
M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-1

New Solution Construction Heuristics for the Multiple Vehicle
Pickup and Delivery Problem with Time Windows

Manar Hosny∗ Christine Mumford∗

∗Cardiff School of Computer Science, Cardiff University
Queen’s Buildings, 5 The Parade, Roath, Cardiff, CF24 3AA, UK

(M.I.Hosny, C.L.Mumford)@cs.cardiff.ac.uk

1 Introduction

The Multiple Vehicle Pickup and Delivery Problem with Time Windows (MV-PDPTW) is an im-
portant problem in logistics and transportation management. Yet, this problem is less studied than
the classical vehicle routing problems, possibly due to the large number of constraints involved and
the difficulty in handling them. Even constructing a feasible solution to this hard problem is a
challenge in itself.

The MV-PDPTW is a variant of the well-known Vehicle Routing Problem with Time Windows
(VRPTW)1. The problem deals with a number of customer requests that are to be served by a fleet
of vehicles, while a number of constraints must be observed. Each vehicle has a limited capacity (the
capacity constraint). A vehicle route usually starts and ends at a central depot. A request must be
picked up from a pickup location to be delivered to a corresponding delivery location. Naturally,
the pickup and delivery pair must be served by the same vehicle (the coupling constraint) and
the pickup must precede the delivery (the precedence constraint). In addition, every request must
be served within a predetermined time window (TW) interval (the time window constraint). If
the vehicle arrives earlier than the allowed service time, it should wait until the beginning of the
specified period. A solution to the problem should assign requests to vehicles and find a route for
each vehicle, such that the total service cost is minimized and all problem constraints (coupling,
precedence, capacity and time windows) are adhered with. A formal problem definition can be found
in [4]. Possible practical applications of the MV-PDPTW include: transportation of raw materials
from suppliers to factories, Internet-based pickup from sellers and delivery to buyers, pickup and
delivery of charitable donations from homes to different organizations, and the transport of medical
samples from medical offices to laboratories. In addition, an important related variant is the dial-
a-ride services, where people instead of goods are transported.

As a generalization of the traveling salesman problem, the MV-PDPTW is known to be NP-

hard [10], and the presence of many constraints makes the problem particularly complicated. Exact
algorithms are too slow for large problem sizes. In addition, generating feasible and good quality
solutions to the problem in a reasonable amount of time is often a hard challenge for researchers. The

1In the VRPTW all requests are of the same type, either pickup or delivery.

Hamburg, Germany, June 13–16, 2009



M
IC

20
09

id-2 MIC 2008: The VIII Metaheuristics International Conference

MV-PDPTW is both a grouping problem (assigning requests to vehicles), and a routing problem

(finding the best route for each vehicle). Thus, an intelligent solution methodology should be able
to handle these two aspects efficiently. Researchers in the area usually try to solve the problem in
two stages: the first stage constructs one or more initial solutions to the problem, while the second
stage tries to improve these solutions using a heuristic or a meta-heuristic approach.

To construct a solution for the MV-PDPTW, each step of the algorithm usually selects an un-
assigned customer whose insertion causes the least increase in the overall cost of the solution. The
selected customer is then inserted in its best (least cost) feasible insertion position found among
all available routes. This kind of insertion may require complicated calculations to estimate the
effect of the insertion, in terms of the increase in travel distance and time delay, on all customers
already existing in the route who could be affected by the insertion. Additional decisions during
the construction of the solution include whether to build routes sequentially or in parallel, and
possibly the selection of seed customers to initialize the routes. Some construction algorithms order
customers before the insertion, and the initial order is also an important factor that may affect the
quality of the generated solution. Common approaches include sorting customers according to the
distance from the depot, or according to the time window. Finally, the selection of a cost function
to assess the quality of the solution during the construction is sometimes needed, so that insertions
which greatly affect the solution cost could be identified and appropriately handled.

While these difficulties can also apply to the general VRPTW, the pickup and delivery problem
in itself entails other difficult considerations, due to the presence of a pair of related locations for
each individual request and the precedence and coupling issues resulting thereof. For example, the
decision regarding the best insertion position for a certain request should ideally take both the
pickup and the delivery into consideration. The sorting criteria for requests may likewise be based
on either the pickup or the delivery location, or perhaps combine both. It is also often in the MV-
PDPTW that the initial solution is drastically changed during the improvement phase. For example
[1] and [10] reported very good results using an algorithm that is based on a Large Neighborhood
Search (LNS). The algorithm removes and then relocates a large number of requests (30% - 40%)
in each iteration. This could possibly indicate that sophisticated construction algorithms, that are
usually time consuming, parameter dependent, and hard to implement, may not actually warrant
their cost, as opposed to more straightforward and faster algorithms.

Trying to overcome the difficulties inherent in the construction of a feasible solution, which
are mainly due to the hard problem constraints and the many complex problem-specific decisions,
we propose in this paper four different construction heuristics that aim to build initial feasible
solutions to the MV-PDPTW. All our algorithms utilize a simple and efficient routing algorithm
to generate feasible individual vehicle routes. These algorithms, nevertheless, differ in whether the
construction of vehicle routes is performed sequentially or in parallel. They also differ in the criteria
according to which an un-routed request is selected next for insertion in a particular route. The
aim of the research is to decide which construction algorithm has more potential as a preliminary
step towards a complete solution methodology to the problem. We have tested several benchmark
problem instances and the experimental results are reported in this paper.

The rest of the paper is organized as follows: Section 2 summarizes some related work. Section 3
explains the routing algorithm embedded within the different construction heuristics used. Section
4 details the construction heuristics suggested in this research. Section 5 reports the experimental
results of the algorithms tested. Finally, Section 6 concludes with our future plans.

Hamburg, Germany, July 13–16, 2009



M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-3

2 Related Work

Solution construction can be done either sequentially or in parallel. A sequential construction builds
routes one after another, while a parallel construction builds a number of routes simultaneously. To
construct initial solutions for the MV-PDPTW sequentially, researchers usually adapted Solomon’s
sequential insertion heuristics of the VRPTW [12]. A weighted sum of the extra travel distance
and total time delay resulting from the insertion is often used to estimate the cost of the insertion.
This type of construction was used by [4] for the MV-PDPTW, and was followed by a solution
improvement phase called a tabu-embedded simulated annealing.

A parallel construction heuristic, on the other hand, was first introduced in [9] for the VRPTW.
In a parallel construction, several routes are initialized with seed customers and requests are sub-
sequently inserted into any of the initialized routes. Accordingly, the algorithm needs an initial
estimate of the number of vehicles to be used. Routes are later added as needed if the initial esti-
mate does not yield a feasible solution. The authors also introduced an additional complex measure
in the cost function, which is a generalized regret value comparing the difference between the cost of
an immediate insertion verses a postponed insertion. Customers with a large regret value must be
considered first. This regret measure was also used by [10] for the MV-PDPTW, and was embedded
within an adaptive large neighborhood search technique to improve the solution quality.

The work in [5] presents a construction algorithm for the MV-PDPTW. The algorithm repeats
a cycle of three components. The first component is a constructor, which uses a sequential greedy
algorithm to add pairs of customers in the order they appear in a priority sequence that is initially
random. The analyzer afterwards analyzes the solution and assigns a certain ‘blame’ value for each
customer based on its contribution to the total solution cost. Finally, the prioritizer reorders the
customers, such that customers with a high blame value are moved forward in the priority sequence.

Another construction heuristic that solves the MV-PDPTW is the algorithm in [6], which takes
into consideration the effect of insertion on both the classical increase in distance measure, and also
the remaining time window slack in the route, i.e., priority is given to insertions that do not use
much of the available time slack, allowing for more feasible latter insertions. The authors also use a
non-standard measure of the visual attractiveness of the route to select the most desired insertions.

An important survey of the general pickup and delivery problem and approaches developed to
handle it was presented in [11]. A more recent surveys is presented in [8]. A survey of the important
related dial-a-ride problem is in [2].

We noticed during our literature survey that researchers who adopt a 2-phase approach to the
problem often pay more attention to the solution improvement phase, such that the results of the
initial solution construction phase are seldom reported, if at all. This makes it difficult to assess
the contribution of the construction method to the success or the failure of the overall algorithm.
It is also important to note that the role of the construction algorithm is not only limited to
the initialization phase. The construction algorithm is often utilized at various stages during the
improvement phase to create or modify new or partial solutions, as done for example in [1] and
[7]. Thus, using a simple, fast and effective construction algorithm is an important factor in any
successful solution methodology.

To the best of our knowledge, our research is the first attempt to compare different initial
solution construction methods for the MV-PDPTW. The research will help identify the construction

Hamburg, Germany, June 13–16, 2009



M
IC

20
09

id-4 MIC 2008: The VIII Metaheuristics International Conference

heuristic(s) that seems to be most appropriate for this problem, and decide whether sophisticated
and computationally expensive methods actually perform a better job in constructing good quality
problem solutions, as opposed to other simpler and less expensive algorithms. In the following
section we explain the routing algorithm embedded within the different construction algorithms
proposed. Section 4 then discusses in detail these construction algorithms.

3 The Routing Algorithm

A crucial part of the MV-PDPTW is the routing algorithm that will generate a feasible route for
each individual vehicle, a major concern is how to handle all problem constraints efficiently. Our
routing algorithm, first introduced in [3], was proven very effective for solving the Single Vehicle
PDPTW. The main difference between our algorithm and other routing (insertion) heuristics in the
literature is that our algorithm is greedy in nature. The algorithm does not try to find the best
insertion position for each request in the route, but accepts any feasible insertion. As a result, many
complex calculations and problem-specific decisions, that are related to the association between the
pickup and the delivery, can be avoided. For example, our algorithm eliminates the bias towards
either the pickup or the delivery location, which is one of the major drawbacks of ‘classical’ insertion
methods. Clearly, when the best insertion position for one request (pickup or delivery) is chosen
first, the choices available for its partner will be restricted accordingly.

Our routing algorithm adopts a simple route representation. Rather than representing the
visiting order of requests by a one-dimensional permutation of different locations, we treat both the
pickup location and its associated delivery as one unit. In other words, we assign the same code
(number) to both the pickup and its delivery. We then rely on a simple decoder to always identify
the first occurrence as the pickup and the second as the delivery. Also, to deal with the hard time
window constraint, our routing algorithm adopts an intelligent neighborhood move that uses the
time window as a guidance. The idea is to try to improve the current route by creating a new
neighboring route. To avoid creating and evaluating infeasible routes, though, our neighborhood
move only swaps locations that are out of order in terms of their late time window bounds, i.e., if
the latter location has a deadline that precedes the earlier one. Having dealt with the precedence
and the time windows constraints, the capacity constraint is the only remaining issue. However,
due to the nature of the problem, the capacity constraint can often be easily satisfied, since half
of the locations in the route are delivery locations whose loads are removed from the vehicle.
This simple representation and neighborhood move are employed in a simple Hill-Climbing (HC)
route-improvement heuristic, which tries to gradually modify the current route until no further
improvement is possible. Algorithm 1 describes this simple heuristic.

The cost function used in the HC algorithm to evaluate the quality of each route tries to
minimize the total route duration as well as the degree of infeasibility in capacity and time windows
constraints. The objective function of a route r is described by the following equation:

F (r) = w1 ×D(r) + w2 × TWV (r) + w3 ×CV (r) (1)

where D(r) is the total route duration, including the waiting time and the service time at each
location. TWV (r) is the total number of time window violations in the route, and CV (r) is the
total number of capacity violations. The constants w1, w2, and w3 are weights in the range [0, 1],
and w1 + w2 + w3 = 1.0. The choice of appropriate weights depends on the importance of each

Hamburg, Germany, July 13–16, 2009



M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-5

Algorithm 1 The HC Routing Algorithm
1: Given a route r

2: repeat
3: for (Each possible pair of locations in r) do
4: if (The latter location is more urgent in its upper time window bound) then
5: Swap the current 2 locations in r to get a new route r′

6: ∆← cost(r′)− cost(r)
7: if (∆ < 0) then
8: Replace r with r′

9: until (Done){Stop when no improvement has been achieved in the previous pass}

term in the objective function. We found that in order to get feasible solutions, the largest penalty
should be imposed on the time window violations.

4 Solution Construction Heuristics

In all our construction heuristics we first start by sorting customers according to the farthest distance
from the depot. However, since in our approach we deal with customers as a pickup and a delivery
pair, the distance measure should take into consideration this problem-specific property. In our
research, we found, experimentally, that the distance separating the depot and the delivery location
gives an appropriate estimate of the required distance.

4.1 The Sequential Construction Algorithm (SEQ)

The sequential construction heuristic tries to build routes one after another. Requests are taken one
by one in order, and each request (pickup and delivery) is inserted at the end of the current route.
Our HC routing heuristic (Algorithm 1) is then called to try to improve the current route. If the
HC algorithm returns an improved route that can feasibly accommodate the newly inserted pair,
this route is accepted and we move on to the next request. However, if the pair cannot be feasibly
inserted in the current route, the pair is removed from the route, and a new route is allocated to
insert the pair. Algorithm 2 describes the sequential construction procedure.

Algorithm 2 The Sequential Construction (SEQ)

1: Let M ← 0 {M is the number of vehicles used}
2: repeat
3: Initialize a new route r

4: M = M + 1
5: for (All unassigned requests) do
6: Get the next unassigned request i

7: Insert the request i at the end of the current route r

8: Call the HC routing heuristic (Algorithm 1) to improve r

9: if (r is a feasible route) then
10: Mark i as inserted
11: else
12: Remove i from r

13: until (All requests have been inserted)

Hamburg, Germany, June 13–16, 2009



M
IC

20
09

id-6 MIC 2008: The VIII Metaheuristics International Conference

4.2 The Parallel Construction Algorithms

In our research, we adapted the parallel construction method of [9], explained in Section 2, to the
MV-PDPTW. However, we estimated the initial number of vehicles using a simple formula that
divides the total load of the pickup requests by the capacity of the vehicle. We also initialized each
route with a seed request (pickup and delivery pair) from the sorted list of requests. We then take
the remaining requests in order and attempt to insert each request in the partial routes created.
If a request cannot be feasibly inserted in any of the already created routes, a new route is added
to accommodate this request. Following is an explanation of the different parallel construction
algorithms used in our research.

Parallel Construction: First Route (PFR): In this parallel construction algorithm, the next
request in order is inserted in the first route in which a feasible insertion of this request is found,
i.e., no attempt is made to find the best route for the current request.

Parallel Construction: Best Route (PBR): In our second parallel construction algorithm,
the next request in order is inserted in the best route in which a feasible insertion of this request
is found. The best route for each request is the route that causes the least increase in the overall
cost of the solution after the insertion process. To calculate the cost of the solution, we used an
objective function suggested by [1]. The objective function consists of 3 weighted components: the
first component tries to minimize the number of vehicles used in the solution, the second compo-
nent tries to minimize the total distance traveled, while the third component is a measure that
tries to maximize the square of the number of nodes visited by each vehicle. This last component
is intended to favor routes that are rather full and those that are rather empty, as opposed to an
even distribution of nodes among routes. The idea is to try to get rid of some vehicles that are
under-occupied during subsequent route improvement phases. Minimizing the number of vehicles
is usually the primary objective for most solution algorithms, followed by the total travel distance.

Parallel Construction: Best Request (PBQ): This parallel construction heuristic does not
only try to find the best route for each request, but also tries to select the best un-routed request
to be inserted next. The best un-routed request is the one whose insertion (in its best route) causes
the least increase in the overall cost of the solution. To evaluate the cost of the solution, the same
cost function used in the PBR algorithm is used. Algorithm 3 describes this procedure. 2

5 Computational Experimentation

To test our algorithms, we used several instances from the benchmark data created by Li and Lim
in [4]. There are 6 different categories of problem instances in this data set: LR1, LR2, LC1, LC2,
LRC1, and LRC2. Problems in the LR category have randomly distributed customers, problems
in the LC category have clustered customers, and problems in the LRC category have partially
random and partially clustered customers. On the other hand, problems identified with the number
‘1’ have a tight time window width, while problems identified with the number ‘2’ have a long
time window width. Each category has problem sizes ranging from 100 to 1000 customers. The
total number of files in the data set is 354. The data together with the best known results can be

2Due to lack of space, the detailed algorithms of the PFR and PBR heuristics could not be included in this paper.

Hamburg, Germany, July 13–16, 2009



M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-7

Algorithm 3 Parallel Construction: Best Request (PBQ)

1: Calculate M (the initial estimate of the number of vehicles)
2: Initialize M routes with seed customer pairs from the sorted list of customers
3: repeat
4: Initialize GlobalMin to an arbitrary large value
5: for (All remaining unassigned requests) do
6: Initialize LocalMin to an arbitrary large value
7: for (r = 0; r < M ; r + +) do
8: Get the next unassigned request i

9: Insert the request i at the end of the current route r

10: Call the HC routing heuristic (Algorithm 1) to improve r

11: if (r is a feasible route) then
12: calculate ∆cost {∆cost is the change in solution cost due to the insertion}
13: if (∆cost < LocalMin) then
14: LocalMin = ∆cost

15: r∗ = r { r∗ is the current best route for request i}
16: Remove i from r {temporarily remove r until all insertion costs have been calculated}
17: if (r∗ is found) then
18: if (LocalMin < GlobalMin) then
19: GlobalMin = LocalMin

20: i∗ = i {i∗ is the current best request}
21: v∗ = r∗ {v∗ is the best vehicle (route) for i∗}
22: else
23: Initialize a new route r′ {because no feasible insertion is found for i in any of the available routes}
24: M = M + 1
25: Insert i in the new route r′

26: Mark i as inserted
27: if (i∗ is found) then
28: Insert i∗ in v∗
29: Mark i∗ as inserted
30: until (All requests have been inserted)

downloaded from http://www.top.sintef.no/vrp/benchmarks.html. For the purpose of testing
our algorithms we selected the first 6 files from each category of each problem size. The total number
of files used to test our algorithms is 216. The algorithms were implemented using Visual C++
under a Windows XP operating system, on Intel Pentium (R)D CPU 3.40 GHz and 2 GB RAM.
Since the construction algorithms are all deterministic, each algorithm was run only once on each
test file. Table 1 shows the average number of vehicles, and the average total distance produced by
each algorithm for each problem size separately.

Analyzing the results in Table 1, we notice that regarding the number of vehicles generated,
SEQ and PBQ produced the best results, , with SEQ producing better results than PBQ in large
size problems, while both PFR and PBR were slightly inferior in this respect. On the other hand,
in terms of the total distance traveled, PBQ was able to beat all other algorithms, followed by PBR

and SEQ. PFR produced the worst average distance in all test cases, but it was slightly better than
PBR in the number of vehicles used. As a result, PFR and PBR can be eliminated from further
consideration, and we can focus our attention on SEQ and PBQ.

As can be noticed from the average results in the last row of Table 1, SEQ produced better
results than PBQ in the number of vehicles used. The PBQ algorithm, however, was able to beat

Hamburg, Germany, June 13–16, 2009



M
IC

20
09

id-8 MIC 2008: The VIII Metaheuristics International Conference

Table 1: Average results for all algorithms

Problem
SEQ PFR PBR PBQ

Veh Dist Veh Dist Veh Dist Veh Dist

100 11.78 2662.92 11.83 2767.19 11.83 2711.89 11.69 2564.09
200 17.33 8887.08 17.69 8954.06 18.17 8816.33 17.14 8132.84
400 33.56 22215.14 34.64 23010.53 34.69 21898.96 33.72 19758.38
600 48.22 44949.4 49.89 46644.49 50.69 45234.96 49.53 41791.82
800 63.53 74650.07 65.94 77895.32 66.44 74056.45 64.89 68713.31
1000 77.25 108513.19 81.97 115106.93 81.75 108662.01 81.58 103751.31

Avg 41.95 43646.30 43.66 45729.75 43.93 43563.43 43.09 40785.29

the SEQ algorithm in minimizing the total distance traveled. This was obviously due to the fact
that the SEQ algorithm was more concerned with fitting the largest possible number of requests in
each vehicle before allocating a new one, while the PBQ algorithm relied on a cost function that
has the total travel distance among its components. The PBQ algorithm was, nevertheless, much
slower than the SEQ algorithm. The average processing time of the SEQ algorithm ranged from
0.02 seconds for 100-customers problems to 1.88 seconds for 1000-customers problems. The PBQ

algorithm, on the other hand, had a processing time ranging from 0.34 seconds to 952.34 seconds
for the same problem types, which indicates beyond doubt the huge difference in the computational
effort needed for both algorithms.

We also performed a one-way analysis of variance of the average results produced by both
the SEQ and the PBQ algorithms. The analysis showed that there is no statistically significant
difference in the average results produced by the two algorithms, both in terms of the number of
vehicles and the total distance. This further indicates that the SEQ algorithm, despite its simplicity
and its exceptional speed, produced comparable results to the results of the PBQ algorithm. It
should also be noted that the SEQ algorithm neither requires an initial estimate of the number of
vehicles, nor does it need a solution evaluation mechanism during the construction process. The only
advantage that the PBQ algorithm offers, which is a slight reduction in the total travel distance,
does not seem to justify its added cost in terms of the complexity of the algorithm and the increase
in processing time. Another advantage of the SEQ algorithm is that it can be easily adapted to
population-based heuristics or meta-heuristics by randomizing the initial order of request to generate
different diverse solutions. The PBQ algorithm, on the other hand, is expected to produce a limited
diversity, even if the initial order of requests is randomized, because of the selection criteria and the
cost function it relies on during the insertion process. Most likely, requests that are hard to insert,
and thus cause a large increase in the solution cost, will always remain the same, despite the change
in the insertion order.

Although our algorithms are not intended to provide final good quality solutions to the MV-
PDPTW, it would still be useful to compare our results with the best known solutions. This would
give us a general idea about the expected effort needed in the solution improvement phase. We
tried to analyze the relative gap (difference) to best known results, produced by the SEQ algorithm
for each benchmark category separately. Figure 1 shows the average gap, in the number of vehicles,
produced by the SEQ algorithm for all problems, organized by problem categories. For example,
a gap of 0.5 means that the algorithm produced, on average, 50% more vehicles than the best
known results. Figure 2 shows the average gap produced by the same algorithm with respect to the
distance traveled.

Hamburg, Germany, July 13–16, 2009



M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-9

100 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

Problem Size

A
v
e
ra

g
e

V
e
h
ic

le
G

a
p

 

 

LR1
LC1
LRC1
LR2
LC2
LRC2

Figure 1: Average vehicle gap (SEQ)

100 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Problem Size

A
v
e
ra

g
e

D
is

ta
n
c
e

G
a
p

 

 

LR1
LC1
LRC1
LR2
LC2
LRC2

Figure 2: Average distance gap (SEQ)

Both figures show that the SEQ construction heuristic seems to be more ‘successful’ in instances
with a short schedule horizon, i.e., instances identified with ‘1’ in the data set, since these instances
always have a smaller gap than instances of type ‘2’. Regarding the primary objective, which is the
number of vehicles used, the algorithm seems to do a better job for instances that have clustered
customers, as opposed to instances that have random or partially random customers. It is clear
that instances in the LC category always have the smallest gap compared to the other problem
types. Problems with random customers and a long time window interval appear to be the most
challenging for the SEQ algorithm, and possibly all solution algorithms. The reason could be that
the solution space for these problems seems to be larger, due to the randomness of locations and the
large width of time windows involved in this case. It also appears from both graphs that the gap in
the number of vehicles is inversely proportional to the gap in the total travel distance, in most test
cases. This indicates that a solution that uses more vehicles may result in an overall shorter travel
distance compared to a solution that uses less number of vehicles.

6 Conclusions and Future Work

In this research we investigated several initial solution construction heuristics for the multiple vehicle
pickup and delivery problem with time windows. The experimental results on a large number of
benchmark instances indicate that the sequential construction heuristic (SEQ) seems to be the most
favorable solution construction method, which can be by easily embedded in a heuristic or a meta-
heuristic technique to reach final good quality solutions. With just a few simple lines of code, and
without a pre-determined number of vehicles or a solution evaluation mechanism, this algorithm
produced good quality results, that are sometimes even better than the results obtained by the most
sophisticated parallel algorithm tested in our research (the PBQ algorithm). The SEQ algorithm
also had an impressive speed, with a processing time that is at most 2% of the time needed by
the PBQ algorithm, making it even more suitable for population-based solution algorithms. The
experimental results, nevertheless, show that a costly improvement phase is still needed to achieve
final good quality solutions, as evident by the relatively large gap to best known results produced
by the SEQ construction algorithm. This, however, further supports the need for a fast solution
construction method to achieve an overall reasonable computation time for the complete solution
algorithm.

Hamburg, Germany, June 13–16, 2009



M
IC

20
09

id-10 MIC 2008: The VIII Metaheuristics International Conference

In our future plans, we will start investigating appropriate heuristic and meta-heuristic methods
to handle the solution improvement phase. Information obtained in the present research could be
utilized in our future work, for example by adapting the improvement algorithm to different problem
instances based on their difficulty and the expected amount of effort required to reach good quality
solutions to the problem.

References

[1] R. Bent and P. Van Hentenryck. A two-stage hybrid algorithm for pickup and delivery vehicle
routing problems with time windows. Computers and Operations Research, 33(4):875–893,
2006.

[2] J.-F. Cordeau and G. Laporte. The dial-a-ride problem (DARP): Variants, modeling issues
and algorithms. 4OR: A Quarterly Journal of Operations Research, 1(2):89–101, 2003.

[3] M. Hosny and C. Mumford. The single vehicle pickup and delivery problem with time win-
dows: Intelligent operators for heuristic and metaheuristic algorithms. Journal of Heuristics,

http://www.springerlink.com/content/f54u5618w5241816, 2008.

[4] H. Li and A. Lim. A metaheuristic for the pickup and delivery problem with time windows.
In Proceedings of the 13th IEEE International Conference on Tools with Artificial Intellegence,
pages 160–167, November 2001. Dallas, TX, USA.

[5] H. Lim, A. Lim, and B. Rodrigues. Solving the pickup and delivery problem with time windows
using squeaky wheel optimization with local search. In AMCIS 2002 Proceedings, 2002.

[6] Q. Lu and M. Dessouky. A new insertion-based construction heuristic for solving the pickup and
delivery problem with time windows. European Journal of Operational Research, 172(2):672–
687, December 2006.

[7] G. Pankratz. A grouping genetic algorithm for the pickup and delivery problem with time
windows. OR Spectrum, 27:21–24, 2005.

[8] S. Parragh, K. Doerner, and R. Hartl. A survey on pickup and delivery problems. Journal für

Betriebswirtschaft, 58(2):81–117, 2008.

[9] J.-Y. Potvin and J.-M. Rousseau. A parallel route building algorithm for the vehicle routing and
scheduling problem with time windows. European Journal of Operational Research, 66(3):331–
340, May 1993.

[10] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science, 40(4):455–472, November 2006.

[11] M. Savelsbergh and M. Sol. The general pickup and delivery problem. Transportation Science,
29(1):17–29, 1995.

[12] M. Solomon. Algorithms for the vehicle routing and scheduling problems with time window
constraints. Operations Research, 35(2):254–265, 1987.

Hamburg, Germany, July 13–16, 2009


