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Abstract. Huge color class redundancy makes the graph coloring prob-
lem (GCP) very challenging for genetic algorithms (GAs), and designing
effective crossover operators is notoriously difficult. Thus, despite the
predominance of population based methods, crossover plays a very mi-
nor role in most state-of-the-art approaches to solving the GCP. Two
main encoding methods have been adopted for heuristic and GA meth-
ods: direct encoding, and order based encoding. Although more success
has been achieved with direct approaches, algorithms using an order
based representation have one powerful advantage: every chromosome
decodes as a feasible solution. This paper introduces some new order
based crossover variations and demonstrates that they are much more
effective on the GCP than other order based crossovers taken from the
literature.

1 Introduction

The graph coloring problem (GCP) is a well studied combinatorial optimization
problem. It involves finding a minimum set of colors for the vertices of a given
graph, so that no two adjacent vertices have the same color. Interest in the GCP
is broadly based and the field is highly competitive. In 1993 the GCP was the
subject of a Discrete Mathematics and Theoretical Computer Science (DIMACS)
implementation challenge, [11], in which the best algorithms of the day were
pitted against each other on a collection of large and very difficult benchmark
instances. Since 1993 enthusiasm for the GCP has not diminished, and new
approaches continue to be developed. As an archetypal set partitioning problem,
the GCP provides a useful testbed for techniques applicable more widely to real
world problems such as timetabling [2] and frequency assignment [16].

The GCP is NP-hard, thus heuristic and metaheuristic methods are appro-
priate techniques for solving the problem. Two main encoding methods can be
identified: direct encoding, and order based encoding. With direct encoding arbi-
trary colors are assigned and heuristics used to recolor the vertices in an attempt
to improve the solution. On the other hand, order based approaches organize ver-
tices as permutation lists, and rely on a greedy decoder to assign the colors in a
methodical way. Although algorithms using a direct approach have enjoyed more



success recently, order based techniques have one powerful advantage: every per-
mutation decodes as a feasible solution. Direct approaches work to minimize and
eventually eliminate conflicts but do not guarantee legal solutions.

The main contribution of the present paper is to introduce two new and
effective order based crossover/local search combinations: Merge Independent
Sets (MIS) and Permutation One Point (POP). The success of the new operators
is demonstrated by comparing their performance on DIMACS benchmarks with
that of well known order based crossovers for the GCP taken from the literature.

2 Summary of Related Work

As mentioned above, the most successful current approaches to solving the GCP
use a direct representation with conflict minimization as the goal: i.e., given
k colors, a coloring is sought which minimizes the number of adjacent vertices
bearing the same color. Most commonly, a genetic (or population based) algo-
rithm (GA) is used in combination with some form of local search. However,
because graph coloring is essentially a set partitioning problem with arbitrary
color labels assigned to the individual sets, crossover has proven a huge chal-
lenge. Indeed, several population based approaches do not incorporate crossover
at all, [9, 14]. For others, crossover plays only a limited role, [3, 7]. Exceptional
among recent conflict minimization techniques is the hybrid coloring algorithm
of Galinier and Hao [8]. In this case a novel crossover operator makes a sig-
nificant contribution to the success of the approach. Furthermore, competitive
results have been reported on large DIMACS benchmarks.

Although rather less successful than direct encoding methods, order based
techniques for the GCP have a very long history. These methods rely on a simple
greedy algorithm to transform a permutation of vertices into a legal coloring,
and it is thus the role of good ordering (or reordering) heuristics to present the
greedy algorithm with a suitable permutation that it can transform into a high
quality solution. The simplest and fastest such techniques generate an ordering in
one go, usually by ensuring that the more heavily constrained vertices are placed
before those that are less constrained [13, 17]. A somewhat more sophisticated
technique, known as DSatur, [5] operates in two stages. The first stage produces a
list of vertices sorted by decreasing degree; and the second stage selects vertices
from this list according to their saturation, i.e., the number of distinct colors
already assigned to adjacent vertices. Unfortunately, despite their attractiveness
in terms of speed and simplicity, none of the above mentioned simple ordering
techniques produces very good results on large benchmarks.

Rather more successful than“one go” ordering heuristics based on vertex de-
gree, are the iterative reordering heuristics of Culberson and Luo, [4]. These
methods do not rely on vertex degrees or saturation. Instead, beginning with
an arbitrary permutation and greedy allocation of colors, Culberson and Luo’s
heuristics operate by grouping and rearranging color classes along the permu-
tation list. Of particular significance is a rare property possessed by each of
Culberson and Luo’s reordering heuristics for the GCP: it is impossible to get



a worse coloring by rearranging the color classes, and it is possible that a bet-
ter coloring (using fewer colors) may result. Capitalizing on this property, the
authors applied a random mix of various reordering heuristics repeatedly to indi-
vidual problems, and watched the solutions gradually improve. They called their
algorithm iterated greedy. Disappointingly, however, in spite of its elegance, the
iterated greedy technique achieves only moderate success on large graph bench-
marks.

We now move on to consider order based GAs for the GCP. In one of the
earliest and best known studies of this type Davis developed new order based
crossover and mutation operators especially for the GCP, [12]. However Davis’
work predates the DIMAC challenge and he used a very specialized type of graph
(with weighted edges) to test his algorithms. Realizing difficulties in designing
effective crossover operators for the GCP, Eiben et al, [6] developed an order
based evolutionary algorithm with mutation only. Once more, though, the ap-
proach was tested only on a very specialized type of graph coloring problem: the
three color problem. More recently, Anderson and Ashlock [1] have introduced
a crossover called “merging crossover” (MOX) which shows some promise for
the GCP, although, once again, the authors did not present results for litera-
ture benchmarks. The present author is heavily indebted to many of the above
mentioned researchers for their insight, and many of their ideas have been in-
corporated into the present work.

3 The GA Framework

A simple steady-state GA is used as a framework for our comparative study,
which concentrates only on crossover operations. There are few parameters to
set using this approach. For example, no global fitness function is used and
crossover occurs at 100 % with no mutation. At the start of the procedure a
population of N random permutations is generated. If the GCP instance has n
vertices, then each chromosome will consist of a permuted list of the integers
{1, 2, 3, . . . n}. Once the initial population is created, the individual members
have to be evaluated, according to the performance measure described later.
Within the main generation loop, each member of the population is selected
in turn and paired in crossover with a second individual selected (uniformly)
at random. The performance measure of the resulting single offspring is then
compared with that of its weaker parent. If the new offspring is better than its
weaker parent it replaces it in the population, otherwise it dies. The GA is run
for a fixed number of generations, where a generation is defined as N trials of
crossover, one led by each member of the population in turn.

The number of colors (chromatic number) is probably not the best measure
of progress to use, given that many colorings will produce identical values. In
this paper we will adopt the progress measure used by Culberson and Luo [4]:∑n

1 ci + nc. In this equation the coloring sum (i.e.,
∑n

1 ci, where c is the color
assigned to vertex i) is added to the term nc, where n is the number of vertices
and c the number of colors. The main idea is encourage large color classes to



grow even larger at the expense of the smaller classes, in the hope that even-
tually some classes will lose their remaining vertices and disappear altogether.
We shall see later that the two operations taken from Culberson and Luo, [4],
“sort independent sets” followed by “largest first”, ensure that the color sets are
presented in an optimum sequence for minimizing the coloring sum. The term nc
is added to ensure that improved colorings are always reflected in the measure
of progress.

3.1 The Representation and Greedy Decoder

Chromosomes consist of permutations of the n vertices, and the greedy decoder
colors each vertex in sequence, using the first available color from an ordered set
(i.e., each color is identified by an integer label, 0, 1, 2, 3, . . .). Figure 1 a) and 1 b)
illustrate this process using a small graph with 12 vertices and 14 edges, Figure 1
b) giving a typical random permutation of the vertices from Figure 1 a) and also
the resulting greedy coloring. Note: an efficient version of the greedy algorithm
has been implemented using linked lists to keep track of vertices already assigned
to color classes, as advised in [4]. The remaining parts of Figure 1 illustrate the
stages of the optional local search procedure described below.

3.2 The Local Search

The local search uses Culberson and Luo’s [4] “largest first” and “sort indepen-
dent set” heuristics. Its purpose in the present study is twofold: firstly to reduce
the value of the performance measure, and secondly to improve the correlation
of the chromosomes in the population. Figure 1 c) shows the permutation list
sorted in non-descending sequence of color label, and 1 d) gives the position fol-
lowing the application of the “largest first” heuristic: i.e., the list is rearranged in
non-ascending sequence of color class size. Following the advice given in [4], the
sequence of color classes of identical size is reversed. Note that the application
of “largest first” will normally reduce the value of the performance measure. In
Figure 1 f) vertices are randomly “shuffled” within (but not between) indepen-
dent sets. Finally, the greedy algorithm is applied to the new arrangement in
f) and the result is shown in 1 g). Interestingly, vertices 4 and 1 are reassigned
lower color labels, further reducing the magnitude of the performance measure.
In the present study the local search loop is iterated 5 times.

3.3 The Crossover Operators used for the Comparative Study

A genetic algorithm with a population of permutation lists requires a crossover
technique that preserves building blocks [10] appropriate for the GCP. Of par-
ticular relevance for the greedy decoder, is that some items precede others in
the permutation list. Historically the operators cycle crossover (CX) [15] and
uniform order based crossover (UOBX) [12] seem worthy of consideration. CX
is good at preserving absolute positions of vertices, and every vertex in the off-
spring list will occur in exactly the same position in one or other of its parents.



a) Graph with 12 vertices

Fig. 1. Various operations by Culberson and Luo, [4], used in the local search procedure



CX has proven effective in the related frequency assignment problem [16]. UOBX
was developed by Davis with the GCP in mind and is good at preserving relative
positions and orderings.

Fig. 2. POP Crossover

Some new variations of the well known order crossover (OX) [15] are also
tried here. The basic idea is taken from the simple one point crossover of the
“standard” bit string GA, which simply selects two parents and a cut point.
The first portion of parent 1 up to the cut point becomes the first portion of
offspring 2, in the normal way. However, the remainder of offspring 2 is obtained
by copying the vertices absent from the first portion of the offspring in the same
sequence as they occur in parent 2 (see Figure 2). We will call this crossover
permutation order based crossover (POP). Furthermore, we will identify two
variants, POP1 and POP2, which differ slightly in the way the cut point is
selected: for POP1 it is chosen at random and can appear anywhere in the list,
but for POP2 the cut point is restricted to a boundary between two color classes.
Of course the application of POP2 is dependent on having previously sorted the
color classes.

Merging crossover (MOX) was presented by Anderson and Ashlock, [1]. Ini-
tially two n element parents are randomly merged into a single 2n element list.
The first occurrence of each value in the merged list gives the ordering of ele-
ments in the first child, and the second occurrence in the second child. MOX is
illustrated in Figure 3. Anderson and Ashlock point out the following property
of MOX: if and element, a precedes another element b in both parents, then it
follows that a will precede b in both children.

Merging independent sets (MIS) is a new crossover, adapted from MOX. It
requires that the color sets are first grouped together in both of the parents,
as illustrated in Figure 1 c). MIS then proceeds in the same way as MOX, but
whole color sets are copied from the parents to the merged list in one go, rather
than individual vertices. The merged list is split in exactly the same way as for
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c) Child 1 Child 2

b) 

Fig. 3. MOX Crossover by Anderson and Ashlock, [1], used as a basis for the new MIS
crossover

MOX, with the first occurrence of each vertex appearing in the first offspring
and the second occurrence in the second offspring. The idea of MIS is to better
preserve the parents’ color classes than MOX.

4 Results

Three sets of experiments were conducted to assess the viability of the vari-
ous crossover operators for the GCP on two benchmarks from the literature,
DSJC500.5 and le450 15c. The first set of experiments used a basic order based
approach without incorporating the local search. Color classes were neither col-
lected nor sorted. Only CX, UOBX, MIS and POP1 could be compared here,
because the other operators rely on sorted color classes. Local search did not
form part of the second set of experiments either, although the color classes were
sorted and grouped to make it possible to test all the crossovers in our study.
Finally, the third set of experiments included the full local search. Results for
all the experiments are displayed graphically as best-so-far curves averaged over
10 replicate runs, see Figures 4, 5 and 6. For each run a population of 250 was
used and the GA run for 200 generations. Clearly the best results are obtained
when local search is used in Figure 6, with MIS a clear winner on DSJC500.5
and POP1 on le450 15c.

To complete the study, a final set of experiments were performed to indicate
the potential of the new techniques on seven large DIMACS benchmarks. That
MIS and POP1 perform well compared to the other order based crossover op-
erators has already been established, but the results could surely be improved
with longer runs and the introduction of a mutation operator. Table 1 shows the
results obtained from ten replicate runs of a genetic simulated annealing algo-
rithm (GSA) each for 5,000 generations with a population size of 300. The GSA
is based on the simple GA described earlier, but a single mutation follows each
crossover operation, and the resulting offspring replaces a parent according the
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Fig. 4. Comparing order based crossovers with no sorting of independent sets and no
local search
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Fig. 5. Comparing order based crossovers with sorting of independent sets
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Fig. 6. Comparing order based crossovers with sorting of independent sets and local
search. Typical best colorings are 52 for DSJC500.5 and 26 for le450 15.c



standard simulated annealing formula. The chosen mutation consists of a simple
inversion operation between two random cut points. MIS crossover is used for
the DSJC instances and POP for the remainder. A GSA was chosen because it
produced slightly more promising results than the other GA techniques tried so
far by the author, although run times are long. However, this represents “work in
progress” and there is much more to be done. In Table 1 results produced by the
GSA are compared with those generated using a version of the algorithm with
the crossover removed, but with mutation and local search intact. Results for
iterated greedy and DSatur are also included for comparison. Runs of iterated
greedy are replicated ten times, and the run times adjusted to match those of
the GSA. Clearly, the GSA with crossover outperforms the mutation only ver-
sion, reinforcing the valuable contribution made by the new crossover operators.
The GSA also performs better than iterated greedy or DSatur on most of the
instances. The final column in Table 1 gives the results reported by Galinier and
Hao, and these are better than those produced by the GSA with the exception
of le450 15c, where the results are matched.

Table 1. Comparison of the GSA with Other Approaches

Instance Order Based GSA Mutation GSA Iterated Greedy DSat Best
Time Min Mean Max Min Mean Max Min Mean Max known

DSJC250.5 1618 29 29.5 30 31 31.2 32 29 29.5 30 37 28
DSJC500.5 6473 50 50.1 51 55 55.9 56 52 52.6 53 65 48
DSJC1000.5 25777 86 87.2 89 100 100.4 101 96 96.8 98 115 83

le450 15c 4007 15 15.1 16 25 25 25 23 23.5 24 23 15
le450 25c 4563 29 29.9 30 30 30 30 29 29 29 29 26

flat300 28 2081 32 32.2 33 35 35 35 32 33.1 34 42 31
flat1000 76 27204 91 92 93 99 99.6 100 95 95.5 96 114 83

5 Conclusions

The paper has presented two new order based crossover variations: Merge In-
dependent Sets (MIS) and Permutation One Point (POP) for the GCP, and
demonstrated their success in a simple genetic algorithm, comparing their per-
formance with other crossovers on DIMACS benchmarks. The new crossovers
appear to owe much of their success to an ability to respect color set boundaries,
and this is made possible by utilizing some reordering heuristics taken from Cul-
berson and Luo, [4]. In the experiments MIS seemed to work better than POP
on problems where color classes vary in size, and POP proved more successful
on the “flat” problems (le450 15c, le450 25c, flat300 28, and flat1000 76), which
are specially formulated so that color class sizes are identical in the optimum
solution. More extensive experiments showed that a genetic simulated annealing
algorithm (GSA) worked much better with the new crossovers included than
it did if they were excluded, and further, that the GSA is generally more ef-



fective than Culberson and Luo’s iterated greedy algorithm, the source of the
reordering heuristics used for MIS and POP. Thus, we have clear evidence that
the crossovers provide much “added value” over and above mutation and local
search. Future work will concentrate on improving the results further for the
graph coloring problem and extending the approach to other set partitioning
problems, initially concentrating on timetabling.
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