
A Family Competition Genetic Algorithm for
the Pickup and Delivery Problems with

Time Window

Wan-rong Jih∗ Jane Yung-jen Hsu†

jih@agents.csie.ntu.edu.tw yjhsu@csie.ntu.edu.tw

Department of Computer Science and Information Engineering
National Taiwan University

Abstract

This paper presents a new approach based on genetic algorithms to solving the single-
vehicle pickup and delivery problem with time window constraints (1-PDPTW). In partic-
ular, we illustrate how the Family Competition Genetic Algoritm (FCGA) is applied to the
1-PDPTW, and compare its results with previous solutions to the problem. Genetic algo-
rithms have been shown to find feasible or near-optimal solutions when traditional methods
would fail within a reasonble amount of time. By incorporating the concept of families
to maintain diversity, FCGA further improves solution quality and increases the proba-
bility of finding the optimal solutions without much extra resource demands. Extensive
experiments on FCGA with various crossover and mutation operators show that the new
approach succeeds in finding the optimal solutions for 1-PDPTW under 50 tasks, and can
obtain near-optimal or feasible solutions in most problems up to 100 tasks.

Keywords: pickup and delivery problem, vehicle routing problem, time windows, genetic algo-
rithm

1 Introduction

Many real-world transportation problems, such as vehicle dispatching[28, 37] and winter gritting[11,
26], can be formulated as the pickup and delivery problems (PDP)[2]. When the problem involves
finding a set of minimum-cost routes for a fleet of vehicles to satisfy transportation requests with
time constraints, it is called the pickup and delivery problem with time windows (PDPTW).
Vehicles are assumed to depart from a common depot. For each transportation request, or a task,
loading and unloading shall be done within a particular time interval. It is also associated with

∗PhD student, Department of Computer Science and Information Engineering, National Taiwan University
†Associate Professor, Department of Computer Science and Information Engineering, National Taiwan Uni-

versity

a load, that is, the specific weight to be delivered. Each vehicle can carry a limited weight. A
special class of PDPTW, the 1-PDPTW, is to find the optimal route for a single vehicle to serve
all the transportation requests.

The PDPTW belongs to the class of NP-hard problems[25], that is, the computation required
to find a solution grows exponentially with its problem size. Psaraftis[31, 32, 33] proposed a
solution using dynamic programming with a time complexity of O(n23n), where n is the number of
tasks. The proposed method solved PDPTW problems with up to 10 transportation requests, i.e.
the solution route involves at most 21 location points. Desrosiers et al.[9] improved the original
dynamic programming algorithm with elimination criteria, and solved the problems up to 40 tasks
effectively. While faster CPUs have enable optimal solutions to be obtained for slightly larger
problems, the algorithms still fail to find optimal solutions except for problems of relatively small
size. Therefore, heuristic methods are designed to solve large problems of PDPTW on demand.
Sexton et al.[36] formulated the problem as a linear program and decompose it into independent
subproblems. Dumas et al.[10] employed the column generation scheme to solve 1-PDPTW for up
to 55 paired requests. Comprehensive surveys have been compiled by Dumas[10], Savelsbergh[35]
and Sigurd[38].

There are several well-known problems related to PDPTW. In the dial-a-ride problem (DARP),
customers making the transportation requests are the load to be carried, and each customer is
assumed to be of unit weight. DARP can be solved by dynamic programming as proposed by
Psaraftis[31, 32, 33] and Desrosiers[9]. Furthermore, approximation algorithms for solving DARP
were given in Madsen[27] and Charikar et al.[5]. Surveys by Christofides[6] and Laporte[21]
include both exact and heuristic cases to solving the traveling salesman problem (TSP). The
traveling salesman problem with precedence constraints (TSPPC) imposes an ordering on the
locations to be visited. Heuristic approaches have been developed by Anily[1], Gendreau[14] and
Moon[4]. The vehicle routing problem (VRP) is a PDP, except that every task has been assigned
to a common delivery location. Overviews of exact and approximate algorithms for VRP are
provided by Psaraftis[34] and Laporte[22]. Readers may refer to Golden[16], Solomon[39] and
Desrochers[8] for surveys on VRPTW, and a recent survey by Desaulniers et al.[7]. Laporte[23]
collected a bibliography of routing related problems, including references on VRP and TSP.

Genetic algorithms (GAs) have been successfully applied to solve many combinatorial prob-
lems, including several types of VRP and TSP. Two edge-based recombination operators, al-
ternate edges crossover and edge recombination crossover, were proposed by Grefenstette[17]
and Whitley[43]. Starkweather[40] introduced the enhanced edge recombination crossover on
TSP. He also compared many genetic operators including order crossover, order crossover#2[41],
partially-mapped crossover[15] and cycle crossover[29]. Homaifar[18] presented matrix represen-
tation and matrix crossover for solving the TSP. Freisleben and Merz[12, 13] invented distance
preserving crossover for TSP such that the offspring of this operator can escape the local optima
in the search space. Surveys of GA on TSP were presented by Potvin[30] and Larranaga[24].

Blanton and Wainwright[3] proposed two crossover operators, merge crossover#1 and merge
crossover#2, that utilize global knowledge to explore the solution space. Jih[19, 20] performed a
comparative study of GA with various recombination operators in solving PDPTW, and showed
that the merge crossover operators are superior to the traditional ones. On the other hand, a
new variation of GA called Family Competition Genetic Algorithm (FCGA) has been successfully
applied to TSP and routing-related problems[42]. This research explores FCGA-based solutions

to 1-PDPTW.

Section 2 presents the formal definition of 1-PDPTW, followed by the GA construction in
terms of the chromosome representation, fitness function, and genetic operators. The FCGA
algorithm is outlined in Section 4. Experimental results are summarized in Section 5, followed
by the conclusions in Section 6.

2 Pickup and Delivery Problem with Time Windows

In the single-vehicle pickup and delivery problem (1-PDP), a route must be constructed in order
to satisfy transportation requests. Each transportation request specifies the weight of the load
to be transported, a location where it is to be picked up and another location where it is to
be delivered. Suppose that the beginning of a route is a depot from which the vehicle departs.
Starting from the depot, the vehicle travels through all the locations where the transportation
requests are specified. After the vehicle has fulfilled all the transportation requests, the vehicle
will park at one of the delivery locations.

The single-vehicle pickup and delivery problems with time constraints (1-PDPTW) are strictly
harder than the basic 1-PDP problems. In addition to the intrinsic precedence and capacity
constraints, the temporal constraints complicate the problem significantly. Each pickup and
delivery location is associated with a time window, which specifies the service time interval
allowed.

2.1 1-PDPTW

Let N = {1, . . . , n} represent the set of n transportation requests. For each task i ∈ N , the
time windows [ai+ , bi+] and [ai− , bi−] denote the available time interval of pickup location i+ and
delivery location i−, respectively. A positive number qi indicates the load of task i. While serving
the transportation requests, the vehicle shall not exceed the capcaity limit Q.

Given a directed graph G = (V,A), let V = {0} ∪ V + ∪ V − be a set of nodes, where 0 is an
initial depot. V + = {i+ | i ∈ N} is the set of pickup locations, and V − = {i− | i ∈ N} is the set
of delivery locations. The arc set is A = {(r, s) | r 6= s, r, s ∈ V }.

There are three types of constraints for 1-PDPTW: precedence constraints, capacity constraints
and time window constraints. Assume that a vehicle is parked at the initial depot 0, and it shall
visit all the specified locations exactly once. To accomplish a task i ∈ N , the vehicle shall serve
the pickup location i+ before the delivery location i−; this is the precedence constraint. The
capacity constraint states that the total load of a vehicle cannot exceed its capacity Q.

If the vehicle arrives at location r ∈ V + ∪ V −, its arrival time tr should meet the criterion
ar ≤ tr ≤ br, where [ar, br] is the time window of location r. However, if the arrival time tr
is earlier than the lower bound of the available time interval ar, it has to wait until the time
reaches ar. That is, the departure time of a vehicle at location r will be equal to max{ar, tr}.
These criteria form the time window constraints.

2.2 Goal

Our goal is to find a vehicle route that starts from an initial depot, fulfills all the transportation
requests, and ends at one of the delivery locations. The path should be a feasible route that
satisfies the associated constraints, and minimizes the total traveling time and the total waiting
time of the vehicle.

3 Construction of Genetic Algorithm

Genetic algorithms (GAs) are search algorithms based on the mechanics of natural selection and
natural genetics. As in evolution, genetic algorithms utilize genetic recombination and replication
on strings as the optimization procedures. The approach has been shown to be very effective in
searching for solutions to NP-hard problems[25].

Deployment of any genetic algorithm requires defining the problem encoded in some chro-
mosome representation, as well as the corresponding evaluation function, also called the fitness
function. Parent selection methods often choose individuals from the current population based
on their fitness functions. Given a chromosome representation, recombination operators are
designed to create new individuals from the selected parents.

3.1 Chromosome representation

A solution to 1-PDPTW will be represented as an ordered list of locations. Given a set of
transportation requests N = {1, . . . , n}, let i+ and i− denote the pickup and delivery location of
task i, respectively. For instance, (0 3+ 1+ 1− 2+ 2− 3−) is the chromosome representation of route
0→ 3+→ 1+→ 1−→ 2+→ 2−→ 3−. By simply counting the pickup and delivery locations of
every transportation request and an initial depot, the length of every chromosome will be 2n+1.
The simple permutation representation intuitively follows the travelling sequence, and it is the
most common and popular representation for solving the order-based problems.

3.2 Fitness function

Given a chromosome that represents a route S, the corresponding fitness function is defined in
Equation (1).

Φ(S) = ftravelcost(S) + fpenalty(S) (1)

The value of ftravelcost(S) is the total travel time for a vehicle to complete route S, including the
waiting time if the vehicle arrives at a location early. The penalty function of route S, fpenalty(S),
defines the punishments for violating some of the constraints. The vehicle receives a penalty if
it is overloaded or late at any location. In a route, if any specific task i violates the precedence
contraint, an adjustment procedure will be performed. This procedure swaps the positions of
location i+ and i− and makes the pickup location i+ to appear before the delivery location i−.

A route may violate the constraints during the exploration of genetic algorithm. A route is
feasible if it does not violate any constraint; otherwise, it is infeasible. According to the definition
of Φ(S), the value of Φ(Sinfeasible) is typically much larger than that of Φ(Sfeasible), where Sfeasible

denotes a feasible route and Sinfeasible is an infeasible route. The goal of the 1-PDPTW is to find
a feasible route S such that minimize Φ(S).

3.3 Crossover

In this paper, we consider four crossover operators. The order crossover[29] (OX) and uniform
order-based crossover[41] (UOX) are two popular traditional crossovers to solve routing-related
problems. Merge crossover#1 (MX1) and merge crossover#2 (MX2) are recently invented by
Blanton[3] for solving VRPTW; these two merge crossovers utilize global knowledge to explore
their search space. The two traditional crossover operators have been introduced by many
exhaustive studies[41, 29].

Most traditional order-based crossover operators do not have strong connections to the con-
straints in the problem domain. In contrast, the merge crossover operators utilize global knowl-
edge about 1-PDPTW constraints, in the form of a global precedence vector, in order to achieve
the precedence relationship among the genes. For example, in 1-PDPTW, the order of time
windows can be represented as a global precedence vector for the merge crossovers. Operators
MX1 and MX2 will produce new chromosomes according to the precedence among the genes.
Operator MX1 produces a child with the sequence of order close to the global precedence vector;
while MX2 produces an offspring in which the genes with lower priority are moved to the end of
the chromosome.

3.4 Mutation

A mutation operator works on a single chromosome, which will be substituted by the mutated
individual. In this approach, instead of using a fixed mutation rate, mutation is applied only
when the offspring are identical to their parents.

The genetic algorithms in our experiments applied two mutation operators in solving the 1-
PDPTW. The first mutation operator, named 2-point mutation, selects two genes randomly, and
their positions are interchanged. This operator creates a new route with four different edges from
its original route. The second mutation operator chooses two cut sites randomly and reverse the
sub-route among the cut sites. This mutation operator is identical to the 2-opt move in TSP[41],
in which the new route differs from the original one by two edges.

4 Family Competition GA

The family competition genetic algorithm (FCGA) is a modern approach introduced by Yang[44].
Adapting the concept of families to traditional GA yields the principal of FCGA. Once an
individual has been selected to perform crossover, traditional GA selects another individual to
produce a single offspring, whereas FCGA produces a family with more than one offspring, one
from each randomly selected mate. In FCGA, the scheme of family competition maintains a
constant size of the population, that is, only the champion of each family survives.

Algorithm 1 elaborates the procedure of the family competition genetic algorithm. The first
three steps are the initialization process of FCGA. For any given generation t, the population P t

Algorithm 1 The procedures of FCGA
1: t = 0;
2: Initial population : P t ← {I t

1, I
t
2, . . . , I

t
m};

3: Evaluation: Φ(I t
1), Φ(I t

2), . . . , Φ(I t
m);

4: repeat
5: T ← ∅;
6: for i = 1 to m do
7: Family father: F t

i ← I t
i ;

8: Family: Ct
i ← ∅;

9: for j = 1 to u do
10: Selection: alternative parent At

j ∈ P t;
11: Recombination: cj ← Om(Oc(F

t
i , A

t
j));

12: Evaluation: Φ(cj);
13: Ct

i ← Ct
i ∪ {cj};

14: end for
15: T ← T ∪ best(Ct

i);
16: end for
17: P t+1 ⊂ {P t ∪ T};
18: t = t + 1;
19: until reach the termination condition
20: Output the solutions;

contains m individuals. The evaluation function Φ is as defined in Equation (1) of section 3.2.

Steps 4 through 19 present the main procedure of FCGA in generation t. Each individual I t
i

in P t, where i = 1, 2, . . . , m, takes turn to be the father F t
i in creating a family Ct

i of u offspring.
The family construction process is detailed in Steps 9 to 14. To produce a new offspring cj, an
alternative parent At

j, which should be distinct from the family father F t
i , is randomly selected

from population P t. Crossover operator Oc and mutation operator Om are then applied to F t
i

and At
j. In Step 15, function best(Ct

i) returns the individual with the best, i.e. lowest, fitness
value from family Ct

i . The best members of each family are collected in a temporary set T . In
Step 17, the best m individuals from either P t or T are selected to form the next generation.
Algorithm 1 repeats the main loop until the termination conditions are met. Upon termination,
FCGA outputs the best solutions explored so far.

5 Experimental design and results

A major problem for research on solving PDPTW is the lack of standard test sets. While standard
data sets for several related problems do exist, they cannot be used to test PDPTW. The TSP
data sets do not include precedence, capacity or time window constraints; while the VRPTW
data sets lack precedence constraints. In order to compare the genetic algorithms for solving
PDPTW under various combinations of operators and parameters, it is necessary to create our
own test data sets.

5.1 Experimental design

Algorithm 2 desribes the procedure for generating the random test sets used in our experiments.
The main challenge is to create test data that is random enough to provide good coverage on the
problem space, while ensuring the constraints are not too tight to exclude all possible solutions.

Algorithm 2 Create test data for 1-PDPTW

Require: Given the number of task n, and the width of time window width.
Ensure: To produce a task set N with n transportation requests, including pickup and delivery

locations from a set V , loads {q1 · · · qn} and time window {[a1, b1] · · · [an, bn]}, which admits
feasible solutions.

1: 0 is an initial depot;
2: N = {1, · · · , n}
3: for i ∈ N do
4: Generate the pickup location i+ ∈ V + randomly;
5: Generate the delivery location i− ∈ V − randomly;
6: Generate the load qi randomly;
7: end for
8: V = 0 ∪ V + ∪ V −;
9: Evaluate the traveling time drs, r, s ∈ V ;

10: Randomly generate a route, which satisifies the precedence contraint;

11: AverageT ime =
∑

r∈V

∑
s∈V

drs

|V |×|V |
12: Suppose that the vehicle arrives location i at time ti;
13: for i ∈ V + ∪ V − do
14: ai = ti − random(width)× AverageT ime;
15: bi = ti + random(width)× AverageT ime;
16: end for
17: [ai, bi] is the time window of location i ∈ V ;
18: Output the test data;

Each generated test set consists of n tasks with 2n + 1 locations. Steps 1 to 8 in Algorithm 2
initialize the essential elements of tasks, including the pickup locations, delivery locations and
the loads. Step 9 calculates the travel time between any locations involved in the requests.

Moreover, this algorithm guarantees the existence of solutions. To assure the production of a
test set with at least one solution, Algorithm 2 randomly generates a primary route that satisfies
the intrinsic precedence constraint. The arrival time ti of location i is used to generate the corre-
sponding time window [ai, bi] using the parameter width in deciding the width of time window.
Function random(width) in Steps 14 and 15, randomly generates a real number between 0 and
width. As a result, the difference between ai and bi is no more than 2×width×AverageT ime.

5.2 Experimental results

In our experiments, the family competition genetic algorithm (FCGA) is compared with the tra-
ditional genetic algorithm (GA) using four crossovers operators under three different crossover

rates (0.45, 0.60, and 0.75). Comparative results are tabulated for the four crossover opera-
tors, which are referred to as order-based crossover (OX), uniform crossover (UOX)[41], merge
crossover#1 (MX1), and merge crossover#2 (MX2)[3]. The experiments also adopt two muta-
tion operators: 2-point mutation and the 2-opt mutation. For each test case, we perform 30
trials under the same configuration of parameters.

Table 1: A Comparison of the best results.

Genetic Operators & approaches The best or
task OX UOX MX1 MX2 optimal result
size GA FCGA GA FCGA GA FCGA GA FCGA GA FCGA DP
10 875 872 872 872 872 872 872 872 872 872 872

1 2 18 27 30 30 30 30

20 x 2186 2030 2030 2030 2030 2030 2030 2030 2030 2030
x 1 22 30 1 1 21 11

30 x x 3713 3713 3713 3720 3713 3713 3713 3713 3713
x x 5 20 2 4 24 7

40 x x 4386 4386 4389 4389 4386 4386 4386 4386 4386
x x 3 23 2 10 28 12

50 x x 5752 5752 5753 5753 5752 5753 5752 5752 5752
x x 1 17 30 30 3 24

60 x x 5658 5658 5658 5658 5658 5658 5658 5658 x
x x 3 5 3 1 29 30

70 x x 7221 7221 7252 7239 7221 7221 7221 7221 x
x x 2 19 10 1 2 2

80 x x 7849 7849 7903 7909 7850 7849 7849 7849 x
x x 1 4 1 18 1 1

90 x x x 8618 8622 8645 8618 8618 8618 8618 x
x x x 5 1 1 1 1

100 x x 10600 10600 10616 10600 10600 10600 10600 10600 x
x x 1 5 4 3 10 26

Table 1 shows the best results of running the four crossover operators respectively. The
first column represents the number of transportation requests. Under the common heading
”Genetic Operators & approaches”, Columns 2 to 9 list the results of using the four crossover
operators. Each cell consists of two elements: the top value indicates the best result found by the
corresponding approach, whereas the value in the bottom represents the number of times when
the best result is found. The latter is also called the appearance count. Symbol ’x’ indicates
that no feasible solution can be found. Values equal to the best-known result are printed in

italicized style. The rightmost columns record the best solutions obtained by using GA, FCGA,
and dynamic programming (DP)[33] respectively.

The results in Table 1 show that the order-based crossover OX is unable to find any feasible
solution for relatively small problems. Therefore, it is not suitable for 1-PDPTW. On the other
hand, dynamic programming produces optimal solutions for problems with size smaller than
50; the uniform crossover and two merge crossover operators can find optimal solutions in most
cases. The results also show that FCGA consistently improves the quality of solutions and the
chance of producing optimal solutions using the uniform crossover operator. When applied with
the merge crossover operators, FCGA improves the quality of solutions for most, while slightly
worsens the solutions of MX1 for task size 30, 80 and 90, as well as the solution of MX2 for 50
tasks.

Consider the chance of producing the best solutions for the various combinations. Applying
UOX in FCGA generally increases the appearance count of the best results. In contrast, the
appearance count decrases for MX1 in FCGA for task size 60 and larger; FCGA with MX2
obtains fewer optimal solutions for task size of 20, 30 and 40.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 50 100 150 200 250

F
itn

es
s

va
lu

e

Generation

The average fitness value of 80 tasks (MX1, 60% crossover rate, 2-point mutation, 30 runs)

GA(avg)
FCGA(avg)

GA(best)
FCGA(best)

Figure 1: The best and average fitness values of MX1 in 80 tasks.

To evaluate the quality of the solutions found by the various genetic algorithms, Figure 1
depicts the best and average fitness values of the solutions for 1-PDPTW involving 80 tasks.
The x-coordinate denotes the number of generations, whereas the y-coordinate corresponds to
the fitness values. Compared with FCGA, the average fitness values for GA are much higher
(i.e. worse) in every generation and the curve converges more slowly. In addition, the results
indicate that the best results obtained by FCGA and GA are very close and the lines converge

at the same point.

Most of the configurations in our experiments generated similar results to the ones shown in
Figure 1. There are notable exceptions. For example, Figure 2 shows the best and average fitness
values of solutions found by MX2 over thirty trials on 50-task PDPTWs. The curve denoting
the average fitness values for FCGA converges prematurely into a higher value. One possible
explanation is that the merge crossover operators can create near-optimal solutions earlier in
the evolution process based on some domain knowledge. Unfortunately, FCGA has a higher
tendency of being trapped in a local minimum, and converges to a non-optimal solution.

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

0 50 100 150 200 250 300 350

F
itn

es
s

va
lu

e

Generation

The average fitness value of 50 tasks (MX2, 60% crossover rate, 2-opt mutation, 30 runs)

GA(avg)
FCGA(avg)

GA(best)
FCGA(best)

Figure 2: The best and average fitness values of MX2 in 50 tasks.

Figure 3 illustrates the average CPU time required by FCGA and GA in solving the problems.
The x-coordinate represents the problem size, and the y-coordinate denotes the execution time
measured in seconds. In general, the execution time for GA is shorter than that of FCGA due
to the overhead in the reproductive process. Figure 3 also show that UOX takes more time than
the merge crossover operators in finding a solution. The experimental results in Table 1 and
Figure 3 demonstrate that UOX works well with FCGA in generating the best solutions despite
a longer execution time.

In real-world applications, it is often better to start serving customer requests based on a
feasible (or near-optimal) solution instead of keeping them waiting while searching for the optimal
solution. Table 2 summerizes the hit ratio, in terms of percentage, of finding a feasible solution.
The results indicate that FCGA improves the probability of obtaining feasible solutions in most
cases. Based on the results in Figure 3 and Table 2, we can conclude that MX1 and MX2 are
the better choices for real-time applications.

0

500

1000

1500

2000

0 20 40 60 80 100

C
P

U
 ti

m
e(

se
c)

Task size

The average CPU execution time, 180 runs

UOX(FCGA)
UOX(GA)

MX2(FCGA)
MX2(GA)

MX1(FCGA)
MX1(GA)

Figure 3: A comparison of CPU time (UOX, MX1, and MX2).

Table 2: Hit ratios of the feasible solution in 180 trials.
feasible/trials(%)

task UOX MX1 MX2
size GA FCGA GA FCGA GA FCGA
10 100.00 100.00 100.00 100.00 100.00 100.00
20 98.89 100.00 100.00 100.00 100.00 100.00
30 70.00 93.33 100.00 97.78 98.89 98.33
40 45.00 90.00 100.00 100.00 99.44 96.11
50 8.33 46.67 100.00 100.00 99.44 84.44
60 5.00 15.56 98.33 100.00 96.67 87.22
70 7.22 47.22 100.00 100.00 97.22 95.00
80 11.67 11.67 21.67 55.00 61.11 80.56
90 x 8.89 61.11 96.11 71.67 87.22
100 1.11 13.33 7.78 26.67 25.00 63.89

Let us summarize the results from our experiments. First, FCGA improves the solution quality
of UOX, both the solution costs and the appearance count. Second, for uniform order-based
crossover operator like UOX, FCGA can enhance its local search capability, thereby increase the
opportunity of reaching the optimal solution. On the other hand, while FCGA improves the
execution time of the merge crossover operators, it does not increase the solution qualities as it
tends to get stuck in the local minimum.

6 Conclusion and discussion

This paper presented a comprehensive study on genetic algorithm-based approach to solving the
single-vehicle pickup and delivery problem with time constraints. Genetic algorithms have been
shown to find feasible or near-optimal solutions when traditional methods would fail within a
reasonble amount of time. Instead of utilizing offsprings of parent chromosomes directly, the
Family Competition Genetic Algorithm (FCGA) selects a champion offspring from siblings from
the same parents to maintain diversity and balance of population. By incorporating the concept
of families, FCGA further improves solution quality and increases the probability of finding the
optimal solutions without much extra resource demands.

Extensive experiments were conducted to compare the FCGA with traditional GA’s under
various crossover and mutation operators. The results showed that the FCGA succeeds in finding
the optimal solutions for 1-PDPTW under 50 tasks, and can obtain near-optimal or feasible
solutions in most problems up to 100 tasks. Addtionally, by comparing the solution cost of
FCGA with that of traditional GA, we found that FCGA improves the solution qualities in most
cases.

One important observation from the experiments in solving the 1-PDPTW is that not all
recombination operators benefit from FCGA. In particular, FCGA is best suited for genetic op-
erators that explore the search space uniformly, such as uniform crossover. For genetic operators
designed to do greedy search, FCGA may be trapped in local minimum. Our experiments showed
that applying family competition in merge crossovers did not improve the solutions substantially.
We expect to continue designing additional recombination operators in order to further under-
stand the characteristics of the proposed scheme in solving PDPTW and other related problems.

References

[1] S. Anily and G. Mosheiov. The traveling salesman problem with delivery and backhauls.
Operations Research Letters, 16:11–18, 1994.

[2] A. A. Assad. Modeling and implentation issues in vehicle routing. In B. L. Golden and
A. A. Assad, editors, Vehicle Routing: Methods and Studies, pages 7–45. Elsevier Science
Publishers, North-Holland, Amsterdan, 1988.

[3] J. L. Blanton Jr. and R. L. Wainwright. Multiple vehicle routing with time and capacity
constraints using genetic algorithms. In Proceedings of the Fifth International Conference
on Genetic Algorithms and Their Applications, pages 452–459, 1993.

[4] G. Choi C. Moon, J. Kim and Y. Seo. An efficient genetic algorithm for the traveling
salesman problem with precedence constraints. European Journal of Operational Research,
140(3):606–617, 2002.

[5] M. Charikar and B. Raghavachari. The finite capacity dial-a-ride problem. In IEEE Sym-
posium on Foundations of Computer Science, pages 458–467, 1998.

[6] N. Christofides. Vehicle routing. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and
D. B. Shmoys, editors, The Traveling Salesman Problem: a guided tour of combinatorial
optimization, pages 431–448. Elsevier Science Publishers, John Wiley & Sons Ltd, 1985.

[7] G. Desaulniers, J. Desrosiers, A. Erdmann, M.M. Solomon, and F. Soumis. The vrp with
pickup and delivery. Cahiers du GERARD G-2000-25, Ecole des Hautes Etudes Commer-
ciales, Montreal, 2000.

[8] M. Desrochers, J. K. Lenstra, and M. W. P. Soumis. Vehicle routing with time windows:
Optimization and approximation. In B. L. Golden and A. A. Assad, editors, Vehicle Rout-
ing:Methods and Studies, pages 65–84. Elsevier Science Publishers, North-Holland, Amster-
dan, 1988.

[9] J. Desrosiers, Y. Dumas, and F. Soumis. A dynamic programming solution of the large-scale
single-vehicle dial-a-ride problem with time windows. American Journal of Mathematical
and Management Sciences, 6(3 & 4):301–325, 1986.

[10] Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with time
windows. European Journal of Operational Research, 54:7–22, 1991.

[11] R. W. Eglese. Routeing winter gritting vehicles. Discrete Applied Mathematics, 48:231–244,
1994.

[12] B. Freisleben and P. Merz. New genetic local search operators for the traveling salesman
problem. In Proceedings of the 1996 IEEE International Conference on Evolutionary Com-
putation, pages 616–621, 1996.

[13] B. Freisleben and P. Merz. New genetic local search operators for the traveling salesman
problem. In Proceedings of the 4th International Conference on Parallel Problem Solving
from Nature (PPSN’96), pages 890–899, 1996.

[14] M. Gendreau, G. Laporte, and D. Vigo. Heuristics for the traveling salesman problem with
pickup and delivery. Computers and Operations Research, 26(7):699–714, 1999.

[15] D. E. Goldberg and R. Lingle Jr. Allels, loci, and the traveling salesman problem. In Proceed-
ings of the First International Conference on Genetic Algorithms and Their Applications,
pages 154–159, 1985.

[16] B. L. Golden and A. A. Assad. Vehicle routing with time-window constraints. American
Journal of Mathematical and Management Sciences, 6(3 & 4):251–260, 1986.

[17] J. Grefenstette, R. Gopal, B. Rosmaita, and D. Gucht. Genetic algorithms for the trav-
eling salesman problem. In Proceedings of the First International Conference on Genetic
Algorithms and Their Applications, pages 160–168, 1985.

[18] A. Homaifar, S. Guan, and G. E. Liepins. A new approach on the traveling salesman
problem by genetic algorithms. In Proceedings of the Fifth International Conference on
Genetic Algorithms and Their Applications, pages 460–466, 1993.

[19] W. R. Jih, Y. P. Chen, and Y. J. Hsu. A comparative study of genetic algorithms for
vehicle routing with time constraints. In Proceedings of the 1996 International Computer
Symposium, pages 17–24, 1996.

[20] W. R. Jih and Y. J. Hsu. Dynamic vehicle routing using hybrid genetic algorithms. In
Proceedings of the 1999 IEEE International Conference on Robotics & Automation, pages
453–458, 1999.

[21] G. Laporte. The traveling salesman problem: An overview of exact and approximate algo-
rithms. Management Science, 59:231–247, 1992.

[22] G. Laporte. The vehicle routing problem: An overview of exact and approximate algorithms.
Management Science, 59:345–358, 1992.

[23] G. Laporte. Routing problems: A bibliography. Annals of Operations Research, 61:227–262,
1995.

[24] P. Larranaga, C. Kuijpers, R. Murga, I. Inza, and S. Dizdarevich. Genetic algorithms
for the travelling salesman problem: A review of representations and operators. Artificial
Intelligence Review, 13:129–170, 1999.

[25] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of vehicle routing and scheduling
problems. Networks, 11:221–227, 1981.

[26] Y. O. Li and R. W. Eglese. An interactive algorithm for vehicle routeing for winter-gritting.
Journal of the Operational Research Society, 47:217–228, 1996.

[27] O. B. G. Madsen, H. F. Ravn, and J. M. Rygaard. A heuristic algorithm for a dial-a-
ride problem with time windows, multiple capacities, and multiple objectives. Annals of
Operations Research, 60:193–208, 1995.

[28] O. B. G. Madsen, K. Tosti, and J. Væds. A heuristic method for dispatching repair men.
Annals of Operations Research, 61:213–226, 1995.

[29] I. M. Oliver, D. J. Smith, and J. R. C. Holland. A study of permutation crossover operators
on the traveling salesman problem. In Proceedings of the Second International Conference
on Genetic Algorithms and Their Applications, pages 224–230, 1987.

[30] J. Y. Potvin. Genetic algorithms for the traveling salesman problem. Annals of Operations
Research, 63:339–370, 1996.

[31] H. N. Psaraftis. A dynamic programming solution to the single vehicle many-to-many
immediate request dial-a-ride problem. Transportation Science, 14(2):130–154, 1980.

[32] H. N. Psaraftis. An exact algorithm for the single vehicle many-to-many dial-a-ride problem
with time windows. Transportation Science, 17(3):351–357, 1983.

[33] H. N. Psaraftis. Scheduling large-scale advance-request dial-a-ride systems. American Jour-
nal of Mathematical and Management Sciences, 6(3 & 4):327–341, 1986.

[34] H. N. Psaraftis. Dynamic vehicle routing problems. In B. L. Golden and A. A. Assad,
editors, Vehicle Routing:Methods and Studies, pages 223–248. Elsevier Science Publishers,
North-Holland, Amsterdan, 1988.

[35] M. W. P. Savelsbergh and M. Sol. The general pickup and delivery problem. Transportation
Science, 29(1):17–29, 1995.

[36] T. R. Sexton and Y. M. Choi. Pickup and delivery of partial loads with soft time windows.
American Journal of Mathematical and Management Sciences, 6(3 & 4):369–398, 1986.

[37] Y. Shen, J. Y. Potvin, J. M. Rousseau, and S. Roy. A computer assistant for vehicle
dispatching with learning capabilities. Annals of Operations Research, 61:189–211, 1995.

[38] Mikkel Sigurd, David Pisinger, and Michael Sig. The pickup and delivery problem with time
windows and precedences. Technical report, University of Copenhagen, August 2000.

[39] M. M. Solomon and J. Desrosiers. Time window constrained routing and scheduling prob-
lems. Transportation Science, 1(1):1–13, Feburary 1988.

[40] T. Starkweather, S. McDaniel, K. Mathias, D. Whitley, and C. Whitley. A comparison
of genetic sequencing operators. In Proceedings of the Fourth International Conference on
Genetic Algorithms and Their Applications, pages 69–76, 1991.

[41] G. Syswerda. Schedule optimization using genetic algorithms. In L. Davis, editor, Handbook
of Genetic Algorithms, pages 332–349. Van Nostrand Reinhold, New York, 1991.

[42] H.K. Tsai, J.M. Yang, and C.Y. Kao. A genetic algorithm for traveling salesman problems.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001),
pages 687–693, 2001.

[43] D. Whitley, T. Starkweather, and D. Fuquay. Scheduling problems and traveling sales-
men: The genetic edge recombination operator. In Proceedings of the Third International
Conference on Genetic Algorithms and Their Applications, pages 133–140, 1989.

[44] J. M. Yang and C. Y. Kao. Integrating adaptive mutations and family competition into
genetic algorithms as function optimizer. Soft Computing, 4(2):89–102, 2000.

