
A Hierarchical Evolutionary Approach to
Multi-Objective Optimization

Christine L. Mumford
School of Computer Science

PO Box 916
Cardiff University
Cardiff CF24 3XF
United Kingdom

Email: christine@cs.cardiff.ac.uk

Abstract— This paper describes a hierarchical evolutionary
approach to Pareto-based multi-objective optimization. Using the
SEAMO algorithm (a simple evolutionary algorithm for multi-
objective optimization) as a basis, it demonstrates how it is
possible to obtain a better spread of results if subpopulations
of various sizes are used in a simple hierarchical framework.
Three alternative hierarchical models are tried and the results
compared.

I. I NTRODUCTION

Evolutionary algorithms (EAs) that utilize subpopulations
are popular for two reasons: first, they adapt readily to parallel
hardware, leading to faster execution; and second, isolated
populations encourage genetic diversity and discourage prema-
ture convergence. Premature convergence is a serious problem
with EAs, and is encountered with single and multi-objective
problems alike.

Multi-objective optimization requires the simultaneous op-
timization of several (often competing) objectives. Problems
involving multiple objectives are characterized by optimum
sets of alternative solutions, known asPareto sets, rather than
by single optima. Pareto-optimal solutions arenon-dominated
solutions in the sense that it is not possible to improve the
value of any one of the objectives, in such a solution, without
simultaneously degrading the quality of one or more of the
other objectives in the vector.

Evolutionary algorithms are well suited to multi-objective
optimization problems because they produce many solutions
in parallel. However, the simple scalar fitness function, which
usually provides a focus for progress in the single objective
case, is inappropriate for multiple objective problems, where it
is difficult to rank solutions that have strengths and weaknesses
in different objectives. One approach is to construct a scalar
fitness function from a weighted combination of the individual
objectives [17]. The disadvantage of this scheme is thata
priori decisions are required regarding the relative importance
of the various objectives. An alternative approach, favored by
many researchers today (for example see [3], [4], [19], [21]), is
to design an EA that will converge on multiple non-dominated
solutions (i.e. approximate Pareto sets), leaving a decision
maker to select a single solution from these alternatives at a
later stage. In this way knowledge of the distribution of non-

dominated solutions can lead to a more informed judgement.
On the other hand, when a naive weighted combination of ob-
jectives is used, excellent solutions are easily overlooked. An
excellent survey of evolutionary multi-objective optimization
is provided by Coello Coello in [2].

Maintaining diversity within a population remains a primary
challenge for all EA researchers. In the single objective case,
the search spaces of many real world problems are multi-
modal and highly difficult. In the multi-objective case, multi-
modal search spaces can exist in many dimensions, com-
pounding the problem difficulty. Nevertheless, most research
on modern multi-objective EAs has focussed on scalability
over the problem dimensions, rather than over the problem
difficulty [8]. However, the diversity along the Pareto front
is different in nature from the diversity required to to avoid
premature conversion within the individual dimensions of the
problem. The latter was namedlateral diversity in [5].

The rationale behind the present study is to explore some of
the opportunities that arise through the increased availability
of large-scale computing resources, in the form of faster
processors and parallel architectures (although only very basic
computing resources are used for the experiments in the
present, preliminary study). As computing power becomes
less of an issue, how should we best structure multi-objective
EAs to effectively capitalize on the improved resources on
offer, to enhance population diversity, in both senses, and
produce a better spread of higher quality solutions? Several
previous studies have explored a number of different parallel
[16] and hierarchical [1], [8] models for multi-objective EAs.
The intended contribution of the present author is to offer an
exceptionally simple framework for this.

The paper presents some new hierarchical models for
multi-objective EAs, based on the SEAMO2 algorithm [14],
which is an improved version of the original SEAMO al-
gorithm (a simple evolutionary algorithm for multi-objective
optimization)[13], [18]. The eventual plan is to implement the
most successful of the new ideas on real world problems and
parallel hardware. The SEAMO algorithms would appear to
be particularly good candidates for parallel implementation for
the following reasons:
• They perform well in comparison with other state-of-the-

art multi-objective EAs [13], [14], [18]
• They are particularly simple to implement
• No complex global calculations are required for fitness

or dominance

Unlike most other multi-objective EAs, the SEAMO algo-
rithms rely on a few simple locally applied rules for replacing
individuals in the population with superior offspring in a
steady-state environment. In contrast, other multi-objective
EAs tend to focus their genetic search at the selection stage,
where they use various fitness functions that reflect the global
dominance relationships within a population, to bias the choice
of parents for breeding in favor of the ‘better individuals’ (for
example see [3], [4], [19], [21]). Fitness functions based on
dominance relationships were first proposed by Goldberg [6]
and are known collectively asPareto-basedfitness functions.

The test problems used in this study consist of multiple
knapsack problems (MKPs) and continuous functions all se-
lected from [21]. The MKPs were randomly generated with
uncorrelated profits and weights, and each knapsack capacity
was set to half the total weight of all the items in that knapsack.
The continuous functions, SPH-2 [10], [17], ZDT6 [20], QV
[16] and KUR [9], provide conditions of extreme difficulty for
testing multi-objective EAs.

Problem sizes for the MKP experiments vary between 500
and 750 items in 2, 3 or 4 knapsacks, denoted knn.m, where
n is the number of items andm the number of knapsacks.
The MKP is a generalization of the simple 0/1 knapsack
problem. The 0/1 MKP involvesm knapsacks of capacities
c1, c2, c3, ..., cm. Every selected object must be placed in all
m knapsacks, although neither the weight of an objectoi nor
its profit is fixed, and will probably have different values in
each knapsack. Four continuous functions have been selected
for this study. All consist of two objectives and 100 variables.

II. BACKGROUND

This section outlines the SEAMO2 algorithm and the rep-
resentation schemes used for the MKP and the continuous
functions. It also makes some preliminary observations regard-
ing the effect population size appears to exert on the quality,
range and spread of solutions that can be obtained. It was
these observations that provided the initial inspiration for the
present paper.

A. The SEAMO2 algorithm

The SEAMO framework, outlined in Figure 1, illustrates a
simple steady-state approach, which sequentially selects every
individual in the population to serve as the first parent once,
and pairs it with a second parent that is selected at random
(uniformly). A single crossover is then applied to produce
one offspring, and this is followed by a single mutation.
Each new offspring will either replace an existing population
member, or it will die, depending on the outcome of the
chosen replacement strategy. The replacement strategy adopted
in SEAMO2 (developed in [14]) is as follows:
Replacement Strategy for SEAMO2

1) if offspring harbors a new best-so-far Pareto component

a) it replaces a parent, if possible
b) else it replaces another individual at random

2) else if offspring dominates either parent it replaces it
3) else if offspring is neither dominated by nor dominates

either parent it replaces another individual that it domi-
nates at random

4) otherwise it dies

In part 1a of the above replacement strategy, a new offspring
will replace its first parent, provided that deletion of that parent
does not result in the loss of a global best value, (e.g. if the
offspring discovers a new global best-so-far for objective 1,
parent 1 should not be deleted if it harbors a best-so-far for
objective 2). For problems with two objectives, whenever it is
unsafe to delete parent 1, it will always be possible to delete
parent 2 without losing a global best. This is not always the
case when there are 3 or more objectives, however [14].

Procedure SEAMO
Begin

GenerateN random individuals{N is the population size}
Evaluate the objective vector for each population member and store it
Repeat

For each member of the population
This individual becomes the first parent
Select a second parent at random
Apply crossover to produce single offspring
Apply a single mutation to the offspring
Evaluate the objective vector produced by the offspring
if offspring qualifies

Then the offspring replaces a member of the population
else it dies

Endfor
Until stopping condition satisfied
Print all non-dominated solutions in the final population

End

Fig. 1. Algorithm 1 A basic framework for SEAMO

The replacement of a parent by a dominating offspring in
part 2 is dealt with in a similar manner to 1a, above. The first
parent is tried, to begin with, and then the second parent is
tried if the offspring fails to dominate its first parent. If the new
offspring dominates neither parent, and yet it is not dominated
by either of them, SEAMO2 will save the new offspring if it
is possible to do so. In this situation, the algorithm will search
the entire population for a suitable candidate for replacement:
a suitable candidate being an individual that is dominated by
the new offspring. A random ‘sampling without replacement’
routine is used to implement this search. In the rare event
that no suitable candidate is found, the new offspring will die,
despite the fact that it is non-dominated. This is necessary, in
SEAMO2, to ensure a constant population size is maintained.

Finally, before any new offspring is allowed to enter the
population, it is tested to ensure that it is not identical to any
current population member. If it is found to be a duplicate,
it will be deleted at this stage. Phenotypic duplicated, rather
than genotypic duplicates are deleted for speed and simplicity.
(See [14] for justification)

1.7 1.75 1.8 1.85 1.9 1.95 2

x 10
4

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05
x 10

4 500 items in two knapsacks

Profit in first knapsack

P
ro

fit
 in

 s
ec

on
d

kn
ap

sa
ck

Population 200
Population 50

2.4 2.5 2.6 2.7 2.8 2.9 3

x 10
4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95
x 10

4 750 items in two knapsacks

Profit in first knapsack

P
ro

fit
 in

 s
ec

on
d

kn
ap

sa
ck

Population 250
Population 50

Fig. 2. SEAMO2 on kn500.2 and kn750.2 to compare results for large and small populations

B. Representation for the Multiple Knapsack Problem

An order-based representation with a first fit decoder [7] is
is used in this study for the MKP. With order-based schemes,
the chromosomes consist of orderings of all the items, and a
decoder is used to produce legal solutions. Starting with an
empty knapsack, a first fit decoder selects items in sequence
from a permutation list to add to the knapsacks, starting with
the first item on the list, then working through to the second,
then the third and so on. Whenever inclusion of an item
from the list would result in a constraint violation (i.e. an
over full knapsack), that item is skipped over and the next
item tried. (For further details see [12].) Cycle Crossover
(CX) [15] is used as the recombination operator, and a simple
mutation operator swaps two arbitrarily selected objects within
a single permutation list. The order-based representational
scheme was chosen because it produced better results than
the more popular bit string approach in a recent comparative
study, [12]. In the same study, CX was shown to out perform
other order-based recombination operators.

C. Representation for the Continuous Functions

For all of the continuous functions, the solutions are coded
as real vectors of length 100, and one-point crossover acts as
the recombination operator. The mutation operator is based on
the non-uniform mutation described on page 111 of [11]. For
full details of the implementation of non-uniform mutation,
the interested reader is referred to [13].

In the SEAMO algorithms, deletion of duplicates helps
maintain diversity and prevent premature convergence. For the
knapsack problem and other combinatorial problems, where
the objective functions can take on only a limited number of
discrete values, phenotypic duplicates are easily identified as
individuals with matching solution vectors. With continuous
functions, however, exact duplicates are likely to be rare. For
this reason, values for component objective functionsxi and
x′i of x and x′, respectively, are deemed to be equal if and

only if xi − ε ≤ x′i ≤ xi + ε, whereε is an error term, which
is set at0.00001× xi for the purpose of these experiments.

D. Preliminary Observations on the Effect of Population Size

Experiments using SEAMO2 with different population sizes
produce some interesting results, when compared on an evalu-
ation for evaluation basis on the MKPs kn500.2 and kn750.2:

• Small populations gave a wider spread of results.
• Large populations gave higher quality results in the center

of the range.

Figure 2 plots the non-dominated solutions extracted from
typical runs of SEAMO2 on the knapsack problems, kn500.2
and kn750.2, for different populations sizes. In the left hand
diagram population sizes of 50 and 200 are tried on kn500.2,
and in the right hand diagram we use population sizes of 50
and 250 on kn750.2. In each experiment SEAMO2 is halted
after 4,000 generations. The traces for the larger populations
represent the non-dominated solutions extracted from single
runs consisting of200 × 4000 evaluations for kn500.2 and
250×4000 evaluations for kn750.2. When population sizes of
50 are used, however, non-dominated solutions are collected
from four (kn500.2) or five (kn750.2) replicate runs, to ensure
that the total number of evaluations performed is the same for
each problem, regardless of the population size.

The results illustrated in Figure 2 provide convincing ev-
idence that small populations do indeed give better results
at the extremes of the Pareto front and, further, that larger
populations produce better solutions towards the center of the
range. The remainder of the paper concentrates on devising
and testing different techniques to combine a range of popu-
lation sizes within a single hierarchical algorithm.

III. T HE HIERARCHICAL ALGORITHMS

Two basic hierarchical models are tried, each easily im-
plemented using some simple recursive code. The first model
is named thehierarchical-biased algorithmbecause it divides

Procedure Hierarchical-biased(population)
Begin

if (populationsize > threshold)
split population into leftpop andrightpop
Hierarchical-biased(leftpop)
Run evolutionary algorithm onrightpop

else
Run evolutionary algorithm on (unsplit)population

End

Procedure Hierarchical-balanced(population)

Begin

if (populationsize > threshold)

split population intoleftpop andrightpop

Hierarchical-balanced(leftpop)

Hierarchical-balanced(rightpop)

Recombineleftpop andrightpop into population

Run evolutionary algorithm onpopulation

else

Run evolutionary algorithm on (unsplit)population

End

Hierarchical-biased

Population
400

Population
50

Population
50

Population
100

Population
200

2000 generations

2000 generations

Hierarchical-balanced

400

200 200

100

50 50 50 50 50 50 50 50

100 100 100

1000 generations

1000 generations

1000 generations

1000 generations

Fig. 3. Hierarchical algorithms: pseudocode (upper) and schematic examples
(lower)

the initial population into subpopulations of unequal sizes. A
genetic search is then executed on each of these subpopu-
lations and the results finally combined, once more, into a
single population. Implementation of a final genetic search
on the combined population is optional, and its effect will
be examined experimentally. The second model is based on a
binary tree structure and splits the population in half, and then
in half again as it progresses down the tree, until a threshold
subpopulation size is reached. The final subpopulations will
be approximately equal in size in this case. Genetic searches
will be applied at each level of the tree, starting at the
bottom and moving up, with two subpopulations from the
level below, merging into a larger subpopulation at each non-
leaf node. Figure 3 gives pseudocode and schematic examples
for the two hierarchical multi-objective algorithms. Typical
population sizes are given in the rectangular nodes of the
diagrams, and the number of generations executed at each level
is also shown.

The first model is illustrated in the top schematic, in which a
population (of 400 in this example) is recursively split evenly
into left and right subpopulations. However, following each
split, the recursion continues on the right hand subpopulation
only, leaving the left hand subpopulation intact, and producing
unequal populations (of 50, 50, 100 and 200 in this example).
In one version of the first model (shown in the diagram
but not the pseudocode), the EA is initially run on each
of the subpopulations (for 2,000 generations) and finally on
the combined population (of 400 for 2,000 generations). In
an alternative version (shown in the pseudocode but not the
diagram) the final run on the combined population is omitted,
and the results are simply collected from double length runs
(of 4,000 generations) on the component subpopulations. The
two versions of thehierarchical-biasedalgorithm are named
as follows:
• the hierarchical-biased-2layer algorithm(or HBI2 for

short), and the
• thehierarchical-biased-flat algorithm(or HBIF for short)
The lower diagram in Figure 3 illustrates the second model,

in which the initial population is split evenly at each level
to form a binary tree structure. In the example given, the
initial population is repeatedly split into two halves until
eight subpopulations of 50 individuals are formed. Following
execution of the EA on each of the eight subpopulations, the
results are combined in pairs, to give four subpopulations of
100 individuals at the next level up. Execution then progresses
on these newly merged subpopulations of 100 and the results
are combined in pairs, once again, to give two populations
of 200. Following execution on the subpopulations of 200,
the process completes with a final execution of the EA on
all 400 individuals. In this example the EA runs for 1,000
generations at each level, to ensure that both the hierarchical
models perform an equal number of evaluations.

IV. EXPERIMENTAL METHOD

In the first set of experiments, the three hierarchical al-
gorithms described in Section III are compared with the

standard SEAMO2 algorithm on the various instances of the
MKP. Following these, a second set of experiments extends
the comparisons to some continuous functions. None of the
hierarchical algorithms is compared to any other state-of-the-
art EA in the present paper. SEAMO2 has demonstrated its
strength in relation to other EAs in a forthcoming paper, [14],
and it would thus appear to be a suitable benchmark in its
own right.

For the MKP, experiments are run for 4,000 generations
using a total population of 400 for kn500.2, and 600 for
kn750.2, kn750.3 and kn750.4. The examples in Figure 3 show
the subpopulation structures used on kn500.2 forhierarchical-
biased-2layerandhierarchical-balanced. Hierarchical-biased-
flat runs for 4,000 generations on each of the subpopulations
and omits the final stage on the total population. Minimum
subpopulation sizes are 50 for kn500.2 and 75 for the three
larger knapsack problems, kn750.2, kn750.3 and kn750.4.
The subpopulation structures are as displayed in Figure 3 for
kn500.2, but lead to splits of 75, 75, 150 and 300 for kn750.2,
kn750.3 and kn750.4. For each set of experiments, 30 replicate
runs are collected for each algorithm, each run seeded with a
different random number.

For the continuous functions comparisons are restricted to
the hierarchical-balancedand SEAMO2 algorithms, due to
lack of time. Population sizes of 400 are used with subpopu-
lations of 50, and experiments are run for 10,000 generations
(2,500 generations at each level ofhierarchical-balanced).

The performances of all algorithms are assessed using the
S andC metrics described in [19]. In addition, 2D graphical
plots are used where these are helpful.

For the MKP, the size of the dominated space is quoted as
a percentage of the reference volume between the origin and
a utopia point, defined as the profit sums of all items in each
objective in [21].

Unfortunately, it is not possible to apply theS metric
directly to the results obtained from the continuous functions
used here, because they are all minimization problems. Using
a suitable formula, however, it is possible to transform a
minimization problem into a maximization problem. For the
present study, this is achieved by simply inverting the objective
values so that:

objective1′ = 1
objective1 andobjective2′ = 1

objective2 etc.

For each of the continuous functions, the size of the dominated
space is scaled to give suitable values for easy tabulation.

The C metric is measures the coverage of two sets of
solution vectors. LetA, B ⊆ X be two sets of solution vectors.
The functionC maps the ordered pair(A,B) to the interval
[0, 1]

C(A º B) =
| {b ∈ B; ∃ a ∈ A : a º b} |

| B | (1)

In addition to the hypervolume and coverage metrics, some
graphs are included to illustrate the performances of the
algorithms on MKPs with two objectives. Each graphical
trace represents the non-dominated solutions extracted from

30 replicate runs of a particular experiment. Graphs are
sometimes valuable for giving an over all visual impression of
the quality and distribution of approximate Pareto points for
the various algorithms.

V. RESULTS

The results for the multiple knapsack problems are pre-
sented in Section V-A, covering all four algorithms. Section
V-B compares SEAMO2 with thehierarchical-balancedon
the four continuous functions.

A. Multiple Knapsack Problems

In this section the three hierarchical algorithms are com-
pared with SEAMO2 on multiple knapsack problems with
two, three and four objectives: kn500.2, kn750.2, kn750.3 and
kn750.4.

The box plots in Figure 4 compare the performance of
SEAMO2 and the three hierarchical algorithms on the four
knapsack problems, according to theS or hypervolume metric.
The boxplot diagrams indicate the spread of results for 30
replicate runs of each algorithm. SE2 represents SEAMO2,
HBI2 and HBIF represent the two biased hierarchical algo-
rithms 2-layer and flat, respectively and HBAL represents the
balanced hierarchical model. Clearly, the hierarchical algo-
rithms dominate more space, and thus perform better than
SEAMO2, although it is not easy to distinguish a front runner
from the three hierarchical algorithms based on hypervolume.
One-way analysis of variance tests (anova1 in MATLAB) show
the results on all four problems to be highly significant (with
probability values close to zero).

TABLE I

AVERAGE VALUES FORCOVERAGE (A º B) ON THE KNAPSACK

PROBLEMS(THE STANDARD DEVIATION IS IN BRACKETS)

Coverage(A º B)
Algorithm Test problems

A B kn500.2 kn750.2 kn750.3 kn750.4

SEAMO2 HBI2 37.6 50.1 46.4 46.9
HBIF 64.9 70.8 61.4 60.1
HBAL 22.2 32.8 19.1 21.9

HBI2 SEAMO2 25.4 15.0 5.2 4.4
HBIF 75.4 68.1 50.1 37.2
HBAL 20.0 14.8 4.0 6.8

HBIF SEAMO2 5.8 2.8 0.8 1.1
HBI2 7,7 14.9 7.3 4.9
HBAL 5.4 6.1 1.5 2.3

HBAL SEAMO2 28.9 21.8 12.8 6.4
HBI2 54.7 72.0 44.4 25.2
HBIF 72.4 77.1 60.6 50.8

Table I presents the average values for Coverage(A º
B) for each pair of algorithms. Thehierarchical-balanced
algorithm scores much more highly than thehierarchical-
biased algorithms for this metric. SEAMO2, however, also
performs well for the coverage metric.

2D plots in Figure 5 compare SEAMO2 andhierarchical-
balancedvisually. It shows a larger range of Pareto solutions
for the hierarchical algorithm, when compared with SEAMO2
on kn500.2 and kn750.2.

SEAMO2 HBI2 HBIF HBAL
50.6

50.8

51

51.2

51.4

51.6

51.8

52

52.2

52.4

52.6

500 items in two knapsacks

Algorithm

P
er

ce
nt

 d
om

in
at

ed
 s

pa
ce

SEAMO2 HBI2 HBIF HBAL

50.5

51

51.5

52

750 items in two knapsacks

P
er

ce
nt

 d
om

in
at

ed
 s

pa
ce

Algorithm

SEAMO2 HBI2 HBIF HBAL

31.4

31.6

31.8

32

32.2

32.4

32.6

32.8

33

33.2

750 items in three knapsacks

Algorithm

P
er

ce
nt

 d
om

in
at

ed
 s

pa
ce

SEAMO2 HBI2 HBIF HBAL
18.8

19

19.2

19.4

19.6

19.8

20

20.2

20.4

20.6
750 items in four knapsacks

Algorithm

P
er

ce
nt

 d
om

in
at

ed
 s

pa
ce

Fig. 4. Box plots for the various algorithms showing percentage dominated space,S, on kn500.2, kn750.2, kn750.3 and kn750.4

1.7 1.75 1.8 1.85 1.9 1.95 2

x 10
4

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05
x 10

4 500 items in two knapsacks

profit in first knapsack

P
ro

fit
 in

 s
ec

on
d

kn
ap

sa
ck

SEAMO2
Hier−balanced

2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95

x 10
4

2.4

2.5

2.6

2.7

2.8

2.9

3
x 10

4 750 items in two knapsacks

profit in first knapsack

P
ro

fit
 in

 s
ec

on
d

kn
ap

sa
ck

SEAMO2
Hier−balanced

Fig. 5. Comparing the performance of SEAMO2 withHierarchical-balancedon kn500.2 and kn750.2

SEAMO2 HBAL

50

60

70

80

90

100

110

120

130

SPH−2
D

om
in

at
ed

 s
pa

ce

Algorithm
SEAMO2 HBAL

60

65

70

75

80

ZDT6

D
om

in
at

e
sp

ac
e

Algorithm
SEAMO2 HBAL

50

55

60

65

70

75

QV

Algorithm

D
om

in
at

ed
 s

pa
ce

SEAMO2 HBAL

20

40

60

80

100

120

140

KUR

D
om

in
at

ed
 s

pa
ce

Algorithm

Fig. 6. Comparing the performance of SEAMO2 withhierarchical-balancedon the continuous functions

B. Continuous Functions

Figure 6 gives boxplots of the hypervolume for SEAMO2
and hierarchical-balancedon the four continuous functions.
The results indicate that thehierarchical-balancedalgorithm
out-performs SEAMO2 on three of the four functions. The ex-
ception is ZDT6. Although even the performance of SEAMO2
is not very strong on ZDT6, as has been demonstrated in [14].
This weakness is probably due to the present lack of a specific
mechanism, in any of the SEAMO algorithms, to encourage
evenly spread results across the Pareto front. ZDT6 provides
an extreme example of a non-uniformly distributed objective
space.

Table II compares the coverage values for the two algo-
rithms. For this metric, the hierarchical algorithm performs
better than SEAMO2 for KUR, worse for ZDT6 and about
the same for SPH-2 and QV.

TABLE II

AVERAGE VALUES FORCOVERAGE (A º B) ON THE CONTINUOUS

FUNCTIONS

Coverage(A º B)
Algorithm Test problems

A B SPH-2 ZDT6 QV KUR

SEAMO2 HBAL 4.4 98.9 20.8 10.1
HBAL SEAMO2 5.4 0 21.6 66.2

VI. D ISCUSSION ANDFUTURE WORK

General wisdom assumes that better solutions can be
achieved by EAs when large populations and long running
times are used. Depending on the application, the computa-
tional cost of performing a large number of evaluations must
be traded with the need for high solution quality. However,
with further increases in processor speeds and easier access to

parallel architectures, computational cost is becoming less of
an issue. Assuming greater computational power is available,
the following question arises with respect to EAs:
• given large computational resources, how do we make

best use of them?
In particular, do we concentrate our computing resources
on EAs with large, single populations, or are better results
obtained using EA architectures that utilize subpopulations?

In this paper some new hierarchical models for multi-
objective EAs have been presented. All were built using
the SEAMO2 algorithm as a framework. The SEAMO algo-
rithms have performed well in several comparative studies,
out-performing their competitors on many problem instances
[18], [13], [13], [14]. Their good performance coupled with
their simple architecture would appear to make them ideal
candidates on which to base new hierarchical and parallel
models. SEAMO algorithms are able to produce good results
without relying on complex global calculations for fitness or
dominance. Results presented in the paper show that the hierar-
chical algorithms with subpopulations based on SEAMO2 are
able to produce a better spread of solutions than the standard
SEAMO2 algorithm without a serious degradation in solution
quality, in most cases. Over all, thehierarchical-balanced
algorithm seems to perform better than thehierarchical-biased
algorithms.

The general goal is to make effective use of available
computing power to extend the spread of Pareto solutions
for SEAMO2, whilst maintaining their quality. Previous ob-
servations suggest that, whilst increasing the population size
improves the density and quality of SEAMO2 solutions in the
center of the range, it seriously restricts the spread of solutions
at the extremes. On the other hand, small populations appear
to perform well at the extremes, but very poorly in the center
of the range. A poorer range of solutions for larger populations

would appear, perhaps, rather counter-intuitive. However, close
examination of SEAMO’s population replacement strategy
may hold the key to this dilemma. Although replacement
of an individual in the population by a new offspring is
usually determined on the basis of dominance, an exception
is made whenever an offspring produces a new global best
for any component of its Pareto solution vector. In these
circumstances, an offspring will normally be included in the
population on the strength of its ‘good’ objective, no matter
how poor are its values for the other objectives. In this way,
smaller populations are likely to put proportionally more effort
than larger populations into expanding their range of solutions,
and less into improving the quality towards the center of the
range. For an extreme example consider a population with
just two individuals for a two objective problem: at any given
moment in time, one member will hold the population’s global
best for objective 1, and the other member the global best for
objective 2. In the two individual population, the algorithm
will concentrate 100 % of its effort at the two extremes.
Hierarchical models were designed with a view to utilizing
different populations sizes, within the same algorithm, in an
attempt to obtain a good spread of excellent solutions across
the whole range.

Future work will concentrate on further, more detailed
experiments to tune thehierarchical-balancedEA, and on
devising new hierarchical models. Work is already in progress
on an algorithm that focuses each of its subpopulation on
a different region of the Pareto space. It is hoped that this
approach will encourage a more evenly spread set of solutions
than are generally obtained at present. Another plan is to
try a hierarchical-balancedalgorithm based on a ternary tree
or a quadtree, rather than a binary tree. Using a quadtree,
for example, it would be possible to expand the population
size without making the tree taller - for example we could
combine 1,200 individuals initially split as 16 subpopulations
of 75, in groups of four and complete the EA in 2,000
generations, rather than the 8,000 used in the present paper
for this population size. The eventual plan is to implement
a successful hierarchical version of SEAMO on massively
parallel hardware for real world problems.

ACKNOWLEDGMENT

The author would like to thank the anonymous referees for
their helpful comments.

REFERENCES

[1] A. J. Chipperfield, B. Bica, and P. J. Fleming, “Fuzzy Scheduling
control of a gas turbine aero-engine: a multiobjective approach”,IEEE
Transactions on Industrial Electronics, 49 (3) (2002) 536–548.

[2] Carlos A. Coello Coello, “An updated survey of GA-based mulitobjective
optimization techniques”,ACM Computing Surveys, 32(2) (2000) 109–
143.

[3] D. W. Corne, J. D. Knowles, and M. J. Oates, “The Pareto envelope-
based selection algorithm for multiobjective optimization”,Parallel Prob-
lem Solving from Nature – PPSN VI, Lecture Notes in Computer Science
1917 (2000) 839–848, Springer.

[4] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for mult-objective optimization:
NSGA-II”, Parallel Problem Solving from Nature – PPSN VI, Lecture
Notes in Computer Science 1917 (2000) 849–858, Springer.

[5] K. Deb, T. Goel, “Controlled elitist non-dominated sorting genetic algo-
rithms for better convergence”,Proc. the First International Conference
on Evolutionary Multi-Criterion Optimization, (2001) 67–81, Springer.

[6] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley (1989).

[7] R. Hinterding, “Mapping, order-independent genes and the knapsack
problem”, Proceedings of the first IEEE Conference on Evolutionary
Computation, Orlando, Florida, (1994) 13–17.

[8] J. Hu, K. Seo, Z. Fan, R. Rosenberg, and E. Goodman, “HEMO: A
sustainable multi-objective evolutionary optimization framework”,Proc.
2003 Genetic and Evolutionary Computing Conference, Chicago USA,
Springer LNCS (2003) 1029–1040.

[9] F. Kursawe, “A variant of evolution strategies for vector optimization”,
In H.-P. Schewefel and R. M̈anner (Eds),Parallel Problem Solving from
NatureBerlin, Springer(1991) 193–197.

[10] M. Laumanns, G. Rudolph, and H -P. Schewefel, “Mutation control and
convergence in evolutionary multi-objective optimization”,Proceedings of
the 7th International Mendel Conference on soft Computing (MENDEL
2001), Brno, Czech Republic (2001).

[11] Z. Michalewicz,Genetic Algorithms + Data Structures = Evolutionary
Programs, Third, revised and extended edition, Springer, 1996.

[12] C. L. Mumford (Valenzuela), “Comparing representations and recombi-
nation operators for the multi-objective 0/1 knapsack problem”,Congress
on Evolutionary Computation (CEC)Canberra Australia (2003) 854–861.

[13] C. L. Mumford-Valenzuela, A Simple Approach to Evolutionary
Multi-Objective Optimization, InEvolutionary Computation Based Multi-
Criteria Optimization: Theoretical Advances and Applications, edited
by Ajith Abraham, Lakhmi Jain and Robert Goldberg. Springer Verlag
(2004) London.

[14] C. L. Mumford “Simple Population Replacement Strategies for a
Steady-State Multi-Objective Evolutionary Algorithm”,Genetic an Evo-
lutionary Computation Conference (GECCO), Seattle, Washington, USA,
June 2004 (to appear).

[15] I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study of
permutation crossover operators on the traveling salesman problem”,
Genetic Algorithms and their Applications:Proceedings of the Second
International Conference on Genetic Algorithms(1987) 224–230.

[16] D. Quagliarella, A. Vincini, “Sub-population policies for a parellel
multiobjective genetic algorithm with applications to wing design”,IEEE
International Conference on Systems, Man, and CyberneticsSan Diego
California (1998) 3142–3147.

[17] J. D. Schaffer, “Multiple objective optimization with vector evaluated
genetic algorithms”,Genetic algorithms and their applications: Proceed-
ings of the First International Conference on Genetic Algorithms, (1985)
93–100.

[18] C. L. Valenzuela, “A simple evolutionary algorithm for multi-objective
optimization (SEAMO)”,Congress on Evolutionary Computation (CEC),
Honolulu, Hawaii (2002) 717–722.

[19] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a com-
parative case study and the strength pareto approach”,IEEE Transactions
on Evolutionary Computation, 3(4) (1999) 257–271.

[20] E. Zitzler, K. Deb, and L. Thiel, “Comparison of multiobjective evo-
lutionary algorithms: Empirical results”,Evolutionary Computation8(2)
(2000) 173–195.

[21] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
Pareto evolutionary algorithm”, TIK-Report 103, Department of Electri-
cal Engineering, Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland,{zitzler, laumanns, thiele}@tik.ee.ethz.ch.(2001) (Knapsack
Data downloaded from: http://www.tik.ee.ethz.ch/zitzler/testdata.html)

