
Solving the One-Commodity Pickup and

Delivery Problem Using an Adaptive Hybrid
VNS/SA Approach

Manar I. Hosny and Christine L. Mumford

Cardiff School of Computer Science & Informatics
M.I.Hosny,C.L.Mumford@cs.cardiff.ac.uk

Abstract. In the One-Commodity Pickup and Delivery Problem (1-
PDP), a single commodity type is collected from a set of pickup cus-
tomers to be delivered to a set of delivery customers, and the origins and
destinations of the goods are not paired. We introduce a new adaptive
hybrid VNS/SA (Variable Neighborhood Search/Simulated Annealing)
approach for solving the 1-PDP. We perform sequences of VNS runs,
where neighborhood sizes, within which the search is performed at each
run, are adaptable. Experimental results on a large number of benchmark
instances indicate that the algorithm outperforms previous heuristics in
90% of the large size test cases. Nevertheless, this comes at the expense
of an increased processing time.

1 Introduction

The One-Commodity Pickup and Delivery Problem (1-PDP) is an important
problem in transportation and logistics. The problem deals with supplying and
collecting one type of commodity from a number of customers, some of them
are designated as pickup customers and the others as delivery customers. Each
pickup customer provides a certain amount of the commodity, while each delivery
customer consumes a certain amount of the same commodity, i.e., goods collected
from pickup customers can be delivered to any delivery customer. All customers
are served by one vehicle with a limited capacity, and the journey of the vehicle
should start and end at a central depot. The depot can supply or consume
any additional amount of the commodity that is not supplied or consumed by
the customers. Our goal is to find a feasible and minimum cost route for the
vehicle, such that all customers are served without violating the vehicle capacity
constraint (see [4] for a formal definition of the 1-PDP).

The 1-PDP has many applications in practice. For example, the commodity
could be milk that should be collected from farms and delivered to factories
with no restriction on the origin and the destination of the product, or it could
be money that should be distributed between the branches of a bank [5]. It
can also model any logistic situation in which some warehouses have an extra
supply of some commodity, while others are in short of the same commodity. A
typical situation is when some hospitals need to transfer a certain medicament



to other hospitals, which are in short of this medicament. For example, an H1N1
vaccination could be transferred in urgent epidemic circumstances [7].

In our research we apply an adaptive hybrid VNS/SA (Variable Neighbor-
hood Search/Simulated Annealing) approach to the 1-PDP. The algorithm is
distinguished by performing the VNS repeatedly, each time starting from the
final solution obtained from the previous VNS run. Also, the algorithm is adap-

tive, in the sense that the maximum neighborhood size allowed in each VNS
run is not fixed and depends on the current stage of the search. Early runs are
allowed to perform wider jumps in the solution space from the current solution,
using large neighborhood sizes. Later runs, on the other hand, are only allowed
smaller explorations of the search space, in the vicinity of the current solution,
to maintain the solution quality. The stopping criterion for each VNS run is also
adaptive and depends on the improvement realized in the current solution. The
basic VNS meta-heuristic systematically increases the neighborhood size, within
which the search is performed, up to a pre-specified maximum size. In our ap-
proach, nevertheless, each VNS run is also terminated when a further increase in
the neighborhood size seems not beneficial, even if the maximum neighborhood
size was not reached. During each VNS run, an SA acceptance criterion is used
to allow the algorithm to escape local optima.

The rest of this paper is organized as follows. Section 2 is a summary of some
related work. Section 3 briefly describes the VNS meta-heuristic and highlights
previous 1-PDP research that utilizes this approach. Section 4 explains in detail
the main components of our proposed heuristic, which we will call an Adaptive
Hybrid VNS/SA (AVNS-SA) technique for solving the 1-PDP. The complete
AVNS-SA algorithm is shown in Section 5. Experimental results are presented
in Section 6, and a summary and future directions are given in Section 7.

2 Related Work

Since the 1-PDP is NP-hard, exact algorithms are only suitable for small prob-
lem sizes. For example, [5] presented a branch-and-cut exact algorithm to solve
instances of up to 60 customers. To deal with large size problems, the same
authors tried two heuristic approaches in [6]. The first approach is a nearest-
neighbor insertion heuristic followed by an improvement phase, using 2-Opt and
3-Opt edge exchanges. The second approach is an incomplete optimization pro-
cedure, to find the best solution in a restricted feasible region.

In [4] a heuristic approach, named hybrid GRASP/VND, is proposed. The ap-
proach combines two optimization heuristics. The first is called GRASP (Greedy
Randomized Adaptive Search Procedure), and is based on a repetition of a con-
struction phase and a local search phase. On the other hand, Variable Neigh-
borhood Descent (VND) is a variant of VNS, which is simply a local search that
gradually increases the neighborhood size whenever a local optimum is reached.
The hybrid GRASP/VND is basically a GRASP, with an added local search



using VND. After the basic GRASP/VND, a further post-optimization phase is
performed using move forward and move backward operators.1

On the other hand, a GA approach was introduced in [9] to solve the 1-PDP.
The algorithm first starts by creating a population of feasible solutions using
a new nearest-neighbor construction heuristic. The initial population is then
optimized using a 2-Opt neighborhood move. The most distinguishing feature of
the algorithm is a new pheromone-based crossover operator, where the selection
of the next node to be inserted in the child is based on a probabilistic rule that
takes into account the pheromone trail of the edge connecting the last inserted
node and the potential new node, such that edges that have proved successful
in the past are favored by an increased pheromone value. The offspring are
further optimized using a 2-Opt local search. The mutation operator is based on
a 3-exchange procedure. The algorithm was tested on the benchmark instances
created by [6], producing the best so far results in most test cases.

3 Variable Neighborhood Search (VNS) and its
Application to the 1-PDP

VNS is a relatively new meta-heuristic that was introduced in [2] and [3]. The
idea is to generate new solutions that are distant from the incumbent solution,
by systematically increasing the neighborhood size within which the search is
performed. In addition, a local search is performed on the new solution to reach
a local optimum within the current neighborhood. After the local search phase,
the new solution replaces the current solution if it is better in quality. The basic
steps of the VNS algorithm, as described in [3], are shown below:

– Initialization: Select the set of neighborhood structures Nk, (k = 1, ...kmax);
find an initial solution x; choose a stoping condition;

– Repeat the following until the stopping condition is met:
1. Set k ← 1;
2. Repeat the following steps until k = kmax:

(a) Shaking: Generate a point x′ at random from the kth neighborhood
of x (x′ ∈ Nk(x));

(b) Local Search: Apply some local search method with x′ as initial so-
lution; denote with x′′ the so obtained local optimum;

(c) Move or not : if the local optimum x′′ is better than the incumbent,
move there (x ← x′′), and continue the search with N1 (k ← 1);
otherwise set k ← k + 1.

As previously mentioned in Section 2, a variant of VNS,called Variable Neigh-
borhood Decent (VND) has been tried for the 1-PDP as part of the hybrid
GRASP/VND heuristic proposed in [4]. The VND heuristic does not include a
shaking phase, but only a local search that involves a 2-Opt followed by a 3-
Opt move. The algorithm achieved promising results that were better than the

1 More details about the heuristic in [4] will be given in Section 3.



results obtained by the same authors in their previous heuristics suggested in
[6]. However, their algorithm apparently was not fully capable of escaping the
trap of local optima. This is evident by the fact that they had to use a post-
optimization phase to improve the final result. According to the authors, this
post-optimization often made the difference between beating the results obtained
by their previous heuristic in [6] or not. The hybrid GRASP/VND heuristic was
also outperformed by the GA in [9], in most test cases. A possible shortcoming
of this heuristic is the absence of a shaking phase, which should help the diversi-
fication of the incumbent solution and allow the succeeding local search phase to
escape local optima. In our proposed approach, we try to apply the basic VNS,
with both the shaking and the local search, hoping to overcome the limitation
of the previous VND attempt on the 1-PDP.

4 The AVNS-SA Heuristic

The main features of our proposed AVNS-SA approach are described below:

The Initial Solution: The construction algorithm we use is the same as the
algorithm proposed by [9], which is a nearest-neighbor construction heuristic.
However, in [9], they stop the construction process when infeasibility is encoun-
tered and try a new starting node. In our approach, we allow violations in the
capacity constraint by continuing the construction process despite infeasibility.

The Objective Function: The objective function we use to estimate the qual-
ity of a solution S is set to: F = (NCV (S)+1)×Dist(S), where NCV (S) is the
number of capacity violations along the route, and Dist(S) is the total distance
of the solution, given the current visiting order of nodes. If there are no capacity
violations in the solution, i.e., the solution is feasible, the total distance will be
the sole measure of the solution cost.

The Shaking Procedure: The shaking procedure is used for diversification of
the search in the VNS. We chose as a shaking procedure a displacement of a
sequence of nodes with some probability of inverting this sequence. Our VNS
algorithm passes the current neighborhood size (NhSize) as a parameter to
the shaking procedure, which will in turn use this parameter as the maximum

possible number of nodes that will be displaced. Specifically, the number of
nodes to be displaced is a random number between 1 and NhSize. So even for
large values of NhSize, small sequences of nodes could still be displaced, and in
fact there is a ‘bias’ toward such small moves, since they have a chance of being
executed in all neighborhood sizes. This is intended to prevent a large disruption
of the current solution, and is recommended by some VNS implementations, as
in [8].

The local search procedure: This procedure is the tool that VNS uses for
intensification of the search. In our algorithm, we chose as a local search a
simple 2-Opt edge exchange algorithm. Our local search exhaustively tests all
possible edge exchanges, and uses best improvement as a replacement strategy.



Multiple VNS Runs and the Maximum Neighborhood Size: A sequence
of several runs of the VNS procedure is performed to achieve the best result.
Each run starts from the final solution obtained in the previous run. The initial
maximum neighborhood size (NhSizemax) value, sent to the first VNS run in
the sequence, was set to NhSizemax = 2 ×√n, where n is the total number of
nodes.

However, we realized that during the first VNS run, improvement happens
quickly for most NhSize values, even for the large ones among them. Subsequent
VNS runs, though, usually respond only to smaller changes in the solution. In
other words, smaller neighborhood sizes seem to be more beneficial in subsequent
VNS runs, since larger changes seem to cause a disturbance of the current solu-
tion and may reduce its quality. Accordingly, after each VNS run, NhSizemax

was reduced by 1/4 of its value. The reduction is repeated until NhSizemax

reaches a minimum value of NhSizemax/4, at which stage no further reduc-
tion is performed, and the VNS procedure uses the current NhSizemax for all
remaining runs. Thus, the algorithm is adaptive in the sense that NhSizemax

passed to the VNS is not fixed and depends on the current stage of the search.
The VNS could be repeated for a fixed number of iterations, or until no

improvement is realized in the current solution for a number of attempts. We
chose the second approach, and stopped the repetition of the VNS when no
improvement happens in 5 consecutive attempts.

Stopping and Replacement Criteria for Individual VNS Runs: As ex-
plained in Section 3, VNS is based on systematically increasing the neighbor-
hood size (NhSize), within which a new solution is generated, from 1 up to
NhSizemax. Thus, the shaking and the local search procedures are repeated for
all values of NhSize = 1, 2, 3...NhSizemax. However, we found that in some
cases, the current solution may not respond to changes in the neighborhood size
and reach a stage of stagnation. Therefore, rather than indiscriminately increas-
ing NhSize up to the pre-specified maximum, we chose to also end each VNS
run when the solution has not changed for a certain number of consecutive at-
tempts of increasing NhSize. The number of attempts was again chosen to be
NhSizemax/4. Thus, the VNS will be adaptive in the sense that it will stop the
shaking and the local search cycle, when no benefit seems to be realized from
increasing NhSize.

In our algorithm, the VNS procedure repeats the shaking and the local search
for the same NhSize for a number of trials. When the number of trials reaches
a certain pre-defined limit, the shaking and the local search cycle stops for the
current NhSize, and the VNS moves on to the next NhSize.

The SA Temperature Value: As previously mentioned, we use an SA accep-
tance criterion within the VNS to replace the current solution. To allow for an
adaptive calculation of the SA starting temperature for each instance individ-
ually, we adopted the approach in [1]. The temperature is calculated based on
the average value of ∆cost, where ∆cost is the difference in the objective value
between some randomly generated solutions for the current problem instance.



Normally, by the end of each complete VNS run, the SA temperature would
have reached a small value that should not permit the acceptance of any worse
solutions. If we were then to start the next VNS run in the sequence with such
small value, there would be no benefit to the SA acceptance criterion, since all
worse solutions would be rejected. On the other hand, starting a new VNS run
with the initial temperature too high is not advisable, since many worse solutions
would be accepted, possibly causing serious loss of solution quality. To achieve
a balance between these two situations, the final temperature value reached in
the current VNS run is doubled before the beginning of the next VNS run.

5 The AVNS-SA Algorithm

To put it all together, Algorithm 1 shows the main Adaptive VNS-SA (AVNS-
SA) heuristic, which will invoke the VNSSA procedure (Algorithm 2).

Algorithm 1 Adaptive VNS-SA (AVNS-SA) Algorithm

1: Find an initial solution (InitSol) and calculate the starting SA temperature
(StartT emp).

2: NhSizemax ← 2×√n, where n is the number of nodes
3: MaxStagnation← NhSizemax/4
4: Decrement← NhSizemax/4
5: Initialize MaxAttempts to a small number (e.g. 5).
6: NoImprovement← 0
7: repeat

8: NewSol = V NSSA(InitSol, NhSizemax, StartT emp,MaxStagnation)
9: if (NhSizemax > Decrement) then

10: NhSizemax ← NhSizemax −Decrement
11: else

12: NhSizemax ← Decrement
13: if (NewSol is not better than InitSol) then

14: NoImprovement + +
15: else

16: NoImprovement← 0
17: InitSol← NewSol
18: StartT emp← StartT emp× 2
19: until (NoImprovement reaches MaxAttempts)

6 Experimental Results

The algorithm was tested on instances created by [6]. There are 2 types of
problem instances. Small instances have a number of customers n in {20, 30, 40,
50, 60}. For these instances, the optimum is known and was obtained using the
exact method proposed in [5]. There are also large instances with n in {100, 200,



Algorithm 2 The VNSSA Algorithm

1: Input: InitSol, NhSizemax, StartT emp, MaxStagnation
2: Output: a new, possibly improved, solution X
3: k← 0 { Initialize the current neighborhood size k }
4: Stagnation← 0
5: NumTrials← LIMIT {LIMIT is the maximum allowed number of trials}
6: X ← InitSol
7: repeat

8: k + + { Increment the current neighborhood size}
9: Trials← 0

10: while (Trials < NumTrials) do

11: Shaking(X, XI, k) {Displace a sequence of nodes in X up to a maximum of
k, with or without inversion. Result stored in XI}

12: LocalSearch(XI, XII) {2-Opt applied on XI . Result stored in XII}
13: if (Objective(XII) < Objective(X)) then

14: X ← XII
15: else

16: Accept XII using SA acceptance probability
17: StartT emp← StartT emp× α {Decrement current temperature}
18: Trials++ {Increment number of trials only when a worse solution is found}
19: end while

20: if (X did not change in the last iteration (i.e., for the current neighborhood size
k)) then

21: Stagnation + +
22: else

23: Stagnation = 0
24: until (Stagnation = MaxStagnation) or (k = NhSizemax)

300, 400, 500}. For each combination of n and a different vehicle capacity Q in
{10, 15, 20, 25, 30, 35, 40, 45, 1000}, 10 problem instances have been created
and given the letters {‘A’ to ‘J’}. The data set and the results obtained in [4]
can be downloaded from the Pickup and Delivery Site of Hernández-Pérez2:
http://webpages.ull.es/users/hhperez/PDsite/index.html

We chose the test cases with the smallest vehicle capacity (Q = 10), i.e, the
hardest instances. The algorithm was run 5 times on each test case from 20-300
customers. On the other hand, only one run was performed on test cases of 400
and 500 customers, due to time limitation. Also, a number of computers with
different specifications were used to run the algorithm. For this reason, the run
times we quote here will vary according to the platform.

Results on Problem Sizes 20-60 customers: In this experiment, the algo-
rithm was able to achieve the optimum results at least once in the 5 runs for 39
out of the 50 test cases. The maximum relative difference to the optimum was
less than 2% among the 11 cases where the optimum was not found, which was

2 New best results were obtained by the GA in [9] for vehicle capacity Q = 10, but
they do not appear in the pickup and delivery site yet.



for test case N50q10D. The processing time ranged on average from 0.66 seconds
for 20 customers problems to 47.79 seconds for 60 customers problems.

Results on Problem Sizes 100-500 customers: Table 1 shows the results
of the AVNS-SA algorithm on large size problems, from 100 to 500 customers.
The table shows the best result achieved and the average result of the 5 runs.
The average value is replaced by the best result for problems of size 400 and 500,
since the algorithm was run only once on these problems. Finally, the previous
best known results are also shown in the table. Most of the best known results
were found by the GA in [9]. The best result achieved by the AVNS-SA algorithm
is shown in boldface if it was better than the best known result.

Table 1. AVNS-SA Results (100-500 customers)

Name Best Avg Prev-Best Name Best Avg Prev-Best

N100q10A 11741 12175.8 11828 N300q10F 24042 24290.6 24826

N100q10B 13066 13410.6 13114 N300q10G 23683 23945 23868

N100q10C 13893 14073.8 13977 N300q10H 21555 21824.6 21625

N100q10D 14328 14597 14253 N300q10I 23871 24110.2 24513

N100q10E 11430 11823.6 11411 N300q10J 22503 22688.8 22810

N100q10F 11813 11947 11644 N400q10A 30657 30657 31486

N100q10G 12025 12118 12038 N400q10B 24248 24248 24262

N100q10H 12821 12844 12818 N400q10C 27853 27853 28741

N100q10I 14025 14278.6 14032 N400q10D 23750 23750 24508

N100q10J 13476 13642.8 13297 N400q10E 24798 24798 25071

N200q10A 17690 17849.2 17686 N400q10F 26625 26625 26681

N200q10B 17618 17887.8 17798 N400q10G 23925 23925 23891

N200q10C 16535 16626.6 16466 N400q10H 25628 25628 25348

N200q10D 21228 21594.2 21306 N400q10I 28262 28262 28714

N200q10E 19220 19485.2 19299 N400q10J 24847 24847 26010

N200q10F 21627 21677.4 21910 N500q10A 27904 27904 28742

N200q10G 17361 17634 17712 N500q10B 26612 26612 26648

N200q10H 20953 21191.4 21276 N500q10C 30247 30247 30701

N200q10I 18020 18328.2 18380 N500q10D 29875 29875 30794

N200q10J 19016 19240.4 18970 N500q10E 29978 29978 30674

N300q10A 22940 23163 23242 N500q10F 28527 28527 28882

N300q10B 22473 22920.4 22934 N500q10G 26171 26171 27107

N300q10C 21183 21454 21800 N500q10H 35805 35805 36857

N300q10D 25220 25500.6 25883 N500q10I 30247 30247 30796

N300q10E 26636 26934 27367 N500q10J 30428 30428 31255

Table 1 shows that the algorithm was able to improve best known results for
50% of the 100 test cases, 70% of the 200 test cases, 100% of the 300 test cases,
80% of the 400 test cases, and finally 100% of the 500 test cases.

The overall average of the 5 runs for all test cases of size 100 is 13091.12,
which is only 1% worse than the average result of the GA in [9], having a value of



12954.16. Moreover, our overall average for the 200 test cases is 19151.44, while
the average of the heuristic in [9] for the same test cases in 10 runs is 19339.48,
i.e., our results account for an improvement of approximately 1%. On the other
hand, the overall average of our results for the 300 test cases was 23683.12, with
an improvement of more than 2% compared the average of their results for the
same test cases, which is 24224.28.

In addition, the average result of the 10 instances of size 500 achieved by
our algorithm was 29579.4. This is an improvement of approximately 3% over
the average of the best results of [9], having the value 30377.1. These results
may also indicate that our algorithm seems to perform even better on larger size
problems. The average processing time in this experiment ranged from approxi-
mately 542.22 seconds for 100 customers instances to 151103.04 seconds for 500
customers instances.

To further test the robustness of the AVNS-SA algorithm, we performed
an additional experiment by running the algorithm on 100-customers problems
vehicle capacities of 20 and 40, running the algorithm 5 times on each test case.
In this experiment, the algorithm outperformed previous heuristics in 4 out of
10 test cases, for vehicle capacity Q = 20, and was able to match the best known
result in 6 out of 10 cases, for vehicle capacity Q = 40. The average processing
time for Q = 20 instances was 155.76 seconds, and for Q = 40 instances was
146.17 seconds.

Contrary to the exceptional results achieved by our AVNS-SA algorithm, its
processing time in general was to a large extent disappointing. For example, the
average processing time for 100 customers problems was 542.22 seconds, while
the processing time reported by [9] was 21.12 seconds for the same category.

7 Summary and Future Work

In this research, we investigated a new adaptive hybrid VNS/SA approach to the
1-PDP. Adaptation is applied in both the maximum neighborhood size allowed
in each VNS run, and in the stopping condition for each VNS run. Searching
within smaller neighborhood sizes is preferred in our approach, and larger sizes
are only attempted when this looks promising from the search perspective.

Experimental results on a large number of problem instances indicated that
our algorithm outperforms previous heuristics in most hard test cases, where
the vehicle capacity is smallest. This is especially noticeable for large problem
sizes. The algorithm was able to achieve the optimum results for all but few test
cases in the small size problems, and was able to achieve new best known results
for 90% of the large test cases. The algorithm is also robust enough, since it
performs equally well on a wide range of problem instances, e.g. instances with
a different vehicle capacity, without the need for any parameter tuning.

These distinguished results, though, come at the expense of computation
time. Although we cannot provide an accurate analysis at this stage, because
of the use of different processors to run the experiments, we recognize that the
running time of the algorithm is rather too long.



In the future, we will continue investigating possible techniques to reduce
the run time, for example by reducing the number of VNS runs, or changing the
stopping condition for each individual run. Our computational experimentation
indicates that some problem instances need fewer than 5 consecutive attempts
(without improvement) to reach the best results. However, for other instances,
reducing the maximum number of attempts to less than 5 may cause the algo-
rithm to stop prematurely and produce lower quality result. More investigation
of the best termination criterion is therefore needed to reduce the overall process-
ing time. Other possible improvement attempts, with respect to the run time,
should be oriented towards the local search procedure, since it is the most time
consuming part of the algorithm. We can try to reduce the number of calls to
this algorithm, or make it optimize only part of the solution rather than whole
solution. For example, exchanges can be only restricted to edges with a certain
number of closest neighboring nodes.

References

1. Dorband, J., Mumford, C. L., and Wang, P. Developing an ace solution for two-
dimensional strip packing. In 18th International Parallel and Distributed Processing

Symposium Workshop on Massively Parallel Processing (2004).
2. Hansen, P., and Mladenović, N. An introduction to variable neighborhood

search. In Meta-heuristics, Advances and trends in local search paradigms for opti-

mization, S. Voss, S. Martello, I. H. Osman, and C. Roucairol, Eds. Kluwer Academic
Publishers, 1998, pp. 433–458.

3. Hansen, P., and Mladenović, N. Variable neighborhood search: Principles and
applications. European Journal of Operational Research 130, 3 (2001), 449 – 467.

4. Hernández-Pérez, H., Rodŕıguez-Mart́ın, I., and Salazar-González, J.-

J. A hybrid GRASP/VND heuristic for the one-commodity pickup-and-delivery
traveling salesman problem. Computers & Operations Research 36, 5 (2008), 1639
– 1645.

5. Hernández-Pérez, H., and Salazar-González, J.-J. A branch-and-cut algo-
rithm for a traveling salesman problem with pickup and delivery. Discrete Applied

Mathematics 145, 1 (2004), 126 – 139.
6. Hernández-Pérez, H., and Salazar-González, J.-J. Heuristics for the one-

commodity pickup-and-delivery traveling salesman problem. Transportation Science

38, 2 (2004), 245–255.
7. Martinović, G., Aleksi, I., and Baumgartner, A. Single-commodity vehicle

routing problem with pickup and delivery service. Mathematical Problems in Engi-

neering 2008 (2008), 1–17. doi:10.1155/2008/697981.
8. Placek, M., Hartl, R. F., and Doerner, K. A variable neighborhood search for

the multi depot vehicle routing problem with time windows. Journal of Heuristics

10 (2004), 613–627.
9. Zhao, F., Li, S., Sun, J., and Mei, D. Genetic algorithm for the one-commodity

pickup-and-delivery traveling salesman problem. Computers & Industrial Engineer-

ing 56, 4 (2008), 1642 – 1648.


