps two
arbitrarily selected objects within a single
permutation list
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Experimental Method

HISAM is evaluated against 2 benchmarks:

1. SEAMO2

2. MOGLS

30 replicate runs carried out for each set of experiments,

and all algorithms use the same number of objective

function evaluations
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Why SEAMO2 and
MOGLS?
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Why SEAMO2 and
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HISAM is derived from SEAMO2
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Why SEAMO2 and
MOGLS?

HISAM is derived from SEAMO2

MOGLS results are very hard to beat on the
MKP
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Results for Multiple
Knapsack Problems
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comparing HISAM with MOGLS and SEAMO2 on kn500.2
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Results for Multiple
Knapsack Problems
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Comparing
Dominated Space

HISAM SEAMO2 MOGLS
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Comparing
Dominated Space
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Comparing run times of the multi-objective

algorithms (in seconds)

Algorithm kn500.2 kn750.2 kn750.3 kn750.4

HISAM 59 105 207 1,097

SEAMO2 139 254 572 4,208

MOGLS 2,918 8,955 14,085 45,099
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Conclusions
A new Hierarchical algorithm based on
SEAMO2 has been presented
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Conclusions
A new Hierarchical algorithm based on
SEAMO2 has been presented

Which focusses subpopulations on different
regions of the Pareto space.

It seems to be a great improvement on
previous versions of SEAMO

It outperforms MOGLS in terms of solution
quality

It runs very fast
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Future Work

Try HISAM on a wider range of problems

Tune parameters - population sizes, number of levels
etc.

Implement on parallel hardware
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