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Among the five flavors [15] of sequential 2D D
launay triangulation algorithms, incremental insert
methods (e.g., [8]) are most popular mainly beca
they are potentially dynamic, simple to implement a
easy to be generalized to higher dimensions. Howe
normally they are not regarded as among the fas
methods.

The basic principle of constructing Delaunay tria
gulation (DT) by incremental insertion is well know
(see textbooks such as [2] for detail). A point is
serted into the triangulation in two steps:point loca-
tion to finds the triangle or component of the tria
gle in which the point lies, andtriangulation update
to restore the Delaunay property of the triangulati
Point location is dominated by an orientation (n
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and (assuming Lawson’s algorithm [8] is used) ed
flips. To a great extent, the cost of triangulation m
be measured more objectively by counting these o
ations [15] than by plain running time.

Forn points inserted in random order, the expec
number of structural changes is O(n) [7] (below 9 in-
circle tests and 3 edge flips per insertion). The num
of CCW tests depends on the adopted location sch
and point insertion order. One class of commo
used point location schemes is triangulation-walk
[5,8,9], which starts from a “search-hint” (an existing
triangle, or one of its edges or vertices which ref
ence it) and “walks” through triangles towards the t
get location. Obviously if the search-hint is proxim
to the target, fewer triangles will be walked throu
and fewer CCW tests will be performed. The jum
and-walk (J&W) scheme [9] inTriangle[12] performs
63.2 CCW tests per insertion on a 10k uniform data
The dynamic grid-based bucketing scheme [15] p
forms an average of 10.5 tests regardless of da

.
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size. In comparison, Dwyer’s divide-and-conquer al-
gorithm [4] in Triangle performs 7.49 in-circle and
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an O(n5/4)/O(n2) average/worst-case time. Although
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10.98 CCW tests per insertion. These statistics cle
indicates that point location is the performance bot
neck of incremental insertion algorithms.

In the following sections, we will present tw
strategies for efficient point location which in com
bination can improve the empirical performance
incremental insertion algorithms to a level comparabl
to or better than that of divide-and-conquer algorith
at the cost of no extra storage.

2. Order out of chaos

In a dataset possessing some sort of natural o
(e.g., vertex sequence in digitized cartographic c
tour lines), consecutive points tend to be close to e
other geometrically and using the last inserted po
as the search-hint often produces good performa
A dataset without such an order may be proces
in some way to impose upon it an order with go
geometric proximity between consecutive points to
cilitate point location. Some space-filling curves su
as Hilbert and column-prime (or row-prime) curv
that minimize the distance between any two cons
utive points are obvious candidates for this purpo
A column-prime order (CPO) on a (not necess
ily random) point set may easily be constructed
O(n logn) time using comparison-based sorting:

Algorithm 1. 2D-CPO.

• Input: a dataset ofn points in a rectangular do
main with widthW and heightH (W � H ; other-
wise row-prime should be used), stored in a r
dom access-able arrayP.

• Sort P by x-ascending order; divideP into m =
�c × �√n × W/H �� slots (c is 0.5 by default);
sort slotj = 1, m in y-ascending order for oddj
or y-descending otherwise.

• Output: the n points are in column-prime orde
now.

Note that the idea of manipulating insertion o
der in incremental Delaunay triangulation is rea
not new. For example, in [14], points are allocat
into bins organized in row-prime order to achie
in fact an O(n3/2)/O(n2) average/worst-case schem
so we do not suggest that it should be used standa

3. Hierarchy of orders

Instead of using a single level of insertion ord
both the quaternary tree bucketing scheme [10] and
recent BRIO scheme [1] (proposed for improving
cality of reference in geometric computation on a la
dataset) possess a hierarchical sampling structure
points are inserted in “rounds” with each round cor
sponding to a level in the hierarchy.

With the presence of a sampling hierarchy, poi
inserted in earlier rounds are likely to divide the d
main into smaller regions and act as “stoppers”
restrict the “scope” of triangles (i.e., number of u
inserted points in the circumscribing circle of a t
angle) [7] created by point insertion in later roun
Consequently, the O(n2) worst-case scenario becom
highly improbable regardless of insertion order at e
round. Following the same intuition, we propose
scheme of hierarchical column-prime order (HCP
as follows:

Algorithm 2. 2D-HCPO.

• Input: a dataset ofn points stored in an randoml
access-able arrayP, sampling ratesr ∈ (0,1) and
minimum sampling sizeminsz.

• Step1: Randomly shuffleP if points in the datase
are not random.

• Step2: Divide P into two partsPhd andPtl so that
Phd contains the first�N∗sr� points inP andPtl
contains the remaining points; build CPO onPtl .

• Step3: If the number of points inPhd is not less
than�minsz/sr�, P ← Phd, N ← �N∗sr� and go to
step 2; otherwise, build CPO onPhd and return.

• Output: then points are in HCPO.

It may be more desirable to use a stricter rand
sampling scheme in step 2 but the shuffle-once
proach is practically sufficient. In addition, the sorti
direction in CPO building may be altered so that
last point in one level of CPO is close to the first po
in the next level of CPO.
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Algorithm 2 in fact describes a more generic
process (hierarchical space-filling insertion order, or
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HSFIO) of which HCPO is an instance. We may g
different hierarchical orders if we substitute oth
space-filling curves (e.g., Hilbert) for column-prim
Under such a framework, the quaternary tree buc
ing scheme is effectively aZ-curve based HSFIO with
sampling rates varying at different levels. BRIO is
hierarchy of Z-ordered binswith a fixed sampling rate
of 0.5. If bin size is set to 1, BRIO also becomes
Z-curve based HSFIO. Notethat Z-curve is not opti-
mal for location. For example, for a uniform datas
of 105 points at a sampling rate of 0.5, the CC
count for HCPO is 6.786 where it is 8.579 for a h
erarchical Z-order (i.e., a BRIO with bin size of 1).
addition, the use of bin in BRIO (in its current form
makes it rather difficult to avoid using auxiliary mem
ory (�(cn), c > 1) or to adopt direct key computatio
methods (e.g., bit-interleaving, which may be used
building Z-curve based HSFIO using O(n) auxiliary
memory).

4. Experimental running time of HCPO

We have tested 2D-HCPO, 2D-BRIO,Triangle’s
implementations of Dwyer’s O(n log logn) and the
original O(n logn) divide-and-conquer (e.g., [6], us
ing vertical cut only, denoted as D&C) algorithms
three types of dataset: random points uniformly d
tributed in a square, random points on a parabola (x is

Table 1

Pre-process, construction and totaltime on uniform dataset (in seconds
form data, combinations of 1 to 6 adjacent tiles). T
triangulators are used:Triangle [12] and MGLIB-2.
MGLIB-2 is a fully dynamic C++ CDT package wit
a triangulation-walking method similar to the reme
bering stochastic walk in [3]. It is less scalable a
slightly slower thanTriangle and we adopt it mainly
for the easy collection of various statistics. The 2
BRIO is built with a temporarily allocated quadtre
and a bin size of 32 (64 for the largest dataset)
produces best overall performance for BRIO in o
systems.

Table 1 shows the running times of HCPO a
BRIO usingMGLIB-2and the two divide-and-conqu
methods inTriangleon uniform datasets. The test pla
form is an AMD-XP2600+ (∼ 2.0 GHz) + Windows
XP system with 1408 MB 333 MHz DDR RAM suf
ficient for triangulating approximately 107 points in-
memory in practice. Generally speaking, HCPO is
fastest even when the slowerMGLIB-2 is used. BRIO
is only slightly slower for smaller datasets. Howev
for the largest dataset(2 × 107) where impact of sec
ondary memory access is significant, BRIO becom
the slowest. This is rather ironic as the main obj
tive of BRIO has been to improve data locality. A
other surprising result is that Dwyer’s algorithm is t
slowest for datasets larger than 106 points and the pro
portion of its pre-processing time is extraordinar
high.
)

Dataset 104 2× 104 5× 104 105 2× 105 5× 105 106 2× 106 5× 106 107 2× 107

HCPO+ MGLIB
(sr = 0.1)

Prep 0.003 0.003 0.025 0.062 0.153 0.44 1.172 3.006 10.72 27.1 68.84
Ins 0.019 0.041 0.09 0.188 0.384 1.013 2.103 4.372 11.5 23.45 116.2
Total 0.022 0.044 0.115 0.25 0.537 1.453 3.275 7.378 22.22 50.56 185

BRIO + MGLIB Prep 0 0.003 0.028 0.075 0.162 0.587 1.372 3.325 10.33 23.32 54.75
Ins 0.022 0.044 0.113 0.231 0.481 1.197 2.462 5.059 12.71 26.57 509
Total 0.022 0.047 0.141 0.306 0.643 1.784 3.834 8.484 23.04 49.89 563.8

Dwyer in Triangle Prep 0.003 0.028 0.066 0.188 0.438 1.256 3.638 10.52 38.5 102.5 245.8
Cons 0.013 0.016 0.044 0.081 0.166 0.438 0.919 1.931 5.01 10.74 87.08
Total 0.016 0.044 0.11 0.269 0.604 1.694 4.557 12.45 43.51 113.2 332.9

D&C in Triangle Prep 0.003 0.006 0.034 0.066 0.15 0.431 1.078 2.934 9.487 23.34 56.19
Cons 0.016 0.037 0.1 0.215 0.506 1.257 2.678 5.719 16.70 33 119.1
Total 0.019 0.043 0.134 0.281 0.656 1.688 3.756 8.653 26.19 56.34 175.3



40 S. Zhou, C.B. Jones / Information Processing Letters 93 (2005) 37–42

Table 2
Total running time on point-on-parabola datasets (in seconds)
Dataset 105 2× 105 5× 105 106 2× 106 5× 106 107 2× 107

HCPO(sr = 0.1) 0.234 0.656 2.36 5.734 13.03 36.77 81.55 250.7
BRIO 0.640 1.563 4.89 10.73 23.55 66.36 143.1 trash
D&C 0.406 0.922 2.781 6.985 17.52 56.02 140.3 478.6

Table 3
Total running time on real datasets (seconds per 104 points)

#Points J&W Natural order BRIO+ MGLIB HCPO+ MGLIB D&C Dwyer HCPO+ Triangle

22011 0.3685 0.1499 0.1153 0.1075 0.08632 0.06815 0.06361
62788 0.5280 0.1835 0.1141 0.1046 0.1005 0.07979 0.06864

205754 0.7637 0.1387 0.1199 0.1066 0.1091 0.08569 0.07251
475731 1.023 0.1562 0.1254 0.1126 0.1341 0.09303 0.07643
657962 1.157 0.1625 0.1292 0.1152 0.1120 0.09695 0.07868

Table 2 shows the results of overall running time 5. Empirical results on time complexity of HCPO

on parabola datasets (exact arithmetic is used and
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the same robust predicates [13] used inTriangle are
adopted inMGLIB-2). Here HCPO has a clear adva
tage over other schemes. On the other hand, the pe
mance of BRIO is worse comparing to that on unifo
datasets. Results of Dwyer’s (slower than D&C’s) a
omitted.

Table 3 are results (calibrated to overall run-tim
per 104 points) for real datasets on a slower s
tem with mobile PIII-700 MHz CPU and 384 MB
133 MHz SDRAM. Results of the Jump-and-wa
scheme (J&W),natural order based insertion (bot
using MGLIB-2) and HCPO withTriangle’s, incre-
mental triangulator are also shown for comparison

On all three series of datasets, the HCPO sch
produces performances comparable to or even bette
than that of divide-and-conquer algorithms. Furth
more, the result of HCPO in combination withTri-
angle suggests that if the same data structures
primitives are used, incremental insertion with HCP
will potentially be significant faster than divide-an
conquer algorithms, contrary to the widely accep
claim that divide-and-conquer algorithms are pra
cally the most efficient methods for DT constructio
To our knowledge the results presented here are am
the first to demonstrate that an incremental ins
tion algorithm may practically outperform divide-an
conquer algorithms on both uniform and non-unifo
distributions.
-

The theoretical analysis in [7] for triangulation u
date during random insertion cannot be applied
HCPO without modification as HCPO is not com
pletely random. Nevertheless, our empirical res
(Table 4) indicate that under the HCPO scheme o
a large range of sampling rates, CCW test, edge
and in-circle test counts are all effectively O(n).

To fit a power functionc = An1+ε (c is the count
andn is dataset size) to the total number of the th
counts (shown in Table 5), for edge flips and in-cir
tests, HCPO(sr = 0.1 and 0.75) have epsilon facto
at the same magnitude as that of the theoretical O(n)

random insertion scheme (J&W). On the other ha
CCW counts for HCPO is in fact sub-linear on un
form datasets and virtually O(n) on parabola dataset
The results on the (relatively small) real datasets (
shown in Tables 4 and 5) display the same trend.
example, the results (in the form of(A, ε)) of HCPO
(sr = 0.1) are Flip(3.5132,−0.0024), In-circle(10.03
−0.0017) andCCW(12.262,−0.003) where the corre
sponding results of random insertion are Flip(2.96
0.0001), In-circle(8.9354, 0.0001) andCCW(2.0294,
0.2959).

Table 6 shows the relations between HCPO s
pling rates and edge flips, in-circle and CCW tests
insertion on a uniform random dataset of 107 points
(similar results are acquired on datasets of differ
sizes). Although larger sampling rates may resul
lower flip and in-circle test counts, in practice mu
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Table 4
CCW, flip and in-circle counts (per insertion)

hat
Dataset 105 2× 105 5× 105 106 2× 106 5× 106 107 2× 107

Uniform HCPO
(sr = 0.1)

Flip 3.245 3.241 3.251 3.251 3.252 3.255 3.256 3.260
In-cir 9.490 9.481 9.502 9.502 9.504 9.510 9.513 9.521
CCW 5.563 5.559 5.553 5.549 5.546 5.543 5.538 5.528

BRIO Flip 2.997 3.000 3.000 3.002 3.003 3.004 3.003 3.004
In-cir 8.993 9.000 9.001 9.005 9.007 9.008 9.007 9.009
CCW 11.62 12.32 11.85 12.12 11.85 11.41 11.88 11.41

Random
J&W

Flip 2.993 2.995 2.998 2.998 2.999 2.999 2.999 –
In-cir 8.985 8.990 8.995 8.996 8.997 8.998 8.998 –
CCW 57.15 71.06 95.02 118.5 148.2 199.2 249.4 –

Parabola HCPO
(sr = 0.1)

Flip 1.028 1.028 1.031 1.032 1.035 1.052 1.091 1.178
In-cir 5.056 5.055 5.061 5.063 5.071 5.105 5.182 5.356
CCW 4.452 4.463 4.498 4.498 4.496 4.491 4.474 4.448

BRIO Flip 1.205 1.102 1.189 1.095 1.186 1.304 1.309 –
In-cir 5.409 5.204 5.378 5.190 5.372 5.607 5.618 –
CCW 31.67 32.30 33.99 34.66 35.81 37.35 37.22 –

Random
J&W

Flip 1.302 1.151 1.295 1.149 1.284 1.490 – –
In-cir 5.604 5.302 5.591 5.296 5.567 5.979 – –
CCW 945.1 1497 2779 4423 7035 12870 – –

Table 5
CCW, flip and in-circle counts(c = An1+ε)

Dataset Uniform Parabola

Flip In-circle CCW Flip In-circle CCW

A ε A ε A ε A ε A ε A ε

Random J&W 2.9799 0.0004 8.9579 0.0003 1.4287 0.3201 0.809 0.0338 4.4786 0.016 0.4286 0.6687
BRIO (bsz= 32) 2.9844 0.0004 8.9661 0.0003 13.042 −0.007 0.8182 0.0275 4.5481 0.0124 20.405 0.0383
HCPO (sr: 0.75) 2.9865 0.0004 8.971 0.0003 8.9053 −0.0029 0.8061 0.0323 4.4948 0.0149 18.431 0.0009
HCPO (sr: 0.1) 3.2084 0.0009 9.4144 0.0007 5.6334 −0.0011 0.7937 0.0203 4.5333 0.0085 4.4746 0.0

Table 6
CCW, flip and in-circle counts and sampling rate on 107 uniform dataset

sr 0.005 0.01 0.05 0.1 0.125 0.2 0.25 0.333 0.5 0.667 0.75 0.8 0.9 0.95 0.99

Flip 3.798 3.663 3.375 3.256 3.219 3.142 3.108 3.069 3.025 3.007 3.003 3.001 2.999 2.999 2.999
In-cir 10.60 10.33 9.749 9.512 9.438 9.285 9.217 9.138 9.051 9.014 9.006 9.002 8.999 8.998 8.998
CCW 5.786 5.64 5.479 5.538 5.587 5.758 5.892 6.133 6.749 7.715 8.511 9.206 11.91 15.70 31.66

smaller (but not too small) sampling rate will strike An interesting result regarding sampling rate is t

a better balance between the costs of order-building,
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edge flips, in-circle and CCW tests to produce be
overall performance. In our systems, a rate of about
gives the best result. In addition, empirical resu
also suggest that as a side-product, smaller samp
rates provide better data locality when handling la
datasets.
ist sampling hierarchies where the 3 edge flip an
in-circle test bounds may be retained no matter w
insertion order is applied at each round of inserti
On the other hand, for a sampling rate not grea
than 2/3, we may always be able to find an inserti
order to make the above bounds un-retainable, no m
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ter how we create the sampling hierarchy. This may be
derived by a simple backward analysis.
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The average degree of a vertex (i.e., number of
angles/edges coincident to it) in a triangulation is
For two pointsp1 and p2, if p2 is to be deleted in
dependent of the deletion ofp1,p2 shouldnot be a
vertex of one of the 6 triangles coincident top1 (in
other words,p1 − p2 should not be an edge). Give
a DT of (sufficiently large)n points and assuming w
can freely choose any 1< m < n points from the point
set, if we choose thesem points in a way that any
two points are not connected by an edge, they ma
deleted in any order while the cost of deletion will
identical. To reverse this process, if we construct
DT of n − m points first and then insert the remai
ing m points, the insertion order of this thesem points
is also insignificant and cost of insertion is identic
(to that of random insertion order). The largestm for
order independency is roughlymmax= �ntri/6	 where
ntri = 2n − h − 2 is the total number of triangles i
the triangulation. Hereh = O(ln(n)) (due to A. Rényi
and R. Sulanke, quoted as Theorem 4.1 in [11]) is
number of points on the convex hull of the point s
Consequently,mmax = (2n − h − 2)/6 and the sam
pling rate boundsr = (n − mmax)/n → 2/3.

As for order-building time, it is obvious that HCP
may be built in O(n logn) time. For datasets with un
form or quasi-uniform distribution on at least one
mension, slots in Algorithm 1 may also be created
this dimension not by sorting adaptive to data bu
a hashing or bin-sort style to improve order-buildi
time by a constant factor, which could be significa
for larger datasets. This approach however requ
auxiliary memory and is less adaptive to non-unifo
distributions. Furthermore, better linearity in orde
building may be achieved by adopting radix sorti
although actual performance gain may not be obse
except for very large datasets.
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