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1. Introduction

Among the five flavors [15] of sequential 2D De-
launay triangulation algorithms, incremental insertion
methods (e.g., [8]) are most popular mainly because
they are potentially dynamic, simple to implement and
easy to be generalized to higher dimensions. However,
normally they are not regarded as among the fastest
methods.

The basic principle of constructing Delaunay trian-
gulation (DT) by incremental insertion is well known
(see textbooks such as [2] for detail). A point is in-
serted into the triangulation in two stepgsoint loca-
tion to finds the triangle or component of the trian-
gle in which the point lies, anttiangulation update
to restore the Delaunay property of the triangulation.
Point location is dominated by an orientation (nor-
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mally counterclockwise, 0€ECW) test. Triamgulation
update mainly involves repeated use of in-circle tests
and (assuming Lawson’s algorithm [8] is used) edge
flips. To a great extent, the cost of triangulation may
be measured more objectively by counting these oper-
ations [15] than by plain running time.

Forn points inserted in random order, the expected
number of structural changes i€/ [7] (below 9 in-
circle tests and 3 edge flips per insertion). The number
of CCW tests depends on the adopted location scheme
and point insertion order. One class of commonly
used point location schemes is triangulation-walking
[5,8,9], which starts from asearch-hint (an existing
triangle, or one of its edges or vertices which refer-
ence it) and “walks” through triangles towards the tar-
get location. Obviously if the search-hint is proximal
to the target, fewer triangles will be walked through
and fewer CCW tests will be performed. The jump-
and-walk (J&W) scheme [9] ifiriangle[12] performs
63.2 CCW tests per insertion on a 10k uniform dataset.
The dynamic grid-based bucketing scheme [15] per-
forms an average of 10.5 tests regardless of dataset
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size. In comparison, Dwyer’s divide-and-conquer al- an Qn%%)/0(n?) average/worst-case time. Although
gorithm [4] in Triangle performs 7.49 in-circle and  CPO maybe provide better proximity for location, it is
10.98 CCW tests per insertion. These statistics clearly in fact an Qn®?)/0(n?) average/worst-case scheme
indicates that point location is the performance bottle- so we do not suggest that it should be used standalone.
neck of incremental insertion algorithms.

In the following sections, we will present two
strategies for efficient point location which in com-
bination can improve the empirical performance of
incremental insertion algithms to a level comparable Instead of using a single level of insertion order,
to or better than that of divide-and-conquer algorithms both the quaternary tree bucketing scheme [10] and the
at the cost of no extra storage. recent BRIO scheme [1] (proposed for improving lo-
cality of reference in geometric computation on a large
dataset) possess a hierarchical sampling structure and
points are inserted in “rounds” with each round corre-
sponding to a level in the hierarchy.

In a dataset possessing some sort of natural order  With the presence of a sampling hierarchy, points
(e.g., vertex sequence in digitized cartographic con- inserted in earlier rounds are likely to divide the do-
tour lines), consecutive points tend to be close to each main into smaller regions and act as “stoppers” to
other geometrically and using the last inserted point restrict the “scope” of triangles (i.e., number of un-
as the search-hint often produces good performance.inserted points in the circumscribing circle of a tri-

A dataset without such an order may be processedangle) [7] created by point insertion in later rounds.
in some way to impose upon it an order with good Consequently, the @?) worst-case scenario becomes
geometric proximity between consecutive points to fa- highly improbable regardless of insertion order at each
cilitate point location. Some space-filling curves such round. Following the same intuition, we propose the
as Hilbert and column-prime (or row-prime) curves scheme of hierarchical column-prime order (HCPO)
that minimize the distance between any two consec- as follows:

utive points are obvious candidates for this purpose.

A column-prime order (CPO) on a (not necessar- Algorithm 2. 2D-HCPO.

ily random) point set may easily be constructed in
O(nlogn) time using comparison-based sorting: °

3. Hierarchy of orders

2. Order out of chaos

Input a dataset ofi points stored in an randomly
access-able arrady, sampling ratesr € (0, 1) and
minimum sampling sizeninsz

e Stepl: Randomly shuffl@ if points in the dataset

Algorithm 1. 2D-CPO.

e Input a dataset of: points in a rectangular do-
main with widthW and height? (W > H; other-

wise row-prime should be used), stored in a ran-

dom access-able arrdy

e SortP by x-ascending order; divide into m =
[c x [«/n x W/H1] slots ¢ is 0.5 by default);
sortslotj =1, m in y-ascending order for odgl
or y-descending otherwise.

e Output the n points are in column-prime order
now.

Note that the idea of manipulating insertion or-

are not random.

e Step2: Divide P into two partsPhg andPy so that
Pha contains the firsfN*sr] points inP and Py
contains the remaining points; build CPO Bin

e Step3: If the number of points ifPng is not less
than[minszsr], P < Png, N < [N*sr] and go to
step 2; otherwise, build CPO @4 and return.

e Output then points are in HCPO.

It may be more desirable to use a stricter random
sampling scheme in step 2 but the shuffle-once ap-
proach is practically sufficient. In addition, the sorting

der in incremental Delaunay triangulation is really
not new. For example, in [14], points are allocated
into bins organized in row-prime order to achieve

direction in CPO building may be altered so that the
last pointin one level of CPO is close to the first point
in the next level of CPO.
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Algorithm 2 in fact describes a more generic
process lfierarchical space-filling insertion ordeior
HSFIO) of which HCPO is an instance. We may get
different hierarchical orders if we substitute other
space-filling curves (e.g., Hilbert) for column-prime.
Under such a framework, the quaternary tree bucket-
ing scheme is effectively A-curve based HSFIO with
sampling rates varying at different levels. BRIO is a
hierarchy of Z-ordered binsith a fixed sampling rate
of 0.5. If bin size is set to 1, BRIO also becomes a
Z-curve based HSFIO. Nothat Z-curve is not opti-
mal for location. For example, for a uniform dataset
of 10° points at a sampling rate of 0.5, the CCW
count for HCPO is 6.786 where it is 8.579 for a hi-
erarchical Z-order (i.e., a BRIO with bin size of 1). In
addition, the use of bin in BRIO (in its current form)
makes it rather difficult to avoid using auxiliary mem-
ory (2(c"), ¢ > 1) or to adopt direct key computation
methods (e.g., bit-interleaving, which may be used for
building Z-curve based HSFIO using(®) auxiliary
memory).

4. Experimental running time of HCPO

We have tested 2D-HCPO, 2D-BRIOrianglées
implementations of Dwyer’'s @ loglogr) and the
original O(nlogn) divide-and-conquer (e.g., [6], us-
ing vertical cut only, denoted as D&C) algorithms on
three types of dataset: random points uniformly dis-
tributed in a square, random points on a paraholia (

39

uniform on[0, 1) and y = x2), and vertices of carto-
graphical contour lines (UK Ordnance Survey Land-
form data, combinations of 1 to 6 adjacent tiles). Two
triangulators are usediriangle [12] and MGLIB-2.
MGLIB-2is a fully dynamic C++ CDT package with
a triangulation-walking method similar to the remem-
bering stochastic walk in [3]. It is less scalable and
slightly slower thanTriangle and we adopt it mainly
for the easy collection of various statistics. The 2D-
BRIO is built with a temporarily allocated quadtree
and a bin size of 32 (64 for the largest dataset) that
produces best overall performance for BRIO in our
systems.

Table 1 shows the running times of HCPO and
BRIO usingMGLIB-2and the two divide-and-conquer
methods inTriangleon uniform datasets. The test plat-
form is an AMD-XP2600 (~ 2.0 GH2 + Windows
XP system with 1408 MB 333 MHz DDR RAM suf-
ficient for triangulating approximately 1Qoints in-
memory in practice. Generally speaking, HCPO is the
fastest even when the slowIGLIB-2is used. BRIO
is only slightly slower for smaller datasets. However,
for the largest datasé® x 107) where impact of sec-
ondary memory access is significant, BRIO becomes
the slowest. This is rather ironic as the main objec-
tive of BRIO has been to improve data locality. An-
other surprising result is that Dwyer’s algorithm is the
slowest for datasets larger tharf3ints and the pro-
portion of its pre-processing time is extraordinarily
high.

Table 1

Pre-process, construction and tdtate on uniform dataset (in seconds)

Dataset 16 2x10* 5x10* 10° 2x10° 5x10° 106 2x10° 5x10F 107 2x 10

HCPO+ MGLIB  Prep 0003 Q003 0025 Q062 0153 Q44 1172 3006 1072 271 6884

(sr=0.1) Ins 0019 Q041 Q09 0188 0384 1013 2103 4372 115 2345 1162
Total 0022 Q044 Q0115 025 0537 1453 3275 7378 2222 5056 185

BRIO + MGLIB Prep 0 0003 0028 Q075 Q162 0587 1372 3325 1033 2332 5475
Ins 0022 Q044 0113 0231 0481 1197 2462 5059 1271 2657 509
Total 0022 Q047 0141 0306 0643 1784 3834 8484 2304 4989 5638

Dwyer inTriangle Prep 0003 Q028 Q066 0188 0438 1256 3638 1052 385 1025 2458
Cons 0013 Q016 Q0044 Q081 0166 0438 0919 1931 501 1074 8708
Total 0016 Q044 011 0269 Q604 1694 4557 1245 4351 1132 3329

D&Cin Triangle  Prep 0003 Q006 0034 Q066 Q15 0431 1078 2934 9487 2334 5619
Cons 0016 Q037 01 0215 0506 1257 2678 5719 1670 33 1191
Total 0019 Q043 0134 0281 0656 1688 3756 8653 2619 5634 1753




40 S. Zhou, C.B. Jones / Information Processing Letters 93 (2005) 37-42

Table 2
Total running time on point-on-pabola datasets (in seconds)
Dataset 18 2x 1P 5x 10° 108 2x 108 5x 10° 107 2 x 10
HCPO(sr=0.1) 0.234 0656 236 5734 1303 3677 8155 2507
BRIO 0.640 1563 489 1073 2355 6636 1431 trash
D&C 0.406 0922 2781 6985 1752 5602 1403 4786
Table 3
Total running time on real datasets (seconds pérpmnts)
#Points J&W Natural order BRI@ MGLIB HCPO+ MGLIB D&C Dwyer HCPO+ Triangle
22011 03685 01499 01153 01075 008632 006815 006361
62788 05280 01835 01141 01046 01005 007979 006864
205754 07637 01387 01199 01066 01091 008569 007251
475731 1023 01562 01254 01126 01341 009303 007643
657962 1157 Q01625 01292 01152 01120 009695 007868

Table 2 shows the results of overall running time 5. Empirical resultson time complexity of HCPO
on parabola datasets (exact arithmetic is used and

the same robust predicates [13] usedTirangle are The theoretical analysis in [7] for triangulation up-
adopted inMGLIB-2). Here HCPO has a clear advan- date during random insertion cannot be applied to
tage over other schemes. On the other hand, the perfor-HCPO without modification as HCPO is not com-
mance of BRIO is worse comparing to that on uniform pletely random. Nevertheless, our empirical results
datasets. Results of Dwyer’s (slower than D&C'’s) are (Table 4) indicate that under the HCPO scheme over
omitted. a large range of sampling rates, CCW test, edge flip
Table 3 are results (calibrated to overall run-time and in-circle test counts are all effectively.

per 10 points) for real datasets on a slower sys-  To fit a power functiore = An'*¢ (c is the count
tem with mobile PIII-700 MHz CPU and 384 MB andnr is dataset size) to the total number of the three
133 MHz SDRAM. Results of the Jump-and-walk counts (shown in Table 5), for edge flips and in-circle
scheme (J&W)natural order based insertion (both ~ €Sts, HCPQsr=0.1 and 0.75) have epsilon factors
using MGLIB-2) and HCPO withTriangles, incre- at the same m_agnltude as that of the theoretical) O
mental triangulator are also shown for comparison, ~ andom insertion scheme (J&W). On the other hand,

On all three series of datasets, the HCPO SchemefCCWdc?untts fordHC'?I;’OI:s in fact SUbE)I'Tle ;)n utnl-
produces performances coarpble to or even better orm datasets and virtua y @) on parabola datasets.
- . The results on the (relatively small) real datasets (not
than that of divide-and-conquer algorithms. Further- shown in Tables 4 and 5) display the same trend. For
more, the result of HCPO in combination witfri- play !

. example, the results (in the form oA, ¢)) of HCPO
angle suggests that if the same data structures and (st=0.1) are Flip(3.5132:-0.0024), In-circle(10.03,

primitives are used, incremental insertion with HCPO —0.0017) andCCW(12262,—0.003) where the corre-
will potentially be significant faster than divide-and- sponding results of random insertion are Flip(2.9689,
conquer algorithms, contrary to the widely accepted 0.0001), In-circle(8.9354, 0.0001) a@CW(20294,
claim that divide-and-conquer algorithms are practi- g 2959).

cally the most efficient methods for DT construction. Table 6 shows the relations between HCPO sam-
To our knowledge the results presented here are amongpling rates and edge flips, in-circle and CCW tests per
the first to demonstrate that an incremental inser- insertion on a uniform random dataset of’ Iifbints
tion algorithm may practically outperform divide-and-  (similar results are acquired on datasets of different
conquer algorithms on both uniform and non-uniform sizes). Although larger sampling rates may result in
distributions. lower flip and in-circle test counts, in practice much
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Table 4
CCW, flip and in-circle counts (per insertion)
Dataset 18 2x 10° 5x 10° 108 2x10° 5x 10° 107 2% 10
Uniform  HCPO Flip 3.245 3241 3251 3251 3252 3255 3256 3260
(sr=0.1) In-cir 9.490 9481 9502 9502 9504 9510 9513 9521
CCw 5563 5559 5553 5549 5546 5543 5538 5528
BRIO Flip 2997 3000 3000 3002 3003 3004 3003 3004
In-cir 8.993 9000 9001 9005 9007 9008 9007 9009
CCw 1162 1232 1185 1212 1185 1141 1188 1141
Random Flip 2.993 2995 2998 2998 2999 2999 2999 -
J&W In-cir 8.985 8990 8995 8996 8997 8998 8998 -
CCw 5715 7106 9502 1185 1482 1992 2494 -
Parabola HCPO Flip 1.028 1028 1031 1032 1035 1052 1091 1178
(sr=0.1) In-cir 5.056 5055 5061 5063 5071 5105 5182 5356
CCcw 4452 4463 4498 4498 4496 4491 4474  A448
BRIO Flip 1205 1102 1189 1095 1186 1304 1309 -
In-cir 5.409 5204 5378 5190 5372 5607 5618 -
CCw 3167 3230 3399 3466 3581 3735 3722 -
Random Flip 1.302 1151 1295 1149 1284 1490 - -
J&w In-cir 5.604 5302 5591 5296 5567 5979 - -
CCW 9451 1497 2779 4423 7035 12870 - -
Table 5
CCw, flip and in-circle countsc = Anlte)
Dataset Uniform Parabola
Flip In-circle CcCw Flip In-circle CCwW
A € A & A & A & A e A e

Random J&W 20799 00004 89579 Q0003 14287 03201 0809 Q0338 44786 0016 04286 06687
BRIO (bsz=32) 29844 Q00004 89661 00003 13042 —-0.007 Q8182 Q0275 45481 Q00124 20405 Q0383
HCPO 6r: 0.75) 29865 00004 8971 Q0003 89053 —0.0029 08061 Q0323 44948 00149 18431 Q0009
HCPO 6r:0.1) 32084 Q0009 94144 00007 56334 —-0.0011 Q7937 Q0203 45333 00085 44746 QO

Table 6
CCW, flip and in-circle counts and sampling rate orf L@iform dataset
sr 0005 Q01 005 01 0125 Q2 025 0333 05 0667 Q75 08 0.9 0.95 099

Flip 3.798 3663 3375 3256 3219 3142 3108 3069 3025 3007 3003 3001 2999 2999 2999
In-cir 1060 1033 9749 9512 9438 9285 9217 9138 9051 9014 9006 9002 8999 8998 8998
CCW 5786 564 5479 5538 &587 &758 5892 6133 6749 7715 8511 9206 1191 1570 3166

smaller (but not too small) sampling rate will strike An interesting result regarding sampling rate is that
a better balance between the costs of order-building, for a sampling rate greater thaf3® there may ex-
edge flips, in-circle and CCW tests to produce better ist sampling hierarchies where the 3 edge flip and 9
overall performance. In our systems, a rate of about 0.1 in-circle test bounds may be retained no matter what
gives the best result. In addition, empirical results insertion order is applied at each round of insertion.
also suggest that as a side-product, smaller samplingOn the other hand, for a sampling rate not greater
rates provide better data locality when handling large than 2/3, we may always be able to find an insertion
datasets. order to make the above bounds un-retainable, no mat-
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ter how we create the sampling hierarchy. This may be References

derived by a simple backward analysis.
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