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Abstract

The development of effective decision support tools that lsa adopted in the trans-
portation industry is vital in the world we live in today, smit can lead to substantial
cost reduction and efficient resource consumption. Solthegvehicle Routing Problem
(VRP) and its related variants is at the heart of scientifseagech for optimizing logistic
planning. One important variant of the VRP is the Pickup amtiv@ry Problem (PDP).
In the PDP, it is generally required to find one or more minimuost routes to serve a
number of customers, where two types of services may bermpeefibat a customer loca-
tion, a pickup or a delivery. Applications of the PDP are frently encountered in every
day transportation and logistic services, and the probselkely to assume even greater
prominence in the future, due to the increase in e-commerdéraernet shopping.

In this research we considered two particular variants@RDP, the Pickup and Delivery
Problem with Time Windows (PDPTW), and the One-commoditskBp and Delivery
Problem (1-PDP). In both problems, the total transpomatiost should be minimized,
without violating a number of pre-specified problem constsa

In our research, we investigate heuristic and meta-hé&uagproaches for solving the
selected PDP variants. Unlike previous research in thig, an@ugh, we try to focus on
handling the difficult problem constraints in a simple anf@é&ive way, without compli-

cating the overall solution methodology. Two main aspetth® solution algorithm are
directed to achieve this goal, tBelution representatioand theneighbourhood moves

Based on this perception, we tailored a number of heuristicraeta-heuristic algorithms
for solving our problems. Among these algorithms are: Gemdgorithms, Simulated
Annealing, Hill Climbing and Variable Neighbourhood Sdardn general, the findings
of the research indicate the success of our approach iningnitile difficult problem
constraints and devising simple and robust solution mash@anthat can be integrated
with vehicle routing optimization tools and used in a variet real world applications.
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Chapter 1

Introduction

Efficient transportation and logistics plays a role in theremmic wellbeing of society.
Almost everything that we use in our daily lives involvesikig planning, and practically
all sections of industry and society, from manufacturerfdme shopping customers,
require the effective and predictable movement of goodstodiay’s dynamic business
environment, transportation cost constitutes a signifipancentage of the total cost of a
product. In fact, it is not unusual for a company to spend ntoe@ 20% of the product’s
value on transportation and logistics [76]. In additiore transportation sector itself is a
significant industry, and its volume and impact on society aole continues to increase
every day. In a 2008 report, the UK Department of Transpdineses that freight and
logistics sector is worth £74.5 billion to the economy andokaps 2.3 million people
across 190,000 companiés [2].

In the last few decades, advancement in transportationagistics has greatly improved
people’s lives and influenced the performance of almost@hemic sectors. Never-
theless, it also produced negative impacts. Approximéatetythirds of our goods are
transported through road transpart [2]. However, vehigiesing on our roads contribute
to congestion, noise, pollution, and accidents. Redudiegd impacts requires coopera-
tion between the various stakeholders in manufacturingdéstdbution supply chains for
more efficient planning and resource utilization. Efficieahicle routing is essential, and
automated route planning and transport management, upiimgipation tools, can help
reduce transport costs by cutting mileage and improvingedand vehicle usage. In ad-
dition, it can improve customer service, cut carbon emissionprove strategic decision
making and reduce administration costs.

Research studying effective planning and optimizatiorhim ¥ehicle routing and sche-
duling field has increased tremendously in the last few dexf4B] . Advances in tech-
nology and computational power has encouraged researchesasider various problem
types and real-life constraints, and to experiment with algerithmic techniques that can
be applied for the automation of vehicle planning actigiti& number of these techniques
have been implemented in commercial optimization softveareé successfully used in
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every day transportation and logistics applications. H@redue to the large increase in
demand and the growing complexity of this sector, innovetio solution techniques that
can be used to optimize vehicle routing and scheduling drergtently needed.

Our research is concerned with developing efficient algoric techniques that can be
applied in vehicle routing and planning activities. In $&cfl.1 we introduce the research
problems that we are trying to tackle and emphasize the ataiivbehind our selection
of these problems. Sectign 1.2 highlights the hypothesiscamtribution of the thesis.
Sectior1.B gives an overview of the contents of this thesikiadicates the publications
related to each part of the research. Finally, some briearksnabout the computational
experimentation performed in this research are present8détiori 1.4.

1.1 Research Problem and Motivation

The Vehicle Routing Problem (VRP) is at the heart of scientifisearch involving the

distribution and transportation of people and goods. Tlodlem can be generally des-
cribed as finding a set of minimum cost routes for a fleet ofalekj located at a central
depot, to serve a number of customers. Each vehicle shopkttdeom and return to the

same depot, while each customer should be visited exactlg.ofince the introduction

of this problem by Dantzig and Fulkerson in 19541[35] and Ranand Ramser in 1959
[35], several extensions and variations have been adddwtbasic VRP model, in or-

der to meet the demand of realistic applications that areptexrand dynamic in nature.
For example, restricting the capacity of the vehicle anctifyieg certain service times

for visiting clients are among the popular constraints tieate been considered while
addressing the VRP.

One important variant of the VRP is the Pickup and DelivergldRem (PDP). Unlike the
classical VRP, where all customers require the same seppeg a central assumption in
the PDP is that there are two different types of servicesdnabe performed at a customer
location, a pickup or a delivery. Based on this assumptitrerovariants of the PDP have
also been introduced depending on, for example, whetheorilgen/destination of the
commodity is the depot or some customer location, whethemomultiple commodities
are transferred, whether origins and destinations aregaand whether people or goods
are transported. In addition, some important real-lifestiaints that have been applied to
the basic VRP have also been applied to the PDP, such as titéevedipacity and service
time constraints.

Applications of the PDP are frequently seen in transpamaéind logistics. In addition,
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the problem is likely to become even more important in thareitdue to the rapid growth
in parcel transportation as a result of e-commerce. Somkcappns of this problem
include bus routing, food and beverage distribution, awyecollection and delivery bet-
ween banks and ATM machines, Internet-based pickup andetiglicollection and distri-
bution of charitable donations between homes and diffevaganizations, and the trans-
port of medical samples from medical offices to laboratgjiest to name a few. Also, an
important PDP variant, known as dial-a-ride, can provideféective means of transport
for delivering people from door to door. This model is freqthg adopted for the disa-
bled, but could provide a greener alternative than the caitan to the wider community.
Besides road-based transportation, applications of the &4h also be seen in maritime
and airlift planning.

As previously mentioned, considerable attention has be@htp the classical VRP and
its related variants by the scientific community. Literatyusands of papers have been
published in this domain (see for example survey paperd|[194], [48], [147] and the
survey paper in the 50th anniversary of the VRP [97]). Desttits, research on Pickup
and Delivery (PD) problems is relatively scarce [137]. Agibke reason is the complexity
of these problems and the difficulty in handling the undedyproblem constraints. In-
novations in solution methods that handle different tyde3 problems are certainly in
great demand.

We have selected two important variants of PD problems agoities of this research.
These arethe Pickup and Delivery Problem with Time Windows (PDPTW), andthe
One-commodity pickup and delivery problem (1-PDP)with more emphasis on the first
of these two variants and a thorough investigation of batlsingle and multiple vehicle
cases. The main difference between the two problems islibaPDPTW assumes that
origins and destinations are paired, while the 1-PDP asstima¢a single commodity may
be picked up from any pickup location and delivered to anyvdg} location. In fact, the
problems dealt with in this research are regularly encoedta every day transportation
and logistics applications, as will be demonstrated duttiegcourse of this thesis.

1.2 Thesis Hypothesis and Contribution

Similar to the VRP, the PDP belongs to the class of Combira@t@ptimization (CO)
problems, for which there is usually a huge number of possblution alternatives. For
example, the simplest form of the VRP is the Traveling Salsfroblem (TSP), where
a salesman must visit cities starting and ending at the same city, and each cityldho
be visited exactly once. It is required to find a certain rdatehe salesman such that the
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total traveling cost is minimized. Although this problemsisple for small values of,
the complexity of solving the problem increases quickly.asecomes large. For a TSP
problem of size:, the number of possible solutionsri$/2. So, ifn = 60 for example,
the number of possible solutions that must be searched isxppately4.2 x 103!

If one considers the VRP with added problem constraintsstieation process becomes
even more complex. Despite the advancement in algoritheolutiques, solving the VRP
and similar highly constrained CO problems to optimalityyniee prohibitive for very
large problem sizes. Exact algorithms that may be used teiggmptimum problem
solutions cannot solve VRP instances with more than 50-L8tbmers, given the current
resources [72]. Approximation algorithms that make useeafristic and meta-heuristic
approaches are often used to solve problems of practicahitoags. Such approaches
provide good solutions to CO problems in a reasonable anadtinbte, compared to exact
methods, with no guarantee to solve the problem to optignédite Chaptdrl2 for more
details about combinatorial optimization, complexitydheand exact and approximation
techniques).

Many heuristic and meta-heuristic algorithms have beetiegppo solving the different
variants of PD problems. However, most of these approacteeadaptations of algo-
rithms that have been previously developed for the claksiB#®. The solution process
for such problems is usually divided into two phassslution constructiomndsolution
improvement In the solution construction phase one or more initial pgobsolutions
is generated, while in the solution improvement phase thialisolution(s) is gradually
improved, in a step-by-step fashion, using a heuristic oregarheuristic approach. Ap-
plying classical VRP techniques to the PDP, though, requaseful consideration, since
the PDP is in fact a highly constrained problem that is muctérahan other variants of
the VRP.

We noticed during our literature survey that research tagk?D problems tends to exhi-
bit complexity and sophistication in the solution methadpl. Probably the main reason
behind this is that handling the difficult, and sometimediocting, problem constraints is
often a hard challenge for researchers. Straightforwand$tec and meta-heuristic algo-
rithms cannot normally be applied to PD problems, withogfraanting the approach with
problem-specific techniques. In many cases, researclsog te sophisticated methods
in their search for good quality solutions. For exampleythmay hybridize several heu-
ristics and meta-heuristics, or utilize heuristics witekact methods. Some researchers
use adaptive and probabilistic search algorithms, whicketgo behavioural changes dy-
namically throughout the search, according to currenufeatof the search space or to
recent performance of the algorithm. Dividing the seardb several stages, adding a
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post-optimization phase, and employing a large number ighht®urhood operators are
also popular approaches to solving the PDP. Unfortunavgign complex multi-facet
techniques are used, it can be very difficult to assess whgdrithm component has
contributed most to the success of the overall approacteeldit is possible that some
components may not be needed at all. In many papers only thleafigorithm is pre-
sented, and experimental evidence justifying all its v@aioomponents and phases is not
included. Notwithstanding the run time issues, the morepierthe approach, the harder
it is for other researchers to replicate.

Another important issue to consider with PD problemsatution infeasibility Due to
the many problem constraints that often apply, obtainingasible solution ( i.e., a so-
lution that does not violate problem constraints) may bealehge in itself. Since the
generation of infeasible solutions cannot be easily awbdigring the search, solution
techniques from the literature often add a repair methodxtthe infeasibility of solu-
tions. This will inevitably make the solution algorithm $eslegant and slow down the
optimization process.

In our research, we investigate the potential of using lséarand meta-heuristic ap-
proaches in solving selected important variants of PD @moisl Unlike previous research
in this field, we aspire to develop solution techniques tlaat lcandle this complex pro-
blem in a simple and effective way, sometimes even at thersepef a slight sacrifice in
the quality of the final solution obtained. The simpler th&uson technique, the more
it can be integrated with other approaches, and the easianibe incorporated in real-
world optimization tools. In our opinion, to achieve thisafjthe solution technique must
be directed towards handling the underlying constrairitsieftly, without complicating
the whole solution method. In addition, we aim to provideusttimethodologies, to avoid
the need for extensive parameter tuning. While we suppod,agpreciate, the need to
compare the performance of our algorithms with the statte@fart, we try not to engage
in hyper-tuningsimply to produce marginally improved results on benchmiaskances.

The heuristic and meta-heuristic approaches applied srésearch focus on two main
aspects that we believe can help us solve hard PD problemadmeve good quality
solutions, while keeping the overall technique simple aledjant. These aspects are:
the solution representationand theneighbourhood moves The solution representation
should reflect the problem components, while being simpledade and interpret. In
addition, it should facilitate dealing with the problem stmaints by being flexible and
easily manageable, when neighbourhood moves are apploeeate new solutions during
the search. An appropriate solution representation isttieusitial step towards an overall
successful solution technique. In addition, ‘intelligerighbourhood moves enable the
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algorithm to progress smoothly exploring promising ardab® search space, and at the
same time, avoiding generating and evaluating a large nuaflefeasible solutions.

Specifically, our research mainly concentrates on solutpnesentations and neighbou-
rhood moves as portable and robust components that can éevithen different heuris-
tics and meta-heuristics to solve some hard pickup andeatgliproblems, and may be
adapted for solving other variants of vehicle routing peoh$ as well. Based on this per-
ception, we were able to tailor some well-known heuristid areta-heuristic approaches
to solving the selected variants of pickup and delivery fgots, i.e., the PDPTW and
the 1-PDP. In this research, we employed our key ideas wsitnime famous heuristic and
meta-heuristic algorithms, such as Genetic Algorithmsgiz Simulated Annealing (SA),
Hill Climbing (HC) and Variable Neighbourhood Search (V\N&d tried to demonstrate
how the proposed constraint handling mechanisms helpetkeghe different solution
methods towards good quality solutions and manage infdisiibhroughout the search,
while keeping the overall algorithm as simple as possiblee proposed ‘techniques’,
though, have the potential of being applicable within oteuristics and meta-heuristics,
with no or just minor modifications, based on the particularbpem to which they are
being applied.

The contribution of this thesis is six fold:

1. We have developed a unique and simple solution repragenfar the PDPTW
that enabled us to simplify the solution method and redueentimber of problem
constraints that must be dealt with during the search.

2. We have devised intelligent neighbourhood moves andtigeoperators that are
guided by problem specific information. These operatordleadaour solution al-
gorithm for the PDPTW to create feasible solutions throudtibe search. Thus,
the solution approach avoids the need for a repair method tbdiinfeasibility of
newly generated solutions.

3. We have developed new simple routing heuristics to ciadieidual vehicle routes
for the PDPTW. These heuristics can be easily embedded fierelit solution
construction and improvement techniques for this problem.

4. We have developed several new solution constructionadstfor the PDPTW, that
can be easily used within other heuristic and meta-hearéiproaches to create
initial problem solutions.

5. We have demonstrated how traditional neighbourhood mfseen the VRP litera-
ture can be employed in a new way within a meta-heuristicert-PDP, which
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helped the algorithm to escape the trap of local optima ahieae high quality
solutions.

6. We have applied simple adaptation of neighbourhood mawdsearch parameters,
in both the PDPTW and the 1-PDP, for more efficient searching.

Although the techniques adopted in our research were omg ttn some pickup and
delivery problems, we believe that they can be easily agpleother vehicle routing
and scheduling problems with only minor modifications. Adl Wwe seen through the
course of this thesis, the techniques mentioned above wenest cases quite successful
in achieving the objectives that we had in mind when we sfiaste investigation of the
problems in hand. Details about these techniques and howppleed them within the
heuristic and meta-heuristic framework will be explainedhie main part of this thesis,
i.e., Chapterk]5 o 10.

1.3 Thesis Overview

Chapter [I documents the motivation behind the research carried athtisrthesis. The
hypothesis and contribution of the thesis are highlighéed, an overview of the structure
of the thesis is presented.

Chapter[2provides some background information about complexitgipand algorithm
analysis. A quick look at some exact solution methods thatbsaused to solve combi-
natorial optimization problems to optimality is taken, dwef a more detailed explanation
of some popular heuristic and meta-heuristic approachgsoiéided. The techniques
introduced in this chapter include: Hill Climbing (HC), Simated Annealing (SA), Ge-
netic Algorithms (GAs), Ant Colony Optimization (ACO), Talsearch (TS) and Variable
Neighbourhood Search (VNS).

Chapter[3is a survey of vehicle routing problems, with more emphasisie particular
variant that is of interest to our research, the Vehicle RguProblem with Time Win-
dows (VRPTW). For this problem, some solution construcéind solution improvement
techniques are described. In addition, a quick summarymegoublished meta-heuristic
approaches that have been applied to this problem is prdvide

Chapter [ is another literature survey chapter dedicated to one Madfvehicle rou-

ting problems that is the focus of this research, namelyypand delivery problems. A
classification of the different problem types is given, anoriaf summary of some pu-
blished heuristic and meta-heuristic approaches thatedbkse problems is provided.
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The survey presented in this chapter is intended to be a s®sierview. More details
about state-of-the-art techniques are presented in laggters, when related work to each
individual problem that we handled is summarized.

Chapter[His the first of six chapters that detail the research carnigdhathis thesis. This
chapter describes the first problem that we tackled, thel&Mghicle Pickup and Deli-
very Problem with Time Windows (SV-PDPTW). A general ovewiof the problem, and
a summary of related work from the literature is given. Iniadd, a Genetic Algorithm
(GA) approach to solving this problem is described in defaihovel solution representa-
tion and intelligent neighbourhood moves that may help therahm overcome difficult
problem constraints are tried within the GA approach. Theeexnental findings of this
part of the research were published, as a late breaking,gageECCO2007conference

[79.

Chapter [@ continues with the research started in Chapter 5 for the BRARV. Never-
theless, a more extensive investigation of the problenvisrgihere. Several heuristic and
meta-heuristic techniques are tested for solving the probemploying the same tools
introduced in Chaptdr]5. Three approaches are applied wingahe problem: genetic
algorithms, simulated annealing and hill climbing. A comgan between the different
approaches and a thorough analysis of the results is prhvidae algorithms and the
findings of this part of the research were published inJingrnal of Heuristic§84].

Chapter [7 starts the investigation of the more general Multiple-\dhicase of the Pi-
ckup and Delivery Problem with Time Windows (MV-PDPTW). &ftsummarizing some
related work in this area, new solution construction meshae developed and compa-
red, using the single vehicle case as a sub-problem. Theithlgs introduced here act
as a first step towards a complete solution methodology tgtbkelem, which will be
presented in the next chapter. The different constructeuriktics are compared, and
conclusions are drawn about the construction algorithrhgeams most appropriate for
this problem. This part of the research was published iltMh@2009[81].

Chapter[8continues the investigation of the MV-PDPTW, by augmensiolgition construc-
tion, introduced in the previous chapter, wiblution improvementin this chapter, we
tried both a GA and an SA for the improvement phase. Severahtgues from the first
part of our research (explained in Chaptérs 5 to Chapterer¢mbedded in both the GA
and the SA. The GA approach is compared with two related GArtigeies from the li-
terature, and the results of both the GA and the SA are thbitgwamalyzed. Part of the
research carried out in this chapter was published iMH&2009[80].

Chapter [@ starts the investigation of another important PD problenictvlis the One-
commodity Pickup and Delivery Problem (1-PDP). In this deapwe explain the pro-
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blem, provide a literature review, and highlight some edgiroblems. After that, we try
to solve the 1-PDP using an Evolutionary Perturbation Seh@®S) that has been used
for solving other variants of vehicle routing problems. Exmental results on published
benchmark instances are reported and analyzed.

Chapter [10 continues the investigation of the 1-PDP, using anotheashetristic ap-
proach, which is a Variable Neighbourhood Search (VNS) iaybed with Simulated
Annealing (SA). Also, adaptation of search parameters @iegh within this heuristic
for more efficient searching. The approach is thoroughlyarpd and the experimental
results on published test cases are reported. Two confepaquers that discuss this ap-
proach have now been accepted for publicatioGBECCO201(late breaking abstract)
[82], andPPSN201d85]. In addition, a third journal paper has been submittethe
Journal of Heuristicand is currently under review [83].

Chapter [11 looks beyond the current research phase and discusses husortical
scientific research, such as that carried out in this theais,be used in real-life com-
mercial applications of vehicle routing problems. We gixaraples of some commercial
software tools, and we also highlight important industaisphects of vehicle routing that
the research community should be aware of. An overview afréutrends in scientific
research tackling this issue is also provided.

Chapter[I2summarizes the research undertaken in this thesis andatabon the thesis
contribution. Some critical analysis of parts of the cutm@search and suggestions for
future work are also presented.

1.4 A Note on Implementation and Computational Expe-
rimentation

All algorithmic implementations presented in this thesis programmed in C++, using
Microsoft Visual Studio 2005. Basic Genetic Algorithms (§Avere implemented with
the help of an MIT GA library GALIB[[155]. Most of the computahal experimentations
were carried out using Intel Pentium (R) CPU, 3.40 GHz and 2R&8/, under a Win-
dows XP operating system, unless otherwise indicated. Twitoms developed in this
thesis were tested on published benchmark data for theteelpoblems, or on problem
instances created in this research. We indicate in theaetesections of this thesis the
exact source of the data, and provide links where applicable
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Chapter 2

Combinatorial Optimization,
Heuristics, and Meta-heuristics

In this chapter, we introduce an important class of probldrasare of interest to resear-
chers in Computer Science and Operations Research (ORhvetithe class of Combina-
torial Optimization (CO) problems. The importance of COlgems stems from the fact
that many practical decision making issues concerninggxtample, resources, machines
and people, can be formulated under the combinatorial agdiion framework. As such,
popular optimization techniques that fit this framework barapplied to achieve optimal
or best possible solutions to these problems, which shouldnize cost, increase profit
and enable a better usage of resources.

Our research handles one class of CO problems, which is nwettevith vehicle routing
and scheduling. Details about this specific class will besgméed in Chaptefd 3 and 4.
In the current chapter we provide a brief description of C@bpems, and the related al-
gorithm and complexity analysis theory in Section|2.1. W# thien proceed to review
important techniques that are usually applied to solvingagE@blems. Section 2.2 briefly
highlights someexact algorithmghat can be used to find optimal solutions to these pro-
blems. On the other hanteuristic methodghat may be applied to find a good solution,
which is not necessarily the optimum, are introduced ini8e@.3. We emphasize in
this section: Hill Climbing (HC), Simulated Annealing (SA3enetic Algorithms (GAS),
Ant Colony Optimization (ACO), Tabu Search (TS), and Valgadeighbourhood Search
(VNS). Finally Sectioh Z}4 concludes this chapter with @bsummary.

2.1 Combinatorial Optimization, Algorithm and Complexity
Analysis

Combinatorial optimization problems can generally be aefins problems that require
searching for the best solution among a large number of filisterete candidate solutions.
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More specifically, it aspires to find the best allocation afited resources that can be
used to achieve an underlying objective. Certain condtare usually imposed on the

basic resources, which limit the number of feasible altévaa that can be considered as
problem solutions. Yet, there is still a large number of jaesalternatives that must be

searched to find the best solution.

There are numerous applications of CO problems in areasasictew scheduling, jobs
to machines allocation, vehicle routing and schedulingsuii design and wiring, solid-
waste management, energy resource planning, just to nasvwe &iptimizing solutions
to such applications is vital for the effective operatiorl grerhaps the survival of the
institution that manages these resources. To a large efiaiing the best or optimum
solution is an integral factor in reducing costs, and at #mestime maximizing profit and
clients’ satisfaction.

Many practical CO problems can be described using well-knovathematical models,
for example the Knapsack problem, job-shop schedulingglgloring, the TSP, the
boolean satisfiability problem (SAT), set covering, maximalique, timetabling. . . etc.
Many algorithms and solution methods exist for solving hpsoblems. Some of them
are exact methods that are guaranteed to find optimum sedugiven sufficient time, and
others are approximation techniques, usually called b&csior meta-heuristics, which
will give a good problem solution in a reasonable amountmgti with no guarantee to
achieve optimality.

Within this domain, researchers are often faced with the@irement to compare algo-
rithms in terms of their efficiency, speed, and resource wopgion. The field ofalgo-
rithm analysis helps scientists to perform this task by providing an esioéthe number
of operations performed by the algorithm, irrespectivenefparticular implementation or
input used. Algorithm analysis is usually preferred to canipg actual running times of
algorithms, since it provides a standard measure of algurdomplexity irrespective of
the underlying computational platform and the differemdy of problem instances sol-
ved by the algorithm. Within this context, we usually stutlg asymptotic efficiencgf

an algorithm, i.e., how the running time of an algorithm gases as the size of the input
approaches infinity.

In algorithm analysis, th® notation is often used to provide an asymptoipper bound
of the complexity of an algorithm. We say that an algorithrofi$)(n) (Ordern), where
n is the size of the problem, if the total number of steps cdraet by the algorithm is
at most a constant times More specifically,f(n) = O(g(n)), if there exist positive
constants: andn, such that < f(n) < cg(n), for alln > ny. TheO notation is usually
used to describe the complexity of the algorithm in a woestecscenario. Other less
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frequently used notations for algorithm analysis are(theotation and thé notation.
The() notation provides an asymptotmwer boundli.e., f(n) is of Q(g(n)) if there exist
positive constantsandn, such thad < cg(n) < f(n), foralln > ny. Onthe other hand,
the © notation provides an asymptoticalight boundfor f(n), i.e., f(n) is of ©(g(n))
if there exist positive constants, ¢, andn, such that) < c¢;g(n) < f(n) < cag(n), for

all n > ny [32]. Figures 2.1(@J, 2.1(p) and 2.7l(c) demonstrate a gecagptample of theD

notation, the notation, and th€® notation respectively.

b 4

n=n, n=n,

(a) TheO notation (b) The2 notation

'y

n=n,
(c) The® notation

Figure 2.1: Asymptotic Notations.

In addition to analyzing the efficiency of an algorithm, wersdimes need to know what
types of algorithms exist for solving a particular probleime field ofcomplexity ana-
lysis analyzes problems rather than algorithms. Two importaagsas of problems are
usually identified in this context. The first class is calfe@polynomial time problems).

LIn this thesis we use th@ notation for the analysis of algorithms when needed, sih@ethe most
commonly used type of asymptotic notations among the thoégtions introduced in this section.
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It contains problems that can be solved using algorithmis mitning times such as(n),
O(log(n)) and O(n*) H They are relatively easy problems, sometimes céliactable
problems. Another important class is call&dP (non-deterministic polynomial time
problems). This class includes problems for which there exists anrdlgao that can
guessa solution anderify whether the guessed solution is correct or not in polynomial
time. If we have an unbounded number of processors that eachecused to guess and
verify a solution to this problem in parallel, the problenmdee solved in polynomial time.
One of the big open questions in computer science is whelleeclaissP is equivalent

to the class\V’P. Most scientists believe that they are not equivalent. ,Thosvever, has
never been proven.

Researchers also distinguish a sub clas§®*, called the\P-completeclass. In a sense,
this class includes the hardest problems in computer sejemd is characterized by the
fact that either all problems that afé P-completeare inP, or not in . Many N P-
completegproblems may require finding a subset within a base set (gedSAT problem),
or an arrangement (or permutation) of discrete objects g TSP), or partitioning an
underlying base set (e.g. graph coloring). As mentioned@bibhese problems belong
to the combinatorial optimization class of problems, anchetimes calledntractable
problems.

An optimization problem for which the associated decisioobem is/NP-completes
called anNP-hard problem. Adecision problemis a problem that has only two pos-
sible answersyesor no. For example, if the problem is a cost minimization problem,
such that it is required to find a solution with the minimum gibke cost, the associated
decision problem would be formulated as: “ is there a sotutiothe problem whose cost
is B, where B is a positive real number?”. Figute 2.2 demonstrates hovdiffierent
complexity classes may relate to each other. For more dethibut algorithm analysis
and complexity theory, the reader is referred to the book byegand Johnsoh [64] and
Cormenet al. [32].

Solving CO problems has been a challenge for many researcheomputer science and
operations research. Exact methods used to solve regulblepns cannot be used to
solve CO problems given current resources, since searenmuyg all possible solutions
of a certain intractable problem is usually prohibitive fange problem sizes. The natural
alternative would be to use approximation methods that goad, rather than optimal,

solutions to the problem in a reasonable amount of time.

In the next section we briefly consider some exact methodsctra be used to solve

2Running times of)(n) are usually called linear running times. Also, running tiaf€) (n*) are often
referred to as polynomial running times, while running €O (2™) are called exponential running times.
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NP-Complete

NP

Figure 2.2: Complexity Classes.

CO problems. However, since exact algorithms are not macsiolution methods for
the applications considered in this thesis, our discussidhese techniques will be very
brief. On the other hand, a more detailed investigation pfr@amation algorithms, i.e.,
heuristics and meta-heuristics, will be presented in Sei&i3.

2.2 Exact Algorithms

As previously mentioned, exact algorithms are guarantedthtl an optimum solution
for a CO problem if one exists, given a sufficient amount ofetinin general, the most
successful of these algorithms try to reduce the solutiasepnd the number of different
alternatives that need to be examined in order to reach tl@om solution. Some exact
algorithms that have been applied to solving CO problemsharéollowing:

1. Dynamic Programming (DP): which refers to the process of simplifying a com-
plicated problem by dividing it into smaller subproblemsarecursive manner.
Problems that are solved using dynamic programming usbaihg the potential of
being divided into stages with a decision required at eaabest Each stage also
has a number of states associated with it. The decision astage transforms the
current state into a state in the next stage. The decisiorote@no the next state
is only dependent on the current state, not the previoussstat decisions.Top-
downdynamic programming is based on storing the results of icectdculations,
in order to be used lateBottom-updynamic programming recursively transforms a
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complex calculation into a series of simpler calculatiddsly certain CO problems
are amenable to DP.

2. Branch-and-Bound (B&B): is an optimization technique which is based on a sys-
tematic search of all possible solutions, while discardinigrge number of non-
promising candidate solutions, using a depth-first stgat&ge decision to discard
a certain solution is based on estimating upper and lowend®of the quantity
to be optimized, such that nodes whose objective functienl@wer/higher than
the current best are not explored. The algorithm requirdsanthing’ tool that
can split a given set of candidates into two smaller setsaabdunding’ tool that
computes upper and lower bounds for the function to be op&thwithin a given
subset. The process of discarding fruitless solutionsuallyscalled ‘pruning’. The
algorithm stops when all nodes of the search tree are eithee or solved.

3. Branch-and-Cut (B&C): is a B&B technique with an additional cutting step. The
idea is to try to reduce the search space of feasible camdidat adding new
constraints (cuts). Adding the cutting step may improvevélee returned in the
bounding step, and could allow solving subproblems withwahching.

2.3 Heuristic Algorithms

Given the limitation of exact methods in solving large COlpemns, approximation tech-
niques are often preferred in many practical situationspragimation algorithms, like
heuristics and meta-heuris@cs&re techniques that solve ‘hard’ CO problems in a rea-
sonable amount of computation time, compared to exact ighgos. However, there is
no guarantee that the solution obtained is an optimal swlubr that the same solution
quality will be obtained every time the algorithm is run.

Heuristic algorithms are usually experience-based, witlspecific pre-defined rules to
apply. Simply, they are a ‘common-sense’ approach to protdelving. On the other

hand, an important subclass of heuristics are meta-heualgbrithms, which are general-
purpose frameworks that can be applied to a wide range of G@lgms, with just minor

changes to the basic algorithm definition. Many meta-h&ariechniques try to mimic

biological, physical or natural phenomena drawn from trad-veorld.

3In this discussion we use the term approximation/heuratiorithm to refer to any ‘non-exact’ so-
lution method. More accurately, however, the teaipproximation algorithiis often used to refer to an
optimization algorithm which provides a solution that isaganteed to be within a certain distance from the
optimum solution every time it is run, with provable runtitmeunds[[158]. This may not be necessarily the
case foreuristicalgorithms, though.
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In solving a CO problem using a heuristic or a meta-heuratorithm, the search for

a good problem solution is usually divided into two phasgslution constructiorand
solution improvementolution constructionrefers to the process of creating one or more
initial feasible solutions that will act as a starting pdimaim which the search progresses.
In this phase, a construction heuristic usually starts famnempty solution and gradually
adds solution components to the partially constructedtieoiwntil a feasible solution

is generated. On the other harshlution improvement tries to gradually modify the
starting solution(s), based on some predefined metricl arctertain solution quality is
obtained or a given amount of time has passed.

Within the context of searching for a good quality solutiwe,usually use the tersearch
spaceto refer to thestate spacef all feasible solutions/states that are reachable fram th
current solution/state. To find a good quality solution, arigtic or a meta-heuristic al-
gorithm moves from one state to another, i.e., from one datdisolution to another,
through a process that is often calledcal Search (LS) During LS, the new solution
is usually generated within theeighbourhoodf the previous solution. Aeighbou-
rhood N(z) of a solutionz is a subset of the search space that contains one or more
local optima, the best solutions in this neighbourhood. The transiti@mt@ss from one
candidate solution to another within its neighbourhoodinesg aneighbourhood move
that changes some attributes of the current solution tefoam it to a new solution’.

A cost functionf () is used to evaluate each candidate soluti@nd determine its cost
compared to other solutions in its neighbourhood. The bastien within the overall
search space is called tigdobally optimal solution, or simply theoptimum solution.
Figure[2.8 shows a search space for a minimization funciienour goal is to obtain the
global minimum for this function. In this figure three poirgg®lutions) are local optima
within their neighbourhood#\, B andC. The global optimum among the three points is
point C.

Several modifications to the basic local search algorithve lh@en suggested to solve CO
problems. For example, Baum |10] suggested an lteratedl ISe=xrch (ILS) procedure
for the TSP, in which a local search is applied to the neighibgusolutionz’ to obtain
another solutionr”. An acceptance criterion is then applied to possibly reptady =”.
Voudouris and Tsang [154] suggest a Guided Local Search Y@td®edure, in which
penalties are added to the objective function based on Hrelsexperience. More spe-
cifically, the search is driven away from previously visitedal optima, by penalizing
certain solution features that it considers should not picta near-optimal solution.

In addition, some local search methods have been formulaieelr the meta-heuristic fra-
mework, in which a set of predefined rules or algorithmic teghes help guide a heuristic
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F(x)

X

Figure 2.3: Search space for a minimization problem: local ad global optima.

search towards reaching high quality solutions to compjmzation problems. Among
the most famous meta-heuristic techniques are: Hill ClimgkHC), Simulated Annea-
ling (SA), Genetic Algorithms (GAs), Ant Colony Optimizat (ACO), Tabu Search and
Variable Neighbourhood Search (VNS). For more details abmal search techniques
and its different variations and applications to CO proldethe reader is referred tal [3]
and [125]. In what follows we describe some important metaristic techniques that
have been widely used for solving CO problems.

2.3.1 Hill Climbing (HC)

Hill Climbing is the simplest form of local search, where th@v neighbouring solution
always replaces the current solution if it is better in dyaliThe process can thus be
visualized as a step-by-step movement towards a localiynopi solution. Figuré 2]4
shows how an HC algorithm transitions ‘downhill’ from antial solution to a local mi-
nimum. On the other hand, Algorithm 2.1 shows the steps of @pkbcedure applied to
a minimization problem.
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F(x)

X

Figure 2.4: Hill Climbing: downhill transition from an init ial solution to a local
optimum.

Algorithm 2.1: Hill Climbing (HC).
Generate an initial solution
repeat
Generate a new solutiorf within the neighbourhood aof (2’ € N(x))
A f(a) — f(x)
if (A < 0)then
R

until (Done){stopping condition is reached}

© N o g ke N Re

Return solutionz

HC is frequently applied within other meta-heuristic teicjues to improve solution qua-
lity at various stages of the search. In our research we Hi€cdmong the selected ap-
proaches for solving the Single Vehicle Pickup and Delivmgblem with Time Windows
(SV-PDPTW), as will be explained in Chaptér 6. HC was alsomapartant part of the
solution construction heuristics that we developed foMiugtiple Vehicle Pickup and De-
livery Problem with Time Windows (MV-PDPTW), as will be exghed in Chaptdrl7. We
have also applied it in parts of the algorithms developed&dving the One-Commaodity
Pickup and Delivery Problem (1-PDP), as will be shown in Gaegd® and10.
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2.3.2 Simulated Annealing (SA)

Simulated annealing is a well-known meta-heuristic seanethod that has been used
successfully in solving many combinatorial optimizatiowipems. It is a hill climbing
algorithm with the added ability to escape from local optimtne search space. However,
although it yields excellent solutions, it is very slow caangd to a simple hill climbing
procedure.

The term simulated annealing is adopted from the annealimglals, where we try to
minimize the energy of the system using slow cooling unglatoms reach a stable state.
The slow cooling technique allows atoms of the metal to leniselves up and to form a
regular crystalline structure that has high density anddoergy. The initial temperature
and the rate at which the temperature is reduced is callegithealing schedule

The theoretical foundation of SA was led by Kirkpatriekal. in 1983 [93], where they
applied theMetropolis algorithm[107] from statistical mechanics to CO problems. The
Metropolis algorithm in statistical mechanics provideseamegyalization of iterative im-
provement, where controlled uphill moves (moves that dolower the energy of the
system) are probabilistically accepted in the search ftainlmg a better organization and
escaping local optima. In each step of the Metropolis algorj an atom is given a small
random displacement. If the displacement results in a dsera the system energy, the
displacement is accepted and used as a starting point foegtetep. If on the other hand
the energy of the system is not lowered, the new displacemmeaicepted with a certain
probabilityexp(—£/%T) whereFE is the change in energy resulting from the displacement,
T is the current temperature, ahglis a constant calledBoltzmann constantDepending
on the value returned by this probability either the new ldispment is accepted or the
old state is retained. For any givéh a sufficient number of iterations always leads to
thermal equilibrium. The SA algorithm has also been showpossess a formal proof of
convergence using the theoryMarkov Chaind47].

In solving a CO problem using SA, we start with a certain fiel@ssolution to the pro-

blem. We then try to optimize this solution using a method@gaus to the annealing
of solids. A neighbour of this solution is generated usingppropriate method, and the
cost (or the fitness) of the new solution is calculated. Ifribes solution is better than
the current solution in terms of reducing cost (or increggitness), the new solution is
accepted. If the new solution is not better than the curreloti®n, though, the new solu-
tion is accepted with a certain probability. The probapitif acceptance is usually set to
exp=2/T) whereA is the change in cost between the old and the new solutior’’aed

the current temperature. The probability thus decreagesnentially with the badness of



2.3 Heuristic Algorithms 21

the move.

The SA procedure is less likely to get stuck in a local optimaompared to a simple
HC, since bad moves still have a chance of being acceptedafialing temperature is
first chosen to be high so that the probability of acceptantieiso be high, and almost
all new solutions are accepted. The temperature is therugligdeduced so that the
probability of acceptance of low quality solutions will bery small and the algorithm
works more or less like hill climbing, i.e., high temperasiallow a better exploration of
the search space, while lower temperatures allow a fine guofira good solution. The

process is repeated until the temperature approaches zeooforther improvement can
be achieved. This is analogous to the atoms of the solid reg@hcrystallized state.
Figure[2.5 shows how occasional uphill moves may allow theaBfrithm to escape
local optima in a minimization problem, compared to the Hgoathm shown in Figure

2.4

F(x)

X

Figure 2.5: Simulated Annealing: occasional uphill movesiad escaping local optima.

Applying SA to CO problems also requires choices concermiotp general SA para-
meters and problem specific decisions. The choic8Miparametersis critical to the

performance of the algorithm. These parameters are: the wdlthe initial temperature
T, atemperature function that determines how the temperatilirchange with time, the
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number of iterationsV(¢) to be executed at each temperature, and a stopping criterion
terminate the algorithm.

As previously mentioned, the initial temperatdré0) is generally chosen high enough
so that almost any move is accepted regardless of its fitiéss choice is adopted from
the physical analogy and corresponds to heating up a suestantil all particles are
randomly arranged in a liquid. The temperature update fone$ usually a proportional
temperature functioff'(t + 1) = a7'(t), wheret is the current iteration. Typical values
of « lie between 0.8 and 0.99. Using such values provides veryl sieerements of the
temperature, which corresponds to slow cooling of the sulgst until the temperature
approaches zero.

The number of iterations carried out at each temperaturee\atiould be large enough to
bring the system to a stable state equating to thermal bquiin in the physical analogy.
Some applications may choo$8gt) to be constant for each temperature. The stopping
criterion of the algorithm is usually the stagnation of tygtem when no change in the
result can be obtained for a specified number of iterationsraperature changes.

Implementing SA also requires a setbblem-specific decisionsThese include: iden-
tifying the set of feasible solutions to the problem, definénclear objective function, ge-
nerating an initial solution, and defining a neighbourhopdrator that generates moves
using the current solution.

The topology of the neighbourhood structure is also ciit@ahe performance of the SA
algorithm. In general, a smooth topology with shallow looptima is favoured over a
bumpy topology with many deep local minima. A neighbourhb@otttion is also easy to
implement for discrete problems, while implementing a hbmurhood function for conti-
nuous problems is more challenging. Constrained probldsasraise some difficulties.
A choice must be made between restricting the solution sjees@utions that conform to
the constraints, or allowing solutions that break the qairsts at the expense of a suitably
defined penalty function. The generic SA algorithm is déatiin Algorithn 2.2, where
the underlying optimization problem is again assumed to tmén@mization function.

Some modifications to the basic SA algorithm have been stegieEhese modifications
are intended to provide an improvement of the quality of thletgon and/or processing
time. One attempt is to store the best solution found so face8he SA algorithm accepts
solutions probabilistically, it may accept solutions thet worse than the current solution.
A good solution found during the run may be discarded becdwsas not lucky during
the acceptance attempt. Storing the best solution foundrgarévents the SA algorithm
from returning a final solution that is worse than the besttsmh ever found (e.g[ [63]).
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Algorithm 2.2: The Simulated Annealing (SA) Algorithm.
1: Generate an initial solution
2: T « Ty {initialize current temperature}
3: repeat
4:  for (i = 0;¢ < numlterations;i+ +) do

5: Generate a new solutiorf within the neighbourhood af (2’ € N(x))

6 A f(@) - fl@)

7: if (A < 0)then

8: x—

o: else
10: p = Random(0, 1) {generate a random number in the interval (0,1)}
11: if (p < exp(—2/T)) then
12: x— 1

13: T « o x T {reduce current temperature}
14: until (Done){stopping condition is reached}
15: Return solution:

Some researches also modify the basic SA algorithm usirggmospecific information.
For example[[148] suggest a neighbourhood operator thdilésta identify promising
areas in the neighbourhood, and give a greater probakaliyeherated moves that fall
in the promising areas. SA has also been hybridized withratpgmization techniques.
This can be done by using another technique to generate aigitiatisolution that SA
can improve, or using SA to generate a good solution that eamsbd by another search
technique.

To sum up, SA has several attractive features, especiallijfioult optimization problems

in which obtaining a good solution, with a reasonable corafamnal effort and proces-
sing time, is preferred to an optimal solution with consaddy higher cost. The basic
advantages of SA are the following:

1. Itis very easy to implement, since it just requires a mefloo generating a move in
the neighbourhood of the current solution, and an apprtgaianealing schedule.

2. It can be applied to a wide range of problem types. For ex@mpy combinatorial
optimization problem can be tackled using SA, if an appmtprineighbourhood
structure has been devised.

3. High quality solutions can be obtained using SA, if a goeighbourhood structure
and a good annealing schedule have been chosen.
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These benefits, however, may be at the expense of a longezgsing time, compared
to simple hill climbing. In our research we applied SA to sofythe SV-PDPTW, as
explained in Chaptdr] 6, and for the MV-PDPTTW, as explaime@haptei B. We also
hybridized SA with a Variable Neighbourhood Search (VNS)rajpch for solving 1-PDP,
as will be shown in detail in Chapter]10.

2.3.3 Genetic Algorithms (GAS)

The idea of simulation of biological evolution and the natselection of organisms dates
back to the 1950’s. One of the early pioneers in this area U@s#aser with his research
published in 1957 [50] [51]. Nevertheless, the theoretioahdation of GAs were esta-
blished by John Holland in 1975 [78], after which GAs becarmpysar as an intelligent
optimization technique that may be adopted for solving nidifficult problems.

The theme of a GA is to simulate the processes of biologiaalléion, natural selection
and survival of the fittest in living organisms. In naturediinduals compete for the re-
sources of the environment, and they also compete in saentates for reproduction.
Individuals who are better or fitter in terms of their gendtaits survive to breed and
produce offspring. Their offspring carry their parentssizegenetic material, which leads
to their survival and breeding. Over many generations, fehisurable genetic material
propagates to an increasing number of individuals. The caation of good characteris-
tics from different ancestors can sometimes produce ‘sfitheffspring who out-perform
their parents. In this way, species evolve to become baiterdsto their environment.

GAs operate in exactly the same manner. They work pogulation of individuals re-
presenting possible solutions to a given problem. In trawiti GAs, each individual is
usually represented by a string of bits analogoushmmosomesandgenes i.e., the
parameters of the problem are the genes that are joinechtrget a solution chromo-
some. Afitnessvalue is assigned to each individual in order to judge ititsitho survive
and breed. The highly fit individuals are given a chance tedigy being selected for
reproduction. Thus, the selection process usually favih@snore fit individuals. Good
individuals may be selected several times in one iteratidnle poor ones may not be
selected at all. By selecting the ‘most fit’ individuals, davable characteristics spread
throughout the population over several generations, amantbst promising areas of the
search space are explored. Finally, the population shariderge to an optimal or near
optimal solution. Convergence means that the populatiotves toward increasing uni-
formity, and the average fitness of the population will bey\aose to the highest fitness.

During the reproduction phase of a GA, two individuals bregdombining their genes in



2.3 Heuristic Algorithms 25

an operation calledrossover Not all selected pairs undergo crossover. A random choice
is applied, where the likelihood of crossover is some giveibgability. If crossover is not
performed, offspring are produced simply by duplicatingitiparents. Crossover allows
the basic genetic material of parents to pass to their @mnldwho then form the next
generation.

Another operation that is performed by GAsnmitation. Mutation is applied to each
child generated from crossover. With a certain small prdibgkeach gene may be alte-
red. Thus, Crossover allows a rapid exploration of the $eapace by producing large
jumps, while mutation allows a small amount of random seaiidie basic outline of a
GA is shown in the following algorithm:

Algorithm 2.3: The Basic Genetic Algorithm (GA).

1: Coding: initialize and encode a random population of solutionsecadihromosomes

2: repeat

3:  Fitness Assignmentdecode and evaluate the fithess of each chromosome

4.  Selection:select some chromosomes from the current population feodejation, where
the selection criterion is based on the fitness of the selgreents

5:  Recombination: with some probability apply crossover between the seleptaénts to
produce new children

6: Variation: apply mutation with a small probability to some genes of tewly produced
offspring, or to selected members of the population

7:  Replacementintegrate the newly generated offspring with the old potiorato create a
new generation

8: until (a certain stopping condition is reached)

The traditional GA uses strings of bits to represent chrams. In addition, the classical
crossover operator is callexhe-point crossovey where the two mating chromosomes
are each cut once at corresponding points and the sectitargtad cuts are exchanged.
However, many different crossover types have been devidesh involving more than
one cut point. For example, intavo-point crossovertwo cut points are chosen randomly
in the parent chromosomes. The section between the selegtqmbints is exchanged
between the two children. Another form of crossover is callaiform crossover, in
which a random mask of bits is generated. Each gene in theroftsis created by copying
the corresponding gene from one of the parents. The parsetasted according to the
value of the corresponding bit in the mask. These three cves®perators are illustrated
in Figure[2.6.

On the other hand, the most popular mutation operatorpaire mutation, where one
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bit in the chromosome is flipped, aimyersion mutation, in which a substring is selected
at random and the bits within this substring are invertedufeé[2.7 demonstrates these
two mutation operators.

parentt | 1]1]0]0[1]1[170/0[0] s [1[1]0]0[1]1]1]0]0]0]

parent2 [0 [1]0[1]0[1 0 1][1]1] raemz [0[1]0[1]0 1 ]0i1]1]1]

Child 1 |1‘1‘0‘0‘1‘1‘1 1’1‘1| Child 1 |1‘1‘0‘0 0‘1‘0 0‘0‘0|

Child 2 |0‘1‘0‘1‘0‘1‘0 0‘0‘0| Child 2 |0‘1‘0‘1 1‘1‘1 1‘1‘1|

(a) One-point Crossover (b) Two-point Crossover

Msk | 0|01 0/ 1/0(1(01]0

Parent 1 1 1 O O 1 1 1 O O O

Parent2 |0 |10 101|101 1]1

chidt 111110/ 0/01{0]0[1 0

chid2 | Q|1 (0|1 1[1][1]1/0]1

(c) Uniform Crossover

Figure 2.6: Crossover.

1/1]ofol1]1]1]0]0]o0 [1]1]0]o]1[1]1]0]0]0]
1[1]oJo[1[1JoJoloJo] [r[t]ofof1]1]ofof1]0]
(a) Point Mutation (b) Inversion Mutation

Figure 2.7: Mutation.
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Chromosome representation as a bit string is not suitabledmy problems types, though.
For example, a permutation of integers representing nadesations has been often used
for the TSP and other vehicle routing problems. This kindegiresentation is called an
order-basedepresentation, since the fithess depends on the order ahwhe genes ap-
pear. Different crossover and mutation operators must &e usthis case, since classical
genetic operators, such as the ones described above, suilt ia ‘infeasible’ chromo-
somes. Goldberg in [64] described several order-basedtmper such as theartially
Matched Crossover (PMX) In a PMX, it is not the genes that are crossed, but the order
in which they appear, i.e., offspring have genes that inleeder information from each
parent. This avoids the problem of generating offspring ti@ate problem constraints,
such as having duplicate cities in a chromosome that repiesesolution to the TSP, or
having a chromosome with some non-visited cities. Figu8shows an example of a
PMX, where cities 5,6,7 exchange their positions with 2, @ &0 respectively. Other
crossover operators that can be used for order-based eepaiens areycle crossover
andorder crossove(see [64] for details).

Parent1|9‘8‘4 5‘6‘71‘3‘2‘10|

Parent2|8‘7‘1 2‘3’109‘5‘4‘6|

Child 1 |9‘8‘4 2’3|10 1‘6‘5‘7|

ciaz [ 8[10[1]|5]6[7]|9]2]4]3]

Figure 2.8: Partially Matched Crossover (PMX).

To select two individuals in the population for mating, seveelectionmethods may
be applied. For example, inrank selection individuals are sorted according to their
objective function values, and each individual is assigaeudimber of offspring that is
a function of its rank in the populatiorRoulette wheel selectiompicks an individual,
with a probability, based on the magnitude of the fithessescelative to the rest of the
population. The higher the score, the more likely an indiaidwill be selected, and the
probability of the individual being chosen is equal to thedgs of the individual divided
by the sum of the fitness values of all individuals in the pagah. On the other hand, a
tournament selectionuses the roulette wheel, or another selection method, ¢otsgio
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or more individuals, then picks the one with the higher score

Similarly, manyreplacementschemes can be used to integrate the new offspring and
produce the next generation. InSample GA, the new generation of offspring comple-
tely replace the old population, whileSteady State GAallows generations to overlap,
with a certain percentage of replacement. On the other hamishcremental GA only
allows a small degree of overlap between generations, famele by replacing one or
two individuals at each generation.

In summary, GAs represent an intelligent search methodedimey operate on a popu-
lation of solutions and allocate trials to promising arebthe search space. GAs do not
depend heavily on information available from the undeyproblem. They are easy
to connect to existing simulations and models, and can kg dgbridized to generate
knowledge-augmented GAs. Using the operations of selectfahe fittest, mutation,
and crossover, GAs can quickly reach fit individuals (noteglgithe most fit), but who are
usually good enough as solutions to problems of a large madmi Crossover is consi-
dered as the main GA operator. Having to combine two solatrather than one, makes
designing an appropriate crossover operator often morkealgang than developing a
mutation operator or a simple neighbourhood move. Thisllysmeakes GAs implemen-
tation more difficult compared to SA or simple HC.

In our research we applied GAs to solving the PDPTW, for bbthdingle and multiple
vehicle variants, as will be explained in detail in Chapki§ and 8. We also applied a
GA within a perturbation scheme for the 1-PDP, as will be itedan ChaptefB.

2.3.4 Ant Colony Optimization (ACO)

Ant Colony Optimization is a meta-heuristic technique ikatspired by the behaviour of
real ants. Its principles were established by Doggal. in 1991 [42]. Real ants coope-
rate to find food resources by laying a trail of a chemical tarxse called ‘pheromone’
along the path from the nest to the food source. Depending@armount of pheromone
available on a path, new ants are encouraged, with a higtapildlg, to follow the same
path, resulting in even more pheromone being placed on #tis [ghorter routes to food
sources have higher amounts of pheromone. Thus, over tmenajority of ants are di-
rected to use the shortest path. This type of indirect conication is called ‘stigmergy’
[41], in which the concept gbositive feedbacls exploited to find the best possible path,
based on the experience of previous ants. Figuie 2.9 vismsalhe foraging behaviour of
real ants in their search for food sources.
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Food

Nest

Nest

(a) Two ants start with equal probability of going on eithattp The ant
on the shorter path arrives more quickly to the food source

§§?

(b) The density of the pheromone on the shorter path incseasee ra-
pidly than the pheromone on the longer path. Many ants begjirguhe
path with higher pheromone

Nest

(c) Over time, the shorter path is almost exclusively used,the phero-
mone on the longer path evaporates

Figure 2.9: Foraging behaviour of ants.
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Applying ACO to hard combinatorial optimization problenssattractive, due the flexi-
bility and robustness of the algorithm. In fact, the teclueigan be applied to solving a
wide range of problems with only minimal changes to the bakiorithm. In addition,
its population based nature allows exploring the searchespahile exploiting positive
feedback during the search process to find near optimalisofut

In solving a combinatorial optimization problem using an@Qhe problem may be vi-

sualized as finding the shortest path in a weighted graplifichat ants (software agents)
cooperate to find the best path by constructing solutionsisting of graph nodes step-
by-step. Each step adds a selected node to the partial@olota stochastic manner, but
biased by the amount of pheromone available on the nodeg @diles connecting them.
To this end, problem-specific information is placed in a canmMmemory, which plays

the role of the pheromone trail. The information in the meynoe., the pheromone trail,

is updated by ants at each iteration, allowing ants to c@dpen finding good problem

solutions. Pheromone values also diminish over time, aimd the evaporation of real

pheromone. Thus, solutions of bad quality are eliminatethffurther consideration as
the search progresses. Algorithml2.4 shows the main steps #fCO meta-heuristic.

Algorithm 2.4: The Ant Colony Optimization (ACO) Algorithm .
1: Set parameters, initialize pheromone trails
2: while (termination condition not metjo
3:  ConstructAntSolutions
4.  DaemonActions {optional}
5.  UpdatePheromones

The steps of Algorithh 214 are briefly explained below:

1. ConstructAntSolutions during this phase, each ant constructs a solution from the
set of feasible problem solutions, by adding one solutionmonent at each step of
the construction process to the current partial soluticor. éxample, in solving a
TSP, the construction process will add one non-visited &iityt time to the current
solution. The choice of the new solution component dependgpoobabilistic rule
that takes into account both the pheromone trail of the corapbat the current
iteration and other problem-specific heuristic informatitn a TSP, the pheromone
trail is associated with the edge connecting the last adidgdrmd the potential new
city, such that edges previously used by other ants are fadodue to an increased
pheromone value. On the other hand, the heuristic infoongsometimes called
theattractivenespwill be proportional to the length of the edge connecting tihro
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cities. Certain parameters are also used in the probabitige to determine the
relative importance of the pheromone trail and the heagrisfiormation. During
the solution construction, individual ants may update therpmone trail on the
edges they visited in a process calledal pheromone update

2. DaemonActionsin this optional step of the ACO algorithm, some problenaefic
action may be required, which cannot be usually performed bkingle ant. For
example, local search may be applied to optimize the set mérg¢ed solutions.
The new optimized solutions are then used to decide whichophene trails to
update.

3. UpdatePheromonesthis is aglobal pheromone updaterocess that is performed
at the end of each iteration, where updating the pheromoluesaepends on the
quality of the generated solutions in the current iteratidhis is usually done by
decreasing the pheromone value for all solutions, in a pocalledevaporation
and increasing the pheromone value of good solutions. Eaéipa is a tool that
ACO uses to explore new areas of the search space and avogltbegpped in local
optima.

ACO has become very popular in solving CO problems. For exanig versatility and
robustness have been demonstrated ih [43] by tailoringgheoach to the TSP, the asym-
metric TSP, the Quadratic Assignment Problem (QAP), andahehop scheduling. It
has also been applied to variants of vehicle routing problgny. [39] and [90]). The idea
of ‘attractiveness’ and ‘pheromone trails’ were also explbwithin other meta-heuristic
techniques. For example, in the crossover operator useti3&] for solving the 1-PDP.
For further information about the various types of Ant systeand their applications, the
reader is referred to the book by Dorigo and Stitzle [44].

2.3.5 Tabu Search (TS)

Tabu search is another popular search technigue proposétblsgr in 1977([59]. Since
then, it has been widely used for solving CO problems. Itsenederived from the word
‘taboo’ meaning forbidden or restricted. TS, like SA, alko¥or exploring the search
space ‘intelligently’ in an attempt to escape the trap o&laptima. Nevertheless, there
are three main differences between TS and SA. Firstly, ai8ik, TS only accepts moves
within the vicinity of the current solution that improve thbjective function. Secondly,
TS always searches for the best solution in the current beigtmood before applying
the replacement criterion. Thirdly, the most distingumghfeature of TS is the use of
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a short term memory calledtabu list in which moves that have been recently visited
during the search are recorded. Moves in the tabu list arsidered prohibited by the
search and cannot be visited again for a certain numberrafibt@s. The idea is to avoid
the problem ofcycling meaning that the search may be trapped within the boursdarie
of a certain neighbourhood region, oscillating among sohstthat have been previously
visited, as illustrated in Figute 2.110. By prohibiting ratlg visited moves, the algorithm

is forced to explore new areas of the search space in an dtteragcape local optima.

F(x)

X

Figure 2.10: The problem of cycling.

The size of the tabu list is usually fixed, such that some dbd taoves are removed to
allow for recording new moves recently visited, and the tdarethat a move is declared
tabu is called itgabu tenure Hence, the structure of the neighbourhood being searched
varies dynamically from one iteration to another. Howewaérays restricting the search

to non-tabu moves may prevent some promising search amashieing explored. To
avoid this problem, TS often makes use ofaapiration criterig which allow overriding

the tabu status of some moves that look attractive from akqearspective. For example,

an aspiration criterion may override the tabu status of ayngenerated solution, if its
objective value is better than the best solution found so far

To determine the tabu status of certain solutions, it is comin tabu search to identify
particular solution features or neighbourhood moves asgéaimable’. Accordingly, a
newly generated solution holding such features will be w@red tabu. Similarly, some
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previously identified tabu moves may be prohibited durindaie stages of the search.
Algorithm[Z.3 shows the main steps of TS for a cost minim@aproblem.

Algorithm 2.5: The Tabu Search (TS) Algorithm.

1: Initialize an empty Tabu List’

2: Generate an initial solution

3: Letz* «— x {z* is the best so far solution}

4: repeat

5. Generate a subsgtof solutions inN(z) { N (x) is the current neighbourhood of

6:  Select the best neighbourhood maves S, wheref(z') < f(x)
7. if (f(2') < f(z*)) then
8: x* « 2/ {aspiration condition: if current solution improves bestfar, accept it even if
it is in the tabu list}
9: x « 2’ {update current solution}
10: T « T + 2’ {update tabu list}
11:  else
12: if (+/ € N(z)\T)then
13: x « x’ {update current solution if the new solution is not tabu}
14: if (f(2') < f(z*))then
15: z* « 2/ {update the best so far solution if the new solution is batteyuality}
16: T « T + 2’ {update tabu list}

17: until (Done){stopping condition is reached}
18: Return solutionc*

It is also sometimes fruitful in TS to make use of iatensificationand/or adiversifica-
tion mechanism. Intensification tries to enhance the searcmdrgood solutions, while
diversification tries to force the algorithm to explore nesaich areas, in order to escape
local optima. For example, intensification can be perforimedncouraging solutions that
have some common features with the current solution. Onttier dand, diversification
may be enforced by applying a penalty in the objective funmgtiat some stage of the
search, to solutions that are close to the presentioné [156].

Some variations of TS also exist in the literature, for exeniyobabilistic TSassigns

a probability to neighbourhood moves, such that some #iteamoves that lower the
solution cost are given a higher probability, while moveattresult in a repetition of
some previous state are given a lower probability [63]. AlsReactive TSvas proposed
by Battiti and Tecchiolli[[8] in which the size of the tabutlis adapted dynamically during
the search, according to the frequency of repeated moves.

TS has been extensively applied to many CO problems. Forgheaihhas been applied
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to scheduling in manufacturing systems|in [113], to unifaraph partitioning in[[36],
to the Quadratic Assignment Problem (QAP) in_[140]. In addit it was applied to
many variants of vehicle routing problems, for example 291 [100], [112], [143] and
[99]. For more details about some variations and applioataf tabu search, the reader is

referred to[[62] and [55].

2.3.6 Variable Neighbourhood Search (VNS)

Variable Neighbourhood Search (VNS) is a relatively newaxteturistic that has been
suggested by Hansen and Mlader@awi [69] and [70]. The main idea is based on explo-
ring the search space by gradually increasing the neighloodrsize, within which a new
solution is generated, until a certain stopping conditreached. In addition, whenever
a new solution is generated in the current neighbourhoat;a search is applied to this
solution to optimize it before the replacement decisionridartaken. The basic VNS
algorithm, as described ih [70], is shown in Algorithm]2.6.

Algorithm 2.6: The Variable Neighbourhood Search (VNS) Algrithm [70] .

1: Initialization: Select the set of neighbourhood structurés (¢ = 1, ...kq.), that will be
used in the search
Generate an initial solution
repeat
k—1
while (k < kpaz) do
Shaking Generate a point’ at random from thé&*" neighbourhood of (2’ € Ny(z))

7: Local Search Apply some local search method wiih as initial solution; denote with
x' the so-obtained local optimum
8: Move or not if the local optimumz” is better than the incumbent, move thére— z”),
and continue the search wiff (k < 1); otherwise set « k + 1
9: until (Done){stopping condition is reached}
10: Return solution:

In the above VNS algorithm, the neighbourhood gizecreases from to a certain maxi-

mum valuek,,... The most important step is tHghaking step in which a new point
(solution) is generated within the current neighbourhd@dr). It is crucial to choose a
shaking procedure that will allow enough perturbation efgblution, while preserving, at
the same time, the most favourable solution features witiohld be utilized in obtaining
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a near optimum solution as the search progresses. For exaimgolving the TSP, sha-
king my be performed by displacing or inverting a sequenck dfies in each iteration,
i.e., the number of cities to be displaced is the variablgmsdurhood size that gradually
increases from one iteration to the next. On the other hdmedptal searchstep in the
VNS algorithm intensifies the search to obtain a local optmwhich may replace the
current solution. For example, in a TSP a 2-Opt improvemeutistic may be applied as
a local improvement method (see Secfiond 3.4 for more dethidsit the 2-Opt heuristic).

The basic VNS procedure is a descent algorithm with a firse@ence criterion. Ho-
wever, the algorithm can be easily changed to a descenttgaaeedure, similar to SA,
by accepting bad moves with a certain probability in $em8\e or noy of Algorithm
[2.8. Also, thefirst improvementriterion adopted by the basic VNS in the same step,
may be changed to laest improvemeniy selecting the neighbourhoad, which yields
the best improvement, among &J},.. neighbourhoods. Other variations include starting
the neighbourhood size from a certain valyg, rather than, and varying the step size,
such that increasing the neighbourhood size allows jumfas towvay regions of the space

[70].

Another important variant of the basic VNS algorithm, cdlMariable Neighbourhood
Descent (VND), was also suggested by Hanseh ih [70]. Theig®aapply a change of
neighbourhood size within the local search as well. Thesstéghe VND algorithm as
described in[[70] are shown in Algoritnm 2.7.

Algorithm 2.7: The Variable Neighbourhood Descent (VND) Agorithm [70] .

1: Initialization: Select the set of neighbourhood structurés (k = 1, ...knae), that will be
used in the local search
Generate an initial solution
repeat
Setk — 1
while (k < kjpqz) do
Exploration of the neighbourhood Find the best neighbour’ of z (' € Ny (z))
Move or not if 2’ is better than:, set(z «— 2'); otherwise sekt — k + 1.
until (Done){no further improvement is obtained}

© ©o N o gk~ wN

Return solutionz

The VNS meta-heuristic offers many attractive featureshlhse encouraged researchers
to use it for CO problems. First, the algorithm is simple yemsunderstand and imple-
ment, and, to a large extent, parameter-independent. 8eae@ti-known neighbourhood
moves and local search methods can be easily integratederasgays and applied wi-
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thin the VNS framework. Third, it is a robust technique thah de used in a variety of
problem types with almost no modification to the basic strrecof the algorithm. Fi-
nally, it can be easily hybridized with other heuristic andtazheuristic approaches to
solve hard optimization problems. In fact, VNS has been esgfolly used in solving
many well-known CO problems. For example, it has been agpbethe TSP and the
facility location problem in[[70], and to the graph coloripgoblem in [6]. It has also
been extensively applied to vehicle routing problems, faneple in [19], [119], [[118]
and [73]. For more details about advances in VNS and its egidns, the reader is re-
ferred to the recent work by Hansehal. [71]. As previously mentioned, our research
applied the VNS approach, hybridized with SA, in solving 1hBDP, as will be explained
in detail in Chaptelr10.

2.4 Chapter Summary

Conventional OR techniques may not be sufficient for solzaigplex optimization pro-
blems, which model a large number of decision making straseg real-world applica-
tions. Heuristic and meta-heuristic techniques, whichaligyerform well in most prac-
tical situations, have become increasingly popular amesgarchers in the optimization
field.

In this chapter we introduced combinatorial optimizatioolgems and the theory of al-
gorithm and complexity analysis. We then briefly highlight®mme exact algorithms that
can be used to solve these problems to optimality, for lichgeoblem sizes only. For
more practical applications, though, a heuristic or a nmetiaristic approach is usually the
preferred option. We reviewed in this chapter some imporntagta-heuristic techniques
like Local Search, Simulated Annealing, Genetic AlgorithAnt Colony Optimization,
Tabu Search, and Variable Neighbourhood Search.

In the next chapter, we will introduce an important class &f @roblems, which is the
class of vehicle routing and scheduling. A particular vatraf vehicle routing problems,
pickup and delivery problems, is introduced in Chaptéd 4. Since pickup and delivery
problems are the main theme of our research, our invesiigatisome selected problems
from this category continues in Chaptgls 5tb 10.
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Chapter 3

Vehicle Routing Problems: A Literature
Review

Solving the Vehicle Routing Problem (VRP) and its relatedaras is an important field
in the area of Operations Research (OR), which has attracgeowing interest in recent
years. Effective decision support tools that can be adoiptéapistic planning are cur-
rently in great demand, since they can lead to a substamtslreduction and efficient
resource consumption. In addition, they can help reduced¢lative environmental im-
pacts of transportation. An European Commission White P@Apstates:

A modern transport system must be sustainable from an edorasmd social as well

as an environmental viewpoint. Plans for the future of tlamgport sector must
take account of its economic importance. Total expendituns to some EUR 1000
billion, which is more than 10% of gross domestic product.e Bector employs

more than 10 million people. It involves infrastructure dadhnologies whose cost
to society is such that there must be no errors of judgment.

The use of automated route planning and scheduling canddagte savings in transpor-
tation costs, typically ranging from 5% to 20% [147], whidtosld contribute to boosting
the overall economic system. This great potential, togetiith the advancement in tech-
nological and computational powers in the last three des;ddes encouraged researchers
to experiment with diverse algorithms and address diffeapplications, in order to meet
the increase in demand for effective vehicle routing supfmmnis. This indeed resulted
in a large increase in the literature dealing with the VRPBgesglly given that its theme
encompasses several intertwined disciplines, such astgicieomputing, operations re-
search, and business and management [48].

The rest of this chapter is organized as follows: SediiohgB/&s an idea about the dif-
ferent types of vehicle routing problems existing in theriture and highlights the diver-
sity of published research in this area. Sedtioh 3.2 briefcdbes one particular VRP va-
riant that is of interest to our research: the Vehicle RauBnoblem with Time Windows
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(VRPTW). Sectiori 313 emphasizes heuristic approachesésslution construction of
the VRPTW, while Sectioh 3/4 describes some popular salutiprovement heuristics.
Sectior 3.6 then briefly summarizes some meta-heuristarigthgns that were applied to
the VRPTW. Finally, sectioh 3.6 concludes this chapter wighort summary.

3.1 Vehicle Routing Problems (VRPS)

VRPs generally involve problems that deal with the trantgimm of goods or people bet-
ween depots and customers, where the objective is to desigptemum schedule for one
or more vehicles to service the clients with minimum possdperational cost and maxi-
mum customer satisfaction. For example, the routing anddiding plan may try to mi-
nimize the number of vehicles used, the total distance ledyand the labour force used.
At the same time, it may try to maximize orders and volumesised per unit distance.
Moreover, for practical applicability of the problem, a nioen of constraints are usually
added to the basic model. These may include respecting gaeita of the vehicle, ap-
plying a certain visiting order, or adhering to preferredsgee times for clients and to the
maximum working hours of drivers. Other practical considi®ns include service types
for customers (delivery and/or collection), number of degone/two/multiple), types of
operating vehicles (homogeneous/heterogeneous), slavailability (fixed/variable start
times), and whether the information concerning routingiesgs is known in advance or
revealed in real-time.

As a generalization of the famous TSP, the VRP id\@R-hard problem [54] [147]. This
fact, together with the above mentioned constraints anctiped considerations, add to
the difficulty of handling the different variants of vehicleuting problems, and contribute
to the existence of a wealth of models and algorithms thdtwliga this problem.

Given the large amount of published research tackling thi®wa types of VRPS [48],
it becomes increasingly difficult to keep track of all prabléypes and underlying so-
lution methods. However, a general classification of thachamiting and scheduling
problems and their interconnections is shown in Figuré 3o main problem catego-
ries are distinguished in this figure, based on the observé#tiat routing and scheduling
problems are usually represented as graphical networkghich pickup and/or delivery
points are represented as nodes connected with line segeadlad arcs. The first cate-
gory is callednode routing problems, in which the service demand is associated with
nodes (locations). The second category is caledrouting problems, in which the
service demand is associated with the arc connecting twesiodrc routing problems
involve applications like refuse collection and winterttynig, and are often referred to as
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the Chinese Postman Problem (CFP) [66]. The CPP, thougky@ the scope of our
research and will not be addressed further. As Figure 3.itates, the simplest type of
node routing problems is the TSP, in which a single vehicledgiired to visit a number
of nodes, with no restriction on the capacity of the vehitlés required in the TSP that
the trip starts and ends at the same node, without idengjfgiparticular depot point. The
multiple-vehicle variant of the TSP is called the MultipleaVeling Salesman Problem
(MTSP). If the demands of locations are added to the probileencapacity of the vehicle
is restricted, and a depot point is identified, it is usualiyled the Capacitated Vehicle
Routing Problem (CVRP). Requesting two different servigees (pickup and delivery)

in the problem instance, transforms it to the Pickup andv@eji Problem (PDP) category.
In addition, a service time window (TW) may be imposed on ahthe above variants

to allow for more realistic applications of the problem, ihiah the visiting time of each

node is restricted between certain pre-defined bounds.urirelr details about the main
variants of the VRP and both exact and heuristic methodseapfa solving it, the reader

is referred to the book edited by Toth and Vigo [147].

Vehicle Routing
and
Scheduling

\ Unlimited Vehicle Capacity
Arc Routing Node Routing |

Problems Problems

CPP
Limited Vehicle Capacity
CVRP Mixed Services PDP
Time Windows Time Windows

VRPTW PDPTW

Figure 3.1: Vehicle routing and scheduling problems.
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Recently, Eksioglet al. in 2009 carried out a taxonomic review of the VRP1[48], in
which they demonstrated that the growth in the literatudglipbed from 1955 to 2005 is
almost perfectly exponential, if we eliminate the first tweays of data. Despite this large
increase in published VRP literature, other OR/MS (OperetiResearch/Management
Sience) disciplines have grown at a much higher rate, winditates that research in the
VRP area is probably more sophisticated and requires hidjs skanalysis and design.
The authors classified the characteristics of different ¥R¥hich should help understand
the extent of the available literature and also identifyeptial areas where more research
seems to be needed. Their taxonomy of the VRP research gseiaigpin[[48] is shown
in Figure[3.2.

This taxonomy classifies the VRP literature under five magbegories:

1. Type of Study: which identifies the nature of the study itself, for examplezore-
tical or applied. Some techniques listed under appliedditee include exact and
heuristic methods.

2. Scenario Characteristic: which indicates the problem characteristics and the ope-
rating scenario of the vehicle routing process. For exampieer this category,
staticproblems, in which all requests are determined in advantigecolution pro-
cess, are distinguished frodynamicproblems in which some requests may arrive
later (in real-time). Dynamic problems should account fums probable changes
in the current progressing routing plan. Other problem attaristics identified
here include the type of service (pickup/delivery), andpghecedence and coupling
requirements.

3. Problem Physical Characteristics: which outlines factors that directly affect the
solution, such as number of depots, number of vehicles,ciigpand time win-
dows constraints. This category also distinguishes nodtegnigp problems from arc
routing problems.

4. Information Characteristics: which identifies the nature of information presen-
ted and accessed by the underlying solution methodologlyjsamainly directed
to the study of fuzzy and dynamic routing problems. For examacting under
uncertainty, when certain information (e.g. delays/viehiceakdown) are revealed
during an emergency situation, may fall under this category

5. Data Characteristics: identifies the type of data used to evaluate the solution me-
thod, such as real-world or synthesized data.

lPrecedence means that a pickup location must precede itssponding delivery, while coupling re-
quires that both the pickup and its delivery must be servetth®pame vehicle.
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I Type of Study
Theory

b —

Applied methods
1.2.1.  Exact methods

1.22.  Heuristics
1.2.3.  Simulation

1.24.  Real time solution methods

1.3, Implementation documented
1.4, Survey, review or mefa-research
2. Scenario Characteristics
2.1, Number of stops on route
211, Known (deterministic)
212, Partially known,
partially probabilistic

(=]
(=]

. Load splitting constraint

221 Splitting allowed

222, Splitting not allowed
2.3, Customer service demand quantity
231 Deterministic
232, Stochastic

233, Unknown'

24, Request times of new customers
24.1.  Deterministic
242, Stochastic
243, Unknown

2.5, On site service/waiting times
251, Deterministic
252, Time dependent
253, Vehicle type dependent
254,  Stochastic
255 Unknown

2.6, Time window structure
26.1.  Soft time windows
262, Strict time windows
263 Mixof both

2.7, Time horizon
271, Single period
212, Muli period

28

2.9.

3

3l

3L

33

34

6.

3T

38

Backhauls
28.1.  Nodes request simultaneous

pick ups and deliveries
282, Nodes request either linehaul

or backhaul service, but not both

Node/Arc covering constraints

29.1.  Precedence and coupling constraints

2982, Subset covering constraints
293, Recourse allowed

Problem Physical Characteristics
Transportation network design
311 Directed network
312, Undirected network
Location of addresses (customers)

321, Customers on nodes

322, Arcrouting instances
Geographical location of customers

331, Urban (scattered with a pattern)
332, Rural (randomly scattered)
333 Mixed

Number of points of origin
341 Single origin
342 Multiple origins

. Number of points of loading/unloading

facilities (depot)
351, Single depot
352 Multiple depots
Time window type
36.0. Restriction on customers
362, Resiriction on roads
363, Restriction on depot/hubs
364, Restriction on drivers/vehicle
Number of vehicles
370, Exactly n vehicles
(TSP in this segiment )
372, Upton vehicles
373, Unlimited number of vehicles
Capacity consideration
381, Capacitated vehicles
382, Uncapacitated vehicles

39, Vehicle homogeneity (Capacity)
39.1.  Similar vehicles

392, Load-specific vehicles®
393, Heterogeneous vehicles

394 Custornfr-spf:::ifi::vehicles3
3.10. Travel time

3.10.1. Deterministic

3.10.2. Function dependent

(a function of current time)

3.10.3. Stochastic

3.10.4. Unknown
311 Transportation cost

3111 Travel time dependent

3112, Distance dependent

3.11.3. Vehicle dependent*
3.11.4. Operation dependent
3.11.5. Function of lateness
3116, Implied hazard/risk related
Information Characteristics
4.1, Evolution of information

4.1.1.  Static

412, Partially dynamic
4.2, Quality of information

421, Known (Deterministic)

422, Stochastic

423, Forecast

424, Unknown (Real-time)
4.3, Availability of information

431, Local

432, Global
4.4, Processing of information

441, Centralized

442, Decentralized

Data Characlerislics

5.1, Data Used

5.1.1.  Real world data

512, Synthetic data

513.  Bothreal and synthetic data
5.2. Nodataused

"Unknown refers to the case in which information is revealed in real-time (ie., dynamic and fuzzy studies fall under this category)

*Each vehicle can be used to handle specific types of loads

A customer must be visited by a specific type of vehicle

‘Cost of operating a vehicle is not negligible

Figure 3.2: Taxonomy of the VRP literature [48].
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The above taxonomy gives a general idea about how sophestiead diverse the VRP
literature is. As previously mentioned in the introducttorthis thesis (Chaptéd 1), our
research mainly focuses on one particular variant of vehmliting problems, which are
problems that deal with two types of services simultangopstkup and deliveryPD).
Specifically, we selected two main problems from this catggbe Pickup and Delivery
Problem with Time Windows (PDPTW) and the One-commoditykicand Delivery
Problem (1-PDP), with more emphasis on the first of these twiants. In the next chap-
ter, we will present a brief summary of some important PD [@ols, and give examples
of published research in this field. On the other hand, wedeiote the rest of this chapter
to an important and closely related problem in the litemtwrhich is the Vehicle Routing
Problem with Time Windows (VRPTW). This problem is signifitdao our research, be-
cause it bears similarities to our selected PD problemsyrimg of the constraints involved
and the solution approaches used, as well as the objectieédn. Moreover, it is one of
the most well-studied problems in the vehicle routing field.

As previously mentioned in Chapfér 2, exact algorithms Hhaeé limitations in solving
large scale combinatorial optimization problems. In thhiele routing domain, Hasle
and Kloster[[72] indicate that today’s exact methods camnasistently solve VRP ins-
tances having more than 50-100 customers, which is geyenalall for most realistic
applications. Moreover, given the complexity of the probjet is very unlikely that an
algorithm that solves the problem to optimality in a reasd@dime will be developed
in the near future. Hence, our research mainly investigagasistics and meta-heuristics
as possible solution methods to the problems of interegds [litbrature review will, the-
refore, focus on thapproximationtechniques introduced in Chaptér 2. In other words,
we will highlight selected published research that deatk Weuristic and meta-heuristic
methods only. Information about research that uses exabioug can be found in several
vehicle routing and pickup and delivery problems survews tie are going to mention
throughout this discussion . In this chapter and the nexptelnaa general classification
and overview of the literature is presented, while moreitiedbout previous research par-
ticularly related to the individual problems we tackledIvioié presented in the chapters
dedicated to these problems (i.e., Chadiérs[5to 10).

3.2 The Vehicle Routing Problem with Time Windows
(VRPTW)

The VRPTW is an important problem occurring frequently ansportation systems. The
problem deals with a number of customer requests that mudeak with by a fleet of
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vehicles. All customers are assumed to require the samedfypervice (either pickup
or delivery but not botI"H. Each vehicle route must start and end at a central depot, and
each customer must be visited exactly once. Two main cantdrare strictly enforced
in this problem. The capacity constraint requires that thleicle capacity should not be
exceeded at any time, while the time window (TW) constraaquires that each customer
must be visited during a pre-specified time window interval, if the vehicle reaches
the customer before the beginning of its TW, it should waitiiuhe allowed service
time begins. Similarly, arrival after the deadline of the Théans a violation of problem
constraints. The solution objective is usually hierarahisuch that the minimization
of the number of vehicles used is a primary objective, foddviby minimizing the total
travel distance of the operating fleet, or the total schedutation. Figuré_3I3 shows a
representation of a small instance of the VRPTW, beforeisolit (Figure[3.3(d)) and

after solution (Figurg 3.3(p)).

(&) VRPTW - before solution (b) VRPTW - after solution

Figure 3.3: The vehicle routing problem with time windows.

The VRPTW is one of the most well-studied problems in the elehiouting research.
Both exact and heuristic methods have been widely applieditang this problem. In our
current literature summary, we mostly base our review otpart survey of the VRPTW
by Braysy and Gendreau [20] anid [21]. As previously mentiio@r investigation of the
problem focuses on heuristic and meta-heuristic solutiethods, since exact methods
are only limited to small problem sizes. Up-to-date exagbathms were only capable of
solving some of Solomon’s benchmark instances (develap§t#il]) of 100 customers

2In the current discussion, we use the tereguestsandcustomersnterchangeably to refer to the set of
nodes to be visited. Nevertheless, a distinction betweetwhb terms will be introduced within the context
of the PDPTW in Chaptefd 5 [ 8.
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to optimality. Moreover, most of the solved instances aatterized by having a short
schedule horizon (a short TW width). The remaining (unsdbjvastances have a long
schedule horizon, and are much harder for exact algoritbrsslve. For further details

about some important exact algorithms in the VRPTW litemtthe reader is refereed to
Cordeatet al. [28].

Solving the VRPTW generally requires two types of decisidi)stheassignmenor the
grouping decision, which means to assign to each vehicle a subsetd#fsnivom the
customers set, and 2) tlmeuting and schedulinglecision which involves generating a
minimum cost route for each vehicle to visit its assignediesgs, such that the generated
route respects the capacity and TW constraints. Itis ofteseved that for vehicle routing
problems of this sort, the assignment decision is usuallgnofe importance than the
routing and the scheduling decision, in determining thel faadution quality [137]. In
addition, the solution process often consists of two phas®ation constructionin which
one or more solutions for the problem is generated, soidtion improvemenin which
the initial solution is improved using a heuristic or a mb&auristic approach. Both phases
are discussed in the following two sections.

3.3 Solution Construction for the VRPTW

Solution construction refers to the creation of a set ofeedibr the vehicles by selecting
nodes (customers) and inserting them in one of the partiaksoalready created, or in
a new route. The decision to select a particular node fortioseis usually based on a
cost-minimizatiorcriterion, and requires that the insertion of the node inlected route
does not cause violations of problem constraints. Two nygied of solution construction
existin the VRPTW literaturesequential construction which builds routes one after the
other, ancparallel construction which builds several routes at the same time. Sequential
construction does not attempt to allocate an additionaiclelinless no more requests
can be ‘feasibly’ added to the current vehicle. A paralleistouction, on the other hand,
initially pre-specifies the number of vehicles that couldused, but more vehicles can
be added as needed if the initial estimate of the number athshdoes not serve all
requests without violating the constraints of the probléiigure[3.4 demonstrates these
two variants.
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Figure 3.4: Solution Construction.

Several famous construction heuristic are described byrsah in [141]. These are the
savings heuristicghetime oriented nearest neighbour heuristieeinsertion heuristics
and thetime oriented sweep heuristithese heuristics are briefly explained below.

3.3.1 Savings Heuristics

This method is based on one of the most successful constnueguristics for the VRP,
the savings heuristiproposed by Clarke and Wright [26]. The idea is to initialssen
each customer individually to one vehicle. Thus, an initeicle route will only consist
of a trip from the depot to the customer and then back to thetdépwe have two such
routes, one serving customeérsnd another serving customgrcombining the two routes
such that the new route will service battand j will result in a saving of service cost
Sij = cio + co; — ¢;j. This ideais illustrated in Figufe 3.5.

The parallel savings construction algorithm for the VRPTW can be summedrias fol-
lows:

1. Step 1: compute saving,; for every two customergsandj, and sort them from
largest to smallest;

2. Step 2: take savingS;; from top of the saving list. Search for a route containing

(0,7) and another containingj, 0). If such routes exist, join them to form route
(0,1,7,0).

Solomon in [141] adapted the Clarke and Wright savings B#arto the VRPTW by
taking the route orientation into account, as shown in FegiB and Step 2 above. In
addition the algorithm must check the capacity and time wméeasibility at every step
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Figure 3.5: The savings heuristic.

in the heuristic proce& A limit on the waiting time is also imposed when routes are
joined.

A sequentialersion of the savings heuristic will consider one route aitree, and then
implement the best saving that can be achieved if anothée isyoined with the current
route. The sequential savings heuristic can be briefly desitas follows:

1. Step 1: compute saving,; for every two customersandj, and sort them from
largest to smallest;

2. Step 2: consider the current rout®, ¢, ..., 7,0). Find routes containingk, 0) and
(0,1) that have the best savingg, and.S;; in the saving list, and select the best
one among them for joining with the current route. If no moagisgs can be
implemented for the current route, move to the next route.

3.3.2 Time Oriented Nearest Neighbour Heuristic

This heuristic is ssequential constructioprocess that starts by initializing the current
route with the depot. Then the customer closest to the depterms of a certain cost
measure, is inserted next in the route. Subsequently, the custooiesest’ to the last
added customer will be inserted next, if its insertion cause constraint violation. If

3Solomon also proposed an important heuristic for speetiad W feasibility checking called thgush
forward (PF) heuristic, which is based on calculating the extra time adeg in the schedule due to the
insertion of the new node in the route. For more derails[sé#][1
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all remaining un-routed customers cannot be feasibly teden the current route, a new
route is allocated and the process is repeated.

The cost functiore used by Solomon i [141] to determine the ‘closeness’ betvie®
customers, is based on baieographicabndtemporalseparation between the two nodes.
This measure is described by = w; x d;; +wq X T;; + w3 x v;j, Whered;; is the distance
between the two customErSBj is the time difference between the completion of the
service at and the beginning of the servicejaandv;; is the urgency of visiting customer
j, which is calculated as the time remaining until the deadtifiservicing customer is
reached. The weights;, w, andws satisfy: w; + ws + w3 = 1.0, andw; > 0, wy > 0
andws > 0.

3.3.3 Insertion Heuristics
This is another class afequential constructioneuristics described by Solomon in [141],
and is based on expanding the current route by inserting n+reuted customer at each

iteration. The general idea is demonstrated in Figure 3n@revthe un-routed customer
(left) was inserted between customéemnd; (right) in the progressing route.

®AV

Figure 3.6: The insertion heuristic.

More specifically, the insertion heuristic starts by iditisg the route under consideration
with aseedcustomer. Other customers are then selected for additithretourrent route,

4One simplifying assumption that is usually made in the VR#P& the speed of the vehicle is constant
(often = 1). If this assumption is made, the distance sejparatind; (d;;) and the travel time between
andj (t;;) may be used interchangeably.
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based on two cost measures to be defined shortly. When no men@uted customers
can be ‘feasibly’ inserted in the current route, the prodesepeated for a new route.
The seed customer could be selected as the customer fdrirasthe depot, or as the
customer having the earliest allowed starting service.time

Three insertion heuristics have been defined by Solomomrdbais the criteria used for
selecting an un-routed customer to be inserted next in thrermroute. The first and most
successful insertion heuristic (callddinsertion) proceeds as follows, after initializing the
route with a seed customer:

1. Assume the current partial route creatediisi, is, ...i,,), Whereiy andi,, re-
present the depot;

2. For each un-routed customerfind its best feasible insertion position in the route,
between two adjacent customémnd;. The best insertion position is the one that
minimizeghe first cost measure, which we will call(u). ¢;(u) is a measure that
is calculated based on both tbetratravel distance and time delay that happens in
the route, due to the insertion of

3. Find the best customer* to be inserted in the route, wheté is the customer
having themaximunvalue of a second measure, which we will eallu). c3(u) is
calculated based on both(u) (the first measure) and the distance from the depot.

The second insertion heuris{ii2) differs from I1 in the definition of the measurg(u),
since it is now a combined measure of tb&l route distance and time resulting after the
insertion ofu (rather than thextradistance and time, as in 11). On the other hand, the
third sequential insertion heurist(t8) differs from I1 in the definition of; (u), since the
urgency of servicing the new customeis now also considered in this meastre

These insertion heuristics are in fact a generalizatiomeftime oriented nearest neigh-
bour heuristic, described in Sectibn 313.2, since theyaftor inserting a new customer
between any two nodes in the route, rather than only at the el are sometimes refer-
red to in the literature as tteheapest insertioheuristics, with 11 being the most popular
among them.

A parallel constructiorheuristic for the VRPTW was proposed by Potvin and Rousseau
[121], based on the 11 heuristic described above. In thisisitiseveral routes are first
initialized with seed customers. To determine the numbaenitil routes, the authors

SOur presentation of Solomon'’s insertion techniques anddsemeasures adopted within these heuris-
tics is simplified to a large extent, in order to fit the genexadrview intended here. For further information,
the reader is referred to [141] and [20].
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first ran the 11 sequential construction algorithm. Furtloertes are later added as needed
if the initial number of routes does not yield a feasible siolu After determining the
best (feasible and least cost) insertion position for eachouted customer, the customer
whose insertion in the solution causes the least increabe ioverall cost is selected next
for insertion. Besides a weighted sum of the extra travahdise and time delay used
by Solomon to determine the cost of the insertion, this jparakuristic adds a regret
measure over all routes. The regret measure is a type ofdluedd’ estimate of the cost
of not inserting the customer immediately in its currenttiveste, i.e., if its insertion was
postponed to be carried out later in a different route.

Although these construction algorithms have mainly beesigihed for the VRPTW, re-
searchers have also adapted them to different problenmtsysuch as the PDPTW. More
discussion about solution construction heuristics froeng@rspective of the PDPTW will
be presented in Chapfér 7.

3.3.4 Time Oriented Sweep Heuristic

In this heuristic Solomor [141] suggests a two phase apprtaconstruct a VRPTW
solution. The first phase iscdustering phasgn which customers are assigned to vehicles
in a way similar to the originadweep heuristisuggested by Gillett and Miller [58]. In
this heuristic, a centre of gravity is computed based on tiggeabetween the depot and
a randomly selected customer. Then, the remaining custarerassigned to vehicles
according to the polar angle separating their locationsiftibe centre of gravity. After
the assignment phase, tseheduling phasstarts by inserting the selected customers
in their respective routes, such that the insertion protmksvs Solomon’s 11 insertion
heuristic, explained in Sectidn 3.8.3.

3.4 Solution Improvement for the VRPTW

Solution improvement within the context of the VRPTW refeyshe gradual and repea-
ted modification of the initial solution until a certain sfppg condition is satisfied. The
initial solution is usually a feasible solution, obtainesing a construction algorithm, such
as the ones described in the previous section. One must dfiee & neighbourhood move
that can be applied to the initial/current solution to obtnew solution within its neigh-
bourhood, i.e., the new solution only differs in a few atitids from the current solution.
For example, the new solution could be obtained by modifwome edges connecting
customers in the current solution. Afterwards, the gererablution is evaluated based
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on the objective function, and may replace the previoustwiuf it is smaller in cost.
Nevertheless, two main acceptance criteria are usuallgtadan this context. Thérst
acceptanceriterion selects the first solution found in the neighbaarh of the current
solution that improves the objective function. On the otieand, thebest acceptancexa-
mines all solutions in the neighbourhood of the currenttsmhy and selects the best one
among them.

The above process is often referred tdasal search and usually results in a local opti-
mum that may be very far from the optimal solution. In additithe quality of the local
optimum depends heavily on the quality of the initial saati Within the vehicle rou-
ting literature,edge exchangesre the most popular solution improvement method, first
described by Lin[[103] for the TSP.

Edge exchanges are applied to one route in the current@o)aind depend on removing a
numberk of edges from the current route, and replacing them withleeratet ofc edges.
Thus, the process is often callégexchange. A route that cannot be further improved
by a k-exchange is called &-optimal. Performing all possible-exchanges on a route
requiresO(n*) time. Thus, moves beyond 2 or 3 exchanges are very time cangum
The 2-exchange move is illustrated in Figlre 3.7.

Figure 3.7: 2-exchange move.

Several other improvement methods have been describedddRPTW, a few of them
are modifications to the basic edge-exchange moves. Wenwgfljomention some of the
most important methods, without going into details, sinaestof them are beyond the
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scope of our research.

Potvin and Rousseal [122] introduce a modification to thep2Heuristic of [103], called
the2-Opt* exchange heuristic. 2-Opt* works on two different routediie 2-Opt which
exchanges edges belonging to 8@meroute). 2-Opt* tries to combine the two routes
without changing the orientation of the tours, by appendimg last customers of the
second route after the first customers of the first route. Alsd114] modified the 3-Opt
operator of[[108] and introduced ti@@r-Opt operator for the TSP. In this operator, three
edges in the original tour are replaced by three new onesultitthanging the orientation
of the tour.

Inter-route operators for the VRP were introduced by Saestzh [136] and used by Pos-
ser and Shaw [123] for the VRPTW. These areréocate exchangeandcrossopera-
tors. The relocate operator moves a customer from one rowtadther. The exchange
swaps two visits in different routes and the cross is sintidathe 2-Opt* proposed in
[122]. Other neighbourhood operators are ¥hexchangeof Osman[[115], th&€ROSS-
exchangeof Taillard et al. [143], theGENI-exchangeof Gendreatet al. [56], ejection
chainsof Glover [60] [61] andcyclic k-transfersof Thompson and Psaratftis [146].

In addition, other improvement heuristics include ltlaege Neighbourhood Search (LNS)
of Shaw [139]. This algorithm removes a large number of austs from their current
routes, and re-schedules them at optimal cost. The remastdroers could be selected at
random, or based on some relatedness measure that takasdotmt customers demands
or starting times. Schrimpf[138] used a similar approaath eadls itruin and recreate
Finally, Braysy [18] introduces anodified ejection chainapproach that also considers
re-ordering of the routes. For the interested reader, met&ld and illustrations of the
different types of solution improvement heuristics arespreed in[[20].

Similar to solution construction approaches, solutionnowpment methods have also
been adapted and applied to PD problems. Some examplesiodpipdication to these
problems will be presented in the upcoming chapters, whiawea work to our selected
problems is investigated.

3.5 Meta-heuristics for the VRPTW

Since our research is particularly focused on meta-héutesthniques, we highlight in
this section some papers that use meta-heuristic appreé&mhthe VRPTW, and explain
briefly some important common features among them. Tables@rimarizes research
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that uses Tabu Search (TS), Simulated Annealing (SA), AldrigoOptimization (ACO),
Variable Neighbourhood Search (VNS), and Guided Local Se@BLS).

As Table[3.1 indicates, most meta-heuristic techniqued$yaggme cheapest insertion
method for the construction of the initial solution, withl&mon’s insertion being the
most popular among them. On the other hand, solution impnewt is usually per-
formed using well-known neighbourhood moves like 2-OpOf2*, 3-Opt, Or-Opt,\-
interchange...etc. To accelerate the optimization, tlaeckeis sometimes limited to
neighbourhoods having particular features. For exampl¢3] only moves involving
arcs close in distance are allowed, while the approach_ih ¢288 considers selected
routes and selected customers for merging during the salabnstruction process.

Some approaches allow infeasibility of solutions (e.g]J2®d penalize the violation in
the objective function. In addition, many algorithms applypecific strategy for reducing
the number of vehicles. For example, the algorithm[in [S53hoges customers from
routes having a small number of nodes and inserts them ih&r obutes, using Or-Opt
exchanges. Also, in[11] a 2-phase approach is applied, ever first phase is an SA
procedure intended to minimize the number of routes, whitesecond phase focuses on
minimizing total distance. On the other hand, the ACC _of [62¢s two colonies, one for
the minimization of the number of vehicles and the other toimize total travel distance.

Different diversification mechanisms have also been agpkéhin the various meta-
heuristics to improve solution quality, so that the aldunitis directed towards exploring
new areas of the search space. For example, in [129] thehsisadiversified using an
adaptive memory, where routes taken from best solutionsfoluring the search are sto-
red. Some of these routes are combined to form solutionsattiadct as new starting
solutions for the TS. Also, in[143] diversification is amgaliby penalizing frequently per-
formed exchanges. On the other hand, the approachlin [2plsddGuided Local Search
(GLS) diversification mechanism that penalizes certaintsmt features, if they are going
to bring the search close to previously visited solutions.

Intensification of the search around best solutions diseolvduring the search have also
often been considered. For instance,[in [101] the SA algarits forced to start from
the current best solution several times, while the ACO_if s global pheromone
updating, to further explore search areas around the blesicsts obtained. Also, in[143]
intensifying the search is done by selecting the best roamesre-ordering customers
within these routes, using Solomon’s I1 insertion.

A post-optimization phase is sometimes added to the badia-hwuristic to further en-
hance best solutions. For example, the approach in [12%pnoes a post-optimization
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using an exact set-partitioning algorithm on routes oletdifrom the adaptive memory.
Also, in [143] the post-optimization technique bf [56] ispdipd to each route of the final
solution obtained.

In many cases, hybridization of more than one meta-hegaitisthnique is adopted. For
example, in[[101] a tabu-embedded SA is used. Alsol_in [26]ahnealing process is
enhanced using a varying size tabu-list, and the authofslinise both SA and LNS.

To complete our review of meta-heuristic techniques forMRPTW, Tabld 3.2 summa-
rizes some Genetic Algorithm (GA) approaches that have beefied to this problem.
Almost all of these techniques hybridize GAs with some otieuristic, local search, or
another meta-heuristic approach for solution constradiuod/or solution improvement.

Solution representation is usually basedrdrger representatigmather than the classical
bit string encoding. Thus, genetic operators are diregpfiad to problem solutions. The
initial population is often created randomly, or by adagtsome well known construction
methods. For example, ih [144], customers are grouped ralydand then the cheapest
insertion method of [65] is used for routing each group otcoers.

The fitness function is usually based on solution cost, nember of routes, total dis-
tance and total duration. However, since some approacl®s ablations of problem
constraints, the fitness function should take this into aotoFor example, in [16], the
fitness considers the number of un-serviced customers infaeasible solution. Also, in
[15] a penalty is added in the objective function to violatedstraints. On the other hand,
the selection scheme often applied is roulette-wheel sefecHowever, other selection
methods have also been used. For instance, a ranking scheised in[[120].

Regarding recombination, most of the GA techniques appdgigftized crossover opera-
tors, since traditional genetic operators do not usuallihtVRPTW. For example, the
authors in[[120] propose a Sequence-Based Crossover (SBXa &koute-Based Cros-
sover (RBX), while the GA in[[16] applies special crossovpemtors that depend on a
global precedence relationship among genes, such as thaabsor time windows orde-
ring. On the other hand, mutation is often based on tradititotal search operators like
2-Opt, 2-Opt*, Or-Opt and LNS. In addition, mutation is sdmes applied to reduce the
number of routes in the solution, as in [120] and [15].

To sum up, meta-heuristic approaches to the VRPTW often drableition construction
and improvement methods as described previously. Howéwey, usually obtain bet-
ter quality solutions than algorithms that apply straightfard solution construction and
improvement techniques on their own. This often comes aexipense of greater com-
plexity in implementation and increased computation titheugh. Braysy and Gendreau
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Table 3.1: Meta-heuristics for the VRPTW.
Paper Algorithm Solution Construction Solution Improvement Remarks
Garciaet al. [53] TS Solomon’s insertion 2-Opt*, Or-Opt Parallel implementation - Only allows moves involving actisse in distance
Rochat and Taillard [129] | TS Solomon’s insertion & 2-Opt, relocate Uses adaptive memory containing routes obtained from hmstiens visited
2-Opt during the search, with the purpose of providing new starsiolutions
Taillard et al. [143] TS Solomon’s insertion CROSS Decomposes solutions into subsets of routes, based on agmyke associated
with the centre of gravity of each route - TS applied to eadbsstiseparately
- Diversification by penalizing frequently performed exabes - Intensification
by reordering customers within best routes using 11 inserti
Lauet al. TS Relocate from a holding| Exchange - relocate Allows violation of constraints for a penalty in the objeetifunction - Penalty
list where all customerg parameters adjusted dynamically
are initially stored
Chiang and Russel[T25] | SA The parallel construction A-interchange and-node | Enhancing of the annealing process via a varying size tabu-I
of Russell[[133] interchange
Lietal. Tabu- Insertion and  exten{ Shifting and exchange of SA restarts from current best solution several times - Redoutes by reordering
embedded ded sweep heuristics of customer segments bei- customers and inserting them into other routes - Diversifineby random shifts
SA Solomon ween and within routes and exchange of customer segments
Bent and Van Hentenryck SA and LNS | Not specified 2-Opt, Or-Opt, relocate, 2-phase approach: SA to minimize number of routes and LNSnewize total
[ exchange and 2-Opt* distance
Gambardellet al. [52] ACO Nearest-neighbour heuris- CROSS 2 colonies: first one minimizes number of vehicles, and tlws@ minimizes
tic with probabilistic rules total distance - Both cooperate in updating best solution
Braysy [19] VNS Solomon’s Insertion and Or-Opt exchanges and Reducing number of routes using an ejection-chain phaseon8ieVNS phase
the parallel construction of CROSS-exchanges for improving total distance
Russell[[133]
Braysyet al. [22] Threshold Savings heuristic SPLIT (of routes) - limited | Construction algorithm only considers selected routessetetted customers fo|
accepting CROSS - limited Or-Opt | merging - Initial phase to minimize number of routes, basedimple customer
(TA) & re-insertion - Further improvement using TA & GLS - TA alloweal search
Guided Lo- moves that worsen the objective function, provided it i$wia certain threshold

cal Search
(GLS)

limit - GLS penalizes certain solution based on some saidgatures (e.g. long

b

edges), not considered part of a near-optimal solution




Table 3.2: Genetic Algorithms for the VRPTW.
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Crossover

Mutation

Remarks
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in [21] identified several techniques that seem to give gesdlts when applied within

the different meta-heuristic approaches. Some of theswitgees are: 1) saving best
solutions found during the search, 2) varying the neighbood structure, with the size
of the neighbourhood being typically small, 3) using a mgmstructure to facilitate the

search, 4) applying a specific strategy for reducing the raxrobroutes in the solution

and 5) hybridization of different heuristics and meta-sigs.

3.6 Chapter Summary

Vehicle routing problems have gained considerable atianti the last few decades. This
is mainly due to the increase in complexity in transportaand logistics demands, and
the urgent need for optimizing client services, reducingraponal costs, and limiting the
negative environmental impacts that may result from theoimal planning of vehicles
and their routes. This chapter provided a general clastificaf vehicle routing problems
existing in the literature and highlighted the diversitypodblem types, solution methods,
and the huge amount of published research that deals witiptbblem.

We emphasized in this chapter one particular vehicle rguytioblem that is of interest
to our study, the Vehicle Routing Problem with Time WindoWRPTW). This problem
is closely related to pickup and delivery problems that westigated in our research, in
terms of: problem definition, solution methods, objectiwedtion and constraint handling
approaches. We presented in this chapter a summary of sopwtant heuristic and
meta-heuristic algorithms that have been applied to sglthe VRPTW.

The next chapter is devoted to an overview of pickup and deliproblems, which are
the main focus of our research. We will present a generakifieation and highlight
some published research in the field, as an introduction tore m-depth analysis of our
selected pickup and delivery problems, which will followrthg the course of this thesis.
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Chapter 4

Pickup and Delivery Problems: A
Literature Review

We dedicate this chapter to a literature summary of Pickupelivery (PD) problems,
since they are the main theme of our research. In additi@nethre various types of pi-
ckup and delivery problems and different classificationthe$e problems that distinguish
them from other variants of vehicle routing problems.

PD problems are widely applicable in areas such as: thepoataion of raw materials

from suppliers to factories, Internet-based pickup frotteseand delivery to buyers, food
and beverage collection and delivery, post and parcel elglinewspaper distribution,
and airline and bus scheduling. In addition, an importalstee variant is the dial-a-

ride problem and the handicapped persons’ transportatioere people instead of goods
are transported, giving rise to customer inconvenienagesshat should be taken into
consideration while constructing a solution.

Similar to other vehicle routing problems, pickup and datwproblems have attracted
the attention of researchers in the last few decades. Nwless, published research
tackling these problems is still relatively limited, comgd to other variants of vehicle
routing problems [137]. Several important surveys of picland delivery problems have
appeared in the literature. The oldest ones are by SolomdrDasrosiers[[142], and
Savelsbergh and Sdl [137]. Two other surveys appearedthgderild] and [117]. A
survey dedicated to the dial-a-ride problem isin/[29]. Amestsurvey on the one-to-one
pickup an delivery problems (see Section 4.2 for a desonpti this problem category)
is provided in [31]. In our literature summary, we mostlyyrein the information and
classification provided by Parragial. in 2008 [117], unless otherwise indicated.

Parraghet al. [117] classify the different types of pickup and deliverpblems under
two classesi) problems that deal with the transportation of goods fromRygiccustomers
(also calledbackhaulcustomers) to the depot, and from the depot to delivery custs
(also calledinehaulcustomers). This class is called tehicle Routing Problem with
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Backhauls (VRPB), and2) problems that deal with the transportation of goods/people
between two pickup and delivery points. This class is catteVehicle Routing Pro-
blem with Pickup and Delivery (VRPPD). Section$ 4]1 arld 4.2 describe in detail these
two categories. Sectidn 4.3 briefly highlights some metariktic techniques that have
been applied to pickup and delivery problems. Finally, ®e¢.4 concludes this chapter
and introduces the rest of the thesis.

4.1 The Vehicle Routing Problem with Backhauls (VRPB)

As mentioned above, this class deals with PD problems tkratvie the transportation of
goods from the depot to customers and vice versa. Thesegpnskdre further subdivided
into four categories, generally based on the requiredingstirder of pickups and delive-
ries, and whether a customer can demand both types of seriicall cases the objective
is to minimize the total cost (e.g. total travel distancejhaf routing plan, while adhering
to some pre-specified problem constraints. For examplpeoting the capacity of the
vehicle at all times, and ensuring that the vehicle stédrteeeded, with a load that is equal
to the total load to be delivered.

1. The vehicle Routing Problem with Clustered Backhauls (VRP®): where all
delivery customers must be visited before all pickup custi@anThe single vehicle
special case of the same problem is denote(l3PCB).

2. The Vehicle Routing Problem with Mixed Linehauls and Backhails (VRPMB):
where mixed visiting of pickup and delivery customers aflevadd. The single
vehicle case of the same problem is denotec(‘l[ﬁrPMBﬂ. If the capacity of the
vehicle is greater than or equal to the total sum of demangsc&tip and delivery
customers, the problem coincides with a simple TSP.

3. The Vehicle Routing Problem with Divisible Delivery and Pikup (VRPDDP):
where each customer is both a pickup and a delivery customeaddition, two
visits to the same customer is allowed. The single vehidli@mtof the same pro-
blem is denoted byTSPDDP). A possible scenario in this variant is that the vehicle
could initially visit a few delivery customers to get rid adree of the load it is car-
rying. Afterwards, the vehicle could visit another set o$ttumers to perform both

More details about this problem will be presented in Chd@tesince this problem is closely related to
the One-commodity Pickup and Delivery Problem (1-PDP) #ieahandled in our research. Nevertheless,
we refer to it in our research by the Traveling Salesman Brohwith Pickup and Delivery (TSPPD), the
name most commonly used for this problem in the literaturg. (@10] and[[75]).
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delivery and collection service at each, and finally a caibecservice would be
performed at customers that were initially visited for dety. This type of solution
is called a ‘lasso’ solution. It is also observed [in [117]tthasolution method of
the VRPMB (the second category) can be applied to the VRPDR@Rch custo-
mer demanding both delivery and pickup was modeled by twiicesy, one for the
delivery and another for the pickup. Very little researcls baen applied to this
problem.

4. The Vehicle Routing Problem with Simultaneous Delivery andPickup (VRPSDP):
where each customer demands both a delivery and a pickypribike the VRPDDP
(the third category), onlgnevisit is allowed for each customer. The single vehicle
variant is denoted b{TSPSDP)

We summarize in Table 4.1 the most important features of ifiereint variants of the

VRPB described in this section. In this table, we indicai pinoblem name, whether
the customer is allowed to demand both pickup and delivehgtiaer delivery customers
must all be visited before pickup customers, or otherwisg hixed sequences of visits
is allowed. The table also shows whether more than one sgigiermitted, and if split-

ting the demand of one customer is allowed. Finally, the ¢éatimn of the table gives
examples of selected published papers that dealt with tderiying problem, together
with the solution method adopted. We used the notations:S)Lfdr Large Neighbou-

rhood Search, (TS) for Tabu Search, and (VNS) for VariablggNsourhood Search. If
the paper handled the single vehicle case, we indicate ¥h{S¥) and if it handled the

multiple vehicle case, we indicated this by (MV).

The authors in[[117] concluded from their survey that the Lalgrithm of [132] seems
to be the most flexible and accurate meta-heuristic to disitee & can be applied to seve-
ral problems in the VRPB class, and it provided new best smiatfor several benchmark
instances. On the other hand, they selected the heuridiid iij among the fastest algo-
rithms applied to the VRPB.
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Table 4.1: The Vehicle Routing Problem with Backhauls (VRPB.

Problem Customer Deliveries Mixed Visi- | One Custo-| Demand Example Papers and Solution Methods
both P&D Visited be- | ting mer Visit Splitting
fore Pickups

VRPCB no yes no yes no Gendreaet al. [57]- heuristic (SV)

TSPCB Thangiahet al. [145]- heuristic (MV)
Mladenovt and Hanser [108]- VNS (SV)
Ropke and Pisinger [1832]- LNS (MV)

VRPMB no no yes yes no Mosheiov [110]- heuristic (SV)

TSPMB Nagy and Salhi[111]- heuristic (MV)
Ropke and Pisinger [1832]- LNS (MV)

VRPDDP | yes no yes no yes Hoff and Lgkketangern[77]- TS (SV)

TSPDDP (at most two) Salhi and Nagy([134] - heuristic (MV)

VRPSDP | yes no yes yes no Alshamraniet al. [4]- heuristic (SV)

TSPSDP Nagy and Salhi[111]- heuristic (MV)

Ropke and Pisinger [182]- LNS (MV)
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4.2 The Vehicle Routing Problem with Pickups and Deli-
veries (VRPPD)

This class refers to problems that deal with the transportaif goods/people between a
pickup and a delivery point. Two subclasses can be diststgud in this category:

1. The Pickup and Delivery Vehicle Routing Problem (PDVRP):where pickup and
delivery points are unpaired, and one type of commodityaegferred. Thus, pi-
ckup customers will supply the demands needed by the dglestomers. The
single vehicle variant of this problem is denoted(B\p TSP). The objective func-
tion in this problem category is to minimize the total costlué route(s), without
violating the capacity constraints. It should be noted thatPDTSP is the same as
the1-PDPinvestigated in our research, as explained in detail in @rd® and 0.

2. The Classical Pickup and Delivery Problem (PDP) and the Diah-Ride Pro-
blem (DARP): where a transportation request is associated with bothkapiori-
gin) and a delivery (destination), i.e., customers aregoband the demand of the
pickup is the same as the demand of its associated delivarijkdthe PDP, the
DARP additionally takes customer inconvenience into antotihe single vehicle
cases of these problems are denotedSBYDP and SDARP respectively. The ob-
jective function for these problems usually tries to miraenthe number of vehicles
used (in the multiple-vehicle case) as a primary objecfolgwed by reducing the
overall travel distance or service duration. The final sotushould also adhere
to all underlying problem constraints, such as the vehiafgacity and the visiting
time restrictions. Our research handles the PDP probleim tvét addition of the
time window constraint (denoted BBDPTW) in Chapters 5 andl 6 for its single
vehicle variant (denoted in our research®y-PDPTW), and Chapteris] 7 and 8 for
its multiple vehicle variant (denoted in our researchiy-PDPTW ).
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We provide in Tablé_4]2 a summary of the most important festyrertaining to the
VRPPD. We indicate in this table the subcategory name, vendiie customers are paired
or not, whether a homogeneous commaodity or multiple comtresdare considered, and
whether the problem is primarily associated with the tramsgion of people or goods.
In addition, we highlight the most important constraintatthre usually taken into consi-
deration while handling the problem. These include: 1) trec@dence constraint, in
which a pickup request is required to precede its correspgraklivery, 2) the coupling
constraint, which requires that the pickup and delivery paist be visited by the same
vehicle (in case of the multiple-vehicle variant), 3) theaeity constraint, which ensures
that the load carried by the vehicle at any given time doegroeed its capacity, 4) the
time window constraint, which requires that a customer bédetserved in a pre-specified
time interval, and 5) the maximum ride time constraint, hénsures that when people
are transported, the time they spend in the vehicle doesnex€teed the direct travel time
between their origin and destination. Finally, the tableegiexamples of some published
papers that deal with the problem. Again, we use (SV) for thgle vehicle case and
(MV) for the multiple-vehicle variant. (LNS) refers to a lggr Neighbourhood Search
algorithm, and (ALNS) refers to aAdaptiveversion of LNS, (HC) is a Hill Climbing
approach, (GA) is a Genetic Algorithm, (GGA) is a Groupinghétic Algorithm, (SA) is

a Simulated Annealing algorithm, and (TS) is a Tabu Seargbrahm.

In our opinion, the GA in[[158], the LNS i [12], the ALNS ia [1R and the GGA in
[126] seem to be among the state-of-the-art algorithmseghpd the VRPPD, in terms of
their solution quality and/or robustness or flexibility. Maletails about these approaches
and other important research in the field will be describegtéfollowing chapters, where
we address specific pickup and delivery problems in our reeeaBefore we conclude
our review of pickup and delivery problems, though, we pnésethe next section a brief
summary of some meta-heuristic techniques that have bgeiedpo this problem class.



Table 4.2: The Vehicle Routing Problem with Pickups and Delreries (VRPPD).

75]-

Problem Paired One Type of | Precedence Coupling | Capacity | TW Max Ride | Example Papers and Solution Methods
Custo- Com- Commo- Time
mers modity | dity
PDVRP no yes goods no no yes no no Hernandez-Pérez and Salazar-Gonzélex []
PDTSP heuristic (SV)
Zhaoet al. [158] - GA (SV)
Dror et al. [45]- heuristic (MV)
PDP yes no goods yes yes yes yes no Jih and Hsu[[89]- GA (SV)
SPDP Hosny and Mumford[84] - HC & SA & GA
(SV)
Li and Lim [Z0Q]- TS (MV)
Bent and Van HentenryckT12] - LNS (MV)
Ropke and Pisinger [131] - ALNS (MV)
Hosny and Mumford[80]- GA (MV)
DARP yes yes people yes yes yes yes yes Psaraftis[[124]- heuristic (SV)
SDARP Jawet al. [87]- heuristic (MV)

Baughet al. [9]- SA (MV)
Rekieket al. [126]- GGA (MV)

Jargensent al. [91]- GA (MV)
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4.3 Meta-heuristic Algorithms for Pickup and Delivery
Problems

Similar to all routing and scheduling problems, pickup amediveéry problems have at-
tracted the interest of researchers who deal with metadtgutechniques, since exact
algorithms can only be used for small problem sizes and mageaaseful for large prac-
tical applications. For example, the approachlinl [46], folvig the multiple-vehicle
PDPTW, was only capable of solving problem sizes of up to Saruers using an exact
algorithm. Also, the exact algorithm if_[74], solved PDTS$RBtances of up to 60 cus-
tomers. On the other hand, heuristic and meta-heuristicoaphes are able to solve
problems having several hundreds of nodes, which is commenery day routing and
scheduling demands for some industrial applications. kamgple, Paragon software sys-
tems recently reported, in their October 2009 news%ttbat their optimization software
helped Sainsbury’s to manage its transport requiremevi)\img daily deliveries from
19 distribution centers to 527 supermarkets and 276 snsitiees.

Many heuristic and meta-heuristic techniques that have baecessfully applied to the
VRP have been adapted to fit the PDP variant. Tlable 4.3 surn@esasome meta-heuristic
techniques for pickup and delivery problems. In additioriite notations used for the
meta-heuristic techniques in Tablel4.2, we use (GRASP) @&re@dy Randomized Adap-
tive Search Procedure, and (VND) for a Variable Neighboadhbescent algorithm. On
the other hand, Table 4.4 summarizes some GA research ampackl delivery problems.
It is important to emphasize again that the review presdmeelis just intended as a quick
introduction to the literature that deals with pickup antiviey problems. As previously
mentioned, further investigation of specific work that issgly connected to our research
will be presented in later chapters, when we address ceréaiants of pickup and deli-
very problems.

2http: /7 wwi. par agonr out i ng. conl crs/ asset s/ pdf/ di recti onsi ssue22. pdf
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Table 4.3: Meta-heuristics for Pickup and Delivery Problers.

Paper Problem | Algorithm | Solution Construction Solution Improvement Remarks
Hernandez- PDTSP Hybrid Selecting the next elei 2-Opt and 3-Opt in the VND phase - Move for- Combining two optimization heuristics: 1) GRASP (GreedyRa
Pérez and| (SV) GRASP ment for insertion from a| ward and move backward in a post optimizatipndomized Adaptive Search Procedure), which is based on a 1
Salazar- & VND Restricted Candidate Lisf phase tition of a construction phase and a local search phase, ) \{
Gonzélez (RCL), with a probabilis- (Variable Neighbourhood Descent), which is a variant of NS,
[73] tic element in the choice o where the local optimum found acts as the new starting point|
the next node the local search
Landrieu et al. | PDPTW | TS Simple insertion heuristic | A swap move and an insertion move Two tabu search methods compared: a regular determiniaba
[95] (sv) Search (TS), and a Probabilistic Tabu Search (PTS)
Nanry and | PDPTW | Reactive | Cheapestinsertion Single Paired Insertion (SPI): move all predecgsReactive tabu search - Allows tuning of search parameteis)
Barns [112] (MV) TS sor nodes to better feasible locations, then jnas a short-term memory length, based on an assessmentteflv|si
sert successor nodes in the best possible positjos®lutions during the search
- Swapping Pairs Between Routes (SBR): ex-
change predecessor nodes between vehicles then
successor nodes - Within Route Insertion (WRJ):
re-order nodes within the same route
Li and Lim | PDPTW | Tabu- Modified Solomon’s inser-| PD-Shift: moves a P&D pair from routel tp Main meta-heuristic is a tabu-embedded SA withrestarts, i.e.,
[100] (MV) embedded tion heuristic - Initializes| route2, and moves another pair from route2 tdhe algorithm stops when the number of iterations withoygriva
SA each route with a P&D| routel - PD-Swap: removes a P&D pair fromvement reaches a pre-defined valie To prevent cycling, the SA
pair that satisfies a set of each route, and then reinserts each pair in fheecords the accepted solutions in a tabu list
criteria, based on combit other route - PD-Rearrange: removes and then
ned TW intervals and dis{ reinserts a P&D pair in the same route
tance from the depot
Urban [149] PDPTW | Guided Assigning only one pickup| Removing a selected request from its currenfThe cost function takes into consideration both wage anewenye
(MV) SA and delivery pair to each route and inserting it into another - Exchange [ofrelated traveling and operating costs of the vehicles - Blecton
route. A guided SAis then requests served on different routes - Repositioef neighbourhood move depends on a certain probabilistierion
applied to improve this ini-| ning of a pickup and delivery pair in its samle - Calculated measurements control the selection of custarel
tial solution by trying to| route routes during the generation of the new solution
bundle requests into the
available routes
Cordeau and| DARP TS Assigning requests to vet Moving a request from one route to another Re-insertion of the removed request in its original routtoibid-
Laporte [30] (MV) hicles randomly and inser: den by for a number of iterations - Diversification penalifes

ting source location follo-
wed by destination at the

end of the route

quently occurring moves in the objective function - Intéication
performed by removing all requests from their respectivetas,

and re-inserting them in the best possible positions
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Table 4.4: Genetic Algorithms for Pickup and Delivery Problems.

Paper

Problem

Initial Population

Crossover

Mutation

Remarks

Zhaoet al.

PDTSP
(SV)

Nearest-neighbour constructio

heuristic

h A new pheromone-basedros-
sover - Edges between la
node and potential new nod
that have proved successful |
the past are favoured

3-exchange procedure

—

1)

Initial population is optimized using a 2-Opt move - Ph
romone trails are updated each generation - Offsprin
optimized using a 2-Opt local search.

e_
y is

Jih and Hsu[89]

PDPTW
(SV)

A solution is encoded as a permut
tion of locations

a-Two traditional order-based
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4.4 Chapter Summary

In this chapter, we reviewed an important category in the \iRRature, which deals with
pickup and delivery problems. These problems are gaining atiention every day, due
the continuous need for optimizing routing and scheduliogtsin real-life applications
that require two different service types for clients. Weellyi analyzed basic problem
features and general existing classifications. We alsdibiged some published research
in the field, mainly focusing on heuristic and meta-heuriapproaches.

In the following chapters, we will start discussing the spieproblems that we addressed
in our research. The Pickup and Delivery Problem with Tima&&diwvs (PDPTW) will
be analyzed in detail in Chapténs 5 dnd 6 for its single vehiariant (SV-PDPTW), and
in Chapter$§17 anld 8 for its multiple vehicle variant (MV-PDRY. On the other hand, the
One-commodity Pickup and Delivery problem (1-PDP) will berbughly discussed in
Chapter$ P and 10.
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Chapter 5

The Single Vehicle Pickup and Delivery
Problem with Time Windows:
Introduction and a Genetic Algorithm
Approach

The Single Vehicle Pickup and Delivery Problem with Time dows (SV-PDPTW) is
a frequently encountered problem in public and goods temsystems. However, only
a few researchers seem to have tackled it, possibly due tdifffeulty in managing the
different underlying problem constraints. As previouslgntioned in the introduction to
this thesis (Chaptdr 1), our research concentrates onseqagional issues and neigh-
bourhood moves within a simple meta-heuristic framewort: this problem, we adopt
a solution representation that depends on a duplicate @ydeoth the pickup location
and its corresponding delivery. This simple representatitl guarantee the satisfaction
of the precedence constraint, among the pickup and delparythroughout the search.
We also present intelligent neighbourhood moves, that@ided by the time window, ai-
ming to overcome the difficult timing constraint efficiendpd produce feasible and good
guality solutions in a reasonable amount of time.

This chapter covers two aspects: 1) a detailed analysiseqgribblem and research chal-
lenges and motivations, as well as a summary of some relabekl on the SV-PDPTW
and 2) the initial development of our key ideas using a Gemdgiorithm (GA) as a can-
didate solution methodology. The next chapter presentsrgadson of three different
approaches to the SV-PDPTW: a genetic algorithm approasimalated annealing ap-
proach, and a simple hill climbing heuristic, which all epthe same representation and
neighbourhood move that our initial GA approach adopts. Wik related to the current
chapter, i.e., the initial GA technique, was presented @GECCO’07conference, as a
late breaking paper [79]. Also, the research tackling otteristics and meta-heuristics
applied to the SV-PDPTW, as described in the next chapter pwblished in thdournal
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of heuristicd84].

The rest of this chapter is organized as follows: Sedtiole®dains the problem tackled
in this part of the research and the motivation behind owrcsein of the problem and
the underlying solution approaches. Then, Sedtioh 5.2 dyndefines the SV-PDPTW,
while Section 5.8 provides a brief summary of some relateckvilmm the literature.
Sectior 5.4 highlights the contribution of our research] fiwuses on the solution repre-
sentation and neighbourhood move suggested to faciliedérd) with the SV-PDPTW.
Sectiong 55 presents the details of the proposed GA apptoasolving this problem,
together with the experimental findings of this part of owearch. Finally, Sectidn 5.6
concludes the chapter with our intended future work.

5.1 Problem and Motivation

The Pickup and Delivery Problem with Time Windows (PDPTWausimportant variant

of vehicle routing problems that is likely to assume everageprominence in the fu-

ture. Current concerns over global warming, resource tiepland the social impact of
traffic congestion and pollution, are driving companies,ggament organizations and re-
searchers to improve the efficiency of logistics and diatidn operations. In addition,

the rapid growth in parcel transportation as a result of mvoerce is likely to have an

increasing impact. As previously mentioned in Chapter 4ingmortant related variant

of the PDPTW is the dial-a-ride problem, which is concernéiththe transportation of

people, especially the elderly and the disabled, from tbegins to their destinations,

while minimizing customer inconvenience.

The SV-PDPTW is a special case of the PDPTW dealing with a murob customer
requests that must be satisfied daye vehicle with a known capacity. The route of the
vehicle usually starts and ends at a central depot. A requast be collected from a
pickup location before being dropped off at a correspondielyery location, and every
pickup and delivery location is associated with a specifitetwindow during which it
must be served. If the vehicle arrives earlier than the eggnof the designated time
window interval, it must wait until the requested servigadibegins. All requests must
be served in a way that minimizes the total travel cost of thaicle, without violating
precedence, capacity and time windows constraints [137].

In addition to being a sub-problem in the PDPTW, the SV-PDPIa4 also practical ap-
plications, where small scale companies or individuals oy@grate one vehicle to serve a
set of clients, as for example in a dial-a-ride service. heoapplications, the underlying
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vehicle could be a helicopter or a small ship. Also, in somédipia vehicle applications,
the assignment of requests to vehicles may be restricteaimg £ommodity, vehicle,
driver or client conditions. In such cases, certain recquegist be assigned to a speci-
fic vehicle, making the optimization of a single vehicle ®uecessary for reducing the
overall cost of the logistic operation. Moreover, the asayf the SV-PDPTW is essen-
tial in developing an insight into the more general multip&hicle case, and establishing
comprehensive solution algorithms.

As a constrained version of the TSP, the SV-PDPTW is knowretd'-hard [95], with
the presence of time windows making the problem particplesmplicated. Since exact
algorithms are too slow for large problem sizes, heuristid meta-heuristic approaches
seem to be reasonable alternatives. Several heuristionatedheuristics are potentially
suitable for this problem. Genetic Algorithms (GAs) are Wndor their robustness, pa-
rallelism, and their ability to perform reasonably well orwale variety of problems,
including ordering and grouping problems, as well as higidgstrained problems [64]
[105]. Thus, exploring GAs to solve the SV-PDPTW would seerhé a justified option.

Another alternative meta-heuristic approach that couldwble for this problem is Si-
mulated Annealing (SA), which is analogous to the anneatihgolids. As previously

discussed in Chapter 2, this approach has been widely dgplimany optimization pro-

blems, successfully transforming ‘random’ low quality igadns to stable high quality
optimized solutions. One appealing feature of simulatatealing is that it is very easy
to implement, since it only requires a method for generatingpve in the neighbourhood
of the current solution, and an appropriate annealing sdbed\ third solution alterna-

tive is simple Hill Climbing (HC) that first creates a candelaolution and then iteratively
tries to perturb this solution to improve it.

In our research, we mainly focus on developing a meta-hsuframework for the SV-
PDPTW rather than on a specific algorithmic paradigm. Withancontext of the meta-
heuristic, we employ a problem-specific solution represtgot and guided neighbou-
rhood moves, aiming to overcome and deal efficiently withitaed problem constraints.
Our key ideas were adopted in all three approaches higklighibove, the GA, SA and
HC. In all cases, our view was to design an intelligent andusblsolution approach
that can handle all problem constraints efficiently, whigeging the overall algorithm
as simple as possible, a feature often overlooked in most date solution methodolo-
gies. Ultimately, we aim to obtain feasible and high quasibfutions in an acceptable
amount of time.
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5.2 The SV-PDPTW

Let G = (N, A) be adigraph The node set isV = {n; € N|i = 0,1,2,...,m},
such thatn is an even index. The nodg denotes the depot, and each: = 1,2,...m
denotes a customer location. Itis assumed that a custoreqtigst, k = {1, 2,...m/2}
consists of a pickup and delivery (P&D) pair. We can considé@hout loss of generality,
that the setvt = {n, € N|i = 1,2,...,m/2} represents pickup locations, and the set
N~ ={n; € N|li = (m/2)+1,...,m} represents delivery locations, such that the pickup
locationn; has the corresponding delivery locatiop (., /2). Thus,N = N* U N~ and
|[N*| = |N~| = m/2. Each locatiom; is associated with:

e A customer demandl, such thag; > 0 for a pickup locationg; < 0 for a delivery
location andg; + ¢; = 0 for the same customer’s pickup and delivery locations

(q0 = 0);

e A service times; (so = 0), which is the time needed to load or unload a customer
demand;

e A Time Window (TW)|e;, ;] during which the location must be served, ang e;.

For each pair of nodes n;, n; > atravel timet,;; and/or a travel distancg; are specified.
We assume here a symmetric case, t.€.= t;; andd;; = d;;. In addition, only edges
satisfying the TW are allowed. Thus the arc seflis= {< n;,n; > |n;,n; € N,n; #
nj, to; + s; + ti; < l;}. The vehicle has a limited capacify. The capacity constraint
ensures that the total load carried by the vehicle at anyngivee does not exceed its
capacity. The vehicle’s journey should start and end at gpot while each location is
to be visited exactly once. Thane window constraintequires that a location must be
serviced within the specified TW, i.e., if the vehicle reactie location before the earliest
service time;, it must wait untile;. Theprecedence constraiméquires that each pickup
location must precede the corresponding delivery locatidhe visiting order.

The objective function varies depending on the applicatimngeneral, one or more of
the following objectives are minimized as far as possible total traveling distance,
the total route duration, or the drivers’ total waiting timieigure[5.1 shows aimplified
representation of a small instance of this problem befodeadirer solving it.
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-
I Pickup
(O) Delivery

(a) SV-PDPTW - before solution (b) SV-PDPTW - after solution

Figure 5.1: The single vehicle pickup and delivery problem th time windows.

5.3 Related Work

As indicated above, there are various approaches to hamtiggand delivery problems.
Some approaches aggactand guarantee to solve the problem to optimality, while &he
are approximationsand attempt to find an acceptable solution in a reasonableiamo
of time. For the SV-PDPTW, an exact algorithm is the dynamagpamming approach
of [124]. However, this technique has a time complexity(xfn?3") (wheren is the
number of locations) and for this reason is normally limitedolving small problems of
up to about 10 requests (20 locations). Also, the authoi38hdre able to provide exact
solutions to the single vehicle dial-a-ride problem, witleqgedence, capacity and time
windows constraints, using dynamic programming. Theioatgm uses a set of states
(S,14), such thatS is a subset of nodes from the node set, aigla selected node. State
(S,14) is defined only if there is a feasible route that visits alle®thS and terminates at

To reduce the state space, their dynamic programming #hgotises sophisticated state
elimination criteria, based on the stgt& i). Computational experimentation indicated
that the elimination criteria work best when the time windaave tight and the vehicle
capacity is small, such that narrowing the constraints &irthpproach helped to reduce
the usual exponential running time of dynamic programmma finear running time.
This algorithm can solve instances of up to 40 requests @tilans).

Approximation algorithms, in which a heuristic or a metastic is developed to deal
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with the problem, make it possible to cope with much largstances. Among the heu-
ristics for solving the SV-PDPTW is the one suggested_in.[Z@}is heuristic involves
a 2-phase algorithm. In the initial phase a feasible satutsoconstructed, and in the
second phase this solution is improved. In both phases ablardepth arc exchange
procedure is performed, as a neighbourhood move, in whiemthmber of arcs to be
exchanged is not determined in advance, but calculatednaigadly during the search.
In the route construction phase, the time constraint mayidated as long as the pre-
cedence and capacity constraints are satisfied. In the waprent phase, however, only
feasible solutions are permitted and route duration is aseah objective function. Du-
ring the improvement phase, the feasibility of a tour (imtsiof precedence and capacity)
is verified using a set of global variables and an algorithrtineé complexityO(n?). To
check the feasibility of the time constraint and determhreegromising arc exchanges, a
forward time slack is computed at each node to identify thengesible shift in departure
time that can be introduced without causing violationsmigiwindows for other nodes in
the route. For problem sizes up to 38 customers, a near dpohaion can be reached
by this algorithm in less than 150 seconds. Unfortunatelgcsss is not guaranteed, and
low quality or even infeasible solutions can result, if thplase approach gets trapped
in a poor local optimum. To handle this possible situatibe,duthors present an alterna-
tive approach, which uses SA. This algorithm accepts tinmelaiv violations in the early
stages, but penalizes them more severely as the searclegsegr The SA approach is
able to obtain good quality solutions, albeit with a relalwhigh processing time.

The work reported in [88] also deals with the SV-PDPTW. Thise, however, a hybrid
strategy is proposed which combines an exact method witmetigealgorithm and both
static and dynamic cases are considered. The static casmesshat all requests are
determined in advance of the route construction proceste Wie dynamic case allows
some requests to arrive during the construction of the rotitee approach in this work
consists of three consecutive stages: a pre-planned maddy@mamic programming mo-
dule, and a GA. The pre-planned module arranges requesizrepdres information for
the dynamic programming module. The role of the dynamic gnagning module is to
create a set of sub-routes, which it will eventually passma temporary result pool,
where the GA module will pick them up, installing these urditéd sub-routes to esta-
blish its initial population. In the GA module, a solutionaacoded as a permutation of
locations, and four crossover operators are compared: raditipnal order-based cros-
sover operators, and two merge crossover operators, MXIve{] that use a global
precedence vector to guide the inheritance process, aaieaglin [16] and later in this
chapter. The mutation operator is applied only when theodfig is identical to one of its
parents. Three mutation operators are used: one swaps hes gelected at random, the
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second selects two random sites in the chromosome and es\ities sub-route between
the selected sites, finally the third mutation shuffles theegehat precede a location for
which a violation of constraints is observed. If an infeésgblution, violating the prece-

dence constraint, is generated as a result of any genetiatopethis solution is repaired

by swapping the corresponding pickup and delivery pair. @&kgerimental results on

data sets ranging from 10 to 50 requests indicate the meogsarer operator MX1 ge-

nerally performed better than the other crossover operatsted. The first two mutation
operators also achieved better results than the third rootaperator.

In a more recent work [89], the same authors use similar geogerators to the ones used
in [88], but in the context of a Family Competition Genetiggatithm (FCGA). Again,
an order-based representation is adopted. The idea isotw edich individual of the po-
pulation to play the role of a family father in turn. Anothandomly selected individual
plays the role of mate for the family father. The two indivadisiare combined to produce
an offspring in a regular GA fashion. The selection of thearatd the reproduction is
repeated for a chosen number of iterations to produce ayfarhdffspring. Only the best
offspring in the family survives and is added to a temporamation of champions. The
new generation is chosen from among the best individualstin the original population
and the champions of the families. Comparing the performafthe FCGA and a tradi-
tional GA on data sets created by the authors (ranging frotn 100 requests), the results
indicate that the merge crossover operators MX1 and MX2gélgevorked better in the
context of a traditional GA than a FCGA, possibly due to premeaconvergence in the
latter case. On the other hand, a traditional uniform olmered crossover (UOX) worked
better within the framework of a FCGA than a traditional GAspibly due to its uniform,
non greedy, nature of exploring the search space.

The authors in[[95] present a heuristic based on tabu searshlte the SV-PDPTW.
The algorithm first creates a route respecting precedersteapacity constraints, using
a simple insertion heuristic. The generated route may leasgilble in terms of the time
window constraint, though. Then, two tabu search methcgls@npared in transforming
the initial route to a feasible route, with minimum total tdisce. The two tabu search
methods investigated are a regular deterministic Tabuc86@IS), and a Probabilistic
Tabu Search (PTS), which is based on the same principlesagetRrministic one with
the addition of a buffered memory of potential moves anduhiicing some probabilistic
criteria for the selection of the next move. The creation afegghbouring solution in
both tabu searches is based on classical neighbourhoodsireggvap operation and an
insertion operation, which respect the precedence andiffeeiy constraints. Test results
on problem instances created by the authors (from 10 to 4@mess) demonstrate the
superiority of TS compared to the PTS in both run time andtamiuguality. Possible
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reasons behind the superiority of TS were not indicated byatlthors, though. For the
problem sizes tested in their approach, a feasible solgtoitd be reached by both tabu
search methods in a reasonable amount of time. Howeveariged problem sizes (more
than 60 locations), the authors predict that reaching alfieasolution could possibly

take more than one hour. According to the authors, an impnew in processing time

could be achieved by adapting the parameters of the methdd aetter analysis of the
neighbourhood structure.

54 SV-PDPTW: Research Contribution

Our research tries to overcome some gaps currently existitige literature that tackles
the SV-PDPTW. Existing approaches usually face many dlffeesj among them are so-
lution representations that need frequent repair duriagéarch process to correct infea-
sibility. In addition, handling the difficult constraintsifs a huge burden on the search
algorithm, usually making it quite complicated, espegyidllthe researcher chooses to
limit the search to only feasible solutions in the neighlbmad. This would indeed re-
quire time consuming computations to ensure the satisfacti all constraints in every
step during the search process, which will inevitably adithéooverhead of the algorithm,
making it slow or inefficient for most practical situations.

The main challenge that we are faced with in this researdteidévelopment of an appro-
priate solution representation, reflecting the problemitsncbnstraints in a simple way to
avoid complicating our algorithms. In addition, the rem@sition should be coupled with
intelligent neighbourhood operators that are capableretting the search towards high
quality and feasible solutions. A major objective is to avgenerating and evaluating
a large number of infeasible solutions (that violate one oravof the hard constraints),
in order to maximize the efficiency of the search process. @aposed approach for
handling these challenges is presented in the followingsmasections.

5.4.1 The Solution Representation

A suitable solution representation for this kind of problesnmot as obvious as it seems.
The PDPTW is an ordering problem in which a solution coulddpgesented as a permu-
tation of locations, representing an order in which thesations will be visited. In the

PDPTW, however, the issue of precedence should be addiedbedepresentation of the
solution, because for this particular problem, no deliMeation is allowed to precede
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its corresponding pickup location. Nevertheless, thegatence order may not be main-
tained following the application of a neighbourhood moveteolution. For example, a
simple swap of locations could disturb the precedence @deéresult in an infeasible so-
lution. Consequently, a repair method would be needed toneethe solution feasibility,
as done, for example, in [88] and [89]. Inevitably, such aprapch would increase the
processing time and complicate the algorithm.

We have developed a solution representation which avoalpriecedence issue: we sim-
ply assign the same code to both the pickup and its assodate@ry location, and rely
on a simple decoder to identify its first occurrence as thieyp@nd the second as the deli-
very. This straightforward representation eliminatesttublem of backtracking to repair
an infeasible solution, and solves the precedence consisaue in an effective way. As a
result, more effort can be directed towards harder comggrgiich as the vehicle capacity
and time windows. Figurle 5.2 shows an example of a solutidim B\/'requesﬂsfollowing
this representation.

1717211131213

\

Pickup Delivery

Figure 5.2: Solution Representation.

5.4.2 The Neighbourhood Move

As previously mentioned, while creating a neighbouringisoh during the search pro-
cess, we are faced with a major challenge: the possibletiaalaf one or more of the
problem constraints that may follow such moves. A neighboad move should be in-
telligent enough to direct the search towards high qualityf@asible solutions, and thus
avoid valuable time being wasted evaluating a large numtiafeasible solutions. When
designing such moves, all problem constraints should bsidered. Nevertheless, in our
research we found the time window constraint the most difftcudeal with. Recall that
our duplicate encoding scheme renders the precedenceaiansivial. Furthermore, the
capacity constraint tends to be easy to satisfy in most prolahstances, because half of

!Recall from Sectioh 5]2 that a request refers to a pair oftioea (pickup and delivery).
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the locations visited in any route are delivery location®addemands are removed from
the vehicle.

In our research we adopt neighbourhood search operatdraghly ‘randomness’, yet at
the same time take account of the time windows, and bring thiee rurgent’ locations
earlier in the visiting order, where this is possible. Thesghbourhood idea is adopted
in all our search algorithms, with slight variations depegdn the context in which it is
applied.

The rest of this chapter and the next chapter are dedicatedgrtsuggested solution me-
thodologies for handling the SV-PDPTW. The following sentaddresses our problem-
specific genetic algorithm that we adopted for solving thigbpem. On the other hand,

our investigation of the SV-PDPTW continues in Chapter 6icipresents the proposed
operators within the framework of three different heucisthd meta-heuristic techniques
to deal with this problem.

5.5 A Genetic Algorithm Approach for Solving the SV-
PDPTW

The focus of this part of our research is to investigate thergal of using genetic al-
gorithms to solve the SV-PDPTW. In particular, herein weeskpent with aduplicate
gene encodinghat guarantees the satisfaction of the precedence cotsbatween the
pickup and the delivery, throughout the search. Thus, otorabsome encoding simply
follows the representation depicted in Figlrel 5.2. In addjtseveral problem-specific
genetic operators are tested and compared on a number cfedataith various sizes.

The rest of this section presents the details of our GA ambro8ectiorl 5.5]1 describes
the fitness function that the GA relies on during the evohaiy process. Sectidn 5.5.2
introduces our suggested genetic operators. Section &xplains the procedure adopted
to create test data for the problem. Finally, Sediion 5.8t4its the experimental findings
of this part of the research,

5.5.1 The Fitness Function

Following [89], the fitness function treats the constraagsoft constraints, meaning that
an infeasible solution that violates either the capacity/anthe time window constraint



5.5 A Genetic Algorithm Approach for Solving the SV-PDPTW 79

will be penalized by an added term in the fitness function. fithess function of a route
ris:
F(r) =w; X D(r) +ws x TWV(r) + w3 x CV(r), (5.1)

where D(r) is the total route duration including the waiting time and #ervice time at
each location'WV (r) is the total number of time window violations in the routedan
C'V (r) is the total number of capacity violations;, w,, andws are weights in the range
[0, 1] assigned to each term in the fitness function, @and- wy + w3 = 1.0.

The fitness function will thus try to minimize infeasibiligs well as the total route du-
ration. Also, the choice of appropriate weights dependshenihportance of each term
in the fitness function. Specifically, the highest penaltysthe imposed on the number
of time window violations, since it is the most difficult cdrent to satisfy in the SV-
PDPTW. We used the following values for the weights of theeBsfunctionzw; = 0.001,

wy = 0.7, andwz = 0.299. Our experimentation with different values in the ran@e |
indicated that if a smaller weight value was assigned tdté” term, the best individual
resulting at the end of the evolutionary process is ofteadsible, in terms of violating
the time window constraint.

5.5.2 The Operators

Two crossover operators have been used in our GA, the firssover operator isiderge
Crossover (MX1), first suggested in_[16]. The second crossover operator e\apmo-
blem specific crossover that we called tReekup and Delivery Crossover (PDPX)
Also, two mutation operators were used in our research. Alaegene swap mutation
and another constraint orientédected mutation. These four operators are explained
below.

Crossover

MX1 Crossover: Several crossover operators were considered potentialigide for
this kind of problem. The first crossover operator we trielofes the merge crosso-
ver operators suggested [n [16] for the VRPA\&nd used in [88] and [89] for the SV-
PDPTW. Unlike traditional crossover operators for ordgmpnoblems, which depend only
on the order of genes in a chromosome, the merge crossovertofgedepend on a glo-
bal precedence among genes, such as the time window orabstatiering. Traditional

2Recall from Chaptdr]3 that in the VRPTW, the same service aymies to all locations, either pickup
or delivery.
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order-based crossover operators are not very effectivlifgly constrained problems
like the SV-PDPTW, since they frequently produce infeas#mlutions. Merge crossover
operators, however, were shown to be superior to the toaditiones for these types of

problems|[[16]([88]([89].

In the current research we have slightly modified the MX1 afmerused by [88] and [89].
Instead of creating just one child, giving priority to a pafe gene having an earlier time
window lower bound, we have created two children: the firgiddavouring genes that
have an earlier lower bound, while the second child favoerseg that have an earlier
upper bound. The idea is that visiting a location just beftweleadline could be more
beneficial than visiting it as early as possible in its alldwaerval. This may help reduce
the waiting time that would result if the vehicle arrives teaxly at a location, and may
consequently decrease the total route duration. Creatiaghildren instead of one was
suggested ir [16], and may help improve the quality of the gemeration and accelerate
the optimization process.

To illustrate how the MX1 operator works, assume that the¢aoreshown in Figuré 53
defines the precedence order, in terms ofitheer boundof the time window, among all
pickup and delivery locations, where a (+) following a resfusumber indicates that this
is its pickup location and a (-) indicates the delivery lamatfor the same request.

(261 3 1 40 3 4t

Figure 5.3: Time window precedence vector.

Figure[5.4 illustrates the steps of the MX1 operator. Caarsitle two parent solutions,
P1 and P2, shown in Figufe 5.4(a). The MX1 crossover startdelopding the parent
solutions to differentiate the pickup locations from théwy locations, as illustrated in
Figure[5.4(0). Then, the MX1 proceeds as follows:

e Step 1 since 2 has a higher precedence than(as indicated by the precedence
vector depicted in Figuife 3.3), the child will inherit 2s the first gene, as shown in

Figure[5.4(9);

e Step 2 to maintain feasibility, 2 in P2 will be swapped to the first location. Now
the second gene in both parents is identical, so it is copi¢laet child, as shown in
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Figure[5.4(d), and we move on to the next gene in order;

e Step 3 now since the next gene in P2 (1-) has a higher precedenoe3thaf P1,

1- is copied to the third gene in the child, and 1- is swappeld @4 in P1, as shown

in Figure[5.4(8);

e Step 4 continuing in the same manner, we obtain the child C1 showigure

P1

P2

P1

P2

C1

P1

P2

C1

(a) MX1 - two parents before decoding

2+ 143+ 13- 1- 2- 4+ |4-
3t |14 [1- |2+ |2- |4+ [4- |3
2+

(c) MX1-Step 1
2+ |1+ [1- [3- |3+ |2- 4+ 4-
2+ |1+ [1- |3+ [2- 4+ 4- |3-
2+ |1+ [1-

(e) MX1 - Step 3

P1

P2

P1

P2

C1

c1

C1

[6.4(f), together with its final format, using the duplicateceding. Note that after
the MX1 crossover, the last 2 genes of C1 were out of ordeoffevied by 4+ ), but
this is of no concern since the first one is automatically mered as the pickup.

2+ 143+ |3- |1- |2- |4+ |4

3t |1+ [1- |2+ [2- |4+ [4- |3-

(b) MX1 - two parents after decoding

2+ |1+ 13+ |3- [1- 2 |4+ 4-

2+ |1+ |1- |3+ |2- |4+ |4- |3-

2+ |1+

(d) MX1 - Step 2

2+ 1+ [1- |3+ |2- |3- |4- 4+

(f) MX1 - Step 4

Figure 5.4: Merge Crossover (MX1).
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The second child is created in a similar manner but with tleegulence vector defined by
theupper boundf time window intervals instead.

PDPX Crossover: In addition to the MX1 operator, we designed a new problescEj
crossover operator for the SV-PDPTW. The idea is that, samecrossover operator
essentially tries to create a child that inherits half ofgémes from the first parent and
half of its genes from the second parent, we will try to traigitkup locations to the
child in an order close to the order of their appearance infitlse parent, and try to
transmit delivery locations to the child in an order closth®order of their appearance in
the second parent. A second child is created by simply regetise role of parents. This
kind of crossover might prove useful in satisfying the cagyaconstraint in particular,
since the satisfaction of this constraint is mainly depaha® the ordering of pickups
and deliveries. Figurle 8.5 illustrate how the PDPX crossoneks.

P2 111313 112 1|4 4

c1i2 11 |13 |1 |2 |4 |4 |3

P2 (3 1 11 12 2 |4 1413

ct 12 |1 |3 4

(a) PDPX - Step 1 (b) PDPX - Step 2

213 1 2 4

€213 |1 |3 |2 |1 |4 |2 |4

(c) PDPX - second child

Figure 5.5: Pickup and Delivery Crossover (PDPX).

Starting from the two parent solutions, P1 and P2, shown gure{5.5(d), the PDPX
crossover proceeds as follows:

e Step I first all pickups (first occurrences of genes) will be copiedhe child in
the exact order and locations as the first parent, as showigumefs.5(d);

e Step 2 now, we want to take the order of delivery locations fromskeond parent.
Since a delivery is always the second occurrence, we witl ptacessing P2 from
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the last gene rather than the first. If we encounter a genepaared in the child
only once, i.e., it has already been picked up, we will copgw ihe first available
location in the child (also processed starting from the dgste). If, on the other
hand, we encounter a gene that has already appeared twice amild, this gene
will be ignored because pickup and delivery has alreadymeddor this gene, and
we move on to the next gene in order. Following this, we obtiagnchild shown in

Figure[5.5(0).

The second child is obtained by taking the pickups order filoesecond parent and the
deliveries order from the first parent, as shown in Figurécj.5

Mutation

As mentioned above, we experimented with two mutation dpesan our GA. The firstis
a random gene swap mutation, which selects two genes atrraadd swaps them. Using
the duplicate gene encoding eliminates the possibilityfigasible solutions, in terms of
precedence order, that may result following such a swap.

We also implemented, a new problem oriented mutation openaamedDirected Mu-
tation. As mentioned above, it appears that the TW constraint isnb&t challenging to
satisfy among all other problem constraints. To deal withTNV constraint, a mutation
operator can try to bring a location that may be more urgerdntearlier point in the vi-
siting order. This may result in a better ordering of locasiowhich should be beneficial
in satisfying the timing requirement. Instead of a tradgiibrandom swap of two genes,
this new mutation operator only swaps genes if they are ootd#r in terms of their late
TW bounds, i.e., if the later one has a deadline that preabeesarlier one. The directed
mutation operator is shown in Figure b.6.

TWI[5,50] (\ TWI[10,30]
~ —
211131

2|3

W 4

Figure 5.6: Directed Mutation.
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5.5.3 Test Data

Since there are no standard benchmark test cases avaaltefSV-PDPTW, our GA
was tested on a data set obtained from the authofs bf [89% ddta set has a number of
customer requests ranging from 10 to 100 (20 to 200 locgtidnsaddition, for a more
extensive and thorough testing of the operators, we haatatt@ new data set with larger
numbers of customer requests ranging from 100 to 200 (200Qdactations).

To create test data for the SV-PDPTW, it is essential to enthe existence of at least
one solution that satisfies all problem constraints. Sintda[89], our algorithm first
creates a route that respects precedence and capacityanotsstthen a time window
interval is generated for each location based on the arnived realized in the created
route. Unlike [89], however, we rely on our GA to create thiéahfeasible solution, while
they create their starting feasible solution randomly. &&pecifically, the following steps
were followed to create the test data:

1. Generate a random vehicle capacity within a certain peeaeéned range;
2. Generate randomandy coordinates for the depot;
3. For all pickup and delivery locations:

(a) Generate randomandy coordinates;

(b) Generate a random demand (load) within a certain alltevamnge, such that
the demand of a delivery location is the same as the demartsl @drirespon-
ding pickup location, but with a negative sign;

(c) Assume a very large time window interval that could natgbly be violated;

4. Run the GA to obtain a feasible solution. Note that, thee@ience constraint
is always satisfied in any generated solution, thanks to aptichte gene enco-
ding. Moreover, due to the nature of the problem, the satisfa of the capa-
city constraint can be easily accomplished by our geneteraiprs. The timing
constraint can also be easily satisfied because the TW aiseae very large at this
point;

5. Calculate the arrival time at each location in the feasiblte obtained;

6. Create a random time window interval for each locatiorhghat the arrival time
falls within the created time window. The width of the pernmit time window
interval should be determined in advance.
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Algorithm[5.1 describes the initial steps carried out fag threation of test data for the
problem without the final time window intervals, i.e., StAls[3 above. In this algorithm,
the allowable ranges for the random values were determimgarieally. Note that all

ranges were scaled according to the number of requestsitiyrgenerated, i.e., the larger

the number of requests, the larger the allowable range towéhicle capacity and the
demand of the location. Algorithin 3.2 describes the procedor determining the TW
intervals, i.e., Stejpl6 above.

Algorithm 5.1: Create Test Data.
Choose values for constanidinCapacity, MaxCapacity, MinCoord and MaxCoord
{We usedMinCapacity = 1, MaxCapacity = 10, MinCoord = 0 and MazxCoord =
200}

2: Choose value for constant inT'W {A very small value (we used 0)}
3: Choose value for constant axTW {A very large value (we used 100000)}

4: Let nrequests = n/2 be the number of requests in the set, wherie the total number of

nodes (locations) in the data set, excluding the depot

VehicleCap = Random(MinCapacity x nrequests, MaxCapacity x nrequests) {Func-
tion Random generates a random value between its two parameters}
AverageDemand = VehicleCap/nrequests {The average demand of a request}
{Generate coordinates, demand, and TW for the depot andd¢kaplocations}

7: for (pickloc = 0; pickloc <= nrequests; pickloc + +) do

10:
11:
12:
13:

14:
15:

16

17:
18:
19:
20:
21:

x[pickloc] = Random(MinCoord, M axCoord){The x-coordinate}
y[pickloc] = Random(MinCoord, MaxCoord){The y-coordinate}
if (pickloc = 0) then
demand|[pickloc] = 0 {The demand of the depot is 0}
else
demand|[pickloc] = Random(AverageDemandxmy, AverageDemandxmsg) {The
choice ofm; andms, depends on how big we want the demand of the location}
ETW [pickloc) = MinTW{The lower bound of the TW}
LTW [pickloc] = MaxTW {The upper bound of the TW}
{Generate coordinates, demand, TW for delivery locations}
. for (delloc = nrequests + 1; delloc <= n;delloc + +) do
x[delloc] = Random(MinCoord, MaxCoord)
yldelloc] = Random(MinCoord, M axCoord)
demand|[delloc] = —demand|delloc — nrequests|{Same as its pickup demand but -ve}
ETW delloc] = MinTW{The lower bound of the TW}
LTW [delloc] = MaxTW{The upper bound of the TW}



86 5.5 A Genetic Algorithm Approach for Solving the SV-PDPTW

Algorithm 5.2: Generate Time Windows.

[

: Choose value for constanturrentWidth {We used 10}
. Calculate the arrival time of the vehicle at each locatiothmfeasible route obtained by the
GA
. for (loc = 1;loc <= n;loc + +) do
ETW loc] = Arrivallloc] — Random(CurrentWidth x my, CurrentWidth x mg)
{The choice ofm; andms depends on whether we want the time window interval to be
wide or narrow}
if (ETW loc] < 0) then
ETW loc] = Arrivallloc] — Random(1, Arrival[loc])
LTW loc] = Arrival[loc] + Random(CurrentWidth x my, CurrentWidth x ms)

N

A W

5.5.4 Experimental Results

We implemented a steady state GA with a replacement pegeotfal 00% and a popu-
lation size of 1000. Algorithh 513 outlines the GA used in ouplementation.

Algorithm 5.3: The SV-PDPTW Genetic Algorithm.
1: Initialize a random populatiolPOP of candidate solutions to the SV-PDPTW, using the
duplicate encoding of pickup and delivery locations
while (stopping condition is not reachedd
for (i=0; ikNumCrossovers;i++jo

2:

3

4: Select parent® and P, from PO P, using roulette wheel selection

5 Apply crossover to parentB; and P, to produce two childreid; andC,

6 With some probability, apply mutation t@; andCs

7 Update PO P by integrating the new generation and eliminating some wiadividuals

{i.e., steady state GA with overlapping populations}

To test our GA, different combinations of crossover and riomeoperators were compa-
red on two data set samples. The first sample, which we willR&I 1, is the sample
obtained from[[89] and includes 30, 80, 90 and 100 custonmreﬁg. It should be no-
ted that while solving the problem for this data set, the axglof [89] assumed that the
vehicle’s journey is open path. Thus, although the vehibleugl start its journey from
the depot, it could end at any of the delivery locations. ldeorto compare our results
with their results we also make this assumption in our GA aaph. An alternative, and
more ‘standard’, assumption is for the vehicle to start antia the depot.

3Sourcelnt tp: /77 wrj i h. wor dpr €ss. coni 2006/ 127 09/ pdpt w- t est - dat a/


http://wrjih.wordpress.com/2006/12/09/pdptw-test-data/
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The second data set used to test our algorithm, which we @lIBET 2, is obtained from

the instances created by us, and includes 130, 170, and 2Gihoer reques& Note that

the number of locations is always double the number of requd$e algorithm was run
10 times on each test case, with a crossover rate of 1.0 andiséionrate of O.B.

The following combinations of crossover and mutation ofmsawere compared:

1. MX1 crossover and random swap mutation.
2. MX1 crossover and directed mutation.

3. PDPX crossover and random swap mutation.
4. PDPX crossover and directed mutation.

5. Directed mutation without any crossc@er

6. MX1 crossover without any mutation.

The genetic algorithm was run to convergence or for a maximiB000 generations if no
convergence can be reached. Since robustness is one of mugeads in this research, the
GA was run with the same parameters on all problem instanegst was not specifically

tuned or optimized for each instance separately.

The results for the 10 runs are recorded in Tablé 5.1 as felléev each test case under
each GA version: the best score found (in termgodél route durationonly), and the
percentage of feasible solutions obtained during the 18.rTlihe last column of the table
shows the previous best result. For SET 1, the previous bsslis are the ones reported
in [89], during their computational experimentation wittese problem instar@ewhile
for SET 2, the previous best results are the best resultsahin the current experiment.
A score followed by a (*) indicates that this solution is iaggble in terms of time window
constraint violation. When the obtained result is the samerdetter than the previous
best result, it is highlighted in boldface.

In terms of the objective function values, Tablel5.2 shovesdherage, best, and worst
objective function values, as calculated by Equatioh %f afl versions of our GA. the

4Sourcelhtt p: //users. cs. cf. ac. uk/ M [ . Hosny/ PDP. zi p

5 A higher than usual mutation rate was found necessary taldeing trapped in a local optimum. One
reason could be the duplicate encoding, a side effect oftwisithat mutation may swap identical genes
producing the same offspring.

SMutation rate was set to 1 and crossover rate to 0

" The results shown are truncated as they appeéar In [89].


http://users.cs.cf.ac.uk/M.I.Hosny/PDP.zip
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Table 5.1: GA Results Summary (Total Route Duration).

MX1&Swap MX1&Directed PDPX&Swap PDPX&Directed Directed Mut MX1
Data Task Prev Best
Best %Feas Best %Feas Best %Feas Best %Feas Best %Feas Best %Feas
30 3696.51 100 3738.73 100 3863.27* 0 3734.54 100 3747.47 100 3741.10 100 3713
SET 1 80 7838.21 100 7858.72 100 9163.92* 0 7838.21 100 7879.35 90 7867.68 80 7849
90 8619.01 100 8619.01 100 10057.0* 0 8623.23 100 8662.20 100 8619.01 100 8618
100 10600.10 100 10600.10|| 100 11886.10* 0 10608.20 80 10608.20 90 10600.10 90 10600
130 13856.20 100 15913.10 20 19185.40* 0 14791.70 60 14679.20|| 100 21626.0* 0 13856.20
SET 2 || 170 19861.30 100 20674.50 60 25817.10* 0 20359.30 90 20470.20 90 30575.60* 0 19861.30
200 24512.80 80 26058.10 60 32009.70* 0 24911.20 40 25091.70 70 37148.50* 0 24512.80




Table 5.2: GA Results Summary (Objective Function Values).

Task MX1&Swap MX1&Directed PDPX&Swap

Avg | Best | Worst | SD || Avg | Best | Worst | SD Avg Best | Worst | SD
30 3.72 | 3.70 |3.74 |0.02|3.74 [ 3.74 (374 |0 15.82 | 13.66 | 17.34 | 1.19
80 784 | 784 | 785 |0 788 | 786 | 789 |0.01 || 8152 |72.86 |87.10 | 4.36
90 8.62 [8.62 862 |0 862 (862 862 |0 102.78| 94.76 | 1145 | 6.68
100 | 10.60| 10.60| 10.60 | O 10.60| 10.60| 10.60 | O 114.43| 101.49| 127.16| 8.90
130 || 14.06| 13.86| 14.23 | 0.14| 56.33| 15.91| 108.21| 35.03|| 124.0 | 118.59| 128.68| 3.88
170 || 20.17| 19.86| 20.6 | 0.24| 21.98| 20.67| 23.95 | 1.04 || 183.66| 174.22| 192.86| 5.93
200 || 24.72| 24.51| 25.4 | 0.34| 29.27| 26.06| 47.70 | 6.61 || 225.55| 214.71| 245.10| 8.32
Avg | 12.82| 12.71| 13.01 | 0.11 19.78| 13.35| 30.1 6.10 || 121.11} 112.9 | 130.39| 5.61
Task PDPX&Directed Directed Mutation MX

Avg | Best | Worst | SD || Avg | Best | Worst | SD Avg Best | Worst | SD
30 3.77 | 3.73 |3.80 |0.02| 380 [3.75 |38 |003 |374 |374 |375 |0
80 791 | 784 | 797 |0.04] 8.0 7.88 | 8.63 |0.22 || 8.03 7.87 8.59 0.29
90 8.69 [8.62 | 878 |0.06| 8.70 | 8.66 |8.76 |0.03 || 8.62 8.62 8.62 0
100 || 10.80|10.61|12.38 | 0.3 | 10.73| 10.61| 11.37 | 0.23 || 10.67 | 10.60 | 11.30 | 0.22
130 || 15.42| 14.79| 16.59 | 0.66| 15.14| 14.68| 15.49 | 0.27 || 124.53| 111.23| 132.67| 6.85
170 | 20.84| 20.36| 22.07 | 0.49| 20.95| 20.47| 23.03 | 0.74 || 178.85| 169.48| 189.61| 6.51
200 || 25.91| 24.91| 28.06 | 1.01|| 25.46| 25.09| 26.35 | 0.39 || 229.47| 214.25| 240.92| 6.96
Avg | 13.33| 12.98| 14.09 | 0.37 || 13.26| 13.02| 13.93 | 0.27 || 80.56 | 75.11 | 85.07 | 2.98

MLdAad-AS 8yl buinjos Joj yoeoiddy wyiob)y 238us9 v G°G
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Standard Deviation (SD) value of the objective functiontfog 10 runs is also shown in
this table.

As can be observed in Tallle b.1, the best results are obthimadhe MX1 crossover
and random swap mutation Together they achieved a 100% feasibility rate in all test
cases except for the largest task (200 requests) in whicte#sgbility rate was 80%. In
two cases the results obtained were even better than thepsdvest results reported in
[89]. These are the results for test cases 30 and 80. Tabmahows clearly that the
overall average objective function results of the MX1 co¥&s and swap mutation were
better than those obtained by all other GA versions, foratkgories demonstrated in the
table.

Table[5.1 shows that the worst results are obtained bl BféX crossover and swap mu-
tation. These two operators together failed to achieve any femsdisults, in terms of the
time window constraint, even for the small sized tasks. Allse overall average objective
function results for these two operators were considenabhge than the results obtained
by all other GA versions, as Tallle 5.2 indicates. Theseimfeesults may be explained
by noticing that both PDPX crossover and swap mutation k& guidance towards
the time window ordering. Although they were able to satikB/capacity constraintin all
test cases, they failed to satisfy the time window constr&itearly, they worked blindly
with respect to the timing order, and consequently were hl& @ find an ordering that
services all requests in their desired intervals.

When directed mutation replaced the random swap mutatawever, the results drama-
tically improved for the PDPX. Table 8.1 shows tifdPX together with directed mu-
tation were able to obtain feasible solutions in all test cases.féasibility ratio ranged
from 40% for the largest task to 100% for the smallest tasle dverall results, though,
were not able to beat the results obtained from the MX1 crassand swap mutation,
which can be seen in Table b.2. Figlre]5.7 sustains the abdmenation, by showing
how directed mutation was able to guide the search and hélygeBDPX crossover to
find much better solutions for the largest task tested (2§0ests), when used in place of
the random swap mutation.

The situation is different, however, when directed mutatieplaced random swap mu-
tation with the MX1 crossover. As shown in Tables]5.1 BIX1 crossover and
directed mutation produced lower quality solutions than those obtained by MKdis-
sover with the random swap mutation. Possibly, the intrtidnoof directed mutation
caused the algorithm to rapidly converge to a local optiméigure[5.8 bears this out,
and shows the rapid convergence of the MX1 crossover witdtctid mutation compared
to the gradual convergence of the MX1 crossover with thegamsiwap mutation.
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The MX1 crossover thus seems capable of guiding the GA tawvhedsible solutions
without the help of an ‘intelligent’ mutation operator. Kaccess is possibly due to the
fact that it creates not only one but two children that havesteb visiting order than
their parents. These children are biased towards the mgenturequests in terms of the
allowed service time. All that this crossover needs is a mgndom swap to introduce
a bit of a diversity in the population. Any more ‘intelligeémterference does not seem to
help and actually appears to drive the search away fromrisethations.

The importance of the random swap mutation to help introdiicersity can also be
noticed in Table 511 ad%.2, by observing the results ihéh worked alone without
any mutation. The results in Table"5.1 show that MX1 failed to find some nesty
achieved best results in the small tasks (SET 1), and evixdl fen achieve any feasible
results in all large tasks (SET 2). In addition, the overadirage objective function results
produced by MX1 alone were considerably worse than the teepubduced when MX1
worked together with the random swap mutation, which cardaly realized from Table
5.2.

Finally, whendirected mutation was tested without any crossoverthe results obtained
were, to some extent, surprising. As shown in Tablé 5.1, rthitation alone was able to
obtain feasible solutions for all test cases. The feasjbyéite was 90% or 100% for all test
cases except for the largest one, in which the feasibiltty veas 70%. Table 5.2 shows
that in terms of the objective function results, the GA wittedted mutation obtained the
second best results (after the MX1 and swap mutation ré@ststh tables indicate that
this mutation is an intelligent operator that has a greagiu@l, since it was able to obtain
good quality and feasible solutions without the help of armssover operator.

It should be noted, though, that when directed mutation wsietl with MX1 crossover,
only one swap movement was needed to inject the necessaatydediversity and to
reduce the chance of being trapped in a local optimum. Onttiex dband, when directed
mutation was tested alone or with the PDPX crossover, it wasd that a larger number
of swaps was needed to achieve good results. For these tasesimber of swaps was
taken to be a random number between 1 and the number of regadisé data set.

Table5.8 shows the average number of generations of thenstheeded to reach the best
individual in the population, for all tasks and all GA vens It is clear from this table
that the GA with MX1 crossover (alone) had the smallest ayeraumber of generations,
in all test cases. This again indicates the lack of diveiisitihe population in this GA
version, due to the absence of mutation, which led to thedrapnvergence to a low
quality solution. On the other hand, the GA with PDPX crogscand random swap
mutation had the largest average number of generations st test cases. This could
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be the result of some kind of ‘chaotic’ search that these tperators followed, since
they lacked any guidance towards the promising areas ofefuels space, as previously
discussed. Also, the GA with directed mutation (alone) hedlargest average number
of generations in two test cases (130 and 200 requests).isTimisst probably due to the
absence of crossover, which is usually beneficial in exptpwide areas of the search
space and finding good solutions within a fewer number of gaiwas. Similarly, the
GA with PDPX and directed mutation needed a relatively langmber of generations in
all test cases. This sustains our previous observatiorthieatrossover operator in this
GA version seems to be ineffective, and the search couldlpmgemostly on directed
mutation to obtain good quality solutions.

Table 5.3: Average Number of Generations to Reach the Best thvidual.

Task | Mx1 Mx1 PDPX PDPX Directed | MX1
& & & & Mutation
Swap Directed | Swap Directed
30 | 31 15 704 39 35 13
80 | 116 15 943 414 267 14
90 |23 18 1811 421 341 17
100 | 17 14 1696 617 562 14
130 | 444 230 1000 893 1432 53
170 | 446 382 2000 1769 1572 54
200 | 851 365 2000 2268 2320 49

5.6 Summary and Future Work

In this part of our research we introduced the first variamickup and delivery problems
that we tried to handle, namely the single vehicle with tinmedews. After describing the

problem and the motivation behind the research in addibagummary of some related
work, we explained our view regarding the solution représtgon and the neighbourhood
moves that we believe can help conquer the difficult problenstraints. We then exami-
ned the suggested ‘ideas’ in the context of a problem-speginetic algorithm.

Specifically, the encoding used in our GA is a duplicate gememéing that guarantees
the satisfaction of the precedence constraint throughwuseéarch, alleviating the need
for backtracking to solve the infeasibility that may redoltowing any genetic manipu-
lation. Four genetic operators were tested: a 2-child mergssover (MX1) guided by
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precedence of both time window bounds, a new pickup andetglierossover (PDPX)
that depends on the order in which the pickup and delivergtions appear in parent
solutions, a regular random swap mutation, and a directetéhtion that swaps genes
according to the urgency of service time.

The experimental results on two data set samples indicatéteMX1 crossoverand the
directed mutation are each effective as genetic operators (although theytdeor& very
well together). We believe their success is due to the gueldimey take from the time
window information. On the other hand, the PDPX crossoves mat able to find fea-
sible solutions to any of the test instances, when testednmbmation with the random
swap mutation. This was probably due to the absence of goédeowards the desired
service time. However, the results for PDPX dramaticallgiaved, when used in combi-
nation with directed mutation. Indeed, the directed matatiperator seems to show great
promise, and would appear to be useful in guiding the seaxghrtls feasible solutions,
in cases where a crossover operator is disruptive, inafeect absent. Our upcoming
research will attempt to investigate the potential of thpgemtor for the SV-PDPTW in
the context of other heuristics and meta-heuristics. THhaildeof this investigation is
presented in the next chapter.
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Chapter 6

Several Heuristics and Meta-heuristics
Applied to the SV-PDPTW

Taking into consideration the challenges of developing@r@priate solution represen-
tation and effective neighbourhood moves to facilitatdidgawith the constraints of the
SV-PDPTW, in this part of our research we investigate andparethree approaches to
the problem. The first approach is a GA approach, similaravititroduced in Chaptét 5.
As previously mentioned, this approach adopts a solutipresentation having the same
code for both the pickup and its associated delivery, andiegppome problem-oriented
genetic operators. The second solution methodology wesiigaged is Simulated An-
nealing (SA), which adopts the same solution represemtaisothe one used in the GA.
Also inspired by the GA mutations, two SA neighbourhoodtsggs are tested: a ran-
dom blind move, and an intelligent move that is directed l®/ttme window. The third
approach is a simple Hill Climbing (HC) heuristic that ce=aa starting solution and then
tries to improve it, replacing the current solution with teetsolutions generated during
the search. The same solution representation and theatiraeighbourhood move used
in both the GA and the SA are also adopted in the HC. As prelyondicated in Chap-
ter[B, the details of the three approaches and the resultssopart of our research were
published in theJournal of Heuristic§84].

Before we start the discussion of our solution methodoggig present, in the following
section, the objective function used in this part of the aede The three sections that
introduce our selected approaches to the problem are 8si@ (GA)[6.B (SA) and
(HC). Section 615 then details our findings when the tapm@oaches were analyzed
and compared, and Sectibnl6.6 elaborates on some furthigssnaf the SA algorithm,
which is the most promising approach among those testedllf;iSectior 6.I7 concludes
this chapter with some suggested future work.
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6.1 The Objective Function

In this part of the research, we slightly modified the objexfunction used by [89] and
also by our GA in Chaptdr 5 (i.e., Equationi5.1). The currdiéctive function additio-
nally penalizes the amount of time delay, together with theber of time window and
capacity violations. The idea is that adding a penalty ferdktent of total tardiness in
the route could possibly direct the search towards bettalitguand feasible solutions,
especially if the problem size increases. Thus, the obgétinction of a route- is now
described by the following equation:

F(r)=w; x D(r) +wy x TWV(r) + w3 x CV(r) +wy x TD(r), (6.1)

whereD(r) is the total route duration including the waiting time, iéthehicles arrives at a
location before the start of its service timEIV V (r) is the total number of time window
violations in the route.C'V(r) is the total number of capacity violations, afD(r)
is the total amount of delay if the vehicle arrives at a lamatiater than the specified
deadlinew;, we, wy andw, are weights in the range, 1}, andw,; + ws + w3 + w4 = 1.0.
While experimenting with this objective function, we foutitat in order to eliminate
infeasibility, a higher penalty should be imposed on theetimindow violations and the
total delay than the capacity violations or the total routeation. We used the following
values for the penalty weights in our objective functian; = 0.001, w, = 0.6, ws =
0.099, andw, = 0.3.

6.2 The Genetic Algorithm (GA) Approach

The genetic algorithm used in the current research is idain the GA used in the first
part of the research, as presented in Chdgter 5. Nevershélese we only applied the
two most promising genetic versions. Namely, the GA with Mta@ssover and random
swap mutation, and the GA with directed mutation only. Akb® GA adopted here uses
the new objective function described in Equationl 6.1, iadtef the previous objective
function (Equatiofi 5]1).

6.3 The 3-Stage Simulated Annealing (SA) Approach

As previously explained in Section 2.8.2, the theoretioahidation of simulated annea-
ling was established in [93]. Since then, the algorithm hasnbsuccessfully used in
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solving many combinatorial optimization problems, inghglvehicle routing and sche-
duling problems.

To solve the SV-PDPTW using SA, we first need to construct diaiisolution, and then
try to optimize this solution using a method analogous toaheealing of solids. Some
researchers choose to apply different heuristic techsituereate an initial solution with
minimum constraint violations, for example [23] and[95). dur research, we construct
an initial solutions by simply generating a large number of random routes ana-sele
ting the route with minimum cost (according to Equafiod éalle our starting solutitﬁh
This technique is straightforward to implement and alsomotationally inexpensive. Al-
though the quality of the initial solution may be poor, theimf@cus of the algorithm is
on the route improvement phase, accomplished during thee@rels. A good neighbou-
rhood move should be capable of directing the SA algorithme&eh a final high quality
solution, irrespective of the quality of the starting saat The solution representation
adopted in the SA approach is the same as the solution repaéisa of the GA, i.e.,
assigning the same code to the pickup and its delivery asrshoRigure 5.2.

The choice of an appropriate annealing schedule is critwahe performance of SA.
Ideally it is desirable to devise a scheme that is adaptaivlalf test cases and problem
sizes, eliminating the need for ‘arbitrary’ parameter tgniwhich can be very time consu-
ming. Following [40], we created the annealing parametarg#ch test case individually
as shown in Algorithnl 6]1. To generate a neighbouring sehui in this algorithm, a
simple random swap between two different locations i performed.

The main SA algorithm is shown in Algorithm 6.2. This algbrit starts with the same
solutions used to calculate the annealing parameters in Algorithin GHis time, ho-
wever, to get a new staté from the current state, an intelligent neighbourhood move,
that depends on the upper bound of the time window, is usedt tio locations in the
current solution are selected at random. Then, these tvatitots are swapped, only if
their deadlines are out of order, i.e., if the latter has aanogent deadline than the earlier
one. This is exactly the same idea adopted in the directedtiontused in the GA (see
Sectior5.52 and Figute’5.6), and its purpose is to arraegyeests in a way that will best
satisfy the timing constraint.

We generated 10000 random solutions and selected the leanoong them.
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Algorithm 6.1: Calculating Annealing Parameters [40)].

Given an initial solutions
{Initialize Pstart the starting acceptance probability aRednd the final acceptance probabi-

lity}

2: Let Pstart = a large value {We used 0.999}
3: Let Pend = a small value {We used 0.001}
4: Agyg <0

© o N g

10:
11:
12:
13:

14:

I ol

14:
15:

16:

© o N akr wbdhR

{Generaten neighbouring solutions of}
for (i = 0;i < n;i+ +)do
Select two random locations in
Swap the current two locations ito get a new solutior’
A — |cost(s") — cost(s)|
Agug — Dapg + A
Agug — Agyg/n
Ty «— —Aqug/ log(Pstart) {Tj is the initial temperature}
Ty «— —Agug/ log(Pend) { Ty is the final temperature}
o — explos(Tn)—1og(To))/N { o is the temperature reduction factor, aNdis the number of
iterations desired}
ReturnTy, Ty anda

Algorithm 6.2: The Main SA Algorithm.

Given an initial solutions, a starting temperaturg), and a temperature reduction factor
T «— Tp {Initialize the current temperature}
repeat
Select two random locations in
if (The latter location has a smaller value of the upper bourtdefime window)then
Swap the current two locations ito get a new solutior’
A — cost(s") — cost(s)
if (A < 0) then
s s
T «— «a x T {Reduce the current temperature}
else
p = Random(0, 1) {generate a random number in the interval (0,1)}
if (p < exp(=2/T)) then
5« s
until (Frozen){Stop when no improvement is achieved for a preifipd number of iterations
(we used 5000 iterations)}
Returns
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During any iteration of the main SA algorithm, if the currgrgelected locations are not
out of sequence in terms of their deadlines, however, no sivigations will take place.
As a result, the current solution will remain intact, and marmge in cost is evaluated.
The temperature valug also remains unchanged and is carried forward to the neat ite
tion. In fact, as will be explained shortly, the present tenapure value is only reduced
following the replacement of the current solutiowith a new improved solutios'.

Nevertheless, since the final solution obtained after thim I8A procedure may still be
a low quality or an infeasible solution, we extended our atgm with two further SA
stages, in order to more fully exploit all the guidance thme time windows can give
us. The second stage adopts a neighbourhood move dependihg lower boundof
the time window instead of the upper bound, while the thiedystuses a neighbourhood
move based on theentreof the time window interval. Specifically, the second andadhi
SA stages will only differ from the first SA stage (which is shoin Algorithm[6.2) in
Step b of the algorithm, since th@wer boundand thecentreof the time window will be
used respectively in these two stages.

The idea is that, each of these different neighbourhood simesy help introduce some
improvement to the fitness of the current solution, for exi@y reducing the total delay
or the total waiting time, which could ultimately lead to alsting high quality solutions.

Each new SA stage starts from the final solution reached bgrilef the previous stage,
and its starting temperature is the final temperature reablgeghe previous stage. We
chose to start with a route improvement move that is guidethéypper bound of time
window, in order to reduce the total number of time windowl&imns in the route by

visiting the more urgent requests first. However, a diffeierprovement order could

also be attempted (See Sectionl 6.6 for a further investigatf different orders of time

window moves).

In the first two stages of the SA procedure (in which the neaginbood move depends on
the upper and then the lower bound of the time window), theoerature reduction sche-
dule was slow. As shown in Stépl10 of Algoritiml6.2, we chosedtluce the temperature
only when a better solution was found, i.e., several neighbg solutions are explored
for the same temperature value. The idea is to allow the g thorough exploration

of the neighbourhood by accepting a large number of worseesiduring the early stages
of the search. However, during the final stage of the SA (tleetbat adopts the centre of
the time window to perturb the solution), the solution wagrapching stability, and there
was a danger of losing the best solution obtained if the teatpes was slowly reduced.
Thus, during this final stage, the temperature reductionraisl. This was achieved by
reducing the temperature at every iteration of the searbigchwill make the probability
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of accepting worse solutions very small.

To evaluate the performance of the 3-stage SA algorithmribestabove, it was compa-
red with another simple SA algorithm in which the same aringadchedule and a slow
cooling is used, but the neighbourhood move was a simpleorarsivap of locations that
does not take the timing order into consideration. The comspa results are reported in
Sectiorf 6.b.

6.4 The Hill Climbing (HC) Approach

The final approach we used to solve the SV-PDPTW problem isnalsihill climbing
heuristic. The algorithm basically has two phases: a roomsttuction phase, and a route
improvement phase. As with our SA algorithm, the initialligmn is simply created by
generating a large number of random solutions and seletiimngest generated solution
(i.e., minimum cost solution according to Equation 6.1).akgthis procedure will avoid
unnecessary complications and increased processinghahenay result if we try to ge-
nerate a high quality solution with minimum infeasibilit) guided route improvement
phase, which repeatedly replaces the current solutionlvatter solutions generated du-
ring the search, should be able to transform the startinglosdity and possibly infeasible
solution to a high quality and feasible solution. Our main &l§orithm is described in
Algorithm[6.3.

Algorithm 6.3: The Main HC Algorithm.

Given an initial solutions
repeat
for (Each possible pair of locations #) do
if (The latter location has a smaller value of the upper bourtdefime window)then
Swap the current two locations #to get a new solutior’
A «— cost(s") — cost(s)
if (A < 0) then

5 s

© o N akr wbdhR

until (Done){Stop if no improvement has been achieved in the pts/pass}
Returns

=
e

Again, in our HC we adopt the same solution representatiahnanghbourhood moves
that were used in both the GA and the SA. Similar to the SA #lgor, the HC algorithm

was divided into three stages. The first stage generateghbwmiring solution by swap-
ping the two locations currently under consideration, aftlyeir deadlines (i.e., the upper
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bounds of the time window) are out of order. On the other hé#rttie deadlines are in
sequence, the current solution remains intact, and two oeatibns are considered in the
next iteration. When no further improvement is possiblegshis neighbourhood move,
the second stage starts from the final solution achievederiitst stage and repeats the
same HC procedure, but with a neighbourhood move that adoptewer bound of the
time window to decide the swapping. Finally, the third statgets with the final solution
obtained in the second stage, but with a neighbourhood nnatestvaps locations if they
are out of order in terms of the centre of the time window wdér

6.5 Experimental Results

To test our algorithms, we used the same data set samplesiomw tested our GA, as
previously explained in Sectidn 5.5.4. Each of the follogvatigorithms was run 10 times
on each test case:

1. The GA with MX1 crossover and random swap mutation (GA1).
2. The GA with directed mutation only (GA2).

3. The 3-stage SA (SA1).

4. The simple random-move SA (SA2).

5. The Hill Climbing (HC) algorithm .

All algorithms were run on all problem instances using thmaaet of parameters (e.g.
GA parameters, simulated annealing schedule, and stoppidjtions), i.e., no particular

tuning of parameters was performed for each test case s$elyarahe results for the 10

runs are recorded in Table 6.1 as follows: for each test caderweach algorithm, the

best result found (in terms dbtal route durationonly), and the percentage of feasible
solutions obtained during the 10 runs. The last column oftélwe shows the previous

best results, attributed t0 [B9] and our GA approach reponeChaptef 6. Whenever

the result achieved in the current experiment is better tharprevious best result, it is

highlighted in boldface.
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Table 6.1: Results Summary for all Algorithms (Total Route Duration).

Data | Task GAL GAZ AL A2 HC Prev Best
Best %Feas Best %Feas Best %Feas Best %Feas Best %Feas
30 3738.73 100 || 3751.21 100 || 3299.40 100 || 3684.21 100 || 3772.82 70 3696.51
SET1 80 7838.21 100 || 7867.68 100 || 7267.0 100 || 7852.25 80 7847.67 90 7838.21
90 8619.01 100 | 8619.01 100 | 8292.67 100 | 8619.01 100 || 8671.54 100 || 8618.0
100 || 10600.10{f 100 | 10600.10] 90 10544.60{ 90 10611.10] 70 10600.10] 90 10600.10
130 || 14041.0 100 || 14343.0 100 | 13826.0 100 || 14081.20, 90 14031.10 100 || 13856.20
SET 2| 170 | 20618.10f 100 | 20333.80 100 || 19690.90] 100 | 19964.80] 100 | 20003.60 100 |} 19861.30
200 || 25799.50, 100 || 24730.0 100 | 23841.10f 100 | 24461.60; 100 | 24304.30, 100 || 24512.80
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As shown in Tablé 6]1, the best route duration results weneeaed by the 3-stage SA
(SAL). In all test cases the best results achieved by thsEomeiof SA were better than
the previous results achieved in [89] and by our GA explainedhaptef . The results
were also superior to the results achieved by all the otlgardhms tested in the current
research. A very high feasibility rate and good quality sohs were obtained in all
tasks tested, with an improvement of approximately 11%rv theprevious b(%tfor the
smallest task and approximately 3% for the largest task.

In terms of the overall objective function values, Tdblg éh®dws the average, best, and
worst objective function values, as calculated by Equdéidh for the GA1 and GA2
algorithms. the Standard Deviation (SD) value of the olpjedunction for the 10 runs is
also shown in this table. Takle 6.3 shows the same objectivetibn information for the
remaining three algorithms (SA1, SA2, and HC).

Table 6.2: Results Summary for GA1 and GA2 (Objective Funcion Values).

GAl GA2
Avg | Best | Worst | SD || Avg | Best | Worst | SD
30 3.74 | 3.74 |3.74 |0 3.81 | 3.75 | 3.89 |0.05
80 786 | 7.84 | 787 |0.01| 792 |7.87 |7.97 |0.04
90 862 862 862 |0 8.69 | 8.62 |8.77 |0.05
100 | 10.60| 10.60| 10.60 | O 11.08| 10.60| 14.69 | 1.27
130 || 14.51| 14.04| 15.28 | 0.35|| 14.85| 14.34| 15.16 | 0.25
170 || 20.94| 20.62| 21.25 | 0.21| 20.67| 20.33| 20.88 | 0.16
200 || 26.20| 25.80| 26.45 | 0.21 || 25.04| 24.73| 25.33 | 0.21

Avg || 13.21| 13.04| 13.4 | 0.11} 13.15| 12.89| 13.81 | 0.29

Task

Tables 6.2 and 613 also support the conclusions drawn frdoleT&1. Observing the
overall average results in the last row of Tablel 6.2 683 can clearly see that the
SA1 algorithm outperformed all other heuristics in the ager, best and worst objective
function values. On the other hand, its overall average Sewaas only slightly larger
than the overall average SD of the GA1 algorithm. The GAldlgm obtained a smaller
SD, due to the fact that the population converged to a suiprapsolution in 3 out of the
7 test cases (30, 90 and 100 requests), as shown in[Table 6.2.

2The improvement percentage is calculated using the fornfulr — R)/R*) x 100, whereR is the
current result and®* is the previous best result.
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Table 6.3: Results Summary for SA1, SA2 and HC (Objective Fuction Values).

SA1l SA2 HC
Task Avg | Best | Worst | SD || Avg | Best | Worst | SD Avg | Best | Worst | SD
30 353 {330 |[366 |01 (|3.71 |3.68 |3.74 |0.02 ||3.83 |3.77 |3.96 |0.06
80 763 | 7.27 | 7.85 |0.19| 9.25 | 7.85 |18.78 | 3.43 || 9.55 | 7.85 | 24.45 | 5.24
90 8.46 |8.29 |[860 |0.11|8.69 (862 |875 |0.04 ||869 |867 872 |0.02
100 | 10.63| 10.54| 11.0 | 0.13| 21.49| 10.61| 75.31 | 20.70|| 10.90| 10.60| 13.40 | 0.88
130 || 13.95| 13.83| 14.12 | 0.11| 18.68| 14.08| 59.05 | 14.19|| 14.51| 14.03| 15.08 | 0.37
170 || 20.06| 19.69| 20.43 | 0.22|| 20.16| 19.96| 20.46 | 0.16 | 20.31| 20.0 | 20.89 | 0.25
200 || 24.37| 23.84| 24.68 | 0.25|| 24.71| 24.46| 24.94 | 0.15 || 24.63| 24.30| 24.99 | 0.22
Avg || 12.66| 12.39| 12.91 | 0.16 || 15.24| 12.75| 30.15 | 5.53 || 13.2 | 12.75| 15.93 | 1.01
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It appears from these results that the SA1 algorithm wastaldscape the trap of local
optima and to gradually find better solutions by progres$iom one stage to another.
Each stage of the 3-stage SA (SA1) seems to contribute tarthevement process. To
illustrate this, Table 614 shows the progress of the 3-s&#gim the best run for our largest
task of 200 requests. The table shows the total route duratie number of capacity
violations (CV) and the number of time window violations (W\Vat the beginning of the
run, and after the termination of each of the three stages.clear from this table how
the solution progressively improves after each stage.

Table 6.4: 3-stage SA Progress for Task 200.

Stage Route Duration | CV | TWV
Initial Solution 52969.3 64 | 387
After Stage 1 37768.2 0 344
After Stage 2 23841.1 0 3
After Stage 3 23841.1 0 0

Regarding the other four algorithms (GA1, GA2, SA2 and HCappears from Tables
6.1,[6.2 and 613 that the best results obtained by both versibthe GA were slightly
worse than the results obtained by the random-move SA (SAQ@}lee HC in most test
cases. The GAs, nevertheless, achieved a better feasrhiiib, and their overall average
objective values were better than the average obtaineddb$A2 algorithm. The tables
also show that the performance of the HC algorithm was iniggnery good. Its overall
average objective function result (shown in the last rowalfl&6.8) was comparable to
those obtained by the GAs, but better than the overall ageevbgective of the SA2 algo-
rithm. The SA2 algorithm has the worst overall average dhjewalue, obviously due
to the higher percentage of infeasible solutions obtainethis algorithm, as indicated in
Table[6.1.

Similar to the 3-stage SA, the three stages applied in thelgi@ithm seem to contribute
to guiding the search towards better solutions. To seedbissider again the largest task
of 200 requests. Table 6.5 shows the progress of the besirtiis task from one stage to
another, highlighting the total route duration and the nend$ capacity and time window
violations. Itis again clear from this table how each staggex its role in improving the
solution it received from the previous stage.
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Table 6.5: HC Progress for Task 200.

Stage Route Duration | CV | TWV
Initial Solution 55013.0 117 | 387
After Stage 1 26462.9 1 1
After Stage 2 24315.9 0 0
After Stage 3 24304.3 0 0

Figure[6.1 also bears out the above observations. This gitaphs the average objective
value (as calculated by Equatibnl6.1) achieved during theu@, by each of the algo-
rithms tested. For all test cases, the graph demonstraesigeriority of the 3-stage SA,
since its average objective value is the lowest comparduetother algorithms tested.
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Figure 6.1: Average objective value for all algorithms.

It should be noted that infeasible solutions are seldomyred by our algorithms. Ho-
wever, since an infeasible solution usually has a very latgective value, the presence
of one or more such solutions often results in a large inereathe average objective va-
lue (as an example, notice the average objective value peadoy the random-move SA
algorithm (SA2) for tasks 100 and 130 shown in Fiduré 6.1gcHjally, if the infeasible
solution has a very large number of TW violations, its oMerbjective value will be very
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high, given the large penalty imposed on the TW violationEguatiorf 6.1, and also the
penalty on the amount of delay. On the other hand, a feasibléien will only have the
route duration (multiplied by its small weight) as its tobdljective value.

Figure[6.2 shows the best run of the HC algorithm against #w tun of 3-stage SA

(SA1) algorithm for the largest task of 200 requests. Thely@emonstrates the current
objective value, as calculated by Equafion 6.1, in eachtitam of the run. It seems in this
graph that the 3-stage SA was able to explore a wider are& cigt@rch space, albeit with
a larger number of iterations needed to reach convergence.

Figure[6.8 shows the best run of the random-move SA algo(8/2) against the best run
of the 3-stage SA (SA1l), again showing the current objectahee in each iteration of the
run for the 200-requests task. In this graph, it is cleartt@B-stage SA was immediately
directed towards lower cost solutions during the early phad the run. The random-
move SA, however, spent quite a long time during these edrfs@s investigating low
quality solutions, and only started discovering the pramgiareas of the search almost
halfway through the rlﬁn
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Figure 6.2: HC against 3-Stage SA (SA1) for task 200.

3|t should be noted that the objective values only appear timgero in FigureE6]2 aid 6.3, due to the
scale of they-axis. However, the final objective values are in fact vergbnihis is because the solution
reached by the end of each run in both figures is a feasible¢i@olwhose cost is only measured by the
duration of the route (multiplied by its small weight), acding to Equatiof 6]1.



108 6.5 Experimental Results

4x10

Objective Value
= N w
- o1 N ol (1‘3 ol

e
(3]

| | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
[teration

Figure 6.3: Random-move SA (SA2) against 3-Stage SA (SAlxfask 200.

Table[6.6 shows the average processing time in secondslftreahlgorithms tested.
The table shows that the HC algorithm has the fastest averagessing time among all
algorithms, in all test cases. The table also indicatestiieabverall average processing
time of the 3-stage SA was slightly longer than the overadrage processing time of the
random-move SA. In addition, the table clearly indicated toth GA versions were very
slow compared to all other algorithms, which is expected duthe need to maintain a
large population of individuals throughout the search. $Aeand HC algorithms, on the
other hand, have lower computational costs due to focusirgingle solution.

Finally, comparing the results obtained by the 3-stage SA thie results obtained by pre-
vious researchers for the same problem, our algorithm seapressive, in terms of run

time as well as solution quality. We appreciate the difficuttmaking such comparisons
when different platforms have been used. Neverthelessuourmes are to a large extent
acceptable. For example, as shown in Tablé 6.6, the aveunagine of the 3-stage SA

for the 100-requests task was 44.5 seconds, while the lggsitaim tried in [89] appears

to have an average CPU time of approximately 300 secondedmame task.
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Table 6.6: Average Processing Time in Seconds.

Task GAl | GA2 | SA1 | SA2 | HC
30 92.6 | 42.65 5 4.9 1
80 1145 | 73.15| 23.8 | 11.7 | 4.3
90 121 | 105.65| 39.1| 14 | 54
100 4355 | 1119 | 445 | 144 | 6.2
130 422 581 | 26.3 | 30.1 | 9.2
170 479.7 | 699.4 | 38.8 | 42.1 | 13.8
200 1018.8| 760.95| 46.4 | 53.9 | 19.4

Average | 327.44| 339.24| 31.99| 24.44| 8.47

6.6 The 3-Stage SA: Further Investigation

As mentioned above, the 3-stage SA seems to be quite a pngrapproach. Thus, it
would be justified if we perform a thorough investigation bistalgorithm by trying to
examine all its potential. The choice of the sequence oftireetneighbourhood moves
was only based on our judgment. Starting with a move thatigeglby the upper bound of
the time window may give the algorithm better guidance,sihwould potentially reduce
the infeasibility incurred as a result of over delay. Thiewever, may not be the best
choice. A different order could prove more beneficial in tipdimization process, either
in the quality or the speed of the final solution obtained. g ihis part of our research
tries to investigate all possible sequences of neighbmarmoves, by testing them on
selected tasks from the data sets used in the previous pémt oésearch. Our aim is to
reach a conclusion as to whether there is any significandeetorder of the underlying
neighbourhood moves. The following discussion detailseogrerimental findings when
the different sequences of stages were investigated.

3-Stage SA Experimental Results:

To evaluate the performance of the 3-stage SA when diffeeders of neighbourhood
moves are considered, we selected 4 tasks from our two dagareples. These are tasks
30, 90, 130, and 200. For each task, we ran the 3-stage SAtalgarnder each possible
sequence 10 times. In the upcoming analysis of results, @@ gembination of the first
letters of the three time window (TW) moves to denote the sege under consideration.
For example (EC) denotes the sequenck:ate time window followed byEarly time
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window thenCentre time window.

Table[6.7 shows the average objective \BJLC& the 10 runs achieved by the different
TW orders for all tasks. Table 6.8 shows the best and worstageeobjective values
achieved in each task, together with the sequence of moaésiiained these averages.
This table also shows the best objective value achievedadh &gk and the sequence
which obtained this best result. The last column of the tahlews the previous best
objective value obtained using the preliminary experiragah order (LEC), as explained

in Sectio 6.b.

Table 6.7: Average Obijective Value for all Sequences.

Task | LEC | LCE | ELC | ECL | CEL | CLE
30 | 353 | 3.75| 3.49| 3.70 | 3.57 | 3.78
90 | 8.46 | 8.62 | 855 | 852 | 8.48 | 8.75
130 | 13.95| 14.03| 13.97| 13.96| 14.22| 14.19
200 | 24.37| 24.40| 24.30| 24.27| 24.32| 24.49

Table 6.8: Best and Worst Results.

Task | Best Avg Obj | Worst Avg Obj Best Obj | Prev Best Obj
30 3.49 - ELC 3.78 - CLE 297-ELC| 3.30-LEC
90 8.46 - LEC 8.75- CLE 8.23-CEL | 8.29-LEC
130 | 13.95-LEC | 14.22-CEL | 12.93-ECL| 13.83-LEC
200 | 24.27-ECL | 24.49-CLE | 23.43-ELC| 23.84-LEC

As shown in Tablé 618, the sequence LEC (used in SeCiion éti¢ed the best average
in 2 tasks, tasks 90 and 130. On the other hand, the sequeritacieved the worst
average objective in 3 tasks, 30, 90 and 200, while the segu€RL achieved the worst
average for task 130. Note that both sequences that obthiaedrst averages start with
the centre of the time window, while all sequences that oethihe best averages started
with either ends of the TW interval. Possibly, adopting teatce of time window as the
starting phase may not be the best choice for our algorithns deduction, however, still
needs further evidence, specially when we notice in Tal@e¢téat the sequence CEL was
able to achieve the best solution among all sequences fo®@d-or the remaining three

4As calculated by Equatidn 8.1.
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tasks, 30, 130 and 200, the sequences that obtained thebelts all started with a move

that depends on the early TW bound. Apart from the above vasens, there seems

to be no significant difference between the averages oltdipehe different sequences.
This can also be seen in Figurel6.4, which shows graphicaysame information as

Table6.T. The graph shows that all sequences obtained miEgsaccomparable averages
in all test cases.
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Figure 6.4: Average objective value for all sequences .

Also, observing the resulting feasibility ratio of all s&mees, we found that the feasibility
ratio obtained by all sequences was 100% for all tasks, witlly one exception, the
sequence CLE. This sequence had an 80% feasibility for taskrgl a 90% feasibility
for task 90. Again this may provide an additional evidencd 8tarting with the centre
of the time window may, in some cases, drive the algorithmyaft@am the promising
solutions. Possibly, the middle of the time window is not ayvgood indicator of how
urgent the request is. Thus, starting with it may lead to atgni that does not have the
best visiting order of requests and may have a large numb&mefwindow violations.
This order may be difficult to change later in the run.

It can also be noticed in Table 6.8 that the best results mddain the current experiment
were better than the previous best results in all test casgxssible indication of this
is that the 3-stage SA is a stable and robust algorithm whocisistently produces high
quality solutions even if different orders of neighbourtlanoves were employed.

Moreover, it should be noted that in most test cases the #ieges seem to contribute
positively to the optimization process. Each stage oftateddurther improvement to the
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result of the previous stage, although the extent of imprem obviously varies depen-
ding on several factors, such as the quality of the startihgtion, the current annealing
schedule, and the neighbourhood structure.

Table[6.9 shows the progress of the SA optimization processgithe three stages, for
the best run of each task. The table demonstrates the Majexalu@, the number of
capacity violations (CV), and the number of time window waittbns (TWV) before and
after each stage of the algorithm. The sequence of TW stageobtained these best
solutions is also shown next to the size of each task. Thie &liows that, in some cases,
for example task 90, the best solution reached by the endeo$tage may be lost during
the following stage. This is normal in any SA algorithm, asgecially when slow cooling
is employed, as we did in our first two sta@eslevertheless, the final result obtained by
the end of the last stage was better than the lost solutiomioQ$ly, when the algorithm
starts a fresh stage, using a new move, after the stagndtibie previous stage, it may
escape a local optimum, only by passing through worse solsiti

In terms of processing speed, nevertheless, we might betabach a slightly better

distinction. Tabld 6.70 shows the average processing tmseconds for the different

sequences, together with the best average speed and tlensedhat achieved this best
average. The table shows that the sequence LCE achieveagshenerage speed in 3
cases, 30, 130, and 200.

Table 6.10: Average Processing Time in Seconds for all Sequees.

Task | LEC | LCE | ELC | ECL | CEL | CLE | Best Average| Sequence of Best
30 | 50 | 1.5 | 29.2| 50 | 56 | 1.8 15 LCE
90 | 39.1| 21.6| 18.9| 18.1| 19.7 | 15.9 15.9 CLE
130 | 26.3 | 18.0| 45.8 | 36.9 | 29.5| 334 18.0 LCE
200 | 46.4 | 33.7| 85.1| 73.1| 63.4| 37.7 33.7 LCE

5The objective value shown in Tatile .9 is calculated by EquEE 1. Notice that this value is very large
for the initial solution, due to the presence of a very largenber of capacity and TW violations, which
are penalized in the objective function. When the violagiare removed by the end of the run, though, the

remaining objective value will only be the route durationltiplied by the weight assigned to it.
6See the discussion in Section]6.3.



Table 6.9: Solution Progress through Stages.

Task Initial Solution After Stage 1 After Stage 2 After Stage 3
Obj CV | TWV Obj Cv | TWV || OBJ |CV | TWV || OBJ | CV | TWV

30-ELC || 18689.70| 4 48 297 | O 0 297 | 0 0 297 | 0 0

90-CEL || 258255.0| 83 | 171 884 | 0O 0 968 | 0 1 823| 0 0

130-ECL || 792709.0| 23 | 232 || 112.24| O 2 12.93| 0 0 1293| 0 0

200 - ELC || 2345240.0{ 130| 382 || 696.82| 0O 7 23.441 0 0 23.43| 0 0

uonebnsaAul Jayund :v's abeis-¢ ayl 9°9
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6.7 Summary and Future Work

In this part of our research, we investigated three diffeag@proaches to the SV-PDPTW.
First, a GA approach equipped with problem-specific germgiarators was implemented.
One GA version had a TW directed merge crossover workinghegevith a random swap
mutation, while the other depended only on an intelligerdéated mutation that is guided
by the TW. Second, two versions of SA were tested: the firstaipd in three stages and
adopted neighbourhood moves that are guided by the timeowirethd a second adopted
a random unguided neighbourhood move. The third approaah K8C heuristic which
also operated in a manner similar to the 3-stage SA, but ardg@ed better solutions
encountered during the search.

The experimental results indicated that both GA versiorsrhare or less comparable
results in terms of both quality and processing speed. Tduédconly indicate that the
directed mutation operator is an intelligent operator ttaat guide the search towards
better solutions even without the help of any crossoverchviis usually the main GA
operator. However, the performance of the GA in general \igistly inferior to the other
algorithms tested in this research, in terms of the qualfitye best solution in most test
cases, but more so in terms of processing speed.

On the other hand, the 3-stage SA seems to be superior tchall algorithms tested in
this research in the quality of the solutions obtained. Mueg, its results were better than
the best results from previous research on the problem ibogihms of quality and speed,
in all test cases. However, this SA version was slightly glothan the random-move
SA version and the HC heuristic tested. The success of thag& SA is possibly due to
its dependence on intelligent neighbourhood moves thdtiboked to guiding the search
towards better solutions. These neighbourhood moves sresaccessful in the context
of hill climbing but with a less dramatic effect than theifesft in the context of simulated
annealing, possibly due to the trap of local optima. Howeawsing hill climbing can still
give us good quality solutions in a very short processingtiwhich may be preferable in
real world applications, and if the algorithm is used repdit as usually done when the
problem is generalized to the multiple vehicle case.

We also further investigated the 3-stage SA algorithm byremang all possible time win-
dow sequences and analyzing their outcome on selected@estaThe results in general
indicated that the 3-stage SA is a stable algorithms thaallysproduces high quality
solutions under various orders of stages. Neverthelelsse@liences seem to produces
comparable average results in most test cases. It was nsibjg$o reach a definite
conclusion as to whether one or more sequences are pretirrigd) the application of
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the SA algorithm. Some results, though, indicated thatiit&l phase should probably
start with either bounds of the TW interval, rather than éastce. In some cases, this will
probably provide the algorithm a push ahead towards momigiog solutions. In terms
of processing speed, however, the sequence LCE seems tthedastest average speed
in most test cases.

The ideas introduced so far for handling the SV-PDPTW prolidenstraints can be incor-
porated in any heuristic or meta-heuristic approach thedieéathis problem, and also its
multiple vehicle variant, as will be shown later in this tise§ he robustness and portabi-
lity of these simple tools have been demonstrated on sevecakions within the current
research.

Our next plan is to broaden our scope and investigate the gesreral Multiple Vehicle
Pickup and Delivery Problem with Time Windows (MV-PDPTWhé& work done so far
for the single vehicle case will be integrated within our améng study. The details of
this investigation are presented in the next two chapters.
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Chapter 7

New Solution Construction Heuristics
for the Multiple Vehicle Pickup and
Delivery Problem with Time Windows

The Multiple Vehicle Pickup and Delivery Problem with Timenlows (MV-PDPTW)
is a generalization of the SV-PDPTW introduced in Chagteaed6. Thus, the problem
definition in Sectiom 5J2 applies to the MV-PDPTW except thatassume here the avai-
lability a homogenous fleet of vehicles, with identical azipa to serve the requests. In
addition to the precedence, capacity and time window cams$y, applied to the single
vehicle case, the multiple vehicle case has an addegling constraint This constraint
ensures that the pickup location and its correspondingetgliare served by theame
vehicle. Also, the objective function of the MV-PDPTW udyaéties to minimize the
number of vehicles used in the solution, as a primary oljectollowed by minimizing
the total traveling distance and/or the total scheduletsraFigure 7.l shows simpli-
fiedrepresentation of a small instance of this problem befodeadier solving it.

B pickup
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Figure 7.1: MV-PDPTW before solution (left) and after solution (right).
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The MV-PDPTW is known to béV"P-hard [131], and the presence of many constraints
makes the problem particularly complicated. Indeed, gtiveg feasible and good quality
solutions to the problem in a reasonable amount of time encdt hard challenge for re-
searchers. The MV-PDPTW is botlgaouping problem(assigning requests to vehicles),
and arouting problem(finding the best route for each vehicle). Thus, an intefitgmlu-
tion methodology should be able to handle these two asp#icieetly. Similar to other
vehicle routing problems, researchers usually try to stiteeproblem in two stages: the
first stage isolution constructioywhile the second isolution improvement his chapter
is dedicated to the solution construction phase of the MRPDY, while our investigation
of the solution improvement phase is detailed in the nexptgraThe findings of this part
of our research were published in t#C2009conferencel[81].

The rest of this chapter is organized as follows: Sediiohgiiés a general idea about
solution construction for the MV-PDPTW and introduces opcaming research in this
area. Sectioh 7.2 summarizes some related work. SéctibempBasizes the motivation
and the objectives of this part of our research. Sectianxptams the routing algorithm
embedded within the different construction heuristicsgasged. Sectiopn 7.5 details the
construction heuristics implemented in this researchti®®Z.8 reports the experimental
results of the algorithms tested. Section 7.7 sheds lighltomne implementation issues
and complexity analysis of the suggested algorithms. Bingéction 7.8 concludes this
chapter with our future plans.

7.1 Solution Construction for the MV-PDPTW

Like the construction heuristics for the VRPTW, a solutiomstruction algorithm for the
MV-PDPTW usually selects at each iteration an un-assignstbmer whose insertion is
predicted to cause the least increase in the overall cosedddlution. The selected cus-
tomer is then inserted in its best (least cost) feasibleriiogeposition found among all
available routes. This kind of insertion may require mudtipalculations to estimate the
effect of the insertion, in terms of the increase in travstalice and time delay, on all cus-
tomers already existing in that particular route who cowdafiected by the insertion (see
Section3.B for more details about construction heuristiéglditional decisions during
the construction of the solution include whether to buildtes sequentially or in parallel,
and possibly the selection of seed customers to initiaheerbutes. Some construction
algorithms order customers before the insertion, and titialiorder is also an important
factor that may affect the quality of the generated solut©@ommon approaches include
sorting customers according to the distance from the depeai;zcording to the time win-
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dow. Finally, the selection of a cost function to assess tradity of the whole soluti(ﬂ1
during the construction is sometimes needed, so that ioesrtvhich greatly affect the
solution cost can be identified and appropriately handled.

While these considerations also apply to the general VRPRWN#re all requests are of
the same type (either pickups or deliveries), the MV-PDPTitself entails additional
considerations. This is due to the presence of a pair ofeglatications for each indivi-
dual request and the precedence and coupling issues ngsthiéreof. For example, the
decision regarding the best insertion position for a centaguest should ideally take both
the pickup and the delivery into account. The sorting adatéor requests may likewise
be based on either the pickup or the delivery location, dng@s combine both. It is also
frequently the case with the MV-PDPTW that the initial s@utis drastically changed
during the improvement phase. For example, both the algostin [12] and[[13/1] produ-
ced very good results using an approach that is based on a Naighbourhood Search
(LNS). The algorithm removes and then relocates a large euofiyequests (30% - 40%)
in each iteration. This could possibly indicate that sofitesed construction algorithms,
that are usually time consuming, parameter dependent, ambtd implement, may not
actually merit their cost, compared to more straightfodheand faster algorithms.

In an attempt to overcome the difficulties inherent in thestarction of a feasible so-
lution, which are mainly due to the hard problem constraamd the complex problem-
specific decisions, we propose, in this part of our resedatlr, different construction
heuristics that aim to build initial feasible solutions tetMV-PDPTW. To the best of
our knowledge, our research is the first attempt in the liteeato analyze and compare
different initial solution construction methods for the MARDPTW. The aim of the re-
search is to decide which construction algorithm has moterpial as a preliminary step
towards a complete solution methodology to the problem. @apsing construction al-
gorithm should demonstrate a suitable balance betweentygagthe generated solution,
processing speed and simplicity of implementation.

All suggested algorithms make use of a simple and efficiartimg algorithm to generate

feasible individual vehicle routes. This routing heudstias based on our investigation
of the SV-PDPTW, as previously detailed in Chaptérs 5[@ndH&s& algorithms, never-

theless, differ in whether the construction of vehicle esus performed sequentially or
in parallel. They also differ in the criteria according toiatnthe next un-routed request
is selected for insertion in a particular route.

1For example, the cost function may combine the number oeand the total cost of each route.
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7.2 Related Work

As previously mentioned in Sectidn 8.3, solution constamtfor vehicle routing pro-
blems in general, can be done either sequentially or in learél sequential construction
builds routes one after another, while a parallel constvadbuilds a number of routes
simultaneously. Figure 7.2{a) shows a typical solutiomsisting of 8 locations, that is

constructed sequentially, while Figure 7.2(b) shows atgmiuvith the same number of
locations that is constructed in parallel.
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(a) Sequential construction (b) Parallel Construction

Figure 7.2: Solution Construction.

To construct initial solutions for the MV-PDPTW sequeritiatesearchers usually adap-
ted Solomon’s sequential insertion heuristics of the VRP[IW]. A weighted sum of
the extra travel distance and total time delay resultingnftbe insertion is often used
to estimate the cost of the insertion (see Sedtion B.3.3 frerdetails about Solomon’s
insertion heuristics). This type of construction was usedl00] for the MV-PDPTW,

and was followed by a solution improvement phase called a-¢bbedded simulated
annealing.

As previously mentioned in Sectién 3.B.3, a parallel cartdion heuristic was first intro-
duced in [121] for the VRPTW. In a parallel construction, esa} routes are initialized
with seed customers and requests are subsequently ingetdedny of the initialized

routes. Accordingly, the algorithm needs an initial estenaf the number of vehicles to
be used. Routes are later added as needed if the initialastishoes not yield a feasible
solution. The authors also introduced an additional cormpleasure in the cost function,
which is called “a generalized regret value”, in order to pane the difference between
the cost of an immediate insertion versus a postponed ioserRequests with a large
regret value are given priority of insertion. The regretueals a kind of a ‘look-ahead’

measure to estimate the difference between inserting theese in its best route and in-
serting it in its second best route. The measure may be daeerdy comparing the
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insertion costs of the begtroutes of a particular request, rather than only the best two
routes. In a sense, we choose the insertion (of a requestyvéhwill ‘regret’ most if it

was not performed now. This regret measure was also usé@Htyfdr the MV-PDPTW,

and was embedded within an Adaptive Large NeighbourhoottB€ALNS) technique

to improve the solution quality.

The work in [102] presents a sequential construction allgorifor the MV-PDPTW. The
algorithm repeats a cycle of three components. The first oot is a constructor, which
uses a sequential greedy algorithm to add pairs of custamére order they appear in a
priority sequence that is initially random. The analyzeeafards analyzes the solution
and assigns a certain ‘blame’ value for each customer basis contribution to the total
solution cost. Finally, the prioritizer reorders the cusérs, such that customers with a
high blame value are moved forward in the priority sequence.

A parallel construction heuristic that solves the MV-PDPT8\presented in [104]. The
algorithm starts by finding the largest set of customers,reviiteis impossible to serve
any two customers with the same vehicle due to constraitatiom. These customers
are then used as seed customers in the initial set of routeaseért the remaining custo-
mers afterwards, the algorithm takes into consideratieretfect of insertion on both the
classical increase in distance measure, and also the ragaime window slack in the
route, i.e., priority is given to insertions that do not usecitm of the available time slack,
allowing for more feasible latter insertions. The authds® aise a non-standard measure
of the visual attractiveness of the route to select the mesireld insertions, by trying to
minimize the number of crossings (intersection pointsjveen the generated routes.

7.3 Research Motivation and Objectives

We noticed during our literature survey of the MV-PDPTW thegearchers who adopt
a 2-phase approach (i.e., construction of an initial solytfollowed by an improvement

phase) to solving the problem often pay more attention tethaion improvement phase,
such that the results of the initial solution constructibage are seldom reported, if at all.
This makes it difficult to assess the contribution of the ¢éatdion method to the success
or the failure of the overall algorithm. It is also importaotnote that the role of the

construction algorithm is not only limited to the initiadiion phase. The construction
algorithm is often applied at various stages during the owement phase to create or
modify new or partial solutions, as done for example'id [I#] §116]. Therefore, a good

choice of the construction algorithm is vitally important.



122 7.4 The Routing Algorithm

The research reported in this part of the thesis will helmiidig the construction heuris-
tic(s) that seems to be most appropriate for this problechdacide whether sophisticated
and computationally expensive methods actually warragit tost, as opposed to other
simpler and less expensive algorithms. In the followingisaecwe explain our simple
routing algorithm, which is the core of the different constion algorithms proposed in
this research. Sectign 7.5 then discusses in detail thestraotion algorithms.

7.4 The Routing Algorithm

A crucial part of the MV-PDPTW is the routing algorithm thatllvgenerate a feasible
route for each individual vehicle. A major concern is howandle all problem constraints
efficiently. The routing algorithm we used here was selebteskd on our research on the
SV-PDPTW, detailed in Chaptelr$ 5 alnd 6. This algorithm setia aniterative impro-
vementof individual routes, and is embedded in the overall coms$iva algorithm that
could either be sequential or parallel. The main differdoegveen our routing algorithm
and other routing (insertion) heuristics in the literatigréhat our algorithm does not try
to find the best insertion position for each request in théerdout acceptany feasible
insertion. As a result, many complex calculations and mwbspecific decisions, that
are related to the association between the pickup and tivedglcan be avoided. For
example, our algorithm eliminates the bias towards eithepickup or the delivery loca-
tion, which is one of the major drawbacks of ‘classical’ g methods. Clearly, when
the best insertion position for one location (pickup ordaty) is chosen first, the choices
available for its partner will be restricted accordingly.

Based on the representation attempted in our SV-PDPTW dtmgri rather than repre-
senting the visiting order of locations in each route by a-dimeensional permutation of
all the different locations, we assign the same code to bwhptckup location and its
delivery, and we refer to the pair agequest We then rely on a simple decoder to al-
ways identify the first occurrence of the code as the locadfgrickup and the second as
the location of its delivery. This representation will hebtoth the precedence and the
coupling constraints of the MV-PDPTW, since it will be no ¢gar necessary to ensure
that both the pickup location and its delivery are assignetd same vehicle, and that the
pickup comes before the delivery in the visiting order. Gmdther hand, the capacity and
time windows constraints may be violated in this repres@ntabut they are penalized in
the objective function, as will be explained shortly (seei&pn 7.1 below).

Recall from Chaptdr]5, that the different routing algorithfor an individual vehicle tried
to improve the current route by rearranging nodes basedesnttme window intervals.
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For the purpose of the MV-PDPTW, we selected as a route ingonewnt heuristic, the
simple Hill Climbing (HC) algorithm which tries to graduglmodify the current route
until no further improvement is possible. In fact, we chdse HC algorithm to improve
individual routes, because it was very fast compared totther dneuristics investigated for
the SV-PDPTW, and it also gave good quality results. As silddegemed more suitable
for repeated application within the various constructitgoathm, as will be explained
in Section_Z.b. Also, only one stage of time window improveingas applied here to
accelerate the generation of multiple routes. The neigtitsmd move used by the HC
algorithm in this part of our research depends only on theuppund of the time window
interval to decide the swapping of locations. Algorithm dekcribes this simple heuristic.

Algorithm 7.1: The HC Routing Algorithm.

1: Given aroute
2: repeat

w

for (Each possible pair of locations i) do

4 if (The latter location is more urgent in its upper time windavubd)then
5 Swap the current two locations into get a new route’

6: A — cost(r'") — cost(r)

7 if (A < 0) then

8 77

9:

until (Done){Stop if no improvement has been achieved in the prevpass}

The cost function to evaluate the quality of a roufen Step 6 of the HC algorithm, is
described by the following equation:

F(r)=w; x D(r) + we x TWV (r) +ws x CV(r) , (7.1)

where D(r) is the total route duration, including the waiting time ahe service time
at each location.TWV(r) is the total number of time window violations in the route,
andC'V (r) is the total number of capacity violations. The constamtsw,, andw; are
weights in the range [0,1], and; + w, + w3 = 1.0. As previously mentioned, the largest
penalty should be imposed on the time window violations, riteo to direct the search
towards more feasible routes. We used the following weifghtthe route cost function:
wy; = 0.201, wy = 0.7 andwsz = 0.099 H

2Comparing the current weights to those assigned in EquEifhrhe penalty on the capacity violations
was reduced, while the weight assigned to the total routatiur was increased. This is due to the fact
that routes in the multiple vehicle case are usually shaht@n routes in the single vehicle case, and the
satisfaction of the capacity constraint tends to be easiarrasult.
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7.5 Solution Construction Heuristics

In all our construction heuristics we first start by sortinggtomers according to the dis-
tance from the depot (farthest first). However, since in gyoraach we deal with custo-
mers in pairs, where each pair consists of a pickup locatiorita associated delivery, the
distance measure, in relation to the depot, could eithendelistance between the depot
and the pickup location, or the distance between the dembtrendelivery location. We
arbitrarily chose the distance separating the depot andédliery location for the initial
order of requests.

7.5.1 The Sequential Construction Algorithm

The sequential construction heuristic tries to build reuwire after another. Requests are
taken one by one in order, and each request (pickup and depe#) is initially inserted

at the end of the current route. Our HC routing heuristic Gaithm[7.1) is then called to
try to improve the current route. If the HC algorithm retuarsimproved route that can
‘feasibly’ accommodate the newly inserted pair, this itiseris accepted and we move on
to the next request. However, if the improved route is gtiiéasible, the newly inserted
pair is removed from the current route to wait for anotheertisn attemptin a new route
Thus, unlike the ‘traditional’ insertion methods, our aigfom relies on the HC heuristic
to improve the quality of the current route, without actydihving to calculate the cost
of each and every possible insertion position in order tecd¢he best one among them.

Algorithm[7.2 describes the sequential construction ptace. It is important to note in
StedY of this algorithm that, besides overcoming the prewesl and the coupling issues,
inserting a request (a pickup and delivery pair) at the enthefroute has the added
advantage of accelerating the insertion process, sincddeaiions instead of one are
simultaneously inserted.

3Although the HC algorithm is usually very successful in ‘idieg’ whether a new pair can be feasibly
inserted in the route, there is still a small chance that tteg decision is made. In other words, a pair may
be removed from the route although it could have been feasibérted there, had the cost of all possible
insertion positions been calculated and the best positlentified, as done in ‘traditional’ construction
methods.



7.5 Solution Construction Heuristics 125

Algorithm 7.2: The Sequential Construction.

1: Let M < 0{M is the number of vehicles used}

2: repeat
3: Initialize an empty route
4 M=M+1
5.  for (All unassigned requestslp
6: Get the next unassigned requést
7: Insert request at the end of the current route
8: Call the HC routing heuristic (Algorithin 7.1) to improve
9: if (r is a feasible routethen
10: Mark i as inserted
11: else
12: Removei from r

13: until (All requests have been inserted)

7.5.2 The Parallel Construction Algorithms

As mentioned previously, for a parallel construction, saleutes are considered simul-
taneously for inserting a new request, and an initial eggnoé the number of vehicles
is required. Potvin and Rousseau in their parallel constm@lgorithm for solving the
VRPTW [121], estimate the initial number of vehicles by fitwtining Solomon’s sequen-
tial construction([141]. The number of vehicles in the résglsolution is then used as an
estimate of the initial number of vehicles for the parallelihistic.

In our research, we adapted the parallel construction stsuof the VRPTW in[[121]
to the MV-PDPTW. However, to avoid extra processing time, agémated the initial
number of vehicles using a simple formula that divides thaltdemand of the pickup
requests in the problem instance by the capacity of the leetds shown in Equatidn 7.2.

M=[(> a)/C], (7.2)
iENT

whereM is the estimated initial number of vehicl€g;' is the set of pickup customeis,
is the demand (load) of a pickup request, & the capacity of the vehicle. However,
this estimate seems to be more suitable for instances witkieatschedule horizon, i.e.,
those having a short time window width. Instances with maelfle (long) time window
intervals, on the other hand, may require fewer vehiclesad with. More specifically,
when the width of the time window interval is short, therelsi¢é a limited number of
alternative feasible locations for scheduling the requi&stordingly, instances with such
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a property usually need a large number of vehicles to be alderive all requests without
any constraint violation, as opposed to instances having@time window width. Thus,

to be able to handle the different types of test cases, wednted a small modification
to this formula for some problem instances, as will be exy@diin Sectioh 716.

Similar to the parallel approach for the VRPTWIin[121], whinitializes each route with
a seectustomeyour parallel algorithms initialize each route with a seeguest(pickup
and delivery pair) from the sorted list of requests. We thake tthe remaining requests
in order and attempt to insert the next request in one of thiiapeoutes created. If the
next request cannot be feasibly inserted in any of the ajregehted routes, a new route is
added to accommodate this request. This process is repgaikdll requests have been
inserted.

As previously explained, traditional parallel constroatalgorithms for both the VRPTW
and the PDPTW, usually select the customer who has the ¢umiemrmum insertion cost
among all remaining un-routed customers to be inserted & cost is often a measure
of the extra travel time and distance, which would resultfinserting the customer in the
best possible (feasible and minimum cost) insertion pwsiound in all available routes.
Our parallel algorithms, on the other hand, differ amongheatber in how they select
the next request to be inserted, and also in selecting the mwvhich this request will
be inserted. Following is an explanation of the differengfial construction algorithms
proposed in our research.

Parallel Construction - First Route:

In our first parallel construction algorithm, the next resfue order is inserted in the first
route in which a feasible insertion of this request is foured, no attempt is made to find
the best route for the current request. Thus, our first predinstruction uses a fast first
acceptance criterion for insertion. Algoritim17.3 desesilthis procedure.
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Algorithm 7.3: Parallel Construction: First Route.

1: CalculateM (the initial estimate of the number of vehicles)

2: Initialize M routes with seed customer pairs from the sorted list of cnste
3: for (All remaining unassigned requestk)

4.  Getthe next unassigned requéest

5: r = 0 {start with the first route}
6: while ((r < M) and ¢ not yet inserted) §lo
7: Insert the requestat the end of the current route
8: Call the HC routing heuristic (Algorithin 7.1) to improve
9: if (r is a feasible routethen
10: Mark i as inserted
11: else
12: Removei from r
13: r=r+1
14: if (+ was not insertedihen
15: Initialize a new route”’
16: M = M + 1 {increase the number of vehicles}
17: Insert the requestin the new route”’
18: Mark i as inserted

Parallel Construction - Best Route:

In our second parallel construction algorithm, the nextesd in order is inserted in the
best route in which a feasible insertion of this request ismtb The best route for each
request is the route that causes the least increase in thallaxest of the solution (the
routing schedule) due to the insertion process. To caletiet overall cost of the solution,
we used an objective function that is suggested by Bent amdedgyck in [12]. The
objective function consists of three components: the fioshgonent tries to minimize
the number of vehicles used in the solution, the second casmgdries to minimize the
total distance traveled, while the third component is a mesthat tries to maximize the
square of the number of nodes visited by each vehicle. Thitamponent is intended
to favour routes that are rather full and those that are raimpty, as opposed to an even
distribution of nodes among routes. The idea is to try to gedt some vehicles that are
under-utilized during subsequent route improvement @habke objective function of a
solutionS is described by Equatidn 7.3.

OS)=ax M+ x ZDist(r) — 7y X Z Ir* (7.3)

res res
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whereM is the number of vehicles used in the current solutidist(r) is the total dis-
tance traveled by each vehicle, dnflis the number of nodes visited by each vehicle. The
constantsy, 3, and y are weights in the rang@, 1] assigned to each term in the objective
function, andx + 3+ v = 1.0 . In our research we try to minimizing the number of ve-
hicles as our primary objective followed by the total distanthus we chose > (5 > .

We used the following weight values for Equationl 7a3= 0.7, 8 = 0.29 and~y = 0.01.
Algorithm[7.4 describes the second parallel constructigarghm.

It is important to note, in Step 10 of Algorithim 7.4, that srtbe insertion process only
affects one route, the calculation of the new solution costschot require evaluating all
routes in the current solution. The calculation is simplyedy removing the old cost
of the current route (before the insertion), and adding e nost resulting from the
insertion.

Algorithm 7.4: Parallel Construction: Best Route.

1: CalculateM (the initial estimate of the number of vehicles)

2: Initialize M routes with seed customer pairs from the sorted list of coete
3: for (All remaining unassigned request)

4: Initialize Local Min to an arbitrary large value

5. for (r=0;r < M;r++)do

6 Get the next unassigned requést

7: Insert the requegtat the end of the current route

8 Call the HC routing heuristic (Algorithiin 7.1) to improve

9 if (r is a feasible routethen

10: calculateAcost { Acost is the change in solution cost due to the insertion (where cos
is estimated using Equatién 7.3) }

11: if (Acost < Local Min) then

12: Local Min = Acost

13: r* = r{ r* is the current best vehicle for requékt

14: Removei from r {temporarily remove until the insertion cost of the current request in

all routes is calculated}
15:  if (r* is found)then

16: Inserti in r*

17: Mark i as inserted

18: else

19: Initialize a new route’ {Since no feasible insertion is found fomn any of the available
routes, allocate a new route}

20: M = M + 1 {increase the number of vehicles}

21: Insert the requestin the new route”’

22: Mark 7 as inserted
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Parallel Construction - Best Request:

Our next parallel construction heuristic does not only tryihd the best route for each
request, but also selects the best un-routed request tosbead next. The best un-
routed request is the one whose insertion (in its best r@aiejes the least increase in the
overall cost of the solution, where the solution cost is agabluated using Equation ¥.3.
Algorithm[7.5 describes this procedure.

Algorithm 7.5: Parallel Construction: Best Request.

1: CalculateM (the initial estimate of the number of vehicles)
2: Initialize M routes with seed customer pairs from the sorted list of coste
3: repeat
4: Initialize Global Min to an arbitrary large value
5 for (All remaining unassigned requestk)
6 Initialize Local Min to an arbitrary large value
7 for (r=0;r < M;r ++)do
8: Get the next unassigned requést
9: Insert the requestat the end of the current route
10: Call the HC routing heuristic (Algorithiin 7.1) to improve

11: if (r is a feasible routethen

12: calculateAcost

13: if (Acost < Local Min) then

14: Local Min = Acost

15: r* = r { r* is the current best route for requépt
16: Removei from r

17: if (r* is found)then

18: if (LocalMin < Global Min) then

19: GlobalMin = Local Min

20: 1* = 1 {¢* is the current best request}

21: v* = r* {v* is the best vehicle (route) for}
22: else

23: Initialize a new route”’

24: M=M+1

25: Insert: in the new route”’

26: Mark ¢ as inserted

27:  if (¢* is found)then

28: Inserti* in v*

29: Mark :* as inserted

30: until (All requests have been inserted)
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7.6 Computational Experimentation

7.6.1 Characteristics of the Data Set

To test our algorithms, we used several instances from thehmeark data of the MV-
PDPTW created by Li and Lim in [100]. The authors/of [100] ¢esbthis data set based
on Solomon’s test cases of the VRPTW in [141]. There are @uifft categories of
problem instances in this data set: LR1, LR2, LC1, LC2, LR&id LRC2. Problems
in the LR category have randomly distributed customersbleras in the LC category
have clustered customers, and problems in the LRC categwe frartially random and
partially clustered customers. On the other hand, probieestified with the number
‘1’ have a short scheduling horizon (tight time window wigtkvhile problems iden-
tified with the number ‘2’ have a long scheduling horizon gitime window width).
Each category has 6 different problem sizes: 100, 200, 400, 800, and 1000 cus-
tomerg. There are between 56-60 files from each problem size. Tlaé namber of
files in the data set is 354. The data and the best known resuitbe downloaded from
http: /7 www. si nt ef . no/ Proj ect web/ TOP/ Pr obl ens/ PDPTW Li - - Li i+ benchmar K/
For the purpose of testing our algorithms we selected the6fifities from each category
for each problem size. The total number of files used to tesalmorithms is 216. The
files used for testing our algorithms are summarized in TalAle

As mentioned in Section 7.5.2, we used a simple formula (Egu&.2) to estimate the

initial number of vehicles needed for the parallel condtacheuristics. However, during
our preliminary experimentation, we found that this estendoes not suit the different
types of problem instances. Apparently, problems that laalg schedule horizon al-
low for a more flexible visiting schedule, and generally liegjlewer vehicles. We also
found during our experimentation that an underestimatéeinitial number of vehicles

is usually preferred to an overestimate, since reducingptiadnumber of vehicles used is
our primary concern. As a result, to estimate the initial bemof vehicles for problems
with a long schedule horizon (problems of category ‘2’) wduged our initial estimate

by 50%. Thus, Equatidn_4.4 was used instead of Equéfion 7.2.

M= (123 a)/C) . (7.4)

iENT
However, this estimate is to some extent arbitrary and nesnander consideration for
future reassessment.

4The original data set in [100] contained only 56 100-cust@peoblems. Larger problem sizes were
later added to the original data set.
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Table 7.1: Test Files.

Category 100 customers 200 customers 400 customers

LC1 LC101 to LC106 LC1-2-1to LC1-2-6 LC1-4-1to LC1-4-6

LC2 LC201 to LC206 LC2-2-1to LC2-2-6 LC2-4-1to LC2-4-6

LR1 LR101 to LR106 LR1-2-1to LR1-2-6 LR1-4-1to LR1-4-6

LR2 LR201 to LR206 LR2-2-1 to LR2-2-6 LR2-4-1 to LR2-4-6
LRC1 LRC101 to LRC106 LRC1-2-1to LRC1-2-6 LRC1-4-1to LRC1-4-6
LRC2 LRC201 to LRC206 LRC2-2-1 to LRC2-2-6 LRC2-4-1to LRC2-4-6
Category 600 customers 800 customers 1000 customers
LC1 LC1-6-1to LC1-6-6 LC1-8-1to LC1-8-6 LC1-10-1to LC1-10-6
LC2 LC2-6-1 to LC2-6-6 LC2-8-1to LC2-8-6 LC2-10-1to LC2-10-6
LR1 LR1-6-1to LR1-6-6 LR1-8-1to LR1-8-6 LR1-10-1to LR1-10-6
LR2 LR2-6-1 to LR2-6-6 LR2-8-1 to LR2-8-6 LR2-10-1to LR2-10-6
LRC1 LRC1-6-1to LRC1-6-6/ LRC1-8-1 to LRC1-8-6| LRC1-10-1 to LRC1-10-6
LRC2 LRC2-6-1 to LRC2-6-6/ LRC2-8-1 to LRC2-8-6| LRC2-10-1 to LRC2-10-6

7.6.2 Comparing the Construction Heuristics

Throughout this discussion, we use the following notatimn®fer to each algorithm

1. Sequential Constructiol®EQ

2. Parallel Construction - First RouteFR

3. Parallel Construction - Best RouteBR

4. Parallel Construction - Best RequeBBQ

Since the construction algorithms are all deterministchealgorithm was run only once
on each test file. Table 7.2 shows the percentage of time dgahithm produced the
smallest number of vehicles (Min-Vehic), and the smallettltdistance (Min-Dist), that
are found in the current experiment, over all 216 problertaimseB. Table[7.8 shows the
average number of vehicles, the average total distancethenaverage processing time
(in seconds), produced by each algorithm for each probleensgparately.

5Some ties are produced and counted in the results.
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Table 7.2: Frequency of Generated Best Solutions .

Algorithm | Min-Vehic | Min-Dist
SEQ 48% 31%
PFR 24% 6%
PBR 19% 8%
PBQ 49% 56%

The following observations can be realized from Tables AdIA3:

e Regarding the number of vehicles generated, SEQ and PBQigeddhe best re-
sults, with SEQ producing better results than PBQ in large problems, while
both PFR and PBR were slightly inferior in this respect.

e Regarding the total distance traveled, PBQ was able to Weath@r algorithms,
followed by PBR and SEQ.

e PFR produced the worst average distance in all test caseiswas slightly better
than PBR in the average number of vehicles used.

e SEQ and PFR have comparable average processing time irsttases. Their
processing time on average is faster than the other twoitdigws, with PBQ being
the slowest among all.

In summary, the results in Tablgs 7.2 7.3 suggest thatdeRPBR are inferior
to SEQ and PBQ, both in terms of the number of vehicles usedlandbotal distance
travelé%. As a result, PFR and PBR can be eliminated from further clemation, and
we can focus our attention on SEQ and PBQ.

As can be noticed from the average results in the last row ble[d3, SEQ produced
better results than PBQ in the number of vehicles used. Th@ &Borithm, however,

was able to beat the SEQ algorithm in minimizing the totalatise traveled. This was
obviously due to the fact that the SEQ algorithm was more eored with fitting the

largest possible number of requests in each vehicle beftweating a new one, while
the PBQ algorithm relied on a cost function that has the tinéadel distance among its
components. The PBQ algorithm was, nevertheless, muclesttyan the SEQ algorithm.

SHowever, PBR was able to slightly improve upon PFR with respethe total distance traveled, while
PFR was slightly better than PBR in the number of vehiclegluse



Table 7.3: Average Results for all Algorithms.

_ SEQ PFR PBR PBQ

Problem Size . . , . . , . . . . : ,

Vehic Dist Time | Vehic Dist Time | Vehic Dist Time | Vehic Dist Time
100-customers | 11.78 | 2662.92 | 0.02 | 11.83| 2767.19 | 0.02 | 11.83| 2711.89 | 0.03 | 11.69| 2564.09 | 0.34
200-customers | 17.33| 8887.08 | 0.08 | 17.69| 8954.06 | 0.08 | 18.17| 8816.33 | 0.1 | 17.14| 8132.84 | 3.62
400-customers | 33.56 | 22215.14 | 0.32 | 34.64 | 23010.53| 0.3 | 34.69| 21898.96 | 0.38 | 33.72| 19758.38 | 26.93
600-customers | 48.22 | 44949.4 | 0.72 | 49.89| 46644.49 | 0.69 | 50.69 | 45234.96 | 0.86 | 49.53 | 41791.82 | 147.57
800-customers | 63.53 | 74650.07 | 1.24 | 65.94| 77895.32 | 1.23 | 66.44 | 74056.45| 1.65 | 64.89 | 68713.31 | 438.97
1000-customers| 77.25| 108513.19| 1.88 | 81.97 | 115106.93| 1.93 | 81.75| 108662.01| 2.54 | 81.58 | 103751.31| 952.34
Average 41.95| 43646.30| 0.71 | 43.66 | 45729.75| 0.71 | 43.93 | 43563.43| 0.92 | 43.09 | 40785.29 | 261.62

uonejuawadx3 feuoneindwo) 9/

eeT
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The average processing time of the SEQ algorithm ranged @@® seconds for 100-
customers problems to 1.88 seconds for 1000-customertepneb The PBQ algorithm,
on the other hand, had a processing time ranging from 0.3gngsdo 952.34 seconds
for the same problem types, which indicates beyond doubttlge difference in the
computational effort needed for both algorithms.

It should also be noted that the SEQ algorithm neither reguan initial estimate of the
number of vehicles, nor does it need a solution evaluatiarhar@sm during the construc-
tion process (the SEQ is unlike the PBR and the PBQ algoriflemsistance, in which
the cost of the whole solution must be calculated using EopEt3 at each step of the
construction process). The only advantage that the PBQitligooffers, which is a slight
reduction in the total travel distance, does not seem tafyuss added cost in terms of
the complexity of the algorithm and the increase in procgssime. Another advantage
of the SEQ algorithm is that it can be easily adapted to pajmdased heuristics or
meta-heuristics by randomizing the initial order of reqade generate different diverse
solutions. The PBQ algorithm, on the other hand, is expetct@doduce a limited diver-
sity, even if the initial order of requests is randomized;adese of the selection criteria
and the cost function it relies on during the insertion pssceMost likely, requests that
are hard to insert, and thus cause a large increase in th@satost, will always remain
the same, despite the change in the insertion order.

7.6.3 Comparing with Previous Best Known

Although our algorithms are primarily intended for consting initial solutions to the
MV-PDPTW, it would still be useful to compare our resultsiibe best known solutions.
This would give us a general idea about the expected effdhdrsolution improvement
phase.

Table[7.4 shows the relative gap (in percentage) betweeavidrage results produced by
both the SEQ algorithm and the PBQ algorithm and the averagekmown results. We
used the following formula to calculate the relative gap

gap = ((Result — Best Known)/Best Known) x 100 (7.5)

The relative gap is measured with respect to both the nunilvehicles and the distarﬁe
The table shows that the SEQ algorithm produced, on aveeagightly smaller gap
with respect to the number of vehicles, and a slightly lagggy with respect to the total

"For example, a gap of 50% in the average number of vehiclessibat the result of the construction
heuristic produced 50% more vehicles than the best knowuitres
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distance. Together with the fact that the SEQ algorithm iteqgimple and fast compared
to the PBQ algorithm, the results in Tablel7.4 would agaimstejustify its preference
as a solution construction method over the PBQ algorithm.

Table 7.4: Average Relative Distance to Best Known.

Vehic-Gap Dist-Gap
SEQ | PBQ | SEQ | PBQ
100-customers | 58% | 57% | 146% | 137%
200-customers | 63% | 61% | 187% | 163%
400-customers | 66% | 67% | 207% | 173%
600-customers | 64% | 69% | 206% | 185%
800-customers | 66% | 70% | 205% | 181%
1000-customers| 65% | 74% | 191% | 178%
Average 64% | 66% | 191% | 170%

Problem Size

It may also be beneficial to analyze the results produceddgdhstruction heuristics for
each benchmark category separately. This may give an insighwhat problem types
would require more effort in the solution improvement phaSgure[ 7.8 shows the ave-
rage gap produced by the SEQ algorithm for all tasks, organi®/ problem categories.
Figure[7.4 shows the average gap produced by the same higonith respect to the
distance traveled.

Both figures show that the SEQ construction heuristic seene tmore ‘successful’ in
instances with a short schedule horizon, i.e., instancadifted with ‘1’ in the data set,
since these instances always have a smaller gap than iastahtype ‘2. Regarding
the primary objective, which is the number of vehicles usied,algorithm seems to do a
better job for instances that have clustered customersp@ssed to instances that have
random or partially random customers. Itis clear that imsts in the LC category always
have the smallest gap compared to other problem types.dPnghwith random customers
and a long time window interval appear to be the most chaihenigpr the SEQ algorithm,
and possibly all solution algorithms. The reason could lgtte solution space for these
problems seems to be larger, due to the randomness of Insatia the large width of
time windows involved in this case. It also appears from lgptiphs that the gap in the
number of vehicles is inversely proportional to the gap mntttal travel distance, in most
test cases.

It is also worth mentioning that the results in Tablel 7.4 aiglfes 7.8 an@ 714 indicate
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Figure 7.4: SEQ algorithm - average distance gap for all prokem categories.

that a lot of work still needs to be done in the improvementsgha order to reach the
anticipated standard for the final problem solutions. Téisvident by the relatively large
gap between the current initial solutions and the final bastun results. Designing an
‘intelligent’ improvement phase seems to be inevitableroher to cope with the difficult
problem constraints and the various types of problem icssn

Finally, Table[7Z.b shows the average processing time of #@ &lgorithm, for each
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problem size in each benchmark category. It appears indhle that problems involving
random customers with a long schedule horizon, LR2 and LRfeRerally require a
longer processing time than the other problem categoribghnsustains our previous
observation regarding the large solution space for thesglgms.

Table 7.5: Average Processing Time (seconds) of the SEQ Akggam for all Tasks.

Problem Size

Category

100 | 200 | 400 | 600 | 800 | 1000
LR1 0.02| 0.06| 0.22| 0.53| 0.95| 1.54
LC1 0.02| 0.05| 0.22] 0.48| 0.92| 1.43
LRC1 0.02| 0.06| 0.21] 0.50| 0.93| 1.44
LR2 0.03] 0.13] 0.43|1.04| 1.71| 2.72
LC2 0.03| 0.06| 0.39| 0.61| 1.06| 1.57
LRC2 0.02| 0.12] 0.47| 1.12| 1.84| 2.53

7.7 The SEQ Algorithm: Complexity Analysis and Im-
plementation Issues

Before we conclude this part of our research, we presentisnséiction some remarks
concerning the complexity and feasibility checking of tli&Balgorithm in relation to the
common construction methods. Analyzing our SEQ algorithenfiwd that: the routing
heuristic in AlgorithnZL need®(n?) time for accessing each pair of locations in the
route, wheren is the number of requests in the problem instance. Also,akéefanction

of Equatiori 7L, which checks the feasibility of the wholateas well, need®(n) time.
The SEQ algorithm (Algorithri 712) need3(n) since its major iteration processes all
requests in order. This will make the run-time complexityraf whole algorithnO(n?).

For the sake of comparison, AlgoritHm 7.6 describes a basisteuction method for
vehicle routing problems in general. The algorithm app@af24].
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Algorithm 7.6: Basic Construction Algorithm for the VRP [24].

1: N =set of unassigned customers
2: R = set of routes {initially contains one route}
3: while N # () do

4: p*=—00

5. for j € Ndo

6: for r € Rdo

7: for (¢ —1,i) € rdo

8: if (Feasible(i,j) and Profit(i,j) > p*) then
9: r*=r
10: =1
11: 7=y
12: p* = Profit(i, j)

13:  Insert(i*, j*) {insert ;* between(i* — 1) andi*}
14: N =N\ j*
15:  Update(r*)

According to [24], Algorithni.Z6 is 0D (n?), provided that théeasibilityandprofitability
can be performed in constant time. Feasibility makes sure that the current position
adheres to all problem constraints, whieofitability is usually measured as a weighted
combination of extra travel distance and time delay resglfrom the insertion. When
it is more profitable to insert a customer in a new route, a ravter will be allocated.
As explained in[[24], a special algorithm can be applied @uoe the TW feasibility
test of the VRPTW from a linear time to a constant time. Theesalhgorithm can also
be applied to the PDPTW. Nevertheless, this algorithm reguhat extra information is
kept for each customer already existing in the route. In g@n®vo quantities have to be
maintained: the earliest and the latest possible timesehece can take place, relative
to the customer’s current location in the route. This infation is not fixed and subject
to change after each insertion, which accounts for the extst of arupdatefunction to
maintain the desired quantities (Step 15 of Algorithm 7.6).

Unlike the VRPTW, however, checking the capacity feasipilor the PDPTW can only
be done in linear time [86], due to the presence of two diffetgpes of customer services
in the route. As aresult, the basic construction algorithmemvapplied to the PDPTW also
results inO(n*) complexity. The algorithm can also include a selection efiseustomers
for route initialization, which usually does not change thenplexity of the algorithm.

As mentioned above, it is possible to reduce the TW feasjbtheck for the PDPTW
from a linear time to a constant time, by maintaining anddegly updating extra route



7.8 Summary and Future Work 139

information, as done for example in [37]. However, since murte cost function (Equa-
tion[7.1) tests the feasibility of both the TW and the capacdncurrently, it would be
redundant to calculate and store additional service tinmf@gymation to accelerate the
TW feasibility test, since aw(n) testing would still be needed for the capacity feasibi-

lity.

In addition, since our SEQ algorithm accepts any feasildertion, it does not have to
check the feasibility nor estimate the profitability of eaaid every possible insertion
position, as done in Algorithin 7.6. In our algorithm, thetoofsthe route as a whole will
be calculated, if at all, only if the route has been changdus & due to the restriction
imposed by the TW condition in Stép 4 of Algorithm17.1.

Finally, during the insertion process, i.e., Siép 7 of th&@SHgorithm (Algorithm_Z.P),
two locations (a pickup and delivery pair) are simultanépinserted, then Algorithih 711
handles the feasibility checking and the improvement ofutheéerlying route altogether.
Besides overcoming the precedence and the coupling issueasertion has the added
advantage of accelerating the solution construction mg@nce only half the number of
locations is processed in the main iteration of Algorifhi?. 7.

On the other hand, the parallel construction algorithmdémented in this research seem
to be one order of magnitude higher than the SEQ algorithra,tduhe presence of an

extra loop that passes through all available vehiclespaih the number of vehicles is

always less than (the number of nodes in the data set).

7.8 Summary and Future Work

In this research we investigated several initial solutionstruction heuristics for the MV-
PDPTW, aiming to identify the best heuristic that can be wsegart of a comprehensive
solution methodology. In our opinion, existing approadidbe literature often overlook
and perhaps underestimate this vital component of the bgetation algorithm.

The experimental results on a large number of benchmar&nnes indicate that the se-
quential construction heuristic (SEQ) seems to be the nawstutable solution construc-
tion method, which can be by easily embedded in a heurisaaoeta-heuristic technique
to reach final good quality solutions. With just a few simpleet of code, and without
a pre-determined number of vehicles or a solution evaloatiechanism, this algorithm
produced good quality results, that are sometimes eveerlibn the results obtained by
the most sophisticated parallel algorithm tested in owrassh (the PBQ algorithm). The
SEQ algorithm also had an impressive speed, with a proggsBsie that is at most 6% of
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the time needed by the PBQ algorithm, making it even moreklgtfor population-based
solution algorithms.

The experimental results, nevertheless, show that prglaaddstly improvement phase is
still needed to achieve final good quality solutions, as @vidy the relatively large gap
to best known results produced by the SEQ constructionigthgor This, however, further
supports the need for a fast solution construction methadleeve an overall reasonable
computation time for the complete solution algorithm.

The construction algorithms developed in this part of ogessch are distinguished by
their simplicity and ease in coding and replication, coredaio many construction me-
thods that are adopted from the VRPTW literature. All of dgoathms are general por-
table frameworks that can be used within other heuristickraata-heuristics that solve
the PDPTW and its related variants.

In the next part of our research, we will start investigatimgsolution improvement phase
for the MV-PDPTW, using the SEQ algorithm for the solutiomstyuction phase. Details
of our investigation are presented in the next chapter.
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Chapter 8

Two Approaches for Solving the
Multiple Vehicle Pickup and Delivery
Problem with Time Windows: A
Genetic Algorithm and a Simulated
Annealing

In this chapter we continue our investigation of the MV-PIRTintroduced in Chapter
[7. This part of our research will augment the solution cargiton heuristic developed in
the previous chapter with an improvement method, using adkenetic Algorithm (GA)
approach and a Simulated Annealing (SA) heuristic.

This chapter is organized as follows: Secfiod 8.1 highghe motivation behind the re-
search carried out in this part of the thesis. Sedtioh 8.2iges a brief summary of some
related work from the literature. Sectibn 8.3 discusse®temlgorithms as a solution
approach form the perspective of the MV-PDPTW, and intreduaur specific GA sug-
gested for the improvement phase of this problem. Withia $igiction, we describe the
solution representation and the objective function use8aation 8.3.]1, how the initial
population is created in Sectign 8.3.2, the genetic opeyamoSectiori 8.3]3, the overall
GA in Sectior 8.3 4, some attempts to improve the resultse@A in Sectiofi 8.3]5, and
finally Sectior 8.3J6 reports the experimental results ef@A when tested on published
benchmark data and compared with previous GA attempts fneniterature. After that,
Section 8.4 explains the SA approach adopted for solvingtbblem, together with its
experimental results compared to the results of the GA ambro Finally, Sectioh 8|5
gives some concluding remarks and possible future work.fiddings, related to the GA
approach, in this part of our research were published ilit@&2009conference [80].



142 8.2 Related Work

8.1 Research Motivation

As previously mentioned in Chapter 2, Genetic Algorithm#&gBare intelligent search
methods that have been successfully used for solving manydoanbinatorial optimiza-
tion problems. In the first part of our research, though, tista8e SA approach performed
better than the GA for the SV-PDPTW, especially in terms afcpssing time. Despite
this, using a GA for the improvement phase of the MV-PDPTW atipeared to be pro-
mising for several reasons:

Firstly, GAs have been used for solving the related VRPTWdpcing good results in
many cases, for example [144], [120], [16] and|[15]. Secgnttie parallel nature of

GAs and its population based mechanism can probably makeri¢ mppropriate than
other meta-heuristic approaches (that focus on improvirlg one solution), for solving

very hard optimization problems. The multiple-vehicle cad the PDPTW is in fact

considerably harder than the single vehicle casel[137]chvinakes applying GAs an
attractive option for solving this problem. In addition ra@mple sequential construction
algorithm (SEQ), developed in Chapfér 7, seems to be mosbppate for population-

based meta-heuristics, due to its simplicity, speed angbitsntial for creating a diverse
population by randomizing the initial order of requests.

Finally, as previously mentioned in the introduction tosttiesis (Chaptéd 1), the main
focus of our research is on developing appropriate reptasens and neighbourhood
moves that can help guide the search towards good qualilyieoes and manage infea-
sibility throughout the search. If the appropriate techesjare designed, they should be
widely applicable, and may be used within other heuristiameta-heuristics, for solving
the underlying problem. Accordingly, we tried to follow teseme approach used in our
research for solving the SV-PDPTW, by first developing theresentation and neigh-
bourhood moves (represented as genetic operators hetayahaelieve can handle the
difficult problem constraints. These operators are firstitwithin a GA approach for sol-
ving the MV-PDPTW, but they were also adapted and employedinvan SA approach,
as previously done for the single vehicle case.

8.2 Related Work

When dealing with the MV-PDPTW, some researchers axsetmethods to solve the
problem to optimality, but these are limited to small sizelgpems. For example, the
work presented in [46] is an optimization techniques whimmfulates the problem as a
set partitioning problem, and then employs a column geimgratethod to solve a linear
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relaxation of this problem to optimality. Problem sizes pfta 55 customers and 22 ve-
hicles were solved using this approach. Also, the work irfD[@&esents a new mixed
integer programming formulation for both the MV-PDPTW ahe dial-a-ride problem,
and the formulations are solved using two branch-and-garaathms. New problem ins-
tances have been created, and the results of the algoritteres s@mpared with upper
bound solutions obtained by applying the heuristi¢ in [18Xhe same problem instances.
Problem sizes up to 194 nodes were solved to optimality.

Other approaches adaggtproximatiortechniques to deal with large size problems. As ex-
plained in the previous chapters, the solution proceshjsrcase, often starts by construc-
ting one or more initial solutions to the problem, usuallyngstechniques adopted from
the VRPTW construction algorithms, and then these solatéwae improved using heuris-
tics or meta-heuristics. In general, Simulated Anneal®Wy)(and Tabu Search (TS) have
been the most popular approaches for solving the MV-PDPTW.

The work in [112] is one of the first attempts to solve the MVAPW. The technique is
based on a reactive tabu search which allows the tuning ciegaieh parameters, such as a
short-term memory length, based on an assessment of vésitetions during the search.
The algorithm also tries to detect and escape possible tgptaha. The solution repre-
sentation is a vector that includes customer nodes sepdgteehicle nodes to which
customers are assigned. The objective function considisreé components: the total
schedule duration, the number of capacity violations, d&edrtumber of time window
violations. Thus, during the search process, overloadgamdhess in the solutions are
treated as soft constraints, while precedence and couptingtraints are strictly enfor-
ced. To construct an initial feasible solution, a predemesaccessor pair (PS) is inserted
in the best feasible insertion position in the current vietsgoute. If no feasible insertion
can be found, a new vehicle route is added to the solutioneél heighbourhood moves
are used in this algorithm. The first move is the “Single Rhiresertion” (SPI), which
tries to move all predecessor nodes to better feasibleitsain other routes. Successor
nodes are inserted after their predecessors in the besblggsssitions, although vehicle
capacity or time windows may still be violated. The secondens the “Swapping Pairs
Between Routes” (SBR), which first tries to exchange a papretlecessor nodes bet-
ween two different vehicles, and then exchanges their sgocenodes. The last move is
the “Within Route Insertion” (WRI), which tries to reordeodes in the same route to re-
duce infeasibility in the solution and improve its qualitihe sequence of neighbourhood
moves is selected dynamically during the search, based altalated relationship bet-
ween the average time window length (the tightness of the tinmdow) and the average
route duration.
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The authors in([100] present a tabu-embedded simulatechingepproach to solve the
MV-PDPTW. To construct an initial feasible solution, thepdified Solomon’s Insertion
heuristic [141] by initializing each route with a pickup amelivery (PD) pair that satisfies
a set of criteria, based on combined time window intervat$ distance from the depot.
Each un-routed PD pair is then inserted into the partiale@uthe best possible feasible
and minimal cost insertion position. The objective functides to minimize, in priority
order, the number of vehicles used, the total travel digtatite total service duration,
and the drivers’ total waiting time. To create a neighbogisolution, three local search
methods are presented. The first is a “PD-Shift” operatothis operator, a PD pair is
first removed from route 1 and then it is inserted in route ZeAfhat, another PD pair
is removed from route 2 to be inserted in route 1. The secoedatqr is a “PD-Swap”
operator, which simultaneously removes a PD pair from eaaker and then reinserts
each pair in the other route. The third is a “PD-Rearrange&rator which first removes
and then reinserts a PD pair in the same route. In all threem@nly feasible insertions
are allowed. For a more thorough neighbourhood search,ektend their local search
method to a descent local search (DLS), which tries to imgitbe current solution for
a number of iterations. When no further improvement is fmssithe DLS algorithm
returns the best current solution. The main meta-heudgicrithm is a tabu-embedded
simulated annealing procedure wihrestarts, i.e., the algorithm stops when the number
of iterations without improvement reaches a pre-definedesl. To prevent cycling, their
simulated annealing procedure records the accepted@uduti a tabu list. The authors
generated test data for the problem based on Solomon’saess ¢or the VRPTW [141].
The authors consider their approach as the first efficieatrgit to solve practical size
MV-PDPTW instances. Their generated data set also becamstahdard benchmark test
data for the MV-PDPTW.

The work in [98] presents a two-phase method to solve the D®PW. In the first phase
the algorithm creates an initial feasible solution usingategy that combines the benefits
of Solomon’s classical insertion heuristic [141], and aewbeuristic, first suggested in
[58], which was particularly adapted to fit the MV-PDPTW. Tehehors call their insertion
heuristic “Partitioned Insertion Heuristic”. The objeeifunctions is based on the number
of vehicles used and the total travel distance. Their loeatch is based on three moves,
similar to the moves described in_[112], as explained abdMee second phase of the
algorithm is a tabu search that tries to improve the curmaitil solution using a set of
composite neighbourhood moves.

In a relatively recent work [12], the authors present a tvags algorithm to deal with the
MV-PDPTW. The first stage uses a simple SA approach, whosesfizgcto minimize the
number of vehicles used in the solution. The second stageaikarge Neighbourhood
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Search (LNS) strategy, first suggested[in |139], to minintieetotal travel cost of the
entire solution. The primary objective function (used ie ttNS stage) minimizes the
number of vehicles first, then the total travel cost. Howgeaecording to the authors,
using this objective function is more effective in reducthg total travel cost than mini-
mizing the number of routes in the solution. Therefore, théged an SA phase to boost
the performance of the overall algorithm by reducing the benof routes in the solution
first. To this end, they used a different objective functiorthe SA stage than the one
used by the LNS. The SA objective function included three ponents: the first com-
ponent tries to minimize the number of routes. The secondooment tries to maximize
the number of routes that are rather full and those that émerampty, with a view to eli-
minating routes with few customers during the search. Binile third component of the
SA evaluation function reduces the total travel Bomhe neighbourhood move adopted
in their SA is a simple pickup and delivery pair relocatioreggior, which was also used
by previous researchers (e.g. [98], [100] and [112]). TheSLd their algorithm is ac-
tually a sequence of local searches, where a group of cuss@reeselected for relocation
based on a certain relatedness measure between pickupneustorhe neighbourhood
generated after the relocation of customers is then exialyseéxplored, using a branch
and bound algorithm, to find its best solution. The best smitfound replaces the current
solution, if it has a better objective value. The algorithmswested on benchmark data
obtained from[[100], where the results show the effectigsrd the approach since it was
able to produce many new best solutions for instances with 200, and 600 customers.

An interesting solution methodology is presentedlin [13there a variant of the MV-
PDPTW is considered. Itis assumed here that the startingralidg depots of a vehicle’s
journey need not be the same, and the depots could be differedifferent vehicles. It
Is also assumed that the number of vehicles is limited, s@it not be possible to serve
all requests, in which case the unserved requests are pglaeagquest bank. Thus, mi-
nimizing the number of unserved requests in the request isamke of the objectives of
the algorithm, added to minimizing the number of vehiclesduand the total travel dis-
tance. It is also assumed that there could be some speciasiscthat cannot be served
by some vehicles, for example if transferring the requesgtiires a special characteris-
tic that is not available in some vehicles (e.g. transfgrfnozen food or some medical
samples). The basic solution methodology in this work is@éaeighbourhood Search
(LNS) technique, used in both [139] and [12], where a numlbeequests are first remo-
ved then re-inserted into the solution. Unlike previousegshers, however, the authors
apply a number of different heuristics for both the removad ¢he insertion methods.

!Recall that this 3-component evaluation function is theesasithe cost function used by our PBR and
PBQ construction heuristics (Equation]7.3), as explaineskdiction 7.512
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They present three different removal heuristics. Firs,“®haw Removal” removes re-
guests according to a certain relatedness measure, whielsésl on differences between
distances, arrival times, loads and the numbers of vehilbbgscan serve these requests.
Second, the “Random Removal” heuristic removes randonéctad requests. Finally,
the “Worst Removal” heuristic removes requests with higstga.e., requests that appear
to be placed in unfavourable positions in the solution. Taksp present two different
insertion techniques to insert the removed requests indahteproutes. Théasic greedy
heuristic inserts the request with minimum insertion casthie best possible insertion
positions. On the other hand, tinegret insertionheuristic gives priority for insertion
to requests whose insertion would seem to be more costlyié# delaye@l To select
which heuristic to use, the authors assign weights to therdifit heuristics and use a
roulette wheel selection method. These weights are addyptdjusted during the search
based on the performance of the different heuristics engoloyAccordingly, the authors
call their algorithm an Adaptive Large Neighbourhood Sk4Al_NS), as opposed to the
basic LNS search method which only applies one removal ardirgertion heuristic.
During the search, a newly generated solution replacesutrert solution using an SA
acceptance criterion. Also, similar to [12], the authorstfapply a preliminary stage to
minimize the number of vehicles used in the solution befqelyang the basic ALNS.
During this stage, they create an initial solution using qus@tial insertion heuristic.
They then try to remove one or more routs from this soluti@ma the LNS algorithm,
until the minimum possible number of routes is reached. Therdhm was tested on
the benchmark data of [100]. In addition, new problem instgnwere created, which
takes into account their modified variant of the MV-PDPTW. &llcompared with the
LNS, which uses only one removal and one insertion heuyigie ALNS seems to be
superior. In addition, their ALNS was able to outperformvyooers heuristics applied to
the MV-PDPTW. To the best of our knowledge, the LNS technigf@2] and the ALNS
of [131] are the current state-of-the-art, since they hath produced best known results
for many benchmark problem instances.

Besides SA and Tabu Search, GAs have been applied by sonsaleses for solving
the MV-PDPTW and the related dial-a-ride problem. In thdye@A approach by[[92],
the chromosome representation is based on assigning aifpticade to each location.
The first digit of this code represents the number of the Veha which the location is
assigned. Thus, both the pickup location and its assocdsaekery will be assigned the
same first digit. The other three digits are used to sort ioeataccording to the visiting
order of the vehicle, and a pickup location always has argptode that is less than its
corresponding delivery. The crossover operator works yegging two crossover points,

2See Sectiop 712 for more details about the regret measuine gftrallel construction heuristics.



8.2 Related Work 147

119
oo | 8| 5|2
mm

m2l9|l 4|3 |6

Figure 8.1: A chromosome in a GA that handles both grouping ad routing for the
MV-PDPTW.

and swapping the resulting segments between the two par@hts mutation operator,
simply changes the first digit of a pickup and delivery pamnother digit, i.e., assigns the
request to another vehicle. Another operator called vemrging is also used to reduce
the number of vehicles. The algorithm was tested on 24 rahdgenerated problems
with numbers of requests ranging from 5 to 30.

The authors in[33] introduce an attempt to handle the MV-PBRIsing an evolutionary
algorithm, for both the grouping and the routing aspectshefgroblem. The solution
representation is a list of vehicles routes, where eacheroansists of a sequence of
pickup and delivery locations, and all problem constraarts enforced in the solutions
throughout the search. Figure B.1 shows how a typical chsome may look in their
suggested evolutionary approach. The objective functies to minimize the number of
vehicles in the solution, the total travel distance and thal travel time. Two crossover
operators are tried, one exchanges fragments of routeebetparents, while the other
exchanges complete routes. Infeasible solutions that reaydated following crossover
are repaired by removing repeated requests or adding radghes are not served. If this
is not possible, the offspring is discarded. Two mutatioarafors are presented, the first
tries to reduce the number of vehicles in a solution by selgc route and moving all
its requests to other routes in the same solution. The setomakion tries to improve a
route by rearranging its requests.

The work in [116] presents what seems to be a first attemptty apGrouping Genetic

Algorithm (GGA) to the MV-PDPTW. In a GGA, the genetic repeasation is based on
a set of genes, where each gene represents a group of objiheisthan a single object.
For the MV-PDPTW, it is assumed that each gene representsup @f requests that are
assigned to one vehicle. Thus an individual solution onlecs the grouping aspect of
the problem. The routing aspect, on the other hand, is hdrimjlean independent data
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structure associated with each gene. Figure 8.2 is a viepatsentation of how a chro-
mosome in their GGA approach may look. The objective fumcigado minimize the total
travel distance, irrespective of the number of vehicleslu3ée crossover is an adapta-
tion of the original crossover mechanism for the GGA, présaim [49], where clusters
(vehicles with their assigned requests) are removed froenpanent and inserted into the
other parent. This is then followed by a chromosome cleartaugmove duplicate ve-
hicles and the repeated assignment of requests, in adtbtrerassigning requests that are
no longer assigned. The mutation operator removes a cliustera chromosome, and re-
assigns its requests to other clusters, creating additotunsters if necessary to maintain
feasibility. The embedded insertion heuristic appliederesal stages of this algorithm
is based on inserting a request in the best feasible and mmioost position, among all
possible insertion positions in the chromoscH‘ndzn a recent work[[126], another GGA
was applied to the Handicapped Person TransportationgroflPT), which focuses on

minimizing clients inconvenience.
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Figure 8.2: A chromosome in a GA that handles only grouping fothe MV-PDPTW.

The authors in[[91] deal with the dial-a-ride problem usinglaster-first route-second
approach. The clustering is handled using a GA, and thengigihandled using a space-
time nearest neighbour heuristic. In the clustering phtagechromosome representation
is a two-dimensional array where rows represent routes alodnms represent customers.
A cell values of 1 or 0 indicates whether or not a customer ssgagd to a particular
route. Crossover is performed by selecting two random sofiten parent solutions and
creating a new child route using a traditional uniform coy&s. The remaining routes
in the child are inherited from the first parent without changhe newly created child
may be infeasible, though. Accordingly, a repair methodl®wed to assign unassigned
customers or remove duplicate assignments of customers. nithation operator just

3More details abouf[33] and [116] will be given in Sectlon.8.8/hen our algorithm is compared with
their approach.
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moves a random customer to another cluster (route). On tieg band, the work iri [34]
tries to use a GA for the whole dial-a-ride problem, i.e., both the grouping and the
routing phases. In their representation a gene consistyelhiale-passenger pair. They
used a one-point crossover and a Partial Match CrossoveX)PRor mutation they use
a bit-level mutation and a 2-Opt operator.

A recent paper [37] presents an indirect search method ®MK-PDPTW. The idea
is to separate the meta-heuristic search strategy fromethgility checking routines,
to simplify and accelerate the optimization process. Téchnique facilitates the appli-
cation of simple problem-independent moves during the hetaistic search, while a
problem-specific greedy decoder handles the construcfitimeocorresponding feasible
solution using the information (encoding) given from thetakeuristic search engine.
For example, in the PDPTW, the encoding is a permutationasfsfportation requests,
which determines the sequence in which these requestsensitibeduled. Given a certain
permutation, the greedy decoder creates a feasible sol{gitedule) using a sequential
construction algorithm and a cheapest insertion rule. ®atera neighbouring solution
during the meta-heuristic search, a simple 2-exchange maeplied to the current per-
mutation and the new permutation is supplied again to thedyrelecoder to create the
corresponding new schedule. A comparison of the indiregtcbetechnique with two
special-purpose algorithms for the MV-PDPTW shows thattéfolnique is competitive
in both solution quality and speed. This may indicate thepial of applying the tech-
nique to other rich combinatorial optimization problems.

The above literature summary shows that the MV-PDPTW isah dishard problem, for
which most solution methods tend to be rather complex and twaexplain and repli-
cate. Developing an appropriate solution technique iseddechallenge for researchers.
An intelligent solution methodology should be able to hanabth the grouping and the
routing aspects of the problem efficiently. In addition, ailibthe construction and the im-
provement phases of the problem, the researcher is facbdnaity decisions that should
be made. These decisions include, among others, the comigasfethe objective func-
tion, the permissibility of infeasible solutions, how tohede with the constraints of the
problem, how to generate new solutions, and what acceptaitega should be applied
to replace the current solution during the improvement ehétss thus often difficult to
discover good quality solutions that do not violate any peobconstraint, in a reasonable
processing time.
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8.3 A Genetic Algorithm (GA) for the MV-PDPTW

Although Genetic Algorithms (GAs) have been successfuslgdufor solving many rou-
ting and scheduling problems, research using GAs for sglthe MV-PDPTW is gene-
rally scarce. In addition, the results reported by most Gihmégques attempted are often
disappointing in some respects. As previously explaireglMV-PDPTW consists of two
related problems: thgroupingor theclusteringproblem tries to find the best allocation of
requests to vehicles, while theuting problem is concerned with finding the best feasible
route for each vehicle, given the requests assigned to ier\tying to solve this problem
using a GA, itis often hard to tackle these two aspects sanalbusly. Moreover, a major
issue is finding a suitable genetic encoding and designtedigent genetic operators that
are capable of handling all the difficult problem constraisrtd may encourage the forma-
tion of meaningful genetic building blocks, which may hefpgenerating individuals of
better fitness [11 ] In the MV-PDPTW, the genetic operators should be smart giméal
transfer the favourable genetic traits from parent sohim their offspring, while trying
to avoid the frequent generation and evaluation of inféagiboblem solutions. As pre-
viously mentioned, infeasible solutions are handled in ynswiution algorithms using
a repair method to fix infeasibility during the search, whiall inevitably increase the
processing time and complicate the algorithm.

Most previous GA research, for examgle [116] for the MV-PD¥P&nd [91] for the dial-
a-ride, tried to tackle the difficulties encountered in th& éicoding and operators by
allowing the GA to handle only the grouping aspect. The ragutspect, on the other
hand, was handled by an independent routing algorithm shiaidden from the GA and
is called when a chromosome is decoded. The genetic opgiattris case are usually
general-purpose and do not apply any problem-specific keabyd. Attempts to use a GA
for both the grouping and the routing aspects, for examBg¢ & the MV-PDPTW and
[34] for the dial-a-ride problem, generally produced dis@ming results.

We present in this part of our research our experimentatibm asznew GA for solving
the MV-PDPTW. Our GA tries to face the challenge of handlioghithe routing and the
grouping aspects of the problem simultaneously. Unlikentiost popular approaches in
the literature, in which the GA is only aware of how requests @dustered, but is not
aware of how they are routed, our chromosome representaiioe naturally accommo-
dates each group of requests together with suggested roBiesxplicitly monitoring
and manipulating all the solution information, we aim tog@eve the distinctive cha-
racteristic of GAs in identifying the desirable genetic eral and transferring it from

4For details about the “GA schema theorem” and “the buildilogk hypothesis”, the reader is referred

to [64].
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generation to generation during the evolutionary proc@ss.GA, thus, does not rely on

a separate decoder for interpreting the chromosome cardedtcreating the subordinate
routing information for each group of requests. Instead,algorithm has a simple em-
bedded construction heuristic that allows individual esuio dynamically change, within

the chromosome itself, during the search . Also, with ountsoh representation in mind,

we developed new simple genetic operators. Using probleguiic knowledge, such as

the quality of the generated routes, these operators tryetite good quality feasible so-
lutions throughout the search. In addition, since no palredipair method is needed to fix
the infeasibility of solutions, the overall algorithm isrgle and elegant, a feature often
missing from most up-to-date solution algorithms.

Besides comparing our GA with the SA approach that will beoidticed in the next
section, we also compare here in detail our GA approach whiit\weems to be the only
other two GA attempts in the recent literature for solving #V-PDPTW. We highlight,
based on the experimental findings, the promising aspectsrapproach, and also point
out to where further improvement could be achieved.

8.3.1 The Solution Representation and the Objective Funatin

As mentioned in the introduction to this thesis (Chapterohe of our goals in this re-
search is to develop a solution representation that fat@kthandling the difficult problem
constraints. Following our approach for solving the SV-HWR as explained in Chapter
B, we adopt a simple representation for each individualerod route is simply a list
of visited locations in order. However, when we assign retpieo each route, both the
pickup and its delivery location are given the same code.nfriane details, the reader is
referred to Section 5.4.1.

In our GA, thechromosomeepresents a problem solution. It is simply a collectiomali
vidual routes. Thus, each gene is actually a complete \ehocite. Both the route (gene)
length and the chromosome length are variable dependingeonumber of requests to
be visited and the number of vehicles in the solution. Thusrepresentation is just a
problem solution upon which the genetic operators are thyrapplied. Our chromosome
is very much like the chromosome structure depicted in Eifid, but only differs in
assigning the same code to both the pickup and the delivénys,Tthe code of each re-
quest will appear twice in the chromosome, once showing hepickup location will
be visited and another for its delivery location. Figureg $h8ws a typical chromosome in
our GA.
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vl [0]1]2]3]3]2]1]4]4]0
v2 |0|5|5|6(6|7|7|0
v3 10/8/9|8|9|0

v4 |0[10[11/1211110[12| 0

Figure 8.3: Our chromosome representation for the MV-PDPTW

Most solution methods from the literature, for example [[L8® to minimize the number
of vehicles used in the solution as a primary objectivepfeld by either or both the total
distance traveled and the total service duration. We usetbtlowing objective function

of a solution$ to achieve this goal:

O(S) = N(S)* x TotDist(S) x TotDur(S) , (8.1)

where N () is the number of vehicles used in the soluti@it Dist(S) is the total dis-
tance traveled by all vehicles, afdthtDur(S) is the total schedule duration, which in-
cludes the total travel time, the waiting time of the vehsclend the service time at each
location. The number of vehicles is squared in this objecfisnction, so that solutions
that use more vehicles will have a considerably higher duat solutions that use less
vehicles. Initial experimentation with this objective fiion indicated that it adequately
serves the purpose of giving priority to minimizing the nuenbf vehicles. In addition,
no fine tuning or adjustment of different weights is needetthis objective function.

8.3.2 The Initial Population

To create a solution for our GA, requests are first placed elacation pool in a random
order, before being inserted into the solution. Based onrmastigation of several solu-
tion construction methods, as explained in Chdgter 7, weetite sequential construction
algorithm(SEQ), to create each solution in the initial GA population. Theealgorithm
was also used to create or modify solutions during the eiwiaty process, as will be ex-
plained later when we address the genetic operators. Therlyimdy Hill Climbing (HC)
routing heuristic and the overall sequential construcélgorithm are explained in detalil
in Section$ 74 and 7.5.1, respectively, and outlined iroAtoms 7.1 an@ 712.

The cost function, in Step 6 of the HC algorithm (Algorittindl)7.is used to evaluate
the quality of each route, and is different from the objeefivnction [8.11) used to eva-
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luate the overall solution (chromosome). This cost functides to minimize the total
route duration as well as the degree of infeasibility in cagaand TW constraints. The
cost function of a route is described by the following equation (same as Equation 7.1
repeated for convenience):

F(r)=w; x D(r) + we x TWV (r) +ws x CV(r) , (8.2)

where D(r) is the total route duration]' WV (r) is the total number of time window
violations in the route, an@'V'(r) is the total number of capacity violations, while, w,
andws; are assigned weights in the ran@el|, andw;, + ws + w3 = 1.0. For this route
cost function, we used the same weights used in Equiationé..ky; = 0.201, wy = 0.7
andws; = 0.099.

Our routing algorithm allows routes to dynamically changeiny the search, i.e., pre-
vious routing decisions (locations) for some requestsadlyeexisting in the route may
be altered as new requests are added to the route. The neagroibrmation is copied
back to the chromosome whenever a change in the route occurs.

8.3.3 The Genetic Operators

As previously mentioned in the introduction to this thesis, try to focus on neighbou-
rhood moves (represented by genetic operators here) asfartgatisfying the hard pro-

blem constraints, and maintaining the feasibility of siming throughout the search. Two
crossover operators and one mutation operator have beigmeéso achieve this purpose.
In what follows we explain in detail our proposed geneticrapa's.

Mutation

The mutation operator, which we will call théehicle Merge Mutation (VMM) simply
tries to merge requests from two randomly selected vehidlks idea is to try to reduce
the number of vehicles by distributing the requests amorepdy existing vehicles, or
possibly combining two vehicles into one.

Figure[8.4 demonstrates the steps of the VMM. Fiure §.4(@ys that vehicles2 and
v3 were randomly selected for merging from the current sotutithe requests belonging
to them will then be placed in a relocation pool in a randoneardhe remaining requests
in the solution, i.e., vehiclesl andv4 will be copied to the new solution to form a partial
solution. Figur¢ 8.4(b) shows that the requests in the atloic pool are then re-inserted
into the partial solution using the SEQ construction, iAgorithm [Z.2, and the final
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mutated solution is constructed. In our mutation operab@,new solution replaces the
old one only if it is better in quality, i.e., if it has a lowebgctive function value.
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(b) VMM - requests in the relocation pool re-inserted inte fhartial solution using the SEQ
algorithm

Figure 8.4: Vehicle Merge Mutation (VMM).
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Crossover

Two crossover operators have been designed in our res@drelirst crossover operator,
which we will call theVehicle Merge Crossover (VMX)s similar to the mutation ope-
rator described above. However, instead of merging twockesifrom the same solution,
the VMX tries to merge two vehicles selected at random, oo feach parent solution.

The second crossover operator, which will call tfehicle Copy Crossover (VCXjries

to copy complete routes from the parent to the child. The remobroutes to be copied
is a random number betweép4 to 1/2 the number of routes in the first parent. To select
routes for inheritance, the VCX tries to select the ‘goodites. It is generally desirable
to copy routes that serve a large number of requests, singaain objective is to reduce
the number of vehicles. Accordingly, the VCX first ranks esibased to the number of
nodes served in each route. The larger the number of nodesdstire higher the rank
of the route. Routes with the same number of nodes are rardading to the total
distance traveled, in which case routes with a shortermist@are more favourable than
the longer ones.

Figure[8.5 demonstrate the steps of the VCX. Figure 8.5@)slthat vehicles1 andv4
were selected from Parentl, depending on the rankingiontelescribed above. These
two vehicles are then copied to the first child. Figure 8]5tmws that the remaining
requests that have not been included in Childl (those lgigtdd in Parent2), will be
copied in the same order of their appearance in Parent2 acdglin a relocation pool.
The requests in the relocation pool are then sent to the SB&roation algorithm and
used to form a set of new routes. These new routes will aftelsvbe appended to the
routes already existing in Child1, which were inheritechirBarentl.

Child2 is created similarly by reversing the roles of paser®@ur early experimentation
indicated that the presence of both crossover operators@@ssary for improving the
results and satisfying the objective function.
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Figure 8.5: Vehicle Copy Crossover (VCX).
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8.3.4 The Complete GA

Algorithm[8.1 shows the outline of the complete evolutignalgorithm that we used to
solve the MV-PDPTW.

Algorithm 8.1: The Complete Genetic Algorithm.

1: Initialize a populationPOP of candidate solutions to the MV-PDPTW, using the SEQ
construction algorithm (Algorithrih 71.2)

2: for (a pre-specified number of generatiods)

3 for (i=0; i<kNumCrossovers;i++jlo

4 Select parent® and P, from PO P, using roulette wheel selection

5: Randomly select crossover type (VCX or VMX)

6 Apply the selected crossover to pare(is, P) to produce child’y

7 Apply the selected crossover to pares, P;) to produce child’,

8 With some probability, apply mutation (VMM) t6 andC,

9 Update PO P by integrating the new generation and eliminating some tiadividuals

{i.e., steady state GA with overlapping populations}

8.3.5 Attempts to Improve the Results

Before we report the experimental findings of this part of msearch, we describe in
this section some other operators and modifications to thei@o approach that we ex-
perimented with, in an attempt to reach the best possibldtses These attempts are
briefly explained below, in addition to some concluding reksabout their performance.
However, since the benefits realized from adopting theseappes did not meet our an-
ticipations, they were abandoned in favour of the simpl@raach described in Sections

td8.3.1.

Vehicle Removal Mutation

This mutation operator is based on the GGAl[of [116]. One Veh&removed and its
requests are placed in the relocation pool in a random osdtere the SEQ algorithm tries
to re-insert them into the solution. This may result in redgehe number of vehicles, if
all the requests from the pool were accommodated into othleickes. The approach in
[116] selected a random vehicle for removal, while in oueegsh we selected the vehicle
with the minimum number of nodes.
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Large Neighbourhood Search (LNS) Mutation

This mutation operator is based on the Large Neighbourheadc (LNS) move used in
the work by [131], which is an adaptation of the same openaded by Shaw ir [139] for
the VRPTW. The idea is to remove a number of requests fromaluéien and then try to
re-insert these requests back. Usually a large number ean@D% to 40%) are removed.
However, since in our research this operator is used as aiontgperator, it would be
more appropriate to reduce the number of requests remoreslriexperimentation we
found that 5% to 10% of the total number of nodes produce redse results.

Two variations of this operator were tried in our researshadvised by[[131]. One ver-
sion of this mutation selects the nodes to be removed rand@andom removal), while
the other version selects the nodes that seem to be locatkd wirong positions in the
solution (worst removal). To find these requests, we caleulee cost of the solution (the
objective function), with and without each request in ture., the request is temporarily
removed from the solution to calculate its effect on the alleost. The requests are then
sorted in decreasing order of the change in cost. The rexjteebie removed are taken,
in order, starting from the top of the list and then placed ielacation pool in a random
order. The removed requests are then re-inserted in the@olising the SEQ algorithm.
The ‘worst removal’ version of the LNS algorithm gave slightetter results than the
‘random removal’ version.

A Memetic Algorithm

We also tried to improve the performance of the GA by introadgdocal search at various
stages of the evolutionary process. This idea is based anéheetic algorithndescribed
in [@4]. We tried both the vehicle removal mutation and theS_Mutation (explained
above), as neighborhood moves to create a new solutionnlttieilocal search. We also
used an SA acceptance for solution replacement.

More specifically, in this memetic algorithm, local searshperformed on some indivi-

duals in the population (according to a certain probal)ilityr example at the beginning
of each generation. The local search repeatedly applidectase ‘mutation’ operator on

the individual for a pre-specified number of trials. Withiretlocal search, a new solu-
tion replaces the current solution using an SA acceptantion, i.e., a better solution

always replaces the current solution, while a worse satutiay replace the current solu-
tion with some small probability. The best solution foundidg the local search is finally

the one that replaces the initial solution (the individinattwe started with).
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Our experimentation indicated that the more suitable dpeta be used within the local
search seems to be the LNS operator. It should also be naaéd tbmall population
size (e.g. 30 individuals) would be most appropriate fos themetic algorithm, due to
the large increase in processing time that result from theated application of the local
search.

Allowing Infeasible Solutions

In our attempt to improve the results, we also tried to addesmieasible solutions to the
set of allowable solutions. The idea is that sometimes gobdiens lie in the vicinity
of infeasible solutions, so by allowing infeasibility we ynlae able to climb out of local
optima. In this version of our algorithm, whenever a solutemnstruction is needed
during the initialization phase of the population, or dgrthe course of the evolutionary
operators, there was a 50% chance that the constructioeggedll allow infeasibility.

In order to restrict the amount of infeasibility and reduice search space, we only allo-
wed violations in the time window but not in the capacity doaisit. To do that, several
modifications to the algorithm were needed.

Firstly, we had to restrict the number of nodes allowed irheadividual vehicle. Other-
wise, we could end up with a solution in which all requestssaered by one vehicle.
This is due to the fact that even if violating the capacity & permitted, the algorithm
would still be able to find a solution in which all requests seeved, without any capacity
violations, using only one vehicle. For example, a solutrowhich each pickup is fol-
lowed by its delivery will always satisfy the capacity caastt. Specifically, the allowed
number of nodes, for each vehicle individually, was set tarelom number ranging from
1 tom, wherem was arbitrarily chosen to be 20% of the total number of nodethe
problem instance. Thus, nodes are added to the currentl@ehitl the predetermined
limit on the number of nodes for this vehicle is reached, attvistage a new vehicle has
to be allocated.

Secondly, the objective function has to be changed in ordpenalize infeasibility in the
solution. The following equation was used

O(S) = wy x N(S)* 4+ wy x TotDist(S) +ws x TWV(S). (8.3)

Where N (S) is the number of vehicles in the solutidfipt Dist(.S) is the total distance
traveled by all vehicles in the solution, addV V' (S) is the number of time window
violations in the solutionw,, w, andws are weights in the range [0,1] and +ws, +ws3 =
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1.0. As with all other similar objective functions in our resefarthe penalty on the time
window violations has to be large in order to get rid of infblessolutions as the search
progresses.

Thirdly, the genetic operators had to be modified. We modtfiedvCX crossover opera-
tor by ranking vehicles according to the percentage of sifelty in each vehicle, rather
than the number of nodes visited and the total distance, as deeviously when only
feasible solutions were allowed. The VMX crossover was wggabut modification.

We also used the LNS mutation, after modifying it to remowerdquests that have a time
window violation and try to re-insert them again in the st i.e., the worst requests
are now the requests that violate the time window. The vem@hoval mutation was also
used without modification.

Results of the Improvement Attempts

Based on our experimentation, we can rank the effectivenietbee above improvement
attempts (from best to worst) as follows: the memetic athan the LNS operator, the
vehicle removal mutation and finally allowing infeasibléwgmns.

The improvement introduced by these variants, or any coatioin of them, though, did

not warrant, in general, the increase in the complicatiothefoverall algorithm. These
variants seem to cause an improvement in some test casasaputause a degradation
in the results of other test cases. Accordingly, to keep tleeadl algorithm as simple as
possible, which is the main philosophy in our research, wadgel not to include any

of these variants in the final testing version of the propdsAdThus, only the operators
described in Sectidn 8.3.3 and the final GA described in 8a8i3.4, were adopted in the
final version. The experimental results of this final versaoa detailed in the following

subsection.
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8.3.6 GA Experimental Results

To test our algorithm, we implemented a steady state GA wlBb% replacement. The
following parameters were used: population size= 500,stesr probability= 0.6, mu-
tation probability= 0.05, and the number of generationsg8. 30 cases where crossover
is performed either VCX or VMX is selected at random. We ugedgtandard 56 (100-
customers) benchmark instances, created by Li & Linh in [160} the different types of
problem instances in the data set, the reader is referreddtio8[7.6.1l. The algorithm
was run 10 times on each problem instance.

We compared our algorithm, which we will call ti&rouping-Routing GA (GRGA),
with the GA in [33], denoted bXEKKIE, and the grouping GA in[116], denoted BGA.
To the best of our knowledge, they are the only GA approadiediave been attempted
in the literature for the MV-PDPTW and applied to the pubéiditbenchmark data af [100].
The results in[116] are also close to the best known resdtwe found that a comparison
with their results will be sufficient for the purpose of thiarpof our resear@n Before
we report our experimental findings, though, we present bief@.1 a comparison of the
most distinctive features of the three algorithms undesi@ration.

Figured 8.6 and 8.7 show the best results achieved by the déltgerithms in terms of the
number of vehicles and the total distance traveled. The tourds show that our GA
clearly achieves better results than the CKKL algorithmlmast all test cases. There
are only 5 cases in which our algorithm produced one morecieethan the number of
vehicles produced by the CKKL. Moreover, all our total digta results were better than
the results of the CKKL. On average, the improvement of ogults compared to the
results of the CKKL in the number of vehicles is approximate$%, while the average
improvement in the total travel distance is approximated$o3 Also, our results are
also close to the results of the GGA in the number of vehicteslyoced, with only few
exceptions. Nevertheless, the resulting total distandarger than the resulting total
distance of the GGA in most test cases. This is even moreaattie in instances with a
long time window width, i.e., instances of category ‘2'.

SWe thank the authors df [33] for providing us with the datasfit®ntaining their detailed results.
5The detailed results of the GRGA approach and a comparisirbest known results will be presented

in Sectior 8.4
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Table 8.1: Comparison between the GRGA, GGA and

CKKL Algorithms

GA

GRGA

GGA

CKKL

General
Approach

- A GA handles both
the grouping and the
routing

aspects of the problem
- All problem informa-
tion is explicity monito-
red and manipulated b
the GA.

- A GA only handles

> the grouping aspect g
the problem.

.- The routing informa-|
tion is hidden from the
GA and created whe

ythe chromosome is de

coded.

- A GA handles both
fthe grouping and the

routing aspects of th

problem.

- All problem informa-
ntion is explicity monito-
-red and manipulated b

the GA.

D

(D

Encoding

- A Chromosome has
a variable number o
genes.

- Each gene is a vehicl
route (a sequence ¢
visited nodes).

- Same code for pickuj
and delivery (P&D),
and a parser to travers
the route and identify
each.

5- A Chromosome ha
fa variable number o
genes.

e- Each gene is a cluste
fof requests assigned {
one vehicle.

D- A sperate data strug
ture and an insertiof
eheuristic
to create
routes.

are  use(
individua

5- A Chromosome ha

fa variable number o

genes.

2r- Each gene is a vehicl

aoute (a sequence of v
sited nodes).

Routing
or
Insertion
Heuristic

- Insert P&D pair at eng
of route, and improve
the route using an H(
algorithm.

- The routing decisions
of requests in the rout
may be changed by th
genetic operators.

- New routes are copie
back to the chromo
somes, during recomb
nation and mutation.

- Examine all feasible
» insertions for the P&D
L pair in all routes, anc
select the insertion tha
5 causes minimal additio
enal cost.

e- The routing decisions
of nodes already exis
dting in the route are sta
+tic and are not chan
-ged by the genetic ope

rators.

- The P&D pair is inser-

ted in a feasible routg

I position.

it- Position of insertion

- could be modified late
using a local search mu

5 tation.

1%

Continued on Next Page. ..
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Table 8.1 ... Continued from Previous Page

GA

GRGA

GGA

CKKL

Crossover

- Vehicle Copy Cros-
sover (VCX) & Ve-
hicle Merge Crossove
(VMX).
- Crossover operator
are aware of, and mak
use of, the routing in;
formation of each gene
- Offspring is always
feasible, and no repa
method needed.

sinformation of each
egene.
- Consecutive set 0

from the first parent
rand inserted
second parent.
- Chromosome cleanu
Is needed to correct in
feasibility of offspring.

in

- Adaptation of the ge;
neral GGA crossovel, sover (SBX): fragments
rwhere crossover is na
aware of the routing

.Clusters are selectedver (RBX): two selec-

the ged between the two

- Sequence Based Cros-

tof two routes are se
lected from each parer
and joined together t¢
form a new route.
f - Route Based Crossq

U'_'_

ted routes are exchan-

parents.
p- If possible, infeasibi-
-lity of offspring is re-
paired. Otherwise, off;
spring is discarded.

Mutation

- Vehicle Merge Muta-
tion (VMM).
- Mutation is performed
on the offspring create

tain probability.

1 - Mutation is performed
by crossover with a cer- on the offspring create

- Remove one vehiclé
and reassign its re
quests.

by crossover with &
certain probability.

> - One-Level exchangs
-Mutation (1M): re-
moves one vehicle and

117

reassigns its requests.
1- Local Search Muta;
L tion (LSM): tries to
find better locations for
requests in a randomly
selected route.
- Mutation is performed
on a randomly chose
individual.

=

Objective
Function

- Minimize the number
of vehicles, followed by

total distance and totalthe number of vehicles|

duration.

- Minimize total travel
distance, irrespective @

- Minimize a weigh-
fted sum of the number
of vehicles, total dis-
tance and total duratio
(equal weights are assi

=

gned).
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Figure 8.6: Total number of vehicles produced by all algorihms.
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When we try to analyze the computational results in the lafhthe differences between
the three algorithms summarized in Tablel 8.1, we will reattze following. First, since
both the GRGA and the CKKL algorithms have the same chromessimcture and the
same components of the objective function, then the ob\saasess of the GRGA com-
pared to the CKKL algorithm must be due to the routing aldonitand/or the genetic
operators used in the former. The success of the GRGA to peoslolutions with less
vehicles in most test cases could be attributed to the pcesariwo genetic operators the
are specifically designed for this purpose and heavily agadiuring the search, namely
the VMM mutation and the VMX crossover. On the other hand,tkemutation, used
for reducing the number of vehicles in the CKKL, is only penfi@d occasionally during
the search. Also, the noticeable success of the GRGA in tefmeslucing the total travel
distance, could be attributed to the routing algorithm ikatalled whenever a route is
created or modified to try to improve the quality of the rougaéducing its overall cost.
This again is in contrast to the LSM mutation of the CKKL th#&tg to improve the route,
but is only called occasionally during the search. The VCa&sover, used in the GRGA,
also seems to do a better job than the RBX crossover used GkK&. The RBX merely
exchanges one route between parents, while the VCX tries selective when transfer-
ring routes from the parent to the child, by choosing routes serve a large number of
nodes with the smallest possible distance. It also seemsht&BX crossover, used in
the CKKL, may not be suitable for the genetic representaised. Since the gene is ac-
tually a complete route, it would seem more appropriateaodier a collection of routes
rather than route fragments between parents.

We will now try to analyze the reasons behind the sub-optiresalilts achieved by the
GRGA compared to the GGA, specially in terms of the total&fai'rstanc@. First of all,
one of the major differences between the two algorithmsesaljective function. The
objective function of the GRGA includes the number of vedsclthe total distance, and
the total duration, while the objective function of the GGAlyincludes the total dis-
tance. Thus, the best solution as far as the GRGA is concenustl balance all three
components, i.e., it takes into consideration other parars@wvolved in the routing sche-
dule like the total waiting time of the vehicle at each looatand the total service time.
The second main difference is the routing heuristic usedth blgorithms. The routing
(insertion) algorithm of the GGA tries to find the best ingartposition for each newly
inserted request in all available routes, while we use algirapd fast algorithm that ac-
cepts any feasible insertion. The attempt to improve théerausing the HC algorithm,
is only local to each route and does not involve comparingrbkertion cost with other

71t should also be noted that our algorithm was run only 10 sime each test case, while the GGA of
[116] was run 30 times and the best result was selected.
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routes. It seems that our routing algorithm could probalsly the help of an additional
local search operator (e.g. 2-Opt), to try to improve théesuwhich should in turn help
reduce the number of vehicles.

In our opinion, these two issues are the main reasons fon#iglity of our approach to

reach the solution quality of the GGA. On the other hand, #etic operators in both
seem to be comparable, since they either try to reduce thdewai vehicles, or copy

complete routes from parents to children. However, we tthiakour VCX crossover may
be more suitable than the crossover of the GGA for this pralhyge, because transferring
a sequence of routes is not really meaningful, since the ofdeutes in the chromosome
is irrelevant.

Also, as mentioned previously, our algorithm seems not &bleope with instances of
type ‘2’, as evident by the large gap between our results laadasults of the GGA in the
total travel distance. This could be explained if we redadittour routing algorithm had
a neighbourhood move, which was guided by the TW. It seentshtbaouting algorithm
was thus capable of dealing better with instances in whiehTW constraint is hard to
satisfy, i.e., those with a tight TW width. This neighbouokdanove may not be sufficient
to improve the route in problems with a large TW width, beeaatthe availability of
many different feasible orders of nodes. An alternativeghlieourhood move may be
needed in that case. For example, the neighbourhood move @ke into account not
only the bound(s) of the time windows of the swapped locatidout also whether the
swapping can improve other route characteristics, sucheatotal waiting time, the total
travel time, or the extra travel distance. The results olethior instances of type ‘2’ also
sustain our previous observation in Secfion 7.6.3, reggrthie large solution space for
this specific type of problem instances.

Finally, the average processing time needed by our algoritiver all 56 problem ins-
tances, was 176.9 seconds, which is comparable to the gingdsme of the grouping
GA in [116] having an average of 167.1 seconds. Neverthellesseparation of the data
structure used for individual routes in [116] from the attcliromosome, seems to be
favourable than our representation which includes allslehioutes in the chromosome,
as far as processing time is concerned, since the transt@noplete routes during the
recombination and mutation operators is definitely timescmning. The authors in [33],
on the other hand, do not report their processing time.
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8.4 Simulated Annealing (SA) for the MV-PDPTW

As previously mentioned in Sectign 8.1, we will try in thisrpaf our research to adopt
some of the neighbourhood operators used in the GA approathe MV-PDPTW within
an SA approach. As expected, the solution representatiet insthe SA is similar to
the chromosome representation used in the GA (explaineédétid®[8.3.]1). The same
objective function (Equatidn 8.1) is also used here.

The initial solution from which the SA will progress is credtby generating a number of
random solutio& in a manner similar to the creation of an initial genetic glagon (as
explained in Sectioh 8.3.2), and the best solution among thre terms of the objective
function value, is selected.

To allow for an adaptive calculation of the SA parametersefach problem instance in-
dividually, we again used the approach proposed by [40]regqusly done for the SV-
PDPTW (see Sectidn 6.3 and Algorittim16.1). Thus, the anmgglarameters are calcu-
lated based on the average value\abst, whereAcost is the difference in the objective
function value between some randomly generated solutmmhé current problem ins-
tance. In our approach, the same set of random solutionsedréa the selection of the
starting solution, were also used for the purpose of cditigdahe annealing parameters.

A crucial part of any SA algorithm is the neighbourhood madat will be used to generate
a new solution. In this part of the research, we experimentéddifferent neighbourhood

moves from the ones tried in our GA approach. Two neighbaaathmoves were found to
be the most appropriate for the SA approach:

1. The Large Neighbourhood Search (LNS) Move:the LNS move is similar to
the LNS mutation operator explained in Section 8.3.5, wiecimspired from the
Adaptive Large Neighbourhood Search (ALNS) approach of[J13s previously
explained, the idea is to remove and then re-insert a larg@euof requests in each
application of the move. The authors in [131] recommend 3386 to 40% of the
total number of nodes is removed in each iteration. In our Ioh&e, we slightly
increased the allowed range for the number of removed résjue®rder to explore
a wider area of the search space. The number of removed tequesr LNS move
ranges between 20% to 50% of the total number of requestdditian, we adopted
here the “Worst Removal” variant from the three types of reahbeuristics applied
in [131] (see Section 8.2 for more details about the differemoval heuristics of
[131]). In our approach, the requests removed are thosatbastimated to cause

8100 random solutions were created in this experiment.
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a large increase in the cost of their respective routes,they may be inserted in
unfavourable positions in the solution. Thus, to deterntiirgecost of each request,
the total travel distance of the route to which the requetings is calculated,

with and without the request under consideration, and tfferdnce in the route

distance is used as a measure of the request cost. Requaststha highest costs
are selected for removal from the current solution. Aftes,tthe removed requests
are placed in a relocation pool in a random order, before #éneynserted back in

the solution using the SEQ construction algorithm, hopm{rid better insertion

positions for them in the new solution.

2. The Vehicle Merge (VM) Move: this move is identical to the Vehicle Merge Mu-
tation (VMM), explained in Sectioh 8.3.3. The vehicle mergeve selects two
vehicles at random from the current solution. Then, theestpubelonging to them
will be temporarily placed in a relocation pool in a randordexy before they are
re-inserted in the solution using the SEQ algorithm as shaviigure[8.4.

Similar to the idea of the 3-stage SA for the SV-PDPTW (expdiin Sectiof 63), our
SA approach to the MV-PDPTW operates in two stages. In thestiige, the LNS move is
used to generate a new solution, while in the second stagéMhmove is used instead.
Changing the SA move in this manner allows the search prdoesigghtly perturb the
current solution, before trying to re-optimize it, whichyrfgelp in escaping local optima.
The second SA stage starts from the final solution obtaindtkiprevious stage and from
the final temperature reached by the end of the previous.dfageng each stage, the best
so far solution is saved and each SA stage terminates whemprovement is realized
in the best solution for a consecutive number of iteraHoﬂd:so, during each stage, the
current temperature value is reduced in each iterationeoSth algorithm.

For a more extensive searching, the two SA stages are rejpsateral times. Again, the
repetition only stops when the best obtained solution reaehstage of stagnation and
does not improve for a number of consecutive attempts ofyappthe two stages. We
also found during our computational experimentation thaté seems to be no signifi-
cance to the order of application of the two moves. Thus, ag &s the two stages are
repeated, the SA may be started from either move. The ovawsthge SA approach is
shown in Algorithn{8.2.

9100 consecutive attempts without improvement was usedrnuiniate each SA stage.
1010 consecutive attempts without improvement was used {o ts® repetition of the 2-stage SA ap-

proach
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Algorithm 8.2: The 2-Stage SA Algorithm.

Find an initial solution {nitSol) and calculate the annealing parameters

BestSol « InitSol {Initialize the best so far solution}

Initialize M ax Attempts to a small number {We used 10}

Nolmprovement «— 0

repeat
OldCost «+ Objective(BestSol) {Calculate the cost of the solution using Equafion 8.1}
BestSol «— SApng(BestSol) {Perform SA on the current best solution, using the LNS
move, and return the best found solution}

8:  BestSol «— SAvy(BestSol) {Perform SA on the current best solution, using the VM

move, and return the best found solution}
9:  NewCost — Objective(BestSol) {Calculate the cost of the new solution using Equation

No g kR wnNn e

B.1}
10: if (WewCost is not better tha!dCost) then
11: Nolmprovement + +
12: else
13: Nolmprovement « 0

14: until (NolImprovement reachesV ax Attempts)

SA Experimental Results

Our SA algorithm was tested on the same 100-customers tess$ csed for testing our
GA, as explained in Sectidn 8.8.6. Similar to the GA, the Sgoathm was run 10
times on each test case. Tablel 8.2 shows the best resulg k0thuns, achieved by both
the GA and the SA for each test case. The best result is the aneghthe minimum
number of vehicles, and for the same number of vehicles, tieehaving the minimum
total travel distance. The better obtained result betwieemvto algorithms is highlighted
in boldface. In addition, the processing time in secondtsis shown in the table. The last
two columns of the table show the current best known resoittdese problem instances,
which are published in:

htt p: /7 vwwwu. i nt ef . no/ Proj ect web/ TOP/ Pr obl ens/ PDPTW Li - - Li m benchmar K/

The best known results are attributed(to [100]) [12], and]13

The last two rows of the table show, respectively, the oVexarage results of the corres-
ponding column, and the percent difference (gap) betweenwarage and the average of
the best known results, in terms of both the number of vebiatel the total distance.


http://www.sintef.no/Projectweb/TOP/Problems/PDPTW/Li--Lim-benchmark/
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Table 8.2: GA & SA Best Results (100-Customers)
GA Results SA Results Best Known

Name Vehic Dist Time | Vehic Dist Time | Vehic Dist
LC101 10 828.94 | 34.8 10 828.94 | 45.72 | 10 828.94
LC102 11 978.48 | 109.97| 11 945.88 | 57.99 | 10 828.94
LC103 10 1310.3 | 131.3| 10 | 1238.57| 226.67| 9 1035.35
LC104 10 1203.1 | 145.28| 9 1328.29| 201.8 9 860.01
LC105 10 828.94 | 85.03| 10 828.94 | 40.41| 10 828.94
LC106 10 84458 | 87.69 | 10 828.94 | 4152 | 10 828.94
LC107 10 828.94 | 85.66 | 10 828.94 | 46.7 10 828.94
LC108 10 949.96 | 85.52 | 10 828.04 | 64.66 | 10 826.44
LC109 10 827.82 | 83.7 10 849.08 | 52.63 9 1000.6
LC201 3 591.56 | 261.17, 3 591.56 | 3.47 3 591.56
LC202 5 1261.81| 304.77| 4 1186.64| 58.34 3 591.56
LC203 5 1957.86| 420.83| 5 1903.04| 75.36 3 585.56
LC204 5 1770.26| 627.95| 4 2194.2 | 119.03| 3 590.6
LC205 3 591.56 | 283.27| 3 591.56 | 8.02 3 588.88
LC206 4 681.35 | 216.52| 4 626.89 | 11.61 3 588.49
LC207 3 766.62 | 293.88| 3 701.72 | 24.77 3 588.29
LC208 3 604.51 | 320.33| 3 604.7 | 15.19 3 588.32
LR101 19 | 1667.68| 80.67 | 19 | 1667.68| 10.22 | 19 1650.8
LR102 17 | 1627.73| 90.61 | 17 |1627.91| 48.41| 17 | 1487.57
LR103 14 |1619.68| 103.23| 14 | 1525.99| 86.06 | 13 | 1292.68
LR104 11 1262.3 | 231.22| 11 | 1335.91| 146.14| 9 1013.39
LR105 15 | 1433.79| 76.48 | 15 | 1450.98| 49.74 | 14 | 1377.11
LR106 14 | 1564.06| 95.33 | 13 | 1458.71| 114.17| 12 | 1252.62
LR107 12 | 1356.72| 99.78 | 12 | 1353.44| 195.7 | 10 | 1111.31
LR108 13 | 1380.93| 108.16] 12 | 1353.05| 235.58| 9 968.97
LR109 13 | 1448.14| 85.14 | 13 |1449.38| 71.34| 11 | 1208.96
LR110 13 | 1362.74| 94.81 | 12 | 1323.12|151.78] 10 | 1159.35
LR111 13 | 1431.07| 103.59| 12 | 1299.28| 278.8 | 10 1108.9
LR112 12 | 1339.66| 95.56 | 11 | 1237.92| 100.78| 9 1003.77
LR201 4 1783.1| 194 4 1841.72| 65.25 4 1253.23
LR202 5 2035.85| 335.24| 4 2083.77| 177.84, 3 1197.67
LR203 5 2135.47| 500.69| 4 2312.46| 409.73| 3 949.4

Continued on Next Page. ..
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Table 8.2 ... Continued from Previous Page

GA Results SA Results Best Known
Name Vehic Dist Time | Vehic Dist Time | Vehic Dist
LR204 4 2017.64| 541.06| 4 2059.11| 181.25| 2 849.05
LR205 4 1939.61| 289.36| 4 2123.62| 78.56 3 1054.02
LR206 4 2128.15| 554.16| 4 2134.15| 206.45| 3 931.63
LR207 4 2191.28| 615.16| 4 2360.2 | 185.77| 2 903.06
LR208 4 2064.23| 723.53| 4 2059.02| 276.97| 2 734.85
LR209 5 1787.82| 275.5 4 2058.16| 106.94| 3 930.59
LR210 5 1928.42| 313.3 4 2175.39| 164.81| 3 964.22
LR211 4 1782.99| 401.3 4 1886.82| 196.34| 2 911.52
LRC101| 16 |1806.27| 81.13 | 16 |1806.27| 26.11| 14 1708.8
LRC102 | 15 | 1840.05| 94.08 | 14 |1776.15| 80.47 | 12 | 1558.07
LRC103| 13 1599.7 | 118.67| 13 | 1558.38| 122.19| 11 | 1258.74
LRC104 | 13 | 1535.82|110.97| 12 | 1464.11| 279.77| 10 1128.4
LRC105| 16 |2009.51| 91.36 | 16 |1862.36| 88.17 | 13 | 1637.62
LRC106| 13 | 1688.86| 87.11 | 14 | 1672.87| 53.06 | 11 |1424.73
LRC107 | 14 | 1637.27| 93.05| 12 | 1452.42| 153.31] 11 | 1230.15
LRC108 | 13 | 1535.48| 101.88) 12 |1379.59| 148.47| 10 | 1147.43
LRC201 5 2230.74| 14481 5 2327.42| 89.98 4 1406.94
LRC202 5 2442.78| 286.58| 5 2525.27| 171.39| 3 1374.27
LRC203 5 2335.04| 395.59| 5 2413.63| 400.44| 3 1089.07
LRC204 5 2049.8 | 628.95| 4 2323.05| 289.55| 3 818.66
LRC205 6 2162.85| 162.3 5 2605.27| 148.02| 4 1302.2
LRC206 5 2181.3 | 191.58| 5 2400.12| 40.58 3 1159.03
LRC207 5 2346.32| 245.63| 5 2319.27| 172.53| 3 1062.05
LRC208 5 1983.58| 247.73| 5 2195.22| 68.34 3 852.76
AVG 8.75 | 1562.52| 226.2 | 8.43 | 1592.23| 124.37| 7.18 | 1036.68
GAP% | 22% | 51% - 17% | 54% - - -

Table[8.2 shows that SA achieved better results than the GA iwut of the 56 problem
instances. In terms of the overall average results, SA aetlia slightly better average in
the number of vehicles and a slightly worse average in trad thig$tance traveled, which
can also be seen from the relative difference to best knoaultss indicated in the last
row of the table. In terms of the average processing timayghpthe result was in favour
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of SA, with approximately 45% less average processing thaa the GA.

Figure[8.8 shows the average objective function value (Esiledged by Equation 8l1) of
the 10 runs, for each problem instance, obtained by both thart the SA.
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Figure 8.8: Average objective value for the GA and the SA algathms.

In general the results in Talle 8.2 and Fiduré 8.8 indicatelibth the SA and GA obtai-
ned comparable results when tested on the 100-customéaades for the MV-PDPTW.
This could be explained by realizing that both algorithmspdd similar neighbourhood
moves. The VM move used in SA is exactly the same as the VMM tioutaised in the
GA. In addition, the LNS move used in SA is also comparablééodrossover operators
used in the GA. In the GA, the crossover operators genenglliotremove requests be-
longing to some selected routes from parent solutions aseftithem back into the child
solution. This process is similar to what the LNS move penf®m SA, when requests are
removed and then re-inserted into the solution. Moreowecsing ‘good’ routes to be
transferred to the child in the VCX crossover is also analsgo removing ‘bad’ requests
in the LNS move adopted in SA.

The results of both algorithms, though, were inferior toltlet known results, especially
in terms of the total travel distance. This indicates thahkadgorithm could probably
make use of an additional local search method, such as 2dgptexchange, to improve
the quality of the routes and reduce the travel distanceraéstage during the run.
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8.5 Summary and Future Work

In this chapter we investigated both a GA and an SA for soltirgMV-PDPTW. Our
GA approach tried to face the challenge of allowing the GA imdperators to be aware
of and manipulate both the grouping and the routing aspé¢te@roblem. A challenge
that most previous GA research on this problem has achiettkdsuccess with, or has
been avoided completely by allowing the GA to tackle only prablem aspect. We first
tried a simple representation and an intelligent neighbood move to handle the routing
part of the problem. For the grouping part, on the other hareddesigned new genetic
operators that try to exploit problem-specific informatammd create new solutions from
existing ones, while maintaining the feasibility of sotuts throughout the search. Our
operators overcome the difficult problem constraints, arideat the same time the need
for a repair method to fix infeasible solutions, a techniduat previous GAs and most
other heuristic and meta-heuristic techniques have bégngeon to maintain feasibility.
Overall, though, our algorithm is a simple and straightfamivGA technique, and the
genetic operators developed here are applicable to otla@edeaouting problems.

We compared our results with two previous GA attempts toestile problem, the CKKL
algorithm of [33] and the GGA algorithm of [116]. The expeéntal results show that
our algorithm was able to greatly improve upon the resulth@fCKKL algorithm, using
just a few simple modifications in the routing algorithm ahé genetic operators, and
applying problem-specific information. The improvemensveaident in both main ob-
jectives, the number of vehicles and the total travel distailowever, our results are still
behind the results of the GGA in most test cases. The threitims have been tho-
roughly analyzed and possible reasons behind the diffeseimcperformance have been
identified.

The GA was also compared with a 2-stage SA approach that weedifferent neigh-
bourhood moves repeatedly. The neighbourhood moves usleith Wiis SA approach are
analogous to the genetic operators used previously in thes@®8e they rely on removing
and then re-inserting requests or merging selected vehicle

Both the GA and the SA obtained comparable results wherdtestpublished benchmark
instances, which is mostly due to their reliance on simiighbourhood operators. Ho-
wever, neither algorithm was capable of competing favdynatih best known results. In
general, it appears that our representation and neighboditperators in both algorithms
are doing a fair job in guiding the search towards bettertgnig. However, to cope with
the difficulty of the problem and the different types of pratlinstances, both approaches
still need further improvement. For this purpose, diffémgighbourhood moves could be
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attempted in the route improvement heuristic, for exampléaking some route charac-
teristics into consideration when swapping locationshsag the resulting total waiting
time or the total route duration. Moreover, a local searcthodd such as 2-Opt or 3-Opt,
could be added to improve the quality of the routes and rethectotal travel distance. In
terms of processing time, though, the GA was clearly mucelahan the SA, which is
expected, due to the overhead of maintaining a large papunlaf solutions.

Having concluded our investigation of the PDPTW both itgkrand multiple vehicles
variants, in the following chapter we move on to anothemraggéng and important variant
of pickup and delivery problems, ti@ne-Commodity Pickup and Delivery Problem
(1-PDP).
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Chapter 9

The One-Commodity Pickup and
Delivery Problem: Introduction and an
Evolutionary Perturbation Scheme

The One-Commaodity Pickup and Delivery Problem (1-PDP) atla@r important problem
in transportation and logistics systems. The 1-PDP dedls suipplying and collecting
one type of commodity from a number of customers, some of taendesignated as
pickup customers and the others as delivery customers. [iaekhp customer provides
a certain amount of the commodity, while each delivery cm&ioconsumes a certain
amount of the same commaodity, i.e., goods collected frorkygiccustomers can be de-
livered to any delivery customer. All customers are serwedre vehicle with a limited
capacity, and the journey of the vehicle should start andagradcentral depot. The de-
pot can supply or consume any additional amount of the contyntigat is not supplied
or consumed by the customers. Our goal is to find a feasibler@noum cost route
for the vehicle, such that all customers are served withmlating the vehicle capacity
constraint.

This problem has attracted our interest for several readeirs, there are many applica-
tions for this problem in practice. For example, the commyodbuld be milk that should

be collected from farms and delivered to factories with reirretion on the origin and

the destination of the product, or it could be money that khbe distributed between
the branches of a bank [74]. It can also model any logisti@sibn in which some wa-

rehouses have an extra supply of some commaodity, while ®#rerin short of the same
commodity. A typical situation is when some hospitals nedansfer a certain medicine
to other hospitals, who are in short of this medicine. Fomgxa, an HLN1 vaccination

or treatment could be transferred in urgent epidemic cistances [106].

Second, this problem has not been adequately explored iliténature. Since the in-
troduction of the 1-PDP iri [74], only very few papers seemadwehhandled it. Finally,
there are other important problems in the literature thexchosely related to the (1-PDP).
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For example, the Traveling Salesman Problem with PickupRelivery (TSPPD) (see
Sectiorf 9.B for more details about this and other relatedipnos).

Our initial attempt to handle the 1-PDP was based on a sifptéutionary Perturba-
tion Scheme (EPS)hat has proved successful for other routing problems, sisctihe
TSP and the Capacitated Vehicle Routing Problem (CVRP). \Adensome preliminary
experimentation with this technique for the 1-PDP and te&ten published benchmark
data. The details of the approach and its experimentalteesrd reported in this chapter.
The outcome of the approach, though, did not meet the aat@ipstandard. Some ana-
lysis of possible shortcomings of the algorithm and futureations are also discussed
here. Nevertheless, A more successful heuristic for sglthe 1-PDP, will be detailed in
the next chapter.

The rest of this chapter is organized as follows. Sedtiof&@rally defines the 1-PDP,

while Sectiori 9. is a brief summary of related researchimalea. Some problems that
are related to the 1-PDP are presented in Se€fidn 9.3. ThadeRBique attempted for

solving this problem is explained in Sectionl9.4, togethith\its experimental findings.

Finally, Section 95 concludes with a summary and some thisugr future work.

9.1 The 1-PDP

Based on the definition provided in [73], the 1-PDP is cham@otd by having a set of
customers(i = 1,2,....,n), where customer 1 is the depot. = 1,2...n is the vertex
set, andt is the edge set. For each pair of locatighgj) the travel cost;; is known in
advance. For each customer there is an associated degmandh that;; > 0 for a pickup
customer and; < 0 for a delivery customer. The depot is considered as a custthrae
supplies or consumes any amount of the product that is n@isdpor consumed by the
set of customers, and the demand of the depot will be catlilagy, = — 5" , ¢;. All
customers are to be served by one vehicle with a limited ¢gp&@c> 0, and the capacity
of the vehicle should at least be equal to the maximum custalemand (whether a
pickup or a delivery), i.e() > max;cv{|q|}-

A feasible path for the vehicle is a path that travels from first customer to the last
customer, and visits each customer exactly once withowgexkog its capacity. The au-
thors in [73] more formally describe the feasibility of a pd? through the sequence of
customersy, ..., i, with £ < n. If we assume that;(P) is the load of the vehicle after
visiting thej** customer, and,(P) = 0, thenP is feasible if and only if

max {1;(P)} — min {1;(P)} ~Q < 0. 9.2)
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In [158], more explanation of Equati¢n 9.1 is given by indiica thatmin;—, .{l;(P)}
could be either O or negative, given the existence of somativegcustomers’ demands.
Accordingly, there are two possible conditions for a felesibute:

(i) if min;—o_x{l;(P)} = 0, Equation 9.JL will simply becomeax;_o_{l;(P)} < Q.

(if) if min;—y_x{l;(P)} < 0(i.e., there is a shortage in the required delivery demamas)
can assume thainin;_o__,{/;(P)}| will be supplied by the depot when the vehicle starts
its journey. Thus|min;—,_,{l;(P)}| will be added to the demands of all nodes, making
min;_o_{l;(P)} = 0 again, and we return to the first case, reax;_o_ 1{/;(P)} < Q.

Although the 1-PDP igV’P-hard (indeed it coincides with the TSP when the vehicle ca-
pacity is large enough), checking the feasibility of a path be done in a linear time. Itis
also important to note that the feasibility of the path issipendent of its orientation, such
that a path that is feasible/infeasible if traversed fodyavill be also feasible/infeasible

if traversed backward [75]. This feature allows a solutionstruction algorithm to start
a tour from any customer node, visit each node, includingdiqaot, exactly once and
return to the first node. This closed circular tour will capend to starting and ending at
the depot (see Sectién 9.4.3 for an example of a construatgmmithm).

9.2 Related Work

Since this problem isV’P-hard, exact algorithms are only suitable for small problem
sizes. For examplel,_[74] presented a branch-and-cut elgatitam to solve instances
of up to 60 customers. To deal with large size problems, theesauthors tried heuristic
approaches in_[75]. Two heuristic approaches have beeremebin their work. The
first approach starts with a construction heuristic thatisda on an adaptation of a TSP
Nearest-Neighbour (NN) insertion heuristic. Howeveryétadistances were modified
using a special formula that intends to penalize the use gé€donnecting customers
of the same type, i.e., edges connecting pickup customeester or delivery customers
together. It was thought that this approach would be moedylito lead the construction
algorithm to find feasible solutions. An improvement phdmantfollows, using 2-Opt and
3-Opt edge exchanges, to try to improve the feasibility antlie total travel distance.
The process of optimization is repeated several times, gaeha new initial solution is
constructed using a different starting node from the nagte Tihe second approach is an
incomplete optimization procedure, based on the brandheah approach presented in
[74] to find the best solution in a restricted feasible region

In [73] a heuristic approach, named hybrid GRASP/VND, isposed. The approach
is based on combining two optimization heuristics that haeen successfully applied
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to combinatorial optimization problems. The first is callBRASP (Greedy Randomi-
zed Adaptive Search Procedure), and is based on a repatitianconstruction phase
and a local search phase. The construction process worksldxtiag the next element
for insertion from a Restricted Candidate List (RCL), whiwks been previously created
according to the benefit of inserting each node, and depemdseocurrent state of the
solution. There is also a probabilistic element in the ch@€ the next node from the
RCL. On the other hand, the Variable Neighbourhood SeartdS)\approach is based on
systematically changing the neighbourhood move, duriegftimization process, each
time a local optimum is reached. The new neighbourhood n®usually of higher order
than the previous move, and it is applied to the same stastihgion. Variable Neigh-
bourhood Descent (VND) is a variant of VNS, where the locaimpm found acts as the
new starting point for the local search (see Sedtion P.3.6nfare details about the VNS
and the VND approaches).

For the 1-PDP, the hybrid GRASP/VND approachl(inl[73] is balbjca GRASP, where
the local search is performed using a VND procedure. In tbigristic, two VND al-
gorithms have been applied with different neighbourhoodesan each algorithm. The
first VND (called VND1) is applied in the improvement phaseeathe construction of
the initial solution. The neighbourhood move used in VND# iglassical 2-Opt, which
is then followed by a 3-Opt move whenever a local optimum &hed. After the basic
GRASP/VND, a further post-optimization phase is performesing a second VND (cal-
led VND2). This time, however, the neighbourhood moves iepphre amove forward
and amove backwaraperators respectively. In the move forward operator, &ooosr

is moved from its current position to a further position i tloute. So for example, if a
customer in position is moved to positiory with j > 4, this requires that all customers
in positions: + 1, ..., must be shifted backwards one position. The locations adroth
customers in the route do not change. The move backwardtoperarks similarly, butj

is now a position that precedée the tour, and intermediate customers have to be shifted
forward one position. The VND algorithm used in this heucigs shown in Algorithm
and the hybrid GRASP/VND algorithm is shown in AlgoritBm@, both adopted from

73],
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Algorithm 9.1: VND (z) Procedure [73].
for (k = 1;k < max; k + +) do
a’ «— LocalSearch(z, Ni(z))
if (2’ is better thanr) then

T — 1z

Returnx

Algorithm 9.2: Hybrid GRASP/VND Procedure [73].

1: while stopping condition is not satisfietb
2:  x <« GreedyRandomizedInitSol() {construction phase}
{improvement phase}
x «— VN DI1(z) {edge-exchange neighbourhoods}
if = is feasible and improves the best solutidrthen
5: ¥ —
{post-optimization}
6: 2’ — VND2(z') {vertex-exchange neighbourhood}
7: Returnz’

A GA approach was introduced in [158] to solve the probleme @lgorithm first starts
by creating a population of feasible solutions using a neaves-neighbour construction
heuristic. The initial population is then optimized usin@-®pt neighbourhood move.
The most distinguishing feature of the algorithm is a n@veromone-basedrossover
operator, inspired from the Ant Colony Optimization (AC@thnique, where pheromone
trails are updated each generation. During crossovergiieetson of the next node to be
inserted in the child is based on a probabilistic rule thie¢$anto account the pheromone
trail of the edge connecting the last inserted node and tkengial new node, such that
edges that have proved successful in the past are favoutezlcréssover operator also
considers the distance between the two nodes, as well aethardl of the new node
and the current maximum and minimum loads carried by theclehiThe offspring is
further optimized using a 2-Opt local search, in which oelgdible solutions are accepted,
and only the closest neighbours to the current node are denesi for edge exchanges.
The mutation operator is based on a 3-exchange proceduree Biere are 5 legal ways
in which 3 nodes could be exchanged, the move that yields ¢isé fesult is the one
performed in the mutation operator. The algorithm was testethe benchmark data that
are created by [75], producing the best so far results in tesstases.

The work done in[106] presents a simulation environmentteesthe problem. The algo-
rithm starts with a Modified Simulated Annealing (MSA) algbm, followed by a manual
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improvement phase. The SA approach is called Iterative fimbBimulated Annealing
(IMSA). The idea is to create multiple neighbourhood fekesgmlutionsy” from the cur-

rent feasible solutioX” by performing a number of changes &n The changes are done
iteratively onX, starting from 1 change to a maximumiaf'hanges, ... For each change
value, a fixed number af solutions is created, and this is done at the same SA tempera-
ture. This whole process is then repeated in an outer loop farmbemCounts,,,q, Of
iterations. The initial solutiorX is created based on a Greedy Random Sequence (GRS)
algorithm, which is a nearest-neighbour heuristic with egandomness in selecting the
nearest customer or the second nearest customer. A finalainaptimization is then
performed to improve the solution. Using a Graphical Usegrface (GUI), the user se-
lects a subgraph (of less than 15 nodes) from the optimaltrestained, upon which an
improvement algorithm is applied. This is achieved by peniog an Exact Permutation
Algorithm (EPA) for small size problems, or improving a sgt sub-route for large size
problems. The algorithm was tested on some instances dremjé], and was found to

be useful for practical applications.

9.3 Related Problems

Hernandez-Pérez and Salazar-GonzaleZz ih [75] presentext@mnsive survey of routing
problems that are closely connected to the 1-PDP. Basedi®attvey, some important
problems that are related to the 1-PDP are:

e The Capacitated Traveling Salesman Problem with Pickup andDelivery (CTSPPD):
which is a special case of the 1-PDP, in which the demand &f giakup or delivery
customer is restricted to one unit (e.gl. [5]).

e The Capacitated Dial-a-Ride Problem (CDARP):in which the vehicle should
move one-unit of commodity (for example a person) betweers gd customers

(e.g. [124]).

e The Pickup and Delivery Traveling Salesman Problem (PDTSP)which is the
same as the CDARP, but there is no restriction on the vehagadity (e.g.[[127]).

e The Traveling Salesman Problem with Backhauls (TSPB)in which all delivery
customers must be visited before all pickup customers [87)).

e The Traveling Salesman Problem with Pickup and Delivery (T®PD): due to
the importance of this problem and its close connectione¢dt#?DP, the following
discussion provides more details about this problem.
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The Traveling Salesman Problem with Pickup and Delivery (T?PDE

This problem was introduced in [110], and it is assumed heeecommodity collected
from pickup customers is different from the commodity detd to delivery customers.
The depot supplies all the demand of the delivery custonmed<allects all the supplies
from the pickup customers, and both products must be accatated in the vehicle wi-
thout exceeding its capacity. An example of an applicatichis problem is when empty
soft drink bottles are to be collected from homes or shopsdatidered to the depot, and
at the same time full bottles are supplied by the depot to beeded to some customers
[75]. For a TSPPD to be feasible, the vehicle capacity shatldast be the maximum
among the sum of the pickup demands and the delivery demdris.condition is not
required for the 1-PDP, though, since the vehicle capaadtydeven be as small as the
largest customer demanid [75].

In mathematical terms, if we lek’ = max{} ;y....o %> — D icv.q<0 ¢}, then for a
TSPPD to be feasibl€) must be> K. However, we can always assume, as mentio-
ned in [110], that the TSPPD is in ‘standard form’, meanirgt tki = (). Accordingly,
we can also assume that in a feasible TSPPD route, the veltécte at the depot with a
full load, delivers all the demand needed by the deliveryamuers, and at the same time
collects the goods provided by the pickup customers. Bintdike vehicle will arrive at
the depot fully loaded again, having collected all the golodsh the pickup customers.
This condition does not occur in the 1-PDP, since the prodactbe collected from the
pickup customers and delivered to the delivery customeith, tive depot only supplying
or absorbing any additional amount [75]. [n_[74] it is obsmhthat a TSPPD can be
solved using the same algorithm as the 1-PDP if the TSPPRrinstis transformed by
duplicating the depot into two dummy 1-PDP customers, olleacing all the quantity
supplied by the pickup customers, and the other providihthalquantity needed by the
delivery customers.

9.4 Solving the 1-PDP Using an Evolutionary Perturba-
tion Scheme (EPS)

In this part of our research we are trying to handle the 1-PBiRgua technique based
on ‘perturbation’ of the problem instance, first introduéedCodenottiet al. [27] for
solving large instances of the TSP. The idea is to introdusmall perturbation to the

1This problem was briefly mentioned in our literature survegiokup and delivery problems in Section
[4.1 under the name: The Traveling Salesman Problem with dMixeehauls and Backhauls (TSPMB).
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original problem instanc® to transform it to a new instand€, for example by making a
small change in the coordinates of the cities to be visitedenT SP. The new coordinates,
which in turn will result in new separating distances betmvéige nodes, will then be
used to construct a solution for the new instafite The new solution is then evaluated,
possibly after applying some local search method to impipwelative to theoriginal
problem instance” to potentially replace the initial solutian Figure[9.1(d) shows a
typical product of a nearest-neighbour construction atlyor to an original small TSP
instance, while Figurg 9.1(b) shows an improved solutiotaioled after perturbing the
coordinates of the original instance.

This idea was extended in [151], [15Z], [17] ahd [150], by lgpmy a search algorithm to
find a perturbation that will give a better solution. For exdena GA can be applied to
optimize the set of perturbed coordinates. A simple gredglyrithm could then be used
to create a solution for the TSP, using the perturbed coatéarather than the original
coordinates.

For the 1-PDP, we tried to apply the same idea of optimizirgst of perturbed coor-
dinates, as done in [150] for the TSP, and in the PhD thesis dghéw Morgalafor the
Capacitated Vehicle Routing Problem (CVRP) [109]. We werivated by the success
of this simple algorithm on these routing problems, as evidy the experimental fin-
dings reported. For both problems, it was demonstratedtiigatechnique was able to
produce high quality solutions compared to simple solutionstruction heuristics wi-
thout perturbation. The results obtained also compareaufably to published results
from the literature in terms of both solution quality and ggssing time. Its applicability
for the 1-PDP seemed to be viable, since a simple construbgaristic, such as the one
described in[[158], can be easily embedded within the ewiaty perturbation scheme,
in which nodes’ coordinates could be perturbed and optithimeng a simple GA tech-
nique.

More specifically, in our perturbation scheme, we use agttiorward GA technique
with a chromosome representing a list of customer locatiaith each gene consisting
of thex andy coordinates of the location. Traditional crossover andatiom operators
are then applied to optimize the set of perturbed coordinaide perturbation of each
coordinate is done by applying a small change to the coareiwéhin a pre-specified
radius, as suggested [n [109]. As mentioned above, the iyimeconstruction heuristic,

2A local search heuristic, applied to a solution for the nestanceP’ could be ‘fooled’ into finding
better solutions for the original instance, because a logtiium for the original instance is not necessarily

a local optimum for the new transformed instance.
3Matthew Morgan is a member of our research group (Scientdim@uting and Optimization) in Cardiff

School of Computer Science & Informatics, UK.
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Figure 9.1: TSP solution before and after perturbation.

used to create a solution using the perturbed coordinaessimple nearest-neighbour
insertion heuristic, similar to the heuristic introduced[158]. The created solution is
then evaluated relative to tlegiginal coordinate set, and the cost of the solution is used
as an objective function for the perturbed coordinatesweat used to create the solution.
Algorithm[9.3 describes the basic steps of our Evolutiorsturbation Scheme (EPS).
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Algorithm 9.3: The EPS Algorithm.

1: Initialize a populationPO P of perturbed coordinates from the original coordinatesref p
blem instanceP

2: while (stopping condition is not satisfiedp

3 for (i=0; ikNumCrossovers;i++jlo

4 Select parent®; and P, from PO P, using roulette wheel selection

5: Apply crossover to paren{d’;, P) to produce child”;

6 Apply crossover to paren{d,, P;) to produce child’y

7 with some probability, apply mutation 1G; andCs

8 Generate a solutios; from child C; and a solutiorns, from child Cs, using a simple

problem-specific construction heuristic

9: decode solutions; andss to produce two real solutiong andr for the original pro-
blem instance”
10: Possibly apply an improvement heuristicitpand ry {improvement heuristic is only
applied to small problem sizes, due to time limitations}
11: Evaluater; andr, and assign fitness values@ andCs accordingly

12:  Update POP by integrating the new generation and eliminating some wiadividuals
{i.e., steady state GA with overlapping populations}

Although the technique in general is simple, there are saamnis that need careful consi-
deration during the implementation of this algorithm. Atical issue is how to deal with
infeasible solutions created during the search, and hossigia a suitable objective value
for these solutions, since the total travel distance willarmer reflect the true cost of an
infeasible solution. In the following subsections, we eplthe basic components of the
EPS.

9.4.1 The Encoding

The chromosome in our GA is an ordered list of customer looatstarting from customer
1 ton. Each gene in the chromosome consists ofitla@dy coordinates of the customer
location. Figuré 92 shows the chromosome representatiobdth the original and the
perturbed coordinates, depicted in Figurd 9.1.
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Original Coordinates

(5.10) | (12.25) | (205) [(23.17)| (7.20) | (2222)

Perturbed Coordinates

(78) |(1624) (157) | (23,14) | (11,18) | (25.20)

Figure 9.2: EPS chromosome representation.

9.4.2 The Initial Population

A chromosome is created by applying a small perturbationhencbordinates of each
customer location, and storing the perturbed coordinatélse corresponding gene. The
process is repeated for all individuals in the populatidme Pperturbation scheme follows
the recommendation af [109], such that each coordinatdfiedla small distance within
a pre-specified radius. This radius is calculated as a fumcti the distance between the
current node and its nearest neighbour. More specificalyngw coordinates are given
by the following equation:

new, = old, + (D x S) x r, new, = old, + (D x S) x r, (9.2)

wherer is a random number betweenl and1, D is the distance between the current
node and its nearest neighbour, afids a scaling factor used to control the permitted
shift.

9.4.3 The Nearest Neighbour Construction (NN-Constructin)

The construction algorithm is called whenever the objectiinction of the chromosome
has to be calculated. The chromosome is first used to creastaamck matrix reflecting
the current perturbed coordinates that are stored in tteabsome. This distance matrix
is then passed to a simple greedy nearest-neighbour cotistrNN-Construction) al-
gorithm to create a corresponding solution. The constraalgorithm we adopted in our
research is the one described(in [158] to create their iritA population, with a slight
modification. This algorithm works as follows.
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1. GivenC'L H a user defined parameter, generate the listbitlosest neighbours to
each node in the customer list, based on the current distaatré;

2. Letm = 1, insert the depot node as the first custoffier.) in the tour, and initialize
both M ax Load and Min Load of the vehicle to be equal the demand of the depot;

3. If m = n, wheren is the total number of customers including the depot, thep;st
otherwise go to Sted 4;

4. Search the”L closet neighbours of'(m) for feasible candidates that have not
been inserted before and can be added to the end of the tdwuwitiolating the
vehicle capacity. If there are such customers, select thiwmer having the largest
demand (in absolute value) among them, and insert if@s + 1), and update
Maz Load and theMin Load of the vehicle, go to Stdd 5; otherwise go to Step 6;

5. m =m + 1, go to Stef B;

6. Search all customers that have not appeardd for feasible candidates for inser-
tion. If there are such customers, select the closest cesttmthe last inserted
customer and insert it &(m + 1) and update\/ az Load and theMin Load of the
vehicle, go to Stefp]5; otherwise stop and declare an infleasitbution;

7. Returnm < n, the number of nodes that have been successfully insertduein
solution before infeasibility (if any) is encountered.

The difference between our algorithm and the constructigorsahm described in [158],
and used to create a genetic population of random solutmtiset 1-PDP, is that they
start their tour from a randomly selected customer, whilealveays start the tour from
the depot. We chose to fix the starting node to try to make tladitgof the constructed
solution only a function of the perturbed coordinates usedreate the solution. Any
randomness in the creation of the solution will interferéhi@ quality of the solution and
will not reflect the true fitness of the perturbed coordinatésus, the learning process
of the GA from generation to another may be obstructed. @nhgjl some degree of
randomness in Stép 6 of the algorithm that was adopted if] H&8been eliminated in
our algorithm. This is in fact essential in our scheme, beedte solution constructed
from the perturbed coordinates is not saved during the &wvolary process. Making
the construction algorithm deterministic, by eliminatiagrandomness in the selection
of nodes, will enable our algorithm to use the best pertudmeidinates (individual) to
re-construct the best solution, when the evolutionary ggederminates. In addition to

4CL stands for a constant that determines a selected numbkasaftneighbours to a certain node.
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removing randomness, our algorithm stops once the solbgaomes infeasible, while
in [158], they repeat the construction algorithm startiranf a new node, if the previous
attempt resulted in an infeasible solution.

The selection of the customer with the largest demand in[&t&the construction algo-
rithm is justified in [158] by giving priority in the insertioorder to nodes that may be
difficult to insert, because of their large demand. Also, &ntioned in Steps|4 arid 6,
the minimum load and the maximum load carried by the vehideupdated each time
a new node is inserted. This step is needed for the feagiblieéck of each candidate
node. More specifically, according to Equation]9.1, to chibekfeasibility of insertion,
the difference betweel ax Load andMin Load after serving the candidate node, should
not exceed its capacity, otherwise the potential candidatmot be feasibly inserted at
the end of the tour.

9.4.4 The Objective Function

To calculate the fitness of each chromosome in the populdheriollowing steps are per-
formed. First, a new distance matrix is calculated baset®sét of perturbed coordinates
stored in the chromosome. Then, this new distance matrirssqd to the construction
algorithm, described in Sectidn 9.4.3, to create a solufidhat takes into account the
new distances between the nodes. Finally, the objectiveifumof a chromosome) is
calculated using the following equation

F(C)=((n+1)—m) x Dist(S) (9.3)

wheren is the total number of nodes; is the number of nodes that have been success-
fully inserted in the solution before infeasibility (if anis encountered, anfbist(S) is

the ‘true’ total distance traveled when the soluti®ms decoded relative to theriginal
coordinate set.

This objective function combines both the total travel aiste and the degree of infeasi-
bility in the generated solution. If the created solutiorfieiasible, all nodes would have
been inserted successfully, i.e. = n. Accordingly, the fitness of this solution will be
Dist(S). On the other hand, if the solution is infeasibi#;st(.S) will be multiplied by a
factor that increases with the degree of infeasibility. $healler the number of nodes that
have been successfully inserted, the larger the multijphicdactor. Note also that in case
of an infeasible solution, the distance value will be smrdhan the distance of a feasible
solution, because not all nodes have been successfullgedse



188 9.4 Solving the 1-PDP Using an Evolutionary PerturbatioheBee (EPS)

9.4.5 The Operators
Mutation

The mutation operator first selects the number of nodes §j¢ode mutated. This num-
ber was chosen to be a random number between 1 and 20% ofaheuotber of nodes in
the chromosome. Then, the mutation operator applies Eaqi@ii2 to each gene selected
at random.

Crossover

Different traditional crossover operators have been tmedur research. The most ef-
fective crossover operator seems to beEvenOddcrossover operator, which works by
selecting alternative genes from each parent and insetiagrg in the corresponding lo-
cations in the child. The roles of the parents are reversetth&second child.

9.4.6 Computational Experimentation

We implemented a steady state GA, with an 80% replacemeththarfollowing parame-
ters: population size= 200, number of generations=100lxfge problems (more than 60
customers) and 200 for small problems (from 20 to 60 custsmprobability of muta-
tion= 0.3, probability of crossover=0.8, and the pertudrascaling factotS in Equation
was set to 0.6, after some initial experimentation wittecent values. The neighbou-
rhood sizeC'L was chosen to be 2, i.e., only the closest two neighbourshereked for
feasibility of insertion before all other nodes are check&@ found, experimentally, that
this ‘tight’ neighbourhood size helped to reduce the ruetisince the neighbourhood list,
which has to be created for all nodes whenever the congtruatgorithm is called, will
be very small in size. Also, it appeared from trying sevethko values that this small
value gave better results even for large size problems.

The Data Set: The algorithm was tested on instances created by [75]. Tdrer2 types
of problem instances. Small instances have a number ofrogssa in {20, 30, 40, 50,
60}. For these instances, the optimum is known and was adxdaising the exact method
proposed in[[74]. There are also large instances with {100, 200, 300, 400, 500}.
For each combination of and a different vehicle capacity in {10, 15, 20, 25, 30, 35,
40, 45, 1000}, 10 problem instances have been created ard the letters {{A to ‘J’}.
So for example, a problem instance nanitD0q20A means the first instance (A) in
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the 100-customers category (N100) with vehicle capacityg20). The data set and the
results obtained in [75] and [73] can be downloaded from ibkup and Delivery Site of
Hernéndez-Pér@ htt p: /7 webpages. ul I . es/ user s/ hhper ez/ PDsi t e/ i ndex. ht m

Experimental Results: We briefly summarize here the experimental results of the EPS
on test cases with the tightest vehicle capacity. Thesehar@roblems with) = 10,

and considered to be the hardest problems in the data setuMf@arize the results on

all problem sizes from 20 to 100. Our perturbation heurigtés run 20 times on each

of these instances and the best result was recorded. Laxgi@em size, however, were
found to be very time consuming and their testing was dedh differently as will be
explained later.

It should also be noted that there is a slight difference betwthe final testing version of
the heuristic between small instances and large instaiites was based on preliminary
experimentations and was intended to give the best posgibldts. For small instances
(from 20 to 60 customers), the solution obtained from the ¢dNstruction heuristic, ex-
plained in Sectioh 9.41.3, was optimized using a Hill Climb{HC) approach that uses a
simple node swap neighbourhood move. The objective fun¢gojuatiori 9.8) then uses
the quality of the optimized solution as a fitness of the pbdd coordinates from which
the solution was created. This is the same approach applibeé iperturbation scheme of
the CVRP in[109]. For larger problems, however, this tegheicould not be used due
to the great increase in processing time. Therefore, thectiag function was only based
on the quality of the constructed solution without optintiza. An optimization phase,
though, was performed only on the best individual after gémentnation of the whole GA
process. Thus, the set of perturbed coordinates that aresesgied in the best individual
in the final generation, were used to construct the bestisalobtained, using the NN-
construction algorithm. This solution is then further optied using an HC approach that
uses a simplenove forwardoperator, which was suggested [in][73] (see Sedtioh 9.2 for
more details about the move forward operator) . The resuitsizarized here are the final
results obtained after this optimization phase.

Results on Problem Sizes 20-100 Customers:Experimental results on problem sizes
ranging from 20-100 customers indicated that the pertiwob#ieuristic was able to achieve
the optimal resultin only 16 out of the 50 test instances,revliee optimum is known (i.e.,
for problem sizes 20-60). Also, the optimum was achieveg torlthe smallest size pro-

SNew best results were obtained by the GA[in [158], but they atoappear in the pickup and delivery
site yet.
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blems of 20 and 30 customers. The heuristic, on the other, lveaslunable to compete
with previous heuristics from the literature for all largeze problems. The average re-
lative difference between our results and the optimal ot keswn results ranged from

2% for 40 customers to 12% for 100 customers. The heurist&algo slower than the

heuristic in [158]. For example the average run time for tQ8tomers problems was
43.8 seconds compared to 21.12 seconds reported by [158lfsame problem types.

Thus, the experimental results clearly indicate that th8 Béhieved a limited success in
dealing with the 1-PDP problem instances, especially apithielem size increases. The-
refore, testing the algorithm on even larger size problemsidt seem worthwhile. The

perturbation scheme in all problem instances, though yeaweoduced feasible solutions.
This indicated to us that the heuristic may be used in casesendn quick and feasible

solution is needed irrespective of its quality.

Results on Problem Sizes 200-500 Customersfor these problem sizes, we shifted
our attention to testing the potential of the EPS in tramafog infeasibility to feasibi-
lity, rather than competing with best known results. Heme,only ran the algorithm
for one generation and compared the result obtained, instefrthe quality of the solu-
tion constructed from the best individual in the populatwith the result obtained when
the NN-construction heuristic was run only once to produtédial solution (using the
original problem coordinates without perturbation). Rember that the NN-construction
heuristic is deterministic in our scheme, since we remoVgti@randomness involved in
the construction of such solution. Accordingly, there isyame initial solution that can
be constructed using the original coordinates. If the NNstauction managed to insert
all nodes in the solution whilst maintaining feasibilitizet created solution is feasible.
Otherwise, the quality of the created solution is deterhiog the number of nodes that
have been successfully inserted before infeasibility moentered. In the current expe-
riment, the algorithm was again run 20 times on each probfstance, and we counted
the number of times the EPS heuristic was able to generatasébfe solution after one
generation.

The results of this experiment showed that the NN-consbméteuristic failed to produce
feasible solutions in all cases except one, which is theint& N400g10F. On the other
hand, the EPS heuristic was able to find feasible solutionalf@roblem instances after
one generation. In most test cases, the EPS was able to firgiléesolution in all 20
runs. In 9 out of the 40 problem instances the EPS heurigtiadi produce a feasible
solution in all runs. The minimum number of feasible solofmbtained were 3 out of
the 20 runs.
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These results, in general, seem to indicate that the EP$hewvas in fact successful in
transforming the frequent infeasibility problem of the NNRstruction heuristic to feasi-
bility. The processing time needed was also reasonableamitiiverage of 1.13 seconds
for 200-customers problems to 7.18 seconds for 500-custopneblems.

9.5 Summary and Future Work

In this part of the research we investigated a new heurigtithie 1-PDP. The heuristicis a
perturbation scheme that transforms the problem instarto@inew one by performing a
small shift in the coordinates of the nodes in the problertaimse. A simple construction
heuristic is used to construct a solution to the problem ftbenperturbed coordinates
rather then the original coordinates, hoping to produce teebguality solution. The
perturbed coordinates were also optimized using a simpleginique.

The experimental results on a large number of test casefefatit sizes indicated that the
heuristic was in most cases able to improve the quality oiftiti@l constructed solution to
a large extent, removing infeasibility in all test caseswideer, the final results obtained
were in general of lesser quality than the best known or agitmesults. The algorithm
was also relatively slow, which is mostly due to the naturéhefGA involved.

It should be noted that the EPS algorithm is highly senstov&veral underlying factors.
The most important element seems to be the embedded cdiwtrbeuristic. Previous
attempts in the literature that used a similar techniqueexample[[108], made a consi-
derable effort in testing several construction methodshHerCVRP, to identify the best
construction heuristic that can be used within the EPS. Nlegkess, the literature of the
CVRP is relatively well-established and very rich with sungturistics. The literature on
the 1-PDP, on the other hand, is scarce and only a small nuofilm®nstruction heuris-
tics have been previously attempted. We chose from themoth&tmiction algorithm that
seems to be relatively simple and fast, and also gave rellsomsults within the context
of other meta-heuristic techniques. This constructiorrisga, however, apparently pro-
duce frequent infeasible solutions, as illustrated by #seilts obtained on large problem
sizes. Having a large number of infeasible solutions wiNdo the quality of the overall
population of perturbed coordinates, and make identifyivegset of perturbed coordinates
that lead to feasible and good quality solutions a difficasiktfor the EPS.

In addition, the EPS is also highly sensitive to the perttidngparameters and the selected
perturbation neighbourhood shape and size around theioated. Fine tuning of these
parameters was also a considerable part of the researchrdd®8]. In our research, we
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simply relied on the final recommendations|of [109] for the\fRP. However, obtaining
the best perturbation parameters for the 1-PDP could alevheuristic to achieve better
results, but will, nevertheless, be very time consuming.

Another possibility for improvement is to modify the EPS¢luhat only feasible solution
are allowed in the evolutionary process. Alternativelyg tdonstruction algorithm could
be slightly adjusted, such that it will continue insertingdies in the solution even after
infeasibility is encountered. The objective function,rthehould take into account the
amount of infeasibility in the solution. This approach aballow the perturbation scheme
to more easily transform the infeasibility to feasibilitydaimprove the overall quality
of the generated solutions. The viability of this ‘modifieminstruction technique was
demonstrated within the context of our VNS heuristic thas wpplied to the 1-PDP, as
will be detailed in the next chapter.
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Chapter 10

Solving the One-Commodity Pickup
and Delivery Problem Using an
Adaptive Hybrid VNS/SA Heuristic

In our attempt to investigate possible heuristics to sdieel-PDP, and perhaps achieve
better results than those achieved by the EPS heuristi@blarNeighbourhood Search
(VNS) seemed a reasonable choice that may have some pbteirss the idea is simple
and can be easily adapted to the problem in hand. Seconds lden successfully ap-
plied to many routing and scheduling problems, for examplthé TSP in[[70] and the
VRPTW in [19] and [119], and recently to the Periodic VehiBeuting Problem with
Time Windows (PVRPTW) in[118]. In this chapter, we explaur investigation of VNS
for solving the 1-PDP. The VNS algorithm introduced hereybridized with Simula-
ted Annealing (SA) to escape local optima. We also employptati@n of some search
parameters for more efficient searching.

Sectior 1011 briefly describes the VNS meta-heuristic ireg@inand highlights previous
1-PDP research that uses this approach. SeCfion 10.2 expraidetail our proposed
heuristic, which we will call arAdaptive Hybrid VNS/SA (AVNS-SA) technique for
solving the 1-PDP. An outline of the complete algorithm isgamted in Section 10.3.
Experimental results of the algorithm are presented ini@&df0.4, and a summary and
some future directions will be presented in Secfion]10.5.

10.1 Variable Neighbourhood Search (VNS) and its Ap-
plication to the 1-PDP

As previously mentioned in Section 2.B.6, VNS is a relativeéw meta-heuristic that
has been introduced by Hansen and Mladenov{69] and [70]. The idea is to generate
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new solutions that are distant from the incumbent solutignsystematically increasing
the neighbourhood size within which the search is perforniéd new solution replaces
the current solution if it is better in quality. This way, nyafavourable characteristics
of the incumbent solution will be preserved in the new geteeraolution. In addition, a
local search is performed on the new solution to reach a mu#hum within the current

neighbourhood. For convenience, we repeat here the bagps sf the VNS algorithm as
described in[[70]:

e Initialization: Select the set of neighbourhood structuMgs (k = 1, ...k...), that
will be used in the search; find an initial solutionchoose a stoping condition;

e Repeathe following until the stopping condition is met:

1. Setk — 1,
2. Repeat the following steps unkil= k,,,,.:

(a) Shaking Generate a point’ at random from thé** neighbourhood of
x (2" € Ni(x));

(b) Local SearchApply some local search method withas initial solution;
denote withz” the so obtained local optimum;

(c) Move or not if the local optimumz” is better than the incumbent, move
there(x < 2”), and continue the search wifty (k < 1); otherwise set
k—Fk+1.

A variant of VNS, called Variable Neighbourhood Descent Dﬁl has been tried for
the 1-PDP as part of the heuristic proposed by HernandezzRéxd Salazar-Gonzalez in
[73]. In their approach, the VND did not include a shakingg#aut only a local search
that changes the neighbourhood move from 2-Opt to 3-Optpeser a local optimum is
reached. The VND was embedded within another heuristied&IRASP (Greedy Ran-
domized Adaptive Search Procedure) that repeatedly gieseaa initial solution upon
which the VND is applied. Their approach is described in Aigpons[9.1 and 912 in the
previous chapter. The heuristic in [73] achieved promisegults that were better than
the results obtained by the same authors using their preVieuristics suggested in [75].
However, their algorithm apparently was not fully capabiescaping the trap of local
optima. This is evident by the fact that they had to use a pp8taization phase to im-
prove the final result. According to the authors, this pgsimization often made the
difference between beating the results obtained by theiripus heuristic in[75] or not.

1See section 2.3.6 for more details about the VND algorithm.
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The hybrid GRASP/VND heuristic was also outperformed by @&#e of [158], in most
test cases.

A possible shortcoming of the hybrid GRASP/VND heuristithie absence of a shaking
phase, which should help the diversification of the incumisetution and allow the suc-
ceeding local search method to escape local optima. In @poged approach, we try to
apply the basic VNS, with both the shaking and the local $edraping to overcome the
limitation of this previous VND attempt on the 1-PDP.

10.2 The AVNS-SA Heuristic

To apply VNS to the 1-PDP, several choices should be madeseTaee outlined and
explained below:

1. The construction heuristic used to create the initial solubn: The construction
algorithm we used is the same as the algorithm proposed [8],[fich is the
nearest-neighbour construction (NN-construction) reigri explained in Section
9.4.3.

2. The set of neighbourhood structures used for shakingThis is in fact the core
of the VNS, and is the tool fodiversificationof the search. It is essential that the
shaking procedure provides a balance between enough Ipatitur of the current
solution, and also maintaining the most favourable charastics of this solution.
The shaking procedure should also allow the systematicgehahthe neighbou-
rhood size. In our algorithm, we chose a simple move thataiss a sequence of
nodes with or without inversi@nwhere the number of nodes to be displaced could
act as the variable neighbourhood size parameter that eeahging the search.

3. The local search procedure used to optimize the current sotion: This proce-
dure is the tool that the VNS uses fatensificatiorof the search. In our algorithm,
we chose as a local search a simple 2-Opt edge exchangettagobased on the
famous procedure proposed by Lin in [103]. We adopted théementation des-
cribed in [157] for the 2-Opt edge exchanges, having a coatjmuital complexity
of O(n?), wheren is the number of nodes in the problem instance. In additian, o
local search is based on exhaustively testing all possdge exchanges, and using
best improvemerds a replacement strategy.

2Inversion means to reverse the sequence of nodes in a mamilar £ the inversion mutation operator

shown in Figurg¢ 2.7(b)
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4. The acceptance criterion used by the VNS to accept a new soloh as a replace-
ment of the incumbent solution: A descenbnly criterion will only accept a better
solution, while adescent-ascertriterion will also accept a worse solution with
some probability. Both techniques can be used within the Y¥hBedure as explai-
ned in [70]. In our approach we chose the second criteriarh that the acceptance
is based on an SA acceptance probability, given a certaremiemperature value.

In what follows we describe in detail how our proposed AVN&&pproach was planned
and developed.

10.2.1 The Initial Solution

To choose the initial solution that will be subject to the V,\NSwumber of solutions were
created using the NN-construction heuristic (adopted ftbenalgorithm in[[158] and
explained in Section 9.4.3), and the best solution was tegletlowever, in order to create
different solutions, we re-introduced the randomnesshhaatbeen removed in the EPS
heuristic, for reasons previously explained. Specificalg starting node was chosen at
random, and also there was a small probability of choosiagdam customer, rather than
the nearest customer, in Stdp 6 of this algorithm (referécstbps of the NN-construction
algorithm in Section 9.413).

Also, rather than stopping the construction algorithm oiméeasibility is encountered,
we changed the algorithm so that if all remaining nodes deasible for insertion, the
closest one to the last inserted node is selected, eversiinteasible, hoping to fix the
infeasibility later during the search. Thus, all nodes blinserted in the solution and the
degree of infeasibility is taken into consideration whelewekating the cost of the solution.
The value ofC'L, which is the neighbourhood size used to create the matrneafest
neighbours to each node, was chosen to be 15 in the constriatorithm of [158]. In
our approach, though, we tried all values(éf from 2 to 15 on selected test cases from
both the small and the large size instcheEhe value ofC'L that worked best for all
problem instances tried was 7. Also, unlike the EPS hearistiere a new neighbourhood
matrix was created with each set of perturbed coordindtessurrent approach requires
only one static matrix to be created at the beginning of the Accordingly, a very ‘tight’
neighbourhood size was no longer needed to improve them. ti

For convenience, we show in detail below the steps of ourtoactson algorithm:

3We selected test cases: N20g10A, N60g10A, N100g10A, an@eBDA.
4Recall that the value chosen f6fL in the construction algorithm of our EPS heuristic, expdaiiin

Chaptef®, was 2.



10.2 The AVNS-SA Heuristic 197

1. GivenC'L, a user defined parameter, generate the list bfclosest neighbours to
each node in the customer list;

2. Letm = 1, insertarandom node as the first custoffier.) in the tour, and initialize
both MaxLoad and MinLoad of the vehicle to be equal to the demand of this
customer;

3. If m = n, wheren is the total number of customers including the depot, thep;st
otherwise go to Stdgd 4;

4. Searchthée'L closet neighbours &f (m) for feasible candidates that have not been
inserted before and can be added to the end of the tour witiaating the vehicle
capacity. If there are such customers, select the custoaverdithe largest demand
(in absolute value) among them, insert it&8n + 1), and updaté//axLoad and
the MinLoad of the vehicle, then go to Stép 5; otherwise go to $iep 6;

5. m =m + 1, go to Stefa B;

6. Search all customers that have not appeardd fior feasible candidates for inser-
tion. If there are such customers, select the closest feasistomer to the last
inserted customer with probability 0.7, or select a randeasible customer with
probability 0.3; if there are no remaining feasible custmmeelect the closest in-
feasible customer to the last inserted node; insert theteel@ode a%'(m + 1) and
updateM ax Load and theMin Load of the vehicle; go to Sted 5.

10.2.2 The Objective Function

The objective function used to estimate the solution qualds set to
F(S)=(NCV(S)+1) x Dist(5), (10.1)

whereNCV () is the number of capacity violations along the route, ilee,niumber of

nodes at which the feasibility check, described by Equdlidinis not satisfied. At these
locations, the vehicle could be ‘carrying’ an excess of itgvéed capacity, or could be
in shortage of the necessary quantity to be delivered. Tigeldahe number of capacity
violations, the larger the cost of the solutidnist(.S) is the total distance of the solution,
given the current visiting order of nodes. If there are noac#ty violations in the route,

I.e., the route is feasible, the total distance will be tHe sweasure of the solution quality.
Thus, this multiplicative objective function will penaéizhe number of capacity violations

in the route, by significantly increasing the cost of solnsidhat have a large number of
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capacity violations, compared to feasible solutions, vehosst will only be measured
by the total distance traveled. In addition, no arbitrarg finning of penalty weights is
needed for this objective function.

10.2.3 The Initial SA Temperature

As previously mentioned, we used an SA acceptance critevitirin the VNS approach.
A critical part of any SA algorithm is the SA schedule, esplgithe starting temperature
and the temperature reduction factor. These parametergicamtly affect the perfor-
mance of the SA algorithm, and their adjustment to fit a wichgyeaof problem instances
and sizes is a daunting task and very time consuming. To ledédécthe SA starting tem-
perature for each problem instance individually, we agdpged the approach proposed
by [40]. Recall that this approach was used in both our SArélyns that handled the
SV-PDPTW and the MV-PDPTW, as explained in Chapférs 5[andH& procedure for
creating the initial solution and calculating the SA tengpere is shown in Algorithm

[10.1.

Algorithm 10.1: Find Initial Solution & Calculate Starting Temperature.

1: Create a starting solutionusing the NN-construction heuristic
2: s* «+ s{sx*isthe best so far solution}

{Initialize Pstart, the starting acceptance probability}
3: Let Pstart = a large value {We used 0.9}
4: Agyg 0
{Generaten solutions using the NN-construction (We usee-= 1000)}
for (i =0;i < n;i+ +)do

generate a new solutiori using the NN-construction heuristic

if (Objective(s’) < Objective(s*)) then

s* s

A — |Objective(s’) — Objective(s)|
10: Agug — Aag + A
11: Agug < Aavg/n
12: Ty «— —Agyg/ log(Pstart)
13: Returns*, the initial solution from which the AVNS-SA algorithm wipprogress, and the

© o N o g

initial SA temperaturdy
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10.2.4 The Shaking Procedure

As mentioned previously, we chose as a shaking procedurspadement of a sequence
of nodes with some probability of inverting this sequenc&(® chance of inversion was
adopted in our algorithm). This move is popular in the VREBréture, and especially
for solving the TSP, but to the best of our knowledge it hashsan tried before for the

1-PDP.

Our VNS algorithm passes the current neighbourhood s\zeS( z¢) as a parameter to
the shaking procedure, which will in turn use this paramatethemaximumpossible
number of nodes that will be displaced. Specifically, the benof nodes to be displaced
is a random number betweérand Nh.Size. So even for large values &fh.Size, small
sequences of nodes could still be displaced, and in fact teex ‘bias’ toward such small
moves, since they have a chance of being executed in all m@ighood sizes. This is
intended to prevent a large disruption of the current sofytand is recommended by
some VNS implementations, as in [119] for the VRPTW. Bothstesting position of the
selected sequence and its new position within the routelargen at random.

10.2.5 The Maximum Neighbourhood Size

Our VNS algorithm repeats the shaking followed by the loealrsh for the current solu-
tionforall NhSize = 1,2,3...NhSize,.., WhereNhSize,,.. IS the maximum sequence
of nodes that could be displacedvhSize,,,, should be chosen in a way that allows
enough perturbation of the solution without disturbing@gourable characteristics. Na-
turally, the value fotNhSize,,,, in our shaking procedure must be smaller thawhere

n is the total number of nodes in the current problem instaAtsa, to makeNhSize,,q.
adaptable for any problem instance, it must be calculatedive tor, and not fixed for
all instances. However, large values/®hSize,,., Will increase the computational cost
and slow down the optimization process. So, in order to redbe computational cost,
we tried different fractions of (n/2, n/3, n/4), on selected problem instances from both
the small and large problem instarﬁ:eﬁhese values aNhSize,,.., though, still resul-
ted in a very long processing time for large problem instand&e then tried the value
2 x 4/n, which was recommended by [106], for the number of chang€%:.{nges,az)

in their Iterated Modified Simulated Annealing (IMSA) appob to the 1-PDP, as pre-
viously explained in Sectidn 9.2Vh.Size,... = 2 X y/n gave the best results among all
values tested, in terms of the balance between processiegiid solution quality, for all
instances tried in this experiment.

5Again we used test cases: N20q10A, N60g10A, N100g10A, ar@DNEOA.
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10.2.6 A Sequence of VNS Runs

During our early experimentation with the VNS algorithm, feend that to reach good
solutions for the 1-PDP, several runs of the VNS proceducailshbe performed. Each
run starts from the final solution obtained in the previous fTthe VNS could be repeated
for a fixed number of iterations, or until no improvement iglized in the current solution
for a number of attempted iterations. We chose the seconmagp, and stopped the
repetition of the VNS when no improvement happens in 5 carnsexiterations.

However, we realized that during the first VNS run, improvaieappens quickly for
most neighbourhood sizes, even for the large ones among t8absequent VNS runs,
though, usually respond only to smaller changes in the isolutn other words, smaller
neighbourhood sizes seem to be more beneficial in subsefditruns, since larger
changes may cause a disturbance of the current solutiorednde its quality. Accordin-
gly, after each VNS runNhSize,,., was reduced by a fraction of its value. To choose
the reduction scheme, we tried the fractions 1/2, 1/3, 184146 of NhSize,, 4., ON the
same selected test instances previously indicated ind®eCii0. 2.1 and 10.2.5. We finally
chose the reduction factor 1/4, based on the quality of thaltseobtained.

As previously mentioned, the VNS procedure is repeatedraktimes, and only stops
when no improvement happens in the current solution for ab®srof consecutive ite-
rations. Thus, reducing/hSize,,., cannot continue indefinitely, because otherwise la-
ter runs may not perform any shaking at all. In order to mangreasonable num-
ber of nodes to be displaced in the shaking procedure duaieg tuns, the reduction of
NhSize,,, is repeated until it reaches a certain minimum value, at wktage no fur-
ther reduction is performed, and the VNS procedure usesutrerd NhSize,,,, for all
remaining runs. The minimum value 6fh.Size,,,, was chosen to be the same as the re-
duction factor, i.e.NhSize,,.. /4, in order to reduce the number of parameters that need
to be adjusted in the algorithm.

10.2.7 Stopping and Replacement Criteria for Individual VNS Runs

The VNS procedure repeats the shaking and the local seareli f@lues of NhSize =
1,2,3...NhSize,... However, in some cases, the current solution may not respmn
changes in the neighbourhood size and reach a stage of stagndherefore, rather
than indiscriminately increasing/h.Size up to the pre-specified maximum, we chose
to also end each VNS run when the solution has not changed dertain number of
consecutive attempts of increasingh.Size. For more flexibility and robustness, the
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number of attempts should be chosen relative to the curreximum neighbourhood
size (NhSize,,..), and not fixed for all problem instances. Similar to how te@uction

scheme was chosen (as explained in Section 10.2.6), thearwhlttempts was again
set toNhSize,q.. /4. Thus, the VNS will beadaptivein the sense that it will stop the
shaking and the local search cycle, when no benefit seemsraalized from increasing
NhSize. It is also adaptive from another perspective, sindeSize,,,, passed to the
VNS is not fixed and depends on the current stage of the rurreasopsly discussed in

Sectior 10.26

Also, as indicated before, we chose an SA acceptance ontéoi replace the current
solution within each VNS run. Initial experimentation shemiwthat accepting worse so-
lutions with some probability improved the final result ab&ad, although it is more time
consuming. Thus, the SA component of the algorithm workdlowéng the new solution
resulting after the shaking and the local search to replaeetrrent solution, even if it
Is worse in quality. The acceptance criterion is the saméasisual SA acceptance and
depends on the difference between the objective value afdhvesolution and the current
solution, and the present temperature value.

In our algorithm, the VNS procedure repeats the shakinglaatbtal search for theame
neighbourhood size\h.Size) for a number of trials. The number of trials is incremented
only when a solution worse than the incumbent appears inuhemt NhSize. When
the number of trials reaches a certain pre-defined limitstieking and the local search
cycle stops for the curredth.Size, and the VNS moves on to the neXt.Size. Also for
eachNhSize, the current temperature is decremented in the currertiibereach time
the new solution is worse than the current solution.

10.2.8 Updating the SA Starting Temperature

Normally, by the end of each complete VNS run, the SA tempeeavould have reached
a small value that should not permit the acceptance of angev&olutions. If we started
the new VNS run with such a small value, there would be no betoefie SA acceptance,
since all worse solutions would be rejected. On the othedhstarting a new VNS run

with the initial temperature too high is also not beneficshce many worse solutions
would be accepted, possibly causing the destruction ofuhet solution. To achieve a
balance between these two situations, the final temperatiwe reached in the current
VNS run wasdoubledbefore the beginning of the next VNS run.
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10.3 The Complete AVNS-SA Algorithm

To put it all together, Algorithnl 1012 shows the main AdaptiWNS-SA (AVNS-SA)
heuristic, which will invoke the VNSSA procedure, descdle Algorithm[10.3.

Algorithm 10.2: Adaptive VNS-SA (AVNS-SA) Algorithm.

1: Find an initial solution (nitSol) and the starting temperaturtqrtTemp) using Algorithm
[10.1.

2. NhSizepq, < 2 X \/n, wheren is the number of nodes

3: Decrement <« NhSizepq, /mi {We usedm, = 4}

4: MaxStagnation < NhSizenq, /mo{We usedmy = 4}

5: Initialize M ax Attempts to a small number {We used 5}

6: Nolmprovement «— 0

7: repeat

8 NewSol = VNSSA(InitSol, NhSizemay, StartTemp, MaxStagnation)

9 if (NhSizemar > Decrement) then

10: NhSizemee «— NhSizepa, — Decrement
11: else

12: NhSizepma, < Decrement

13:  if (NewSol is not better tharnitSol) then
14: Nolmprovement + +

15: else

16: Nolmprovement «— 0

17:  InitSol — NewSol
18:  StartTemp «— StartTemp x 2
19: until (NoImprovement reachesV ax Attempts)
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Algorithm 10.3: The VNSSA Algorithm.

1: Input: InitSol, NhSizemqas, StartTemp, MaxStagnation
2: Output: a new, possibly improved, solutioh
3: k < 0 {Initialize the current neighbourhood size}
4: Stagnation < 0
5. NumTrials — LIMIT { LIMIT is the maximum allowed number of trials for the current
neighbourhood size (we used 30 trials)}
6: X « InitSol
7: repeat
8: k4 + {Increment the current neighbourhood size}
9:  Trials — 0
10:  while (T'rials < NumTrials) do
11: Shaking(X, X1, k) {displacing a sequence of nodesihup to a maximum of, with
or without inversion. The result is stored ¥/}
12: LocalSearch(X1I,XIT) {local search is done oX I using 2-Opt. The result is stored
in X171}
13: if (Objective(XII) < Objective(X)) then
14: X «— XII
15: else
16: AcceptX 11 using SA acceptance probability
17: StartTemp «— StartTemp x o {Decrement current temperature (we used=
0.99)}
18: Trials + +
19: end while
20: if (X did not change in the last iteration (i.e., for the currerighbourhood sizé)) then
21: Stagnation + +
22:  else
23: Stagnation =0

24: until (Stagnation = MaxStagnation) or (k = NhSizenq,)
25: ReturnX
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10.4 Experimental Results

To test the performance of our AVNS-SA algorithm, we usedstirae test cases described
in Sectior 9.4J6. We ran the algorithm 5 times on each test fram 20-300 customers.
On the other hand, only one run was performed on test caseé¥0adrdd 500 customers,
due to time limitation. In this experiment a number of congpsitwith different specifica-
tions were used to run the algorithm. For this reason, thémes we quote in this section
will vary according to the platform. Nevertheless, our tigs give useful estimates of the
time requirements of the algorithm.

Table[10.1 shows the results achieved by the AVNS-SA algorfor small size problems
of 20-60 customers. As previously explained in Sedtion® .4 problem instance named
N20g10A for example, means the first instance (A) in the 20-custeroategory (N20),
with vehicle capacity 10 (q10). Table 1D.1 shows the bestlrebtained in the 5 runs,
the number of times the best result appeared in the 5 runs $ken), and the average
result of the 5 runs. Finally the table also shows the optimesult found by the exact
algorithm in [74].

Table 10.1: AVNS-SA Results (20-60 Customers)

Name Best | Num Seen| Average | Optimum
N20g10A| 4963 4 4974.6 4963
N20ql0B| 4976 5 4976 4976
N20ql10C| 6333 3 6390.4 6333
N20g10D| 6280 4 6341 6280
N20qlOE| 6415 5 6415 6415
N20ql10F | 4805 3 4808.6 4805
N20g10G| 5119 5 5119 5119
N20q10H| 5594 5 5594 5594
N20q10l | 5157 2 5195.2 5130
N20q10J | 4410 5 4410 4410
N30q1l0A| 6403 1 6455 6403
N30ql0B| 6603 5 6603 6603
N30ql0C| 6486 1 6576.2 6486
N30ql0D| 6652 2 6746 6652
N30qlO0E| 6070 5 6070 6070
N30qlOF | 5737 4 5817.4 5737
N30ql10G| 9371 1 9388.2 9371

Continued on Next Page. ..
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Table 10.1 ... Continued from Previous Page

Name Best | Num Seen| Average | Optimum
N30ql0H| 6431 1 6451.4 6431
N30qg10l | 5821 3 5909 5821
N30g10J | 6271 3 6344.2 6187
N40ql0A| 7173 2 7246.2 7173
N40g10B| 6557 1 6621.2 6557
N40g10C| 7528 3 7548.2 7528
N40ql10D| 8073 1 8206.2 8059
N40ql0E| 6928 4 6941.4 6928
N40g10F | 7506 1 7577.4 7506
N40g10G| 7669 2 7707.4 7624
N40ql10H| 6791 2 6870.6 6791
N40qg10l | 7215 1 7267.8 7215
N40g10J | 6512 4 6516.4 6512
N50g10A| 6987 3 7031.2 6987
N50g10B| 9488 1 9603.6 9488
N50g10C| 9110 1 9178.4 9110
N50q10D| 10464 1 10678 10260
N50q10E| 9492 1 9644 9492
N50g10F | 8684 2 8747.2 8684
N50q10G| 7126 1 7240.8 7126
N50g10H| 8885 1 8982.6 8885
N50g10! | 8404 1 8486.8 8329
N50g10J | 8456 3 8638.6 8456
N60g10A| 8602 2 8646.8 8602
N60g10B| 8514 2 8571.8 8514
N60g10C| 9483 1 9553.8 9453
N60g1l0D| 11061 1 11324.2| 11059
N60g10E| 9487 1 9638 9487
N60g10F | 9063 1 9250 9063
N60g10G| 8998 2 9101.8 8912
N60ql0H| 8424 1 8473.4 8424
N60qgl10l | 9524 1 9577.2 9394
N60g10J | 8844 1 8982.2 8750
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Table[10.1 shows that the algorithm was able to achieve ttimom results at least once
in the 5 runs for 39 out of the 50 test cases. These are showoidfebe in the table. The

maximum relative difference to the optimum was less than &%rey the 11 cases where
the optimum was not found, which was for test case N50g10[.prbcessing time was
reasonable with an average ranging from 0.66 seconds farst6rmers problems to 47.79
seconds for 60 customers problems.

Table[10.2 shows the results of the AVNS-SA algorithm ondagige problems, from 100
to 500 customers. The table shows the best result achievktharaverage result of the
5 runs. Note that this average is replaced by the best resybréblems of size 400 and
500, since the algorithm was run only once on these probl€&mslly, the previous best
known results are also shown in the last column. Only 6 ouhefdrevious best known
results are attributed to [73], which are the results far¢ases (N300Q10C, N400Q10A,
N500Q10A, N500Q10D, N500Q10E, N500Q10H). All remaining\ypous best results
were found by the GA in[158]. The best result achieved by th&l8-SA is shown in
boldface if it was better than the previous best known result

Table 10.2: AVNS-SA Results (100-500 customers)

Name Best | Average | Previous Best
N100g10A| 11741 | 12173.8 11828
N100g10B| 13066 | 13410.6 13114
N100g10C| 13893 | 14073.8 13977
N100g10D| 14328 | 14567.2 14253
N100g10E| 11430 | 11823.6 11411

N100gq10F| 11813 | 11947 11644
N100g10G| 12025 | 12118 12038
N100qlOH| 12821 | 12844 12818

N100gl10l | 14025 | 14278.6 14032
N100g10J | 13476 | 13642.8 13297
N200g10A| 17690 | 17849.2 17686
N200q10B| 17618 | 17887.8 17798
N200g10C| 16535 | 16626.6 16466
N200q10D| 21228 | 21594.2 21306
N200q10E| 19220 | 19485.2 19299
N200g10F| 21627 | 21677.4 21910
N200gl10G| 17361 | 17634 17712
N200q10H| 20953 | 21191.4 21276
Continued on Next Page. ..
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Table 10.2 ... Continued from Previous Page

Name Best | Average | Previous Best
N200qg10Il | 18020 | 18328.2 18380
N200q10J | 19016 | 19240.4 18970

N300q1l0A| 22940 | 23163 23242
N300g10B| 22473 | 22920.4 22934
N300q10C| 21183 | 21454 21800
N300q10D| 25220 | 25500.6 25883
N300g1l0E| 26636 | 26934 27367
N300g10F| 24042 | 24290.6 24826
N300q10G| 23683 | 23945 23868

N300g10H| 21555 | 21824.6 21625
N300qg10! | 23871 | 24110.2 24513
N300qg10J | 22503 | 22688.8 22810

N400q10A| 30657 | 30657 31486
N400q10B| 24248 | 24248 24262
N400q1l0C| 27853 | 27853 28741
N400q10D| 23750 | 23750 24508
N400ql1l0E| 24798 | 24798 25071
N400g10F| 26625 | 26625 26681
N400q1l0G| 23925| 23925 23891
N400g10H| 25628 | 25628 25348
N400q10! | 28262 | 28262 28714
N400ql10J | 24847 | 24847 26010
N500q10A| 27904 | 2790 28742
N500910B| 26612 | 26612 26648
N500q10C| 30247 | 30247 30701
N500q10D| 29875 | 29875 30794
N500g10E| 29978 | 29978 30674
N500q10F| 28527 | 28527 28882
N500q10G| 26171 | 26171 27107
N500g10H| 35805 | 35805 36857
N500q10! | 30247 | 30247 30796

N500q10J | 30428 | 30428 31255
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Table[10.2 shows that the AVNS-SA algorithm was able to imprthe previous best
known results for 50% of the 100 test cases, 70% of the 20@#ssts, 100% of the 300
test cases, 80% of the 400 test cases, and finally 100% of theeS0cases.

The overall average of the results in the 5 runs for all tesésaf size 100 is 13087.94,
which is only 1% worse than the average result of the GA'in[,L68ving a value of
12954.16. Moreover, our overall average for the 200 testcas 19151.44, while the
overall average of the heuristic in [158] for the same tesesan 10 runs is 19339.48,
i.e., our results account for an improvement of approxitgdit&. On the other hand, the
overall average of our results for the 300 test cases was2BB8vith an improvement of
more than 2% compared the overall average of their resulthéosame test cases, which
is 24224.28.

Also, our average for the results of the 10 test cases of $iPewhs 26059.3, which
accounts for an approximately 2% improvement over the gecad the best results of
[158], having the value 26490.4. In addition, our averageltef the 10 test cases of size
500 was 29579.4. This is an improvement of approximately 8% the average of the
best results of [158], having the value 30377.1 for the sarsances. These results also
indicate that our algorithm performs even better on largee problems. The average
processing time in this experiment ranged from approxiipd&ié2.22 seconds for 100
customers instances to 151103.04 seconds for 500 custam&rsces.

To further test the robustness of the AVNS-SA algorithm, wefgrmed an additional
experiment by running the algorithm on 100-customers @mislwith a vehicle capacity
of 20 and 40. The algorithm was run 10 times on each test cabe. r&sults of this
experiment is shown in table 10.3. The table shows the bssttrachieved among the
10 runs, the average result of the 10 runs, and the best knesuits published i [73].
Results of the algorithm that are the same or better thangbiekimown results are shown
in boldface.

The results in the table show that the algorithm was ablehi@ae better than the previous
best known results in 4 out of 10 test cases, for vehicle a¢gpac= 20. It was also able
to achieve the same result as the best known result for 6 ol afases, for vehicle
capacity) = 40. The later results might as well be the optimum results,esthey have
also appeared as best results in the heuristic_of [75], ackl eae appeared more than
once among our 10 runs experiment. The average processiadadr (Q = 20 instances
was 155.76 seconds, and fgr= 40 instances was 146.17 seconds.
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Table 10.3: AVNS-SA Results (100 Customers with Q=20 and Q#H4.

Name Best | Average | Best Known
N100g20A| 8650 | 8768.6 8616
N100g20B| 9533 | 9628.8 9536
N100g20C| 9954 | 10093 9993
N100g20D| 10015| 10351 10064
N100g20E| 8864 | 9710.35 8838
N100g20F| 9004 | 9127.9 9029
N1009g20G| 8986 | 9138.7 8865
N100g20H| 9561 | 9692.3 9495
N100g20! | 10017| 10411 10005
N100g20J | 9769 | 9873.5 9742
N100g40A| 7938 | 8005.8 7938
N100g40B| 8124 | 8234.1 8124
N100g40C| 8441 | 8508.9 8441
N100g40D| 8336 | 8402.9 8264
N100g40E| 7960 | 8037 7960
N100g40F| 8074 | 8131.9 8074
N1009g40G| 8181 | 8237.9 8168
N100g40H| 7992 | 8010.5 7992
N100g40!l | 8478 | 8551.3 8440
N100g40J | 8261 | 8311.2 8255

Finally, to test the effect of the SA acceptance on the perémrce of the algorithm, we
ran the heuristic twice on test case N100q10A. In the firstthenSA acceptance was
used, and the result of each VNS iteration was recorded. Tiaéresult produced was
11751. In the second run, we removed the SA acceptance, aadamsHC criterion,
where only solutions of lower cost are accepted in each VE&tion. The final result
produced was 12313. Figure 10.1 shows the performance lof/aagants. It is clear from
the figure that the SA version explored a wider area of thechespace, before finally
reaching a better result than the one achieved by the HCniaxidnich converged to a
suboptimal solution. The processing time, though, wasvoudaof the HC variant, with
218.33 seconds compared to 552.11 seconds for the SA variant
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Figure 10.1: SA against HC for N100g10A.

Contrary to the exceptional results achieved by our AVNSegorithm, its processing
time in general was to a large extent disappointing. For @tenthe average processing
time for 100 customers problems was 542.22 seconds, wilprtitessing time reported
by [158] was 21.12 seconds for the same problem category.

10.5 Summary and Future Work

In this part of the research, we investigated a VNS approathet 1-PDP problem. The
algorithm is distinguished by performing the VNS repeateehch time starting from the
final solution obtained in the previous run. Also, the altjori isadaptive in the sense
that the maximum neighbourhood size allowed in each VNSsunot fixed and depends
on the current stage of the run. Early runs are allowed toopmrfwider jumps in the
solution space from the current solution, using large nwiginhood sizes. Later runs, on
the other hand, are only allowed smaller explorations ofséerch space, in the vicinity
of the current solution, to maintain the solution quality.

The stopping criterion for each VNS run is also adaptive aggetids on the improve-
ment realized in the current solution. The VNS is terminat&eén a further increase the
neighbourhood size seems unhelpful. During each VNS ruisAaacceptance criterion
is used to allow the algorithm to escape local optima, andoeg@m wider area of the
search space. In addition, we used a new neighbourhood ma¥e ishaking part of
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the algorithm, which has not been tried before for the 1-PIDis move, which is based
on a displacement of a sequence of nodes with or without simer seems to work per-
fectly well within the context of the VNS for this problem, agident by the final results
obtained for the overall heuristic.

Experimental results on a large number of problem instamzbsate that our algorithm

outperforms previous heuristics in most hard test casesyevthe vehicle capacity is
smallest. This is especially noticeable for large problézes The algorithm was able
to achieve the optimum results for all but few test cases énsthall size problems, and
was able to improve the previous best known results for 90%heflarge test cases.
The algorithm is also robust enough, since it performs déguetll on a wide range of

problem instances, e.g. instances with a different veluafcity, without the need for
any parameter adjustment.

These distinguished results, though, come at the expermgutation time. Although
we cannot provide an accurate analysis at this stage, becétise use of different pro-
cessors to run the experiments, we recognize that the rgrimre of the algorithm is
rather too long. Of course, this is more noticeable for vargé problem sizes, i.e., more
than 200 customers.

In the future, we will continue investigating possible teues to reduce the run time.
Some attempts include reducing the number of VNS runs, aadgthg the stopping cri-
teria for each individual run. For example, our computatiaxperimentation indicated
that some problem instances needed fewer than 5 conseattévepts (without impro-
vement) to reach the best results. However, for other igsgmreducing the maximum
number of attempts to less than 5 may cause the algorithmetogiurely stop and pro-
duce lower quality result. More investigation of the bestri@ation criterion is therefore
needed to reduce the overall processing time. Other pedgiprovement attempts, with
respect to the run time, should be oriented towards the keaich procedure, since it
is the most time consuming part of the algorithm. For exampke can try to reduce
the number of calls to this algorithm, or make it optimizeyopart of the solution rather
than whole solution. This could possibly be done by chantiiegexhaustive search com-
ponent of the 2-Opt algorithm to some random or selectivechethat does not process
all nodes in the solution. A better analysis of the neighhoaod structure could also be
beneficial in enhancing the execution time, for example byiakting solutions that may
not seem promising from further processing.

Having completed our investigation of several heuristiod meta-heuristics on selected
pickup and delivery problems, we present in the next chegtatef discussion of how
this research relates to commercial transportation soéaad industrial applications.
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Chapter 11

The Research and Real-Life
Applications

Efficient transportation has become vital for today’s dymasociety. In the European
Union, the transportation sector constitutes more than @0%ross Domestic Product
(GDP) and employs more than 10 million people [1]. Transgh volume continues to
increase rapidly every day, as a result of economic growdigdwbalization, compared to
a limited expansion in roads and networks capacities.

Transportation demand is not always geographically bai@ndn addition, the lack of
coordination between manufacturers, shippers and cauinesupply chains can lead to
inefficient usage of natural and human resources. In mamgscdsansportation plan-
ning is done manually. However, the advent of today’s tetdme including high speed
computers, digital cellular phones, Geographic Infororatbystems (GIS), Geographic
Positioning Systems (GPS), navigation and tracking telcdgies, wireless data commu-
nication, digital mapping and web-based services- hasasad the demand for more
efficient commercial software for route planning. If apdlien a large scale, commercial
software can lead to enormous savings, both economicailgawnronmentally. Vendors
of software tools claim that the reduction in cost may rangenf5% - 30%([76]. Given
the huge volume of today’s transportation, such cost réalucs in fact very significant.
Besides cost reduction, efficient routing can greatly redhe environmental impact of
transportation. For example, in a recent survey of UK brgwearagon Software Sys-
tems, Intﬂ identified savings of more than 2.5 million miles- corresgiog to 3,700 tons
of CO,- a year, as a result of more efficient routihg![68].

To meet this demand, research in vehicle routing and scimegiads grown substantially
in the last few decades [48]. As previously discussed in @& a huge number of
problem variants, different problem constraints, and afdeg scenarios have been inves-
tigated. In fact, research in this field is central to the tigwment of efficient decision
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support tools that can be adopted in the transportatiorsingluDespite this, research in
vehicle routing is often accused of being too idealistice Wajority of published research
tackles simplified problems, based on, for example, Euahddistances, homogeneous
fleets, hard constraints, fixed service times. ..etc. Uafately, most of these assump-
tions do not hold in reality. Industrial aspects of vehideting have recently started to
gain the attention of researchers, and are increasinghghecorporated into models and
solution methods that address these problems. Thus, trenttrend is towards ‘holistic’
approaches that are capable of solving richer and morestieaiRP models.

It is important from a realistic perspective to understdredrelationship between theoreti-
cal research and commercial applicability in every dayess requirements. To this end,
we discuss in this chapter some industrial aspects that magtsidered when addressing
the VRP and its related variants in Section 11.1. Se¢fiod déscribes the basic compo-
nents of commercial software that are adopted in the tratespmn industry, and explains
how a theoretical research, like ours, may be integratelinvits framework. Examples
of commercial software products and applications in thepartation sector are provided
in Sectiof I1.8B. Sectidn 11.4 summarizes some future tri@ngshicle routing research.
Finally, Sectiori 11J5 concludes this discussion with a samyrand some brief remarks.
Most of the information presented in this chapter is basedherresearch by SINTEF
research organization in Norv@a;published in[[72] and [76], unless otherwise indicated.

11.1 Industrial Aspects of Vehicle Routing

As mentioned above, research in vehicle routing is now ishiftowards solving non-
standard and rich VRP models that will facilitate decisioaking in real-life situations.
The advancement in computational power in the last few dechds encouraged resear-
chers to consider industrial aspects of vehicle routingyroter to meet the demands of
transportation service providers and fleet management aoi@p. Rich VRP models al-
low general and more realistic features to be incorporasdypposed to conventional
OR models which are simplistic in nature. Some industripeats of vehicle routing are
summarized below:

e Heterogeneous Fleet:most of the VRP research makes the assumption that the
operating fleet is homogeneous, with identical charadiesigand operating costs.
In reality, though, this is often not the case, since comgmnsually benefit from
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versatility in their fleet. A rich VRP model should allow nta@mogeneous ve-
hicles, such that not only the optimum number of vehiclesi®ianined, but also
the optimum number of each vehicle type and the optimum awstdhicle acqui-
sition/depreciation.

e Drivers’ Working Time: in real life applications, drivers’ working hours are go-
verned by certain legislation rules. Hence, a rich VRP metelld create working
plans that conform to these regulations, such that the almt and exchange of
drivers is also taken into consideration while determirtimg optimum routing de-
cision.

e Depots and Service Locations:basic VRP models usually assume that there is
only one central depot, such that each vehicle’s journeulshatart and end at that
depot. Nevertheless, this assumption does not hold in meagtipal situations,
since there might be multiple depots, or arbitrary starts emds for vehicles. In
addition, customer locations are sometimes not fixed, Withraative service loca-
tions being permitted in the routing plan.

e Order Types: in the basic VRP variants, order types are either pickupebtvet
ries. In addition, split deliveries are usually not allowaed each customer can
only be visited once. In real life applications, a custonreleo may be both a pi-
ckup and a delivery. Also, some orders may not require tmspartation of goods,
but only a certain service type (e.g. maintenance). Allgngach variants adds to
the complexity of the problem but makes it more realistierfra business point of
view.

e Distances and Times:the assumption that all distances under consideration are
Euclidean distances is not adequate in real-life scenaNesvork characteristics,
traffic, vehicle speed, and travel costs should also be ta#tertonsideration. Mo-
reover, service times for clients are not fixed in practiggblecations. Variable
service times, depending on order types and volumes, shmukllowed in rich
VRP models.

e Time Windows and Capacity Constraints: most VRP models deal with the time
window constraint as &ard constraint, with no violation permitted in the under-
lying routing plan. Time windows in reality are not alwaysthigid. They are
often defined by preferred visiting times, with some costattgrfor visiting out-
side the specified period. Another extension to the basicemigdmultiple time
windows, where different alternative visiting periods gireen. Also, some appli-
cations require certain vehicle capacity and loading idgins. For example, a
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specific loading sequence may be enforced in order to fat&ln-loading, or to
protect fragile items.

¢ Uncertainty and Dynamic Situations: dynamic vehicle routing refers to the situa-
tion where routing decisions are affected by input dataviagiin real time. Infor-
mation about orders, travel times, service times, vehimakdown. . . etc, arriving
while the routing plan is being executed should be takendotwsideration in most
real-life applications, and necessitates an immediateorese time. Uncertainty
and stochastic variables, for example while planning aagegmergency situation,
also add to the complexity of rich VRP models.

11.2 Commercial Transportation Software

A commercial software package for decision support in thiedportation industry usually
integrates an underlying algorithm with an efficient usesrfdly interface for optimum
usage. A survey of commercial vehicle routing software j6&htifies the basic software
capabilities as:

1. Geocoding addresses using a digital map databasegitexfrdning the coordinates
of a location using its address or postal code;

2. Determining the best driving route between pairs of gdedgints;

3. Solving the VRP, i.e., assigning stops to vehicles andingwehicles between
stops, and

4. Displaying the results in both graphical and tabular freuch that the dispatcher
can communicate the solution to the drivers, and edit thelsgiens, with a ‘drag-
and-drop’ feature if necessary.

Step(3 in the above list is where theoretical research, swathpresented in this thesis,
takes its part. It is in fact the ‘core’ or the ‘engine’ of theftsvare tool, sometimes
referred to as'@RP solver. Hasle and Kloster in [72] define a VRP solver as:

A software component with functionality for modeling instes of targeted variants
of the VRP and finding feasible, optimized solutions to a giwrestance. The effect
of a given routing tool is highly dependent on its VRP solver.
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The efficiency of a VRP solver can be generally attributechi richness of the VRP

model (problem) it is trying to solve, in addition to its atgbmic capabilities measured
in terms of the quality of the objective and the processimgtneeded. To the best of our
knowledge, most VRP solvers of today’s commercial softwiraot adequately handle
pickup and delivery problems. Improvements in this areabaséously in demand.

11.3 Examples of Commercial Vehicle Routing Tools

Some examples of commercial vehicle routing software dr®Q Dispatcher, Paragon
Routing and Scheduling System, Direct Route, DISC, and 3Dit. Notable installa-
tions of these and other commercial software include comegdike: Sainsbury’s, Argos,
Tesco, Royal Mail, the Home Depot, Samsung, Kraft, Dunkimite, Coca-Cola, BP,
TNT, Fujitsu, and many others [68].

One example of a rich generic VRP solver is SPIDER [72], whias developed by
SINTEF Applied Mathematics research institution in Noriva$PIDER VRP solver is
capable of solving a number of vehicle routing problems d@sd/ariants, such as the
VRPTW, the PDPTW and the multiple-depot variants of thesgbl@ms. In addition,
it takes into consideration many industrial aspects, sickha ones described above.
For example, it allows a heterogeneous fleet, multiple tinmelows, alternative service
locations, variable service times, and travel times thay e&cording to road network
topology and information available from Geographic Infatran Systems (GIS).

The algorithmic approach in SPIDER isiaified approacho all problem types and ins-
tances. This technique has advantages in terms of simpglifyie code and its mainte-
nance, but may sometimes suffer in terms of computation, tsimee some operations
will still be performed for problem instances that may noeété¢hem.

The SPIDER VRP solver is basically a meta-heuristic apgrdhat integrates several
features from successful academic research in the VRP fléld.algorithm consists of
three main componentonstruction of Initial SolutionsTour Depletionand Iterative
ImprovementThese are briefly explained below:

e Construction of Initial Solutions: the construction phase is based on extensions
of classical construction heuristics like the Clark and§fitisavings heuristic [26],
Solomon’s 11 insertion [141], and the regret-based inserfL21]. In addition, an
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instance analysis is performed in order to determine if tiséaince has a heteroge-
neous fleet, in which case a special construction heurialiedSPIDER construc-
tor is used to build the initial solution.

e Tour Depletion: this phase is intended for reducing the number of routesan th
initial solution, but is also used as a local search opedatdng the iterative impro-
vement phase. Each route is depleted in turn, and an attempde to insert all
its requests into other routes. If the attempt was succesiséunew solution is ac-
cepted. The routes that have been changed by this operatipalso be optimized
using 2-Opt or 3-Opt improvement heuristics[of [103].

e Iterative Improvement: the iterative improvement phase is based on Variable
Neighbourhood Descend (VND) [70], using a number of welnkn operators wi-
thin each route and in-between routes. For example, 2-Oppt3 Or-Opt, EX-
CHANGE, and CROSS (see Section]3.4 for more details abou¢ sxfrthese ope-
rators). However, these heuristics have been extendeddoreodate the SPIDER
rich VRP model which allows heterogeneous fleets and maltipie windows. In
addition, several neighbourhood filters have been appbeactelerate the opti-
mization, for example by analyzing the current solution argloring promising
moves only. When the VND reaches a local minimum, a diveedifi mechanism
is applied using Large Neighbourhood Search (LNS) [131} ®Werall process is
a hybrid of VND and Iterated Local Search (ILS).

To evaluate its performance, SPIDER was tested on publiseedhmark data available
from the literature and compared favourably with stateéhefart solution methods (see
[72] for some experimental results of SPIDER on publisheachenark instances of the
PDPTW).

11.4 Future Trends

Scientific research in transportation optimization is atisgpensable part of any commer-
cial software tool, and there is, and will continue to be, @agjidemand for innovations
in research methodologies. Researchers in this field, henveliould also be aware of
new demands in the industrial sector and try to develop rioiadels in their research.
Issues like heterogeneous fleets, multiple tours, spliveiés, variable service times,
soft time windows, special vehicle equipment or driverifiegtes, dynamic route plan-
ning, and many other real-life requirements and conssahbuld motivate researchers
to invest more effort in developing efficient solution teihues that comply with today’s
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ever changing domain of industrial vehicle routing. The ptarity of these models, ne-
vertheless, means that solving the problem to optimalifyisan option in most practical
situations. In fact, heuristics, meta-heuristics and tdybpproaches dominate scientific
research in this field.

There is a trend in today’s research towards optimizatiatstthat integrate the whole
supply chain rather than individual components. In addijtaurrent concerns over global
warming has increased the demand towards rewarding lowleoic@missions and green
logistics. More robust planning in dynamic and stochasti@sions is also gaining more
attention every day. Decision support tools that enablsdneéce provider to choose bet-
ween more than one good solution is also gaining more papuiarthe current research
environment.

Another important factor that needs urgent attention isdineelopment of better bench-
mark test cases. Most of the benchmark cases available t@$karch community for
the VRP and its related variants are created randomly. Iitiaddthey are often overly
simplified and do not reflect real-world cases. Using suchdases increases the risk
of over fitting, i.e., a great effort may be invested in depélg solution methods that
produce good results on published benchmark instances églying these methods
on a larger scale, though, may reveal their shortcomings. rékearch in [76] identifies
several features that test cases for the vehicle routireggrels should have. These are: 1)
they should be based on real-world data, 2) they should betaas possible, i.e., contain
sufficient details, 3) they should have a common format (¢ML), 4) solutions (and not
just their objective functions) should be published, andeS}) cases and their solutions
should be published in the Web.

11.5 Summary and Conclusions

This chapter reviewed some industrial aspects of vehialking that are currently un-

der consideration by the research community to meet theaserin demand for more
efficient transportation. The current trend is towards NMe&P models that can be used
in commercial decision support tools, in order to achieviéelbeeustomer service, cost
reduction, and efficient resource management in trandpmrtsystems.

Yet, although scientific research is a major and importaey sbwards a complete real-
life applicable solution to routing and scheduling probdemmere is often a considerable
distance between theoretical research and practicalcahylity. Integrating theoretical

scientific research within a commercially applicable t@lusually done by consulting
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companies, routing software vendors, contract reseagdm@aations, and large research
laboratories or institutions. In addition, it often reagsrthe cooperation of a number of
experts in different fields and possibly several years oéligment effort. These institu-

tions, however, do not work in isolation from academic resleaThey monitor research

carried out by the scientific community and incorporatesstidtthe-art techniques in their

products. Assessing the quality of the different scien@ifiproaches is mostly done by
comparing their performance against published test casgislale for researchers in the

academic field. Hence, the focus of researchers in Compuaien& and Operations Re-
search should be on developing competitive and robustienlatethodologies that can

be later integrated within a larger framework for applidiépin real-life situations.

We have hereby completed a thorough explanation and asaly$he research carried
out in this thesis, together with some necessary backgromfadmation and a literature
survey of state-of-the-art techniques in this field. Thetralapter will conclude this
thesis with a summary of the whole research and its majoribomibns, in addition to

some future research directions.
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Chapter 12

Conclusions and Future Directions

In this research we investigated some heuristic and metestie algorithms for solving

selected pickup and delivery problems, namely the PDPTWtla@d.-PDP. Innovations
in solution techniques that handle these and similar velating problems are in conti-
nuous demand, since they can be used in decision suppostdadl may help reduce
transport costs and optimize resource consumption.

Having explained in detail our research and its findings ddit#on to reviewing impor-
tant related work in this field, we present in this chapter mmsary of the research and
its main achievements in Section 12.1. Secfion]12.2 empémgiarts of this research
where further work may be carried out and summarizes somesfue¢search suggestions.
Sectior1Z.B afterwards concludes this chapter and theanthekis with some brief final
remarks.

12.1 Research Summary and Contribution

Advances in computational power in the last few decades basibuted to the emer-
gence of a trend among researchers towards powerful digwitor solving optimization

problems. A common phenomenon that existed as a result®ofrénd, though, is that
solution algorithms have tended to became increasinglyptexnoften with many sophis-
ticated and intertwined components. As a consequencajtheqeiblished results can be
difficult to replicate, and some algorithms are indeed @mging to implement. Additio-

nally, it may be difficult to assess the contribution of thi#éestent algorithmic components
to the overall performance. In our view, it is good practie@tovide a thorough analysis
of all components of an optimization algorithm, to ensuia #il are making a valuable
contribution. Those that are not, should be removed anditfoeilhm simplified.

Another weakness that we perceive in much of the VRP litegaian overemphasis on
beating best published results for benchmark data, at {ense of algorithm robustness.
If solution algorithms are finely tuned for special benchknastances, they may not work
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at all well on unseen data or real world instances. Robustises key requirement, if an
approach is to be eventually useful in practice.

The main philosophy in our research is the development oplgirheuristic or meta-

heuristic frameworks that can be easily understood andemehted. We concentrate
here on some very challenging variants of vehicle routirapf@ms involving pickup and

delivery. The difficulty in dealing with pickup and delivepyoblems stems mainly from

the existence of several problem constraints that mustdléwlih during the construction

and improvement phases of a solution process. Keepingrthisind, we directed our

attention towards establishing effective ways to deal adtaly with problem constraints.
Two main aspects have been focused on to achieve this geajollition representation

and theneighbourhood moves

Our solution representation for the PDPTW tried to overconeeprecedence constraint,
between the pickup and the delivery, by assigning the same tmboth locations, and
always considering the first occurrence as the pickup. Timgls technique removed

the burden of having to check and correct the precedencasitiiéity at each step of the
solution process. This representation was used for botkitigee and multiple vehicle

cases of the problem. In addition to handling the precedéesstee, our representation
also overcomes the coupling constraint that must be erdost®n multiple vehicles are

used, since both the pickup and its delivery should be sdyye¢de same vehicle. Hence,
this simple approach further reduced the number of hardt@nts that the solution

algorithm has to deal with during the search.

In addition, neighbourhood moves played a central role inresearch. For the PDPTW,
a simple neighbourhood move that is guided by the time wingdmved successful on
several occasions. It was used as a mutation operator anda@lsiteon improvement
tool within the different heuristic and meta-heuristicshtriques applied. In addition, a
neighbourhood move used for the first time within the VNS apph to the 1-PDP, na-
mely the displacement and inversion move, has demonsttateflectiveness in helping
the search escape local optima. We also introduced soméadamves. For example,
different bounds within the time window interval were usedlirect the neighbourhood
move at different stages during the search, when solving?TW. Similarly, the in-
crease in neighbourhood size within the VNS approach fodtR®P was controlled by
the current search progress, such that a larger neighbodigize is only attempted when
such increase seems fruitful to the search process.

Our research methodology has made it possible for us to gaedna number of achie-
vements that we believe are significant to scientific researthis area. The main achie-
vements of this study are:
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1. We used our solution representation and neighbourhoogesnto develop new
simple routing heuristics for the SV-PDPTW. The resultsaoted in this part of
the research were impressive, both in terms of the solutiatty and processing
time. One particular approach appears to have the bestt@fenthe SV-PDPTW,
the 3-stage SA routing heuristic. This approach was ablebtai results better
than those previously published in all test cases and aldorpeed significantly
better than all other algorithms implemented in this parbwf research. The ex-
perimental results and comparison with other heuristideate that the success of
this approach was mostly due to the guided neighbourhoocksitnat were adop-
ted to overcome the difficult time window constraint. Anatheuristic which also
showed potential, especially in terms of processing tisiéhe Hill Climbing (HC)
routing heuristic. The HC algorithm also employed the same tvindow guided
neighbourhood moves during the search. The routing hegideveloped for the
SV-PDPTW can be easily integrated within real-world opgation tools that deal
with this problem. Two publications were made out of the issabtained, one late
breaking conference papér [79] and another journal pagér [8

2. Since there are no standard benchmark instances for HRD®T'W, we were able
in this research to create test cases that can be used asrtskaata and used by
researchers for testing their algorithms.

3. Based on the simple routing heuristics developed for th@BPTW, we designed
and compared several solution construction methods foMW#d?DPTW. These
construction methods, especially the sequential cortdruapproach (SEQ), can
be used in any heuristic or meta-heuristic that deals wglPDPTW and in the re-
lated dial-a-ride problem as well. The construction heimssare distinguished by
their simplicity and ease in coding and application, coreddo classical construc-
tion methods from the literature. This part of the researab published in[81].

4. We developed new problem-specific genetic operators aighibourhood moves
for the MV-PDPTW. These operators use techniques develop#uk first parts
of our research, i.e., for the SV-PDPTW and for the solutionstruction of the
MV-PDPTW. Our operators are characterized by the abilitgreate feasible solu-
tions throughout the search. The operators developed hareeceasily adopted by
other GA approaches for different vehicle routing problefasr example, a cros-
sover that ranks routes to guide inheritance is applicabkny routing problem.
These operators can also be adapted and employed withematiffheuristics and
meta-heuristics for solving the problem, as done in thisaesh by using similar
operators in both the GA and the SA for solving the MV-PDPTWe Tresearch
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dealing with the GA approach in this part of the thesis wadiphéd in [80)].

5. We developed an interesting adaptive hybrid VNS-SA aggindor the 1-PDP. The
algorithm is distinguished by adopting, for the first timiee traditional displace-
ment and inversion move from previous vehicle routing regeas a ‘shaking’ pro-
cedure within the VNS. In addition, adaptation is introdiigea novel way within
the VNS meta-heuristic. Traditional VNS approaches uguatirease the neigh-
bourhood size up to a certain pre-defined limit. In our appnoave adapted this
requirement, such that a further increase in the neighlomaisize is only applied
when it seems beneficial from a search perspective. Theitilgontroduced here
proved its potential by beating previously best publistesiitts for 90% of the large
problem instances solved. Two conference papers covéragart of the research
have now been accepted for publicatiolt@BECCO201&onference (as a late brea-
king abstract)[[82], and thePSN201@&onference [85]. In addition, a third journal
paper has been submitted to thaurnal of Heuristicand is currently under review

[83].

The above achievements indicate that the techniques wéogeekto guide our heuristic
and meta-heuristic approaches were successful to a largetéx accomplishing the ob-
jectives of the research. Nevertheless, we can also igentdw parts of the research that
did not meet the anticipated standards. Three main areasshawn some shortcomings
and need further investigation. These are:

1. The improvement heuristics of the MV-PDPTW (explaine@haptefB), since the
results obtained by both the GA and the SA algorithms wereeimegal of lesser
quality than the best known results.

2. The evolutionary perturbation heuristic of the 1-PDPp(ained in Chaptdr]9). Des-
pite its success on other VRPs, this technique did not olbigim quality solutions
for the 1-PDP. However, the approach did show promise in vémgdnfeasibility.

3. The processing time needed by the VNS approach to the 1{&pRiined in Chap-
ter[10), since the final solution obtained, albeit having i g®od quality, needed
quite a long processing time.

The possible reasons behind these shortcomings have beessseld in their respective
chapters. Nevertheless, we will further elaborate on sarmhed research directions that
may be pursued to remedy these shortcomings. To this entip®i@2.2 includes a brief
critical analysis of some parts of the current research agdestions of additional work
that may be performed to complement the research carrieit thit thesis.
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12.2 Critical Analysis and Future Work

Some aspects of this thesis where further work can be dorsuarmarized below.

12.2.1 The SV-PDPTW

To complement the research done so far for this problem, mpayBlem instances of
different sizes and different characteristics need to eated. For example, similar to
the benchmark instances of the VRPTW and the MV-PDPTW, aicedistribution of
nodes may be enforced, such as having some instances vgtared or partially clustered
locations. Also, problem instances may differ accordintheowidth of the time window,
by having short or long schedule horizons.

In addition, a more thorough investigation of the approaaeveloped in this part of the
research may be undertaken by testing the algorithms ogerlaumber of test cases and
performing an in-depth statistical analysis of the results

12.2.2 Solution Construction for the MV-PDPTW

Further investigation of the solution construction heticgssdeveloped in this part of the
research may be carried out by implementing one or moreitibadl’ construction me-
thods, such as Solomon’s I1 insertion heuridtic [141], radidapting it for the PDPTW.
This should then be followed by comparing the performandaetraditional heuristic(s)
with the new construction algorithms developed in this aesle, on benchmark instances.

12.2.3 Solution Improvement for the MV-PDPTW

Our selection of GAs as a candidate solution improvemenhatktor the MV-PDPTW
was based on the general attractive features that GAs msseh as simplicity and ro-
bustness. Moreover, we were also encouraged by the sudc@&gssan solving closely
related vehicle routing problems, like the VRPTW. As prengly discussed during the
course of this thesis, though, GAs usually suffer when dgahe MV-PDPTW. This is
mostly due to the number of underlying constraints that nbestiealt with when desi-
gning problem-specific genetic operators. Another imparfactor is the difficulty in
handling the grouping and the routing aspects of the prokliemltaneouslyin the solu-
tion encoding as well as the genetic operators. Similarcditiies also seem to apply to
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our SA approach, which was attempted for solving this problgince it employs similar
operators to those adopted by our GA approach.

Nevertheless, we may still be able to improve the resultainbt by both the GA and
SA in the improvement phase of the MV-PDPTW by augmentingsthlation approach
with some local search method. For example, a 2-Opt or a :a@ynistic may be used to
improve individual routes at various stages during thectear

In retrospect, given the opportunity to repeat the proj@ctew meta-heuristic technique
would have probably been chosen for the improvement phasieedfV-PDPTW. For
example, VNS would be one option that would definitely be abered. In fact, it was
notable that a significant number of papers presented on \&REw recenMIC200
conference, used VNS, most of them achieving impressivdtgesThis was indeed one
of the reasons that encouraged us to apply VNS to the 1-PBd?,the ‘disappointing’
results of the EPS heuristic. Applying VNS to the PDPTW woallsb seem an attrac-
tive prospect, since many neighbourhood moves that have fre®iously used for the
VRPTW and the PDPTW can easily be incorporated into the VidSiéwork. In addi-
tion, to the best of our knowledge, VNS has not been prewouigd on the PDPTW.
It would be interesting to test the routing and constructienristics developed in this
research within a VNS meta-heuristic for solving the MV-PDR

12.2.4 The Evolutionary Perturbation Heuristic for the 1-PDP

As previously mentioned in Chaptdr 9, the EPS heuristic veasery successful in achie-
ving the anticipated results. Both the quality of the resolbtained and the processing
time were inferior to previous heuristics in this field. Thaimsuggestion in terms of the
solution quality would be to modify the construction alglon or experiment with a new
construction technique. As previously discussed in Se@i8, one possibility for impro-
vement is to modify the construction algorithm such thateathan halting the insertion
process when infeasibility is encountered, the algorithoulel continue to insert nodes
despite infeasibility. If this is done, correcting infdaiity would probably be easier for
the perturbation heuristic, and the overall quality of gated solutions would improve.
Moreover, this technique has demonstrated its potentihimihe AVNS-SA approach to
the problem as explained in Chagfer 10.

In terms of processing time, a possible option for improvetig to optimize the per-
turbed coordinates using a faster heuristic or meta-h@urisor example, a simulated

V11l Metaheuristic International conference, Hamburgy@eny - July 13-16, 2009
http://ww. snmartfrane. de/ m c09/ Hone. ht ni
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annealing or a hill climbing algorithm may be used instead &A to improve the per-
turbed problem coordinates. Together, with an appropaatefast construction heuristic
the overall scheme may be considerably enhanced.

12.2.5 The AVNS-SA Approach to the 1-PDP

The AVNS-SA approach was in fact very successful in dealiitg the 1-PDP, especially
for large problem sizes. As previously mentioned, the aligor was able to obtain new
best results for 90% of the large problem instances. The adnalywback of the algorithm
seems to be the long processing time. As previously disdussehaptef 100, an improve-
ment in this area can be achieved if we direct our attentigdhédocal search component
of the algorithm. The 2-Opt heuristic used in the local seghase is the most time
consuming part of the algorithm. This heuristic adopts a lmegrovement strategy and
is invoked to optimize every new generated solution. Séegaiggestions may help in this
respect. One option is to reduce the number of calls to thetzalgorithm based on some
solution quality. For example, the 2-Opt procedure can beioted only to solutions that
look promising from a search perspective (depending on tijectve function value or
the number of constraint violations, for instance). In &ddi the 2-Opt algorithm may
be applied to selected edges of the solution and not to théevgodution. Some faster
implementations of the 2-Opt algorithm may also be triecettuce the time requirement
of this component (e.gl_[13]).

Finally, the stopping condition of the overall AVNS-SA atgbm also needs further in-
vestigation. To improve the processing time of the alganitlt is necessary to find an
appropriate criterion to stop repeating the AVNS-SA prared without sacrificing the
quality of the final solution returned. However, obtainindp@ance between solution
quality and processing time may not be very straightforviarcduch hard problem.

12.3 Final Remarks

To sum up, we believe that the work done in this thesis cautieth positively to scien-
tific research on vehicle routing and scheduling. This stpyided simple ideas on
constraint handling mechanisms that can be used in degigffiective and robust heuris-
tic and meta-heuristic algorithms. The techniques dewslap this research can be easily
integrated within a larger framework and used in optim@atools to help improve trans-
portation and logistic planing.
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In this final chapter of the thesis we highlighted the mostigicant findings and the most
promising areas of our research. We also tried to identifpesoesearch areas where
further investigation and some elaboration are still ndedé/e aspire to carry out in
the near future some of the outlined suggestions to compiethe work done in this
thesis and advance the research to its uttermost standeddgional publications of the
findings of this thesis are also underway.
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