
Using Family Competition Genetic Algorithm in
Pickup and Delivery Problem with Time Window

Constraints

Wan-rong Jih Cheng-Yen Kao Jane Yung-jen Hsu

Department of Computer Science and Information Engineering
National Taiwan University

Taipei 106, Taiwan
jih@agents.csie.ntu.edu.tw cykao@csie.ntu.edu.tw yjhsu@csie.ntu.edu.tw

Abstract— In this paper, we propose a novel research
scheme to solve the single vehicle pickup and delivery prob-
lem (PDPTW) with time window constraints. The fam-
ily competition genetic algorithm (FCGA) is a modern ap-
proach that has been successfully applied to solve the travel-
ing salesman problem. We illustrate the family competition
GA and give the experimental results that show the FCGA is
a brilliant algorithm for solving the single vehicle PDPTW.

Genetic algorithms (GA) have been successful applied to
solve the combinatorial computation problems. The fam-
ily competition will improve the achievements for obtaining
optimal solutions and the probability to hit the feasible solu-
tions. By comparing FCGA with traditional GA, this excel-
lent approach does not need enormous resources. Applying
FCGA to single vehicle PDPTW, it succeeded in finding fea-
sible solutions for all problems and obtained efficient results
in our experimentation.

I. Introduction

The pickup and delivery problem (PDP) is a NP-hard
problem[7] and has been extensively studied in computer
science, management and operational research. Conse-
quently, the domain space of this problem grows exponen-
tially. Under such time explosion, exact algorithms can
only achieve an optimal solution with in a very small prob-
lem size. Therefore, the majority of the related researches
apply heuristic algorithms to solve the pickup and delivery
problems.

Many practical pickup and delivery problems had been
applied to transportation of goods, robotics and the job-
shop scheduling[1]. This problem is similar to Traveling
Salesman Problems (TSP), Dial-a-Ride Problems (DARP)
and the Vehicle Routing Problems (VRP). Except for its
augmented constraints. For the detail discussion of pickup
and delivery problems, readers might refer to the survey
paper by Savelsbergh[10].

Genetic algorithms (GA) have been applied to solve
the TSP[4],[8] and VRP[12],[2],[5],[6] successfully. Given
this strength in routing related problems, we present a
scheme that employs family competition genetic algorithms
(FCGA) to solve the single vehicle pickup and delivery
problem with time window constraints (PDPTW). The al-
gorithms for single vehicle PDPTW are used as subroutines
in multiple vehicles cases. The approaches for solving sin-
gle vehicle PDPTW would be the principal algorithms on

finding solutions of the multiple vehicles problems.
The organization of this paper is as follows. In the next

section, we will introduce the single vehicle PDPTW. The
chromosome representation and the fitness function of the
FCGA will be given in Section . An outline of FCGA
will show in section IV. The related operators of FCGA
that will be used to solve the single vehicle PDPTW are
described in section IV. Section V and section VI depict
the experimental results and conclusions, respectively.

II. The Pickup and Delivery Problem

In the single vehicle pickup and delivery problem (PDP),
a route must be constructed in order to satisfy transporta-
tion requests. Each transportation request specifies the
weight of the load to be transported, a location where it
is to be picked up and another location where it is to be
delivered. Suppose that the beginning of a route is a depot
where the vehicle departs from it. By starting from the
depot, the vehicle travels through all the locations where
the transportation requests specified. After the vehicle has
visited all the transportation requests, the vehicle will park
at one of the delivery location.

Pickup and delivery problems with time constraints
(PDPTW) are strictly harder than the fundamental prob-
lems. In addition to the intrinsic precedence constraints
and the vehicle capacity constraints, time constraints com-
plicate the problem significantly. A time window is associ-
ated with every pickup location and the delivery location,
which indicates the time interval that the corresponding
location is available for service. The vehicle should visit
every location and satisfy the given service time interval of
the locations. If the vehicle arrives early, the vehicle has
to wait at the arrived location until it is open.

A. Single vehicle PDPTW

Suppose that N = {1, . . . , n} is a set of transportation
requests, where n is the number of transportation requests.
To accomplish each transportation request i ∈ N , the ve-
hicle should service the pickup location i+ before the de-
livery location i−. Accordingly, V + = {i+ | i ∈ N} and
V − = {i− | i ∈ N} are the set of pickup locations and
delivery locations respectively. Let G = (V,A) be a di-

rected graph where V = {0} ∪ V + ∪ V − is a set of lo-
cations, which includes an initial depot 0 and the spec-
ified location sets of the n transportation requests. Set
A = {(r, s) | r 6= s, r, s ∈ V } is a set of arcs. To measure
the arrival time of each step, a given non-negative travel
time drs is assigned to each arc (r, s) ∈ A. Each trans-
portation request i is associated with a positive number qi;
it indicates the load of the transportation request. A ve-
hicle should not be allowed to exceed the vehicle capacity
Q.

In addition to the precedence constraints and the capac-
ity constraints, PDPTW must also satisfy the time win-
dow constraints. For every transportation request i, are
required to pick up the goods within the time interval
[ai+ , bi+], and transport the goods to its delivery location
i− on the time interval [ai− , bi−].

The time windows [ai+ , bi+] and [ai− , bi−] are the avail-
able time interval of the pickup location i+ and delivery
location i−, respectively. If the vehicle arrives in location
r ∈ V + ∪ V −, and its arrival time tr is earlier than the
lower bound of the allowed arrival time ar, it has to wait.
That is, the departure time of a vehicle at location r will
be equal to max{ar, tr}.

Every transportation request i ∈ N is subject to ai+ ≤
bi+ , ai− ≤ bi− and bi− − ai+ ≥ di+i− . The first two con-
straints declare the upper bound and lower bound of the
time windows; the value of upper bound should higher than
its lower bound. Constraint bi− − ai+ ≥ di+i− corresponds
to formula ai+ + di+i− ≤ bi− . It means the time windows
for every transportation request i ∈ N should be admis-
sible. Given a transportation request i ∈ N , if a vehicle
departs from a pickup location i+ at time ai+ , and its im-
mediate destination is location i−, which is the delivery
location of the transportation request i. The vehicle will
arrive location i− at time ai+ + di+i− , where di+i− is the
traveling cost between location i+ and location i−. Ac-
cordingly, value of ai+ + di+i− should less than the upper
bound of time window bi− .

B. Goal

Initially, we assume that the vehicle is parked on an ini-
tial depot 0. When the transportation request i ∈ N is
assigned, the weight qi of this transportation request i is
known a priori. The value of travel time drs is pre-defined,
where r, s ∈ V . Each transportation request i is associ-
ated with a pickup location i+ and a delivery location i−,
besides, each location is associated with a time window.

Our goal is to find a vehicle route starting from an initial
depot, finishing all transportation requests, and end at one
of the delivery locations. According to the path, both the
total traveling time and the total waiting time of the vehicle
are minimized. Certainly, the path must be a feasible route
that satisfies the capacity and the time window constraints
of every transportation requests. Moreover, the feasible
routes should satisfy the precedence constraints, that is,
for every transportation request i ∈ N , the vehicle should
visit its pickup location i+ prior to the delivery location
i−.

III. Construction of Genetic Algorithm

Genetic algorithms are search algorithms based on the
mechanics of natural selection and natural genetics. The
“fittest” string structures are recombined with a structured
yet randomized information exchange to form such a search
algorithm. Genetic algorithm is a superior approach to
solve the NP-hard problems[7].

To solve a problem by the genetic algorithm, we should
define the representation of each chromosome first. Ac-
cording to the chromosome representation, an evaluation
function will be defined. Conventionally, in genetic algo-
rithm, the evaluation function is also named fitness func-
tion. The chromosome representation and fitness function
play important roles in the design of genetic algorithm.
Most parents selection methods choose individuals accord-
ing to the their fitness value The recombination operators
should be decided while the chromosome representation has
been given.

A. Chromosome Representation

Typically, the representation for a route is a sequence
of the location labels, to list the successional labels that
a vehicle is visited. Suppose that the transportation re-
quests N = {1, 2, 3}, a route 0→ 3+→ 1+→ 1−→ 2+→
2− → 3− the corresponding chromosome representation
will be (0 3+ 1+ 1− 2+ 2− 3−). This representation is in-
tuitively by following the traveling sequence in order, and
it is easy to understand. The permutation representation
is simple and easy to manipulate. If the transportation
requests N = {1, . . . , n}, by simply counting the pickup
and delivery locations of every transportation request and
a initial depot, the length of every chromosome will be
2n + 1. Consequently, for solving the order-based prob-
lems, the permutation representation is the most common
and popular representation.

B. Fitness function

Solutions to the single vehicle pickup and delivery prob-
lems with time window constraints are subject to the fol-
lowing constraints[3].

(1) Initially, a single vehicle parks on the initial depot
0, and it will visit all the specified locations exactly
once.

(2) Every location i+ ∈ V + should be visited before its
delivery location i− ∈ V −. Such consideration is
called precedence constraints.

(3) The capacity constraints represents the total load of
a vehicle cannot exceed its capacity Q.

(4) Suppose that a vehicle arrives in the location i ∈
V + ∪ V − at time ti, the criterion ti ≤ bi must be
satisfied. In general, we named this constraint the
time window constraint.

(5) The vehicle routes will be the open paths, ending at
any one of the delivery locations.

Given a chromosome, which represents a route S, the
corresponding fitness function is defined in equation 1.

Φ(S) = ftravelcost(S) + fpenalty(S) (1)

The first part of function Φ(S) represents the total travel
time for a vehicle to complete the route S. The value of
ftravelcost(S) will includes the waiting time while the vehi-
cle arrives a location early.

The second part of Equation (1) is the penalty function
of route S. A route might violate the constraints during the
exploration of genetic algorithm. Therefore, a chromosome
might represent an infeasible route. Function fpenalty(S)
defines the punishments for violating the constraints. If the
vehicle arrives a location and it is overloading, penalization
for violating the vehicle capacity will be given. Besides,
penalties for delay of arriving a location will be adopted.
Suppose that a vehicle arrives in location r at time tr. If the
arrival time tr < br, there is a penalty for the vehicle arrives
late. Symbol br stands for the upper bound of the time
window [ar, br], which is associated with location r. The
intrinsic precedence constraints should be strictly observed.

Given a chromosome, if the corresponding route S is a
feasible route, the value of function fpenalty(S) will equal
to zero. Otherwise, for an infeasible route, there are pe-
nalizations, the value of penalty function certainly larger
than zero. A feasible route denotes a route that might have
waiting time but satisfy the precedence constraint, capacity
constraint and time window constraint. If a route violates
any constraints of the PDPTW, it is an invalid route, or
namely the infeasible route.

Suppose that route Si is an infeasible route and route
Sf is feasible. According to the definition of Φ(S), the
value of Φ(Si) will much larger than that of the Φ(Sf).
Consequently, we will try to find a feasible route S and
the value of Φ(S) is the minimum. The goal of the single
vehicle PDPTW is to minimize Φ(S) apparently.

C. Crossover

We will consider four crossover operators. The order
crossover (OX) is an order-based crossover[8] and uni-
form order-based crossover (UOX) is the position-based
crossover[11], both operators had been adapted to TSP
during the past years. Merge cross #1 (MX1) and merge
cross #2 (MX2) invented by Blanton[2] for solving VRP
with time window constraints. The first two operators
are traditional crossover operators and the last two oper-
ators use a global precedence vector to be the guidance of
crossover.

Many studies had given exhaustive research on the first
two traditional crossover operators. Therefore, in this pa-
per, we will not describe the two traditional crossover op-
erators. In regard to the MX1 and MX2, a primitive spec-
ification will be given on the following paragraph.

The key concept of merge crossover operators is based on
a global precedence, an independent antecedence among
the genes of the populations, that is, each gene in the
chromosome has a precedence relation to every other gene.

From the characteristics of constraints of the single vehi-
cle PDPTW, a global precedence relation probably exists
among genes. The global precedence vector is formed by
such relationship and it could be the offspring-generating
guidance.

In single-vehicle PDPTW, except the initial depot 0, ev-
ery gene is either a delivery point or a pickup point and
has an associated time window. We might utilize the time
windows in order of precedence.

The operations of MX1 and MX2 are based on the global
precedence vector. Operator MX1 produces a child that is
close to the order of the global precedence. After perform
operator MX2, will produce an offspring that the genes
with lower priority will be moving to the end of the chro-
mosome. For detail information related to merge crossover,
readers might refer to the publications[2] of Blanton and
Wainwright.

D. Mutation

In general, the mutation is worked with a single chro-
mosome. A chromosome will be created by applying the
mutation operator, and it will substitute the new chromo-
some for its original one. We will consider two mutation
operators that can be applied to the single vehicle PDPTW
problem.

The first mutation will select two genes randomly, and
their positions are interchanged. This operator will create
a new route, which has four different edges from its original
route. The second mutation operator choose two cut sites
randomly, and the order of the sub-route specified by the
genes is inverted. Such mutation operator is the 2-opt move
in TSP; the difference between the new and the original
route is two edges.

IV. Family Competition GA

The family competition genetic algorithm (FCGA) is
based on genetic algorithm (GA) with adding the concept
of families. For every population, each individual owns its
family. To maintain the constant size of a population, only
the champion at a family survived.

The main concept of the family competition genetic al-
gorithms (FCGA)[13] is similar to the rule of the natural
evolution; the best solution is the only survivor from its
family. Given a population t, a family contains u individu-
als and these individuals are the recombination of a family
father F t

i , where i = 1, . . . ,m and m is the population size.
Every individual It

i in population t has its turn to be the
family father F t

i .
In any generation t, each individual It

i in the current
population P t owns its family Ct

i . The individual F t
i is

the family father of family Ct
i and the size of the family

is u. Accordingly, a generation t will produce u ×m new
individuals, where m is the population size.

Algorithm 1 elaborates the procedure of family competi-
tion genetic algorithm. The selection process for crossover
operators is to select two parents; one is the family father
F t

i and the other is the alternative parent At
j . Alternative

Algorithm 1 The procedure of FCGA
1: t = 0;
2: Initialize population: P t ← {It

1, I
t
2, . . . , I

t
m};

3: Evaluation: P t ← {Φ(It
1),Φ(It

2), . . . , Φ(It
m)};

4: repeat
5: T ← ∅;
6: for i = 1 to | P t | do
7: Family father: F t

i ← It
i ;

8: Family: Ct
i ← ∅;

9: for j = 1 to u do
10: Selection: alternative parent At

j ∈ P t;
11: Reproduction: cj ← Om(Oc(F t

i , At
j));

12: Evaluation: Φ(cj);
13: Ct

i ← Ct
i ∪ {cj};

14: end for
15: T ← T ∪ best(Ct

i);
16: end for
17: New population P t+1 : P t+1 ← P t ∪ T ;
18: t = t + 1;
19: until the termination condition is reached
20: Output the solutions;

parent At
j is randomly selected from the population P t and

is distinct from the family father F t
i .

The procedure of reproduction will perform the recombi-
nation operations. The reproduction process might execute
the crossover Oc and then perform the mutation Om or sim-
ply execute the crossover. The family father F t

i generates
a new offspring cj by using the recombination operators
with a specific probability. The crossover rate is a fixed
real number between 0 and 1, that is, analogous to the
traditional genetic algorithm, using a fixed rate to perform
crossover. In our FCGA, the occasion to execute the mu-
tation depends on the similarity between the parents and
its offspring. If the offspring is similar to one of its par-
ents, perform the mutation. Accordingly, our FCGA will
perform mutation while the offspring and one of its parents
represents the same route. Such adaptive strategy of exe-
cuting mutation supports the route diversity and prevents
the search space be bound in local optimal solutions. It
also precludes the algorithm from premature convergence.

In Algorithm 1, the evaluation function shown in the
line 3 and 12 has been depicted in the previous section.
The definition of function Φ(S) is consistent in this paper.
The fitness function of the family competition genetic algo-
rithms is function Φ(cj), where cj is a chromosome, which
represents a route for the single vehicle pickup and delivery
problems.

After the end of the inner for loop, the family Ct
i contains

u individuals. Generally, most genetic algorithms support
the fixed population size in the same run. to preserve the
legitimately constant population, the individual who owns
the best fitness value will be chosen from the family Ct

i .
Given a family C, the function best(C) will return an in-
dividual cj , which has the minimum fitness value Φ(cj).
Accordingly, the new population size of T will be identical
to the size of population P t. Population P t holds m indi-

viduals and the population T will hold the same individuals
while the program executes the command after the end of
the outer for loop. The individuals of the new population
P t+1 are selected from the population P t and population
T .

Algorithm 1 will repeat on executing the new popula-
tion generation procedure until the termination condition
is reached. Finally, output result will equal to the best
solution in the current population.

V. Experimental design and results

An algorithm for generating test sets had been devel-
oped, for obtaining the authentic datasets. The exper-
imental results are use the datasets which generated by
Algorithm 2.

A. Experimental design

Up to present, there is no suitable test sets for PDPTW.
The datasets for PDPTW should concern with the prece-
dence constraint, capacity constraint and time window con-
straint. The test data for TSP definitely not suit to the
PDPTW because the datasets are not associated with any
of the above constraints. As for the VRPTW instances,
there are no precedence constraints. Therefore, we invent
an algorithm to create PDPTW datasets for the experi-
ments, shows in Algorithm 2.

Algorithm 2 Create test data for single vehicle PDPTW
Require: Give the number of task n, and width is the

width of time window
1: N = {1, · · · , n}
2: for i ∈ N do
3: Generate locations i+ and i− randomly;
4: Generate the demand qi randomly;
5: end for
6: Evaluate the traveling time drs, r, s ∈ V ;
7: Randomly generate a route which satisifies the prece-

dence contraint;
8: Let ti be the arrival time of location i ∈ V ;
9: Suppose that the average traveling time between the

locations is AverageT ime;
10: for i ∈ V + ∪ V − do
11: ai = ti − (random(width)×AverageT ime;
12: bi = ti + (random(width)×AverageT ime;
13: end for
14: [ai, bi] is the time window for location i ∈ V ;

B. Experimental results

A dynamic programming approach proposed that can
achieves the optimal route and this dynamic programming
had been elaborated on the publications of Psaraftis[9].
Use the dynamic programming to solve the single vehicle
PDPTW, the execution time will explode, as the prob-
lem size increase. Furthermore, the dynamic programming
method needs gigantic computer resources to execute and
store the intermediate results. Therefore, most researcher

could not attain to optimal solutions while the task size is
large, neither we are.

In our experiments, every test case had been performed
crossover with 3 different crossover rate, said 45%, 60%
and 75%. Moreover, given a specified crossover operator
and the crossover rate, the experimentation would associate
with a mutation operator. We apply the 2-point mutation
and the 2-opt mutation operators to our experimentations.
After determined the associated parameters of genetic al-
gorithm, each case will be executed 30 runs.

Table I demonstrates the percentage above the optimal
value by using the order-based crossover (OX) and merge
crossover (MX1). Columns 2 to 4 represents the relative
error of the best solutions to the optimum; if an item with
value 0 means it is equal to the optimal solution. Symbol
’x’ represents that no feasible solution had been found. The
last column given the optimal solutions that obtained by
using the Psaraftis[9] approach. Optimal values in paren-
theses stand for the best solution in our experimental re-
sults.

TABLE I

The best solution results (percentage of relative error) –

OX & MX1

relative error(%)
task OX MX1 optimal
size GA FCGA GA FCGA value
10 0.344 0.000 0.000 0.000 872
20 x 7.685 0.000 0.000 2030
30 x x 0.000 0.189 3713
40 x x 0.068 0.068 4386
50 x x 0.017 0.017 (5752)
60 x x 0.000 0.000 (5658)
70 x x 0.429 0.249 (7221)
80 x x 0.688 0.764 (7849)
90 x x 0.046 0.313 (8618)
100 x x 0.151 0.000 (10600)

Obviously, the order-based crossover (OX) is not suit for
single vehicle PDPTW. Even the small problems OX still
cannot get the feasible solutions. The merge crossover #1
(MX1) could not always obtain the optimal solution.
Though FCGA improve the quality of the most solutions,
for problem size 30 and 80, the fitness value is increased.

Figure 1 shown the best and average fitness value while
the problem size is 80. The solid line represents the aver-
age fitness values that achieved by GA; it has the highest
solution cost in every generation. Symbol FCGA(avg) in-
dicates the average fitness values of FCGA. Figure 1 shows
the average fitness values of FCGA are lower than that of
GA, and both the two algorithms obtain the similar results
of the best fitness values.

Table II shows the results of the UOX and MX2. Table I
and Table II are refer to the same optimal values. Values in
parentheses are the number of best value found under the
trials. By applying the position-based crossover (UOX),
the solution qualities of FCGA have significant improved.
The FCGA might not promote the solution qualities while
the transportation requests are less than 50. For larger

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 50 100 150 200 250

F
itn

es
s

va
lu

e

Generation

The average fitness value of 80 tasks (MX1, 60% crossover rate, 2-point mutation, 30 runs)

GA(avg)
FCGA(avg)

GA(best)
FCGA(best)

Fig. 1. Fitness values of MX1, 80 transportation requests

problem, FCGA achieve better results than GA.

TABLE II

The best solution results (percentage of relative error and

hit ratio) – MX1 & MX2

relative error%(optimum/trials)
task UOX MX2
size GA FCGA GA FCGA
10 0.000(18/30) 0.000(27/30) 0.000(30/30) 0.000(30/30)
20 0.000(22/30) 0.000(30/30) 0.000(21/30) 0.000(11/30)
30 0.000(5/30) 0.000(20/30) 0.000(24/30) 0.000(7/30)
40 0.000(3/30) 0.000(23/30) 0.000(28/30) 0.000(12/30)
50 0.000(1/30) 0.000(17/30) 0.000(3/30) 0.017(24/30)
60 0.000(3/30) 0.000(5/30) 0.000(29/30) 0.000(30/30)
70 0.000(2/30) 0.000(19/30) 0.000(2/30) 0.000(2/30)
80 0.000(1/30) 0.000(4/30) 0.013(1/30) 0.000(1/30)
90 x 0.000(5/30) 0.000(1/30) 0.000(1/30)
100 0.000(1/30) 0.000(5/30) 0.000(10/30) 0.000(26/30)

Using UOX by the FCGA, the numbers of finding the
best solution are increased substantially. For size is smaller
than 50 request pairs, MX2 could not improve the best so-
lution hit ratios. Since the best fitness value of size 50
could not improved by MX2, Figure 2 will show the best
and average fitness values of MX2. Solid line is the aver-
age fitness values of GA, which converge to near the best
solutions. However, the average fitness values of FCGA
went prematurely. MX2 moves the least preferred gene to
near the end of the route, this might cause the search ex-
ploration converged early while the problem size has not
adequate spaces for the algorithms to search through.

Figure 3 depicts the average CPU time of FCGA and
GA. The unit of the CPU time is second. Though the
family competition will take more steps during the repro-
duction procedure of genetic algorithm, the execution time
does not increase substantially. Study both the Table II
and Figure 3, UOX obtained the best solutions by FCGA,
whereas it required much time to achieve the solutions. The
average execution time of MX1 is less than that of MX2,
however, the solution qualities of MX2 are better than that
of MX1.

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

0 50 100 150 200 250 300 350

F
itn

es
s

va
lu

e

Generation

The average fitness value of 50 tasks (MX2, 60% crossover rate, 2-opt mutation, 30 runs)

GA(avg)
FCGA(avg)

GA(best)
FCGA(best)

Fig. 2. Fitness value of MX2, 50 transportation requests

0

500

1000

1500

2000

0 20 40 60 80 100

C
P

U
 ti

m
e(

se
c)

Task size

The average CPU execution time, 180 runs

UOX(FCGA)
UOX(GA)

MX2(FCGA)
MX2(GA)

MX1(FCGA)
MX1(GA)

Fig. 3. A comparison of CPU time (UOX, MX1 and MX2)

In real-world applications, users should not be waiting
too long for service. A feasible and near-optimal solution
will be allowed to serve customers, whereas efficient and
reliable response should be satisfied. Table III describes
the percentage of the feasible solution hit ratio. FCGA
improved the probability to obtain feasible solutions in all
the three crossover operators. Under execution time con-
sideration, MX1 and MX2 might suit for the real-time ap-
plications, by referring to Figure 3.

VI. Conclusion

The FCGA is a modern approach for solving the single
vehicle pickup and delivery problems with time windows
constraints. Every recombination operator has its partic-
ular characters but not all the reombination operators are
suitable for solving the single vehicle PDPTW. We should
exploit the experiment results to expand expertise. Un-
derstanding which operators are admissible operators for
solving our problems will improve the probability of ob-
taining optimal solution.

The majority of genetic algorithms can obtain the opti-
mal or near-optimal solutions. By comparing the solution
cost of FCGA with that of traditional GA, in most cases,
FCGA always improve the solution qualities of GA.

TABLE III

Percentage of feasible solution found, 180 runs

feasible/trials(%)
task UOX MX1 MX2
size GA FCGA GA FCGA GA FCGA
10 100.00 100.00 100.00 100.00 100.00 100.00
20 98.89 100.00 100.00 100.00 100.00 100.00
30 70.00 93.33 100.00 97.78 98.89 98.33
40 45.00 90.00 100.00 100.00 99.44 96.11
50 8.33 46.67 100.00 100.00 99.44 84.44
60 5.00 15.56 98.33 100.00 96.67 87.22
70 7.22 47.22 100.00 100.00 97.22 95.00
80 11.67 11.67 21.67 55.00 61.11 80.56
90 x 8.89 61.11 96.11 71.67 87.22
100 1.11 13.33 7.78 26.67 25.00 63.89

We will continue to design the affiliated programs and
recombination operators, so that we can accomplish the
scheme and improve it. Furthermore, we hope that appli-
cations of this novel technique to the other practical science
will achieve the similar outstanding results.

References

[1] A. A. Assad. Modeling and implentation issues in vehicle rout-
ing. In B. L. Golden and A. A. Assad, editors, Vehicle Routing:
Methods and Studies, pages 7–45. Elsevier Science Publishers,
North-Holland, Amsterdan, 1988.

[2] J. L. Blanton Jr. and R. L. Wainwright. Multiple vehicle routing
with time and capacity constraints using genetic algorithms. In
Proceedings of the Fifth International Conference on Genetic
Algorithms and Their Applications, pages 452–459, 1993.

[3] M. Desrochers, J. K. Lenstra, and M. W. P. Soumis. Vehicle
routing with time windows: Optimization and approximation. In
B. L. Golden and A. A. Assad, editors, Vehicle Routing:Methods
and Studies, pages 65–84. Elsevier Science Publishers, North-
Holland, Amsterdan, 1988.

[4] A. Homaifar, S. Guan, and G. E. Liepins. A new approach
on the traveling salesman problem by genetic algorithms. In
Proceedings of the Fifth International Conference on Genetic
Algorithms and Their Applications, pages 460–466, 1993.

[5] W. R. Jih, Y. P. Chen, and Y. J. Hsu. A comparative study
of genetic algorithms for vehicle routing with time constraints.
In Proceedings of the 1996 International Computer Symposium,
pages 17–24, Kaohsiung, Taiwan, December 1996.

[6] W. R. Jih and Y. J. Hsu. Dynamic vehicle routing using hybrid
genetic algorithms. In Proceedings of the 1999 IEEE Interna-
tional Conference on Robotics & Automation, pages 453–458,
Detroit, Michigan, 1999.

[7] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of vehicle
routing and scheduling problems. Networks, 11:221–227, 1981.

[8] I. M. Oliver, D. J. Smith, and J. R. C. Holland. A study of per-
mutation crossover operators on the traveling salesman problem.
In Proceedings of the Second International Conference on Ge-
netic Algorithms and Their Applications, pages 224–230, 1987.

[9] H. N. Psaraftis. Scheduling large-scale advance-request dial-a-
ride systems. American Journal of Mathematical and Manage-
ment Sciences, 6(3 & 4):327–341, 1986.

[10] M. W. P. Savelsbergh and M. Sol. The general pickup and de-
livery problem. Transportation Science, 29(1):17–29, 1995.

[11] G. Syswerda. Schedule optimization using genetic algorithms. In
L. Davis, editor, Handbook of Genetic Algorithms, pages 332–
349. Van Nostrand Reinhold, New York, 1991.

[12] S. R. Thangiah, R. Vinayagamoorthy, and A. Gubbi. Vehicle
routing with time deadlines using genetic and local algorithms.
In Proceedings of the Fifth International Conference on Genetic
Algorithms, pages 506–513, 1993.

[13] J. M. Yang and C. Y. Kao. Integrating adaptive mutations and
family competition into genetic algorithms as function optimizer.
Soft Computing, 4(2):89–102, 2000.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	header: Proceedings of the 2002 IEEE International Symposium on Intelligent Control Vancouver, Canada • October 27-30, 2002
	footer: 0-7803-7620-X/02/$17.00 © 2002 IEEE
	01: 496
	02: 497
	03: 498
	04: 499
	05: 500
	06: 501

