
A Framework for combining Rules and
Geo-ontologies

Philip D. Smart1, Alia I. Abdelmoty1, Baher A. El-Geresy2, and Christopher
B. Jones1

1 Cardiff School of Computer Science,
Cardiff University, Wales, UK

2 School of Computing,
University of Glamorgan, Wales, UK

Abstract. Geo-ontologies have a key role to play in the development of
the geospatial-semantic web, with regard to facilitating the search for ge-
ographical information and resources. They normally hold large amounts
of geographic information and undergo a continuous process of revision
and update. Hence, means of ensuring their integrity are crucial and
needed to allow them to serve their purpose. This paper proposes the
use of qualitative spatial reasoning as a tool to support the development
of a geo-ontology management system. A new framework for the rep-
resentation of and reasoning over geo-ontologies is presented using the
web ontology language (OWL) and its associated reasoning tools. Spatial
reasoning and integrity rules are represented using a spatial rule engine
extension to the reasoning tools associated with OWL. The components
of the framework are described and the implementation of the spatial
reasoning engine is presented. This work is a step towards the realisation
of a complete geo-ontology management system for the semantic web.

1 Introduction

Retrieval of geographically-referenced information on the Internet is now a com-
mon activity. A large number of documents stored and retrieved on the web
include references to geographic information, typically by means of place names.
Also, the web is increasingly being seen as a medium for the storage and ex-
change of geographic data sets in the form of maps. The geospatial-semantic
web (GeoWeb) is being developed to address the need for access to current and
accurate geo-information [6]. The potential applications of the GeoWeb are nu-
merous, ranging from specialised application domains for storing and analysing
geo-information to more common applications by casual users for querying and
visualising geo-data, e.g. finding locations of services, descriptions of routes, etc.

At the heart of the GeoWeb are geographic ontologies or geo-ontologies.
These are models of terminology and structure of geographic space as well as
records of entities in this space. An example of such an ontology has been pro-
posed recently in the SPIRIT project [14] and was shown to play a central role in



the development of a geographical search engine. Building geo-ontologies involves
a continuous process of update to the originally modeled data to reflect change
over time as well as to allow for ontology expansion by integrating new data
sets, possibly from different sources. One of the main challenges in this process
is finding means of ensuring the integrity of the geo-ontology and maintaining its
consistency upon further evolution. Developing methods for the management of
the spatial integrity of geo-ontologies will contribute towards the development of
reliable geographical search engines and to the success of the GeoWeb in general.

In this paper we propose a new framework for the management of geo-
ontologies for the purpose of geo-information retrieval. In particular, we build
upon and utilise research results in the area of qualitative spatial reasoning
(QSR). Composition tables for different types of qualitative spatial relations are
used to derive general rules that govern the structure of the geographic entities
and their interaction in space. A spatial integrity rule language has been devel-
oped, as an extension to OWL , for the expression of these rules. OWL and the
popular semantic web reasoning engine Jena, are used for the representation and
reasoning over the geo-ontology. This paper describes the new framework pro-
posed and the implementation of the spatial reasoning engine. The presentation
is limited only to the main distinguishing characteristics and extensions realised.
The design of the language, its syntax and semantics are outside the scope of
this paper.

Section 2 introduces the need of rules for supporting the representation and
management of geo-ontologies and summarises the requirements of a spatial rule
language for geo-ontologies. An overview of the new proposed framework pro-
posed is given in section 3. Section 4 describes in some detail the implementation
of the spatial rule engine, followed by section 5 which shows some examples to
demonstrate the developed system. Conclusions and a view of ongoing research
work is presented in section 6.

2 Rules for Geo-ontologies

Work is ongoing on the development of geo-ontologies to capture the conceptu-
alisations of geographic domains and to facilitate the reuse and sharing of the
geo-referenced information on the web. Several examples of geo-ontology devel-
opments have recently been proposed [9, 5].
The following are some of the particular distinguishing characteristics of geo-
ontologies of interest to this work.

1. Geo-ontologies are normally associated with large instance bases (or A-
boxes). A geo-object can have one or multiple spatial representations to
define its location in space. For example, a city may be associated with a
polygon object made up of hundreds of points representing its boundary, a
simplified bounding box approximating its shape, as well as a point repre-
senting its centre. Large instance bases and multiple spatial representation
lead to large ontology files and associated overheads.



2. Much of the semantics in geo-ontologies are implicit and evident only at the
instance level. For example, different types of spatial relationships exist be-
tween every object and all other objects in space; an object may be inside,
north-of, near to, larger than another object, etc. Some of those relationships
may be captured on the concept level but most others are implicit, evident
only by visual interpretation and geometric computation. Explicit represen-
tation of such relationships is not practically possible and means for their
automatic extraction are needed.

3. Maintaining the logical as well as spatial integrity of geo-ontologies is crucial
for maintaining their soundness and viability. Spatial integrity is different,
and perhaps more complex, than logical integrity. Logical consistency does
not automatically enforce spatial consistency. For example, a part-of seman-
tic relationship between two geo-objects does not imply directly the correct
relationships between the objects’ spatial representations. The boundary of
the child object might intersect with the parent or the area of the child
might be larger than the parent, etc. If a third object exists that is located
completely outside the parent object, then it is an error to insert a fact that
this object intersects the child.

An understanding of the rules that govern space and spatial relationships is
needed for the specification of spatial integrity rules to maintain the consistency
of geo-ontologies. The problem is also evident when integrated utilisation of
multiple geo-ontologies is considered, where processes such as comparison and
merging assume the consistency of the candidate ontologies.

In [1], we reviewed the potential and limitations of OWL for representing
geo-ontologies, the challenges indicated above can’t be addressed directly using
OWL. Recently, rule languages have been proposed that complement and en-
hance the expressiveness of standard ontology languages. Rule expression over
geo-ontologies is needed for the representation of the following types of rules:

– Spatial reasoning rules for the deduction of implicit geo-semantics.
– Spatial integrity rules for representing different type of spatial integrity con-

straints to maintain the consistency of geo-ontologies.

In the rest of this section, spatial reasoning techniques are reviewed that allow
for the identification and expression of both of the above rule types.

2.1 Qualitative Spatial Reasoning Tools

In this section, we demonstrate examples of the use and adaptation of some
types of spatial reasoning techniques and the derivation of spatial rules, that are
used as a basis for the spatial reasoning engine in the framework described later
in the paper. A possible classification of the types of spatial rules is as follows.

– Rules representing constraints over object properties in space, in particular,
spatial properties of dimension, shape and size. Examples of these types
of rules include the fact that a polygon must have at least three different



points and that a polygon must be closed, etc. These types of constraints
are normally used in spatial databases and GIS.

– Rules for reasoning over spatial relationships between objects in space. For
example, the fact that an object A is located inside another object B and
that B is inside object C, implies that object A is also inside C. It also
implies that C is larger than A and B. This is an example of qualitative
spatial reasoning (QSR). Here, we utilise the results of the large body of
research in this field, where automated methods have been proposed for the
derivation of spatial composition tables for different types of spatial objects
and relationships. Table 1 shows part of a composition table for topological
relations between two simple regions.

d(y, z) m(y, z) i(y, z) ct(y, z) o(y, z)

d(x, y) all d ∨m∨ d ∨m∨ d d ∨m∨
i ∨ o i ∨ o i ∨ o

m(x, y) d ∨m∨ d ∨m∨ i ∨ o d d ∨m∨
ct ∨ o i ∨ ct ∨ o o i ∨ o

i(x, y) d d i all d ∨m∨
i ∨ o

Table 1. Composition table for the set of base topological relations between simple
regions.

Entries in the composition tables can be encoded into rules that can be used
as deduction rules for the automatic derivation of implicit spatial relationships,
as well as constraints for enforcing the integrity of the spatial data sets. These
constraints are the building blocks of the proposed spatial reasoning engine as
described later in the paper.

When reasoning over networks of spatial objects as with a typical geo-ontology,
QSR becomes a more general constraint satisfaction problem. A path consis-
tency algorithm was proposed earlier to address this problem [18, 15]. The main
function of this algorithm is denoted REVISE which deduces the consistency of
region triples {A,B,C} by performing the following operation. 3

ArC = ArC ∩ (ArB ⊗BrC)

The equation validates whether the known or explicitly specified relation-
ship(s) between A and C, contradicts the relationship(s) that may be derived
between the same two objects, using the composition of their relationships with
3 where ⊗ represents the composition of spatial relationships



other objects in the scene (B in this case). The function was first used in the
temporal domain by Allen [2] in his work on interval calculi. The implementation
of the algorithm relies on the existence of pre-specified spatial composition ta-
bles. If the composition returns an empty set, the scene is inconsistent, otherwise
other regions are selected and the process of spatial composition and intersection
is repeated for the rest of the objects in the scene.

2.2 Requirements for a Spatial Rule Language for Geo-ontologies

From the above section a list of requirements can be drawn for the design of
a spatial rule language. Standard characteristics of a general rule language, de-
signed to work with ontology languages, e.g. SWRL [13] or RuleML [22], are
assumed. The following list are desirable additional characteristics for rule lan-
guages in the spatial domain. The specification of the language design and the
language semantics is out of the scope of the current paper.

– Assumes a standard spatial data model (conforming with OGC or ISO spatial
models). Predicates in the language will represent different types of geo-
features, their associated geometric representations as well as different types
of spatial operators and relationships.

– Can represent absolute spatial constraints on geographic features.
– Can represent relative spatial constraints between geographic features, in-

cluding, topological, directional and proximity.
– Allows for external calls to geometric processing functions for the evaluation

of pre-specified types of spatial relationships. As explained in the above sec-
tion, only some spatial relationships can be stored a priori in the fact base.
The application of spatial reasoning rules will occasionally require the eval-
uation of some of the implicit relationships using computational geometry
algorithms supported by spatial database systems or GIS.

– Allows for the expression of rule exceptions. This characteristic is particu-
larly useful for the expression of application specific rules, where in some
cases exceptions to general spacial rules are required. See section 4.4 for an
example.

The language should also have a formal logical underpinning, clear seman-
tics and be serializable into a RuleML representation in order to interface with
existing semantic web technologies.

3 Geo-Ontology Management System Framework

The main objectives for the geo-ontology management system proposed here are
to support the representation and storage of geo-ontologies and to allow for the
expression and realisation of spatial integrity maintenance and deduction rules
over the geo-ontologies.

Hence, the new framework proposed consists of three main component sub-
systems that together demonstrates an architecture for a system that allows for



the spatial integrity maintenance management of geo-ontologies. These systems
are: 1. the geo-ontology system and associated geo-location storage system, 2.
the spatial rules management and the spatial inference engine, and 3. the error
management system. The framework is shown in Figure 1. The system has been
implemented using OWL , the Jena toolkit and Oracle Spatial.

Fig. 1. A new framework for representing and maintaining geo-ontologies

3.1 The Geo-ontology Management System

Given the limitations of current web ontology languages for representing ge-
ographic features and their geometry, a dual model of representation will be
used. The geographic concepts and features in the geo-ontology will be repre-
sented using OWL, while the spatial representations of the geo-features will be
modeled using an external geometric processing or spatial database system. Such
a dichotomy of representation does not affect the validity of the overall frame-
work and is proposed as a practical solution to overcome the limitations of the
current semantic web tools. The same spatial integrity maintenance framework
will operate on geo-ontologies completely represented in OWL.

Geo-Ontology Subsystem The geo-ontology’s spatial data model conforms
to the OGC abstract feature specification . The model also assumes a predefined
set of qualitative spatial relationship properties including topological, directional
as well as relative proximity and size relationships.



The Geo-location Management Subsystem The types of geometric compu-
tation operations, such as distance or area, required to operate over locational
information are not supported using OWL’s schema or functions. Hence, the
representation and management of the absolute locational information are dele-
gated to an external geometric processor or a spatial database system, referred
to as the Location Storage System (LSS) in Figure 1. Such systems have efficient
spatial indexing techniques and optimised geometric processing capabilities.

A unique reference between features in the ontology and their corresponding
locational information represented in the LSS is maintained. As URIs provide,
what we will assume to be, a unique name to the features of the ontology,
they will be mapped directly into the LSS as primary keys. Note that a single
interface is used in the framework to both the OWL geo-ontology and the LSS
that together form the complete geo-ontology used by the rest of the framework
components.

3.2 The Error Management System

Errors mined from the geo-ontology by integrity rules are stored in a separate
error ontology. Building an error ontology is interesting as it provides opportu-
nities for reasoning over errors and would, for example, give insight to the types
of integrity problems, their frequency and guide the error management process.

3.3 The Spatial Reasoning System

The spatial reasoning system (SRS) is at the heart of the framework. The system
provides the functionality to represent spatial rules in their native format. the
SRS is implemented in Java and sits alongside the Jena toolkit. Jena is an
open source Java-based semantic web toolkit. Jena provides an API to access,
manipulate and reason with RDF and OWL ontologies. Jena’s rule reasoning
engine uses a Rete-based forward production rule engine [24] , along with an
XSB [23] based backward chaining logic programming engine.

Jena’s reasoning subsystem is limited when it comes to the authoring of rule
sets. The SRS implements a complete rule authoring system to construct, store,
modify and visualise a spatial rule set. As the spatial rule set is syntactically
and semantically different from a Jena rule set, SRS translates spatial rule sets
into a format compliant with Jena for the purpose of execution. It also defines
extensions to the rule engine in Jena to realise the full expressive extent of spatial
reasoning rules. A more detailed overview of this system is presented below.

4 The Spatial Reasoning Engine

As mentioned, our proposed spatial rule language and reasoning engine have
been implemented using the Jena toolkit. In what follows we describe the specific
extensions to the toolkit needed to address the requirements of the rule language
identified earlier. A more exhaustive treatment of the extensions described and
their logical underpinnings are the subject of another report.



4.1 Interleaved Execution Extension

Typically, all rule body antecedents are matched from existing stored facts (that
being facts derived by rules or explicitly represented). By interleaving forward
and backward reasoning modes, facts can be derived, or proven, on the fly by a
set of one or more backward rules. This is useful is minimising storage overheads.
Consider for example the following rule:

[Region(?x) ∧Region(?y) ∧Region(?c) ∧ Inside(?x?c) ∧ Inside(?c?y)→ Inside(?x?y)]

The conclusion of Inside(?x ?c) would only be inferred if both the atoms
Inside(?x ?c) and Inside(?c ?y) can be satisfied. These atoms are either
satisfied by facts directly stored in the ontology (explicit), or inferred using
QSR rules (implicit)4, or as a last resort satisfied by a rule that calls an external
geo-computation engine.

For example, the following is a subset of QSR rules used to derive the in-
side relationship between two regions. The fifth rule is a call to external geo-
computation (exInside predicate).

Inside(?x ?y) ← Region(?x) ∧Region(?y) ∧Region(?c) ∧ Inside(?x ?c) ∧ Equal(?c ?y)

Inside(?x ?y) ← Region(?x) ∧Region(?y) ∧Region(?c) ∧ Inside(?x ?c) ∧ Inside(?c ?y)

Inside(?x ?y) ← Region(?x) ∧Region(?y) ∧Region(?c) ∧ Inside(?x ?c) ∧ CoveredBy(?c ?y)

Inside(?x ?y) ← Region(?x) ∧Region(?y) ∧Region(?c) ∧ CoveredBy(?x ?c) ∧ Inside(?c ?y)

Inside(?x ?y) ← Region(?x) ∧Region(?y) ∧Region(?c) ∧ exInside(?c ?y)

Besides using builtins to evaluate spatial relationships, the engine supports
a standardised set of predefined spatial builtins, such as for example, simple
arithmetic and comparison operators that are evaluated using the external ge-
ometric processor. The restriction that variables must be bound applies to any
external call, i.e. all variable must be bound and the call surmounts to a test
of truth (returning either True or False). Interleaved logic programs have been
implemented to varying degrees in Algernon, the M.4 system, MIKE, ECLIPSE
and Harlequin.

Interleaved Implementation Jena, more specifically Rete, does not inher-
ently provide a means to call a backward rule during the course of antecedent
pattern matching. To support this feature a backward call is added as a builtin
(such a predicate is henceforth denoted a reserved spatial relation predicate).
That is, the reserved spatial relationship predicates are not represented as triple
patterns, but are added to the engine as builtins. The builtins are coded in Java
and are registered with Jena’s forward engine.

Once the builtin is called, the backward rule engine is initialised over the
current set of intentional and extensional triples. For efficiency of retrieval us-
ing the external geometric processor, calls to backward rules must only contain
ground variables. Thus backward rules only evaluate one relationship between

4 Spatial reasoning rules are defined using composition tables as described earlier



two features at a time, and as such will either return true or false. For example,
consider the following forward rule.

Region(?x) ∧Region(?y) ∧Region(?c) ∧ Inside(?x ?c)→ · · ·

Inside(?A ?B) represents a query to the backward QSR rule set. The nature of
builtins in Jena, and the two class predicates, ensures that the variables ?A and
?B will be bound before the backward query is executed. Hence, Inside(?A ?B)
will return either true or false, based on whether that relationship exists in the
ontology, can be inferred, or whether it can be determined from the geometry.

Jena’s Backward Engine: The reserved spatial relation predicates are executed
in Jena’s integrated XSB backward engine. XSB is based on a modified version
of SLD resolution, namely SLG resolution. The following features of XSB are of
particular interest to this work.

1. SLG tabling allows the transitive closure of a property to be computed with-
out entering an infinite loop - as would be the case with SLD resolution. This
is very useful for example when computing the containment hierarchy of ge-
ofeatures.

2. SLG’s left to right top to bottom procedural reading (first in first out, also
a feature of SLD resolution). The efficiency of the system is heavily affected
by this. Rules with shallow inference chains can be evaluated before rules
with deeper inference chains, lastly followed by rules with external calls to
spatial relationship computation.

The order with which rules in the backward rule set are executed is explicitly
defined by the rule execution metadata tag. In Jena, the order of rule evaluation
is determined by the order in which the rules are encoded in the rule string sent
to the backward reasoning engine. Therefore during conversion from the rule
system to Jena, the rule string is constructed in the order that is represented by
the backward meta tags.

4.2 Integrity Rules

The bodies of integrity and deduction rules are identical in both specification
and functionality. An integrity rule differs from a deduction rule in the use of its
head atom. That is, an integrity rule does not assert new information into the
ontology5, instead it asserts errors into an error ontology (thus permitting the
storage of errors). Positive and negative errors can be concluded, as explained
below.

5 As is common in logic programming literature, a rule without head is referred to as
an integrity rule



Default Integrity Rules As indicated in the requirements earlier, it is desir-
able for the rule language to represent default integrity rules and their exceptions.
This is a form of default reasoning [21, 17, 20]. That is, a default rule is assumed
true until its contrary can be proved. For example:

body → error(X)
body2 → ¬error(X)

where X is a variable. The error of the first rule is assumed until there is enough
evidence to support body2, and the error (where both errors have the same
variable substitution for X) is refuted.

A large body of research in the area of prioritised default reasoning has stud-
ied this problem. Courteous logic [10] is a popular type of prioritised default rea-
soning which is expressive enough to capture our integrity requirements. Cour-
teous logic provides us with a natural and intuitive way to provide rule priority
to capture the requirement of rule defaults and rule exceptions.

Example: The following is an example of a spatial integrity constraint with both
a default rule and an exception to that rule.

Road(?x) ∧River(?y) ∧ Crosses(?x?y)→
error(roadRiverCrossError ?xCrosses ?y doNotCross riverRCross) (1)

Road(A40) ∧River(Taff) ∧ Crosses(A40 Taff)→
notError(roadRiverCrossError A40 Crosses Taff

roadsRiversDoCross riverRCrossException) (2)

Rule (1) is the default rule and (2) its exception. Intuitively, The ground instan-
tiation of the first rule which substitutes variables ?x and ?y for A40 and Taff
respectively is overridden by the second rule.

An often used first step to the implementation of Courteous Logic in current
reasoning engines is through the use of a courteous compiler. A courteous com-
piler compiles away the expressive Courteous logic extensions, leaving a seman-
tically equivalent ordinary logic program [11], which can then be implemented
in common logic program reasoning engines such as PROLOG. Here, we adapt
such an implementation by placing some expressive restrictions on the courte-
ous logic component, thus removing the need for a courteous compiler. Instead,
we employ a simple algorithm denoted, the Prioritized Conflict Handling En-
gine (PCHEng), to perform a post processing cleanup. The following are the
expressive restrictions to the full Generalised Courteous Logic as described in
[12].

1. As with a basic courteous logic program we permit only the classical mutex.
2. Classical negation is restricted to integrity rule head atoms only, i.e. to infer

error and its negation ¬error. Negation as failure is completely removed.

We have, however, in part extended the Courteous Logic specification. That is,
we have supplemented the rule label with additional types of rule meta data or
tags, which can be used to infer priorities amongst integrity rules.



With the above restrictions, a rule is definite. That is, it does not contain
negation as failure and the limited form of classical negation can be dealt with
by the PCHEng post processing transform. Our simplified version of Courte-
ous Logic will be henceforth denoted CLP−. The advantages of using the CLP−

approach are two fold. Firstly, we need not deal with the rather complex seman-
tics of a logic program that contains negation as failure (stable models [8] etc).
Secondly, it allows the dynamic generation of rule priorities based on reasoning
over rule meta tags and inferring Overrides predicates.

There are a number of implementations of default or defeasible reasoning,
namely DR-Prolog [3], DR-Device [4], DELORES -a Defeasible Logic Reasoning
System [16]. Both DR-Prolog and DR-Device handle non-monotonic rules over
RDFS ontologies. DR-Prolog is implemented by transforming information into
PROLOG, and DR-Device works by transforming information into JESS. All
lack procedural attachment. Defeasible reasoning with procedural attachments
is supported by the SweetRules project [19]. SweetRules supports Situated Cour-
teous Logic, that is, Courteous Logic with cleanly formalised procedural attach-
ments.

CLP − Implementation The implementation of CLP− can be divided into
two stages:

Stage 1: Jena’s implementation of Rete [7] for forward inferencing does not
support strong negation (¬, more akin to classical negation) - indeed Rete in
general lacks support for classical negation. Therefore the first step involves
the removal of all appearances of classical negation. This is an easy step and
is a common way of adding a limited form of classical negation in ordinary or
definite logic programs [11]. The step involves: for each error predicate error,
each appearance of ¬error is replaced by an appearance of a new predicate
notError; and a new explicit mutex between error and notError is introduced
- or assumed (as we only deal with the classical mutex).

Stage 2: At the end of the inferencing stage, when Rete’s match-resolve-act cycle
has halted, a potentially inconsistent error base may result. That is, for all pred-
icates in the error base, some may be negatively and positively represented. The
error base is then fed into the Prioritised Conflict Handling Engine (PCHEng)
along with the Overrides sub program, see figure 2. Stage 2 is performed by the
following algorithm.

Algorithm: In overview, the PCH engine removes two conflicting error predi-
cates by checking for a relevant Overrides predicate with which to resolve the
conflict. As is the norm with a CLP, if an Overrides can’t be found, then both
positive and negative versions of the error are removed - treated skeptically.

4.3 Metadata

Rule metadata serves two purposes in our system. The first is as a form of
reflection to derive overrides facts used by the CLP− component. Secondly, to



Fig. 2. PCHEng Information Flow

facilitate the visualisation and authoring of large spatial rule sets. Syntactically
rule meta data is represented during the rules preamble. For example:

[<meta-data> : BODY -> HEAD]

The syntactical representation of rules separates the appearance of the rules
meta data from the rules logic. However, in order to reason over rule meta
data during the reasoning process, the tags must be translated to syntactically
reserved, variable free predicates.

Our rule language supports the following spatial meta tags.

forward_meta_data = "<" rule_Name "> "<" rule_Level "> "<" rule_Type ">
"<" rule_Class "> "<" spatial_Rule_Group ">

backward_meta_data = forward_meta_data "<" backward_Rule_Group ">
"<" backward_Rule_Order ">

Overrides predicate inference example: Meta level reasoning can be used to infer
a general prioritisation between level 0 and level 1 rules, for example:

[ruleLevel(?A 0) AND ruleLevel(?B 1) → overrides(?A ?B)]

As a result, all rules that have a rule level of 0 will override rules having a level
of 1 - providing they have conflicting error predicates.

4.4 Example of Default Reasoning

In this example consider the domain specific knowledge that roads and rivers do
not cross in the general case. There are, however, exceptions to this rule. A road
may pass through a river where the river is shallow enough (a forge). Without
modeling forges directly, integrity rules can be used to capture this situation
using a form of default reasoning.

Consider for example, that roads A40, A50 and the rivers Taff and Tywn are
instantiated into a geo-ontology, and that the spatial relationships {A40 crosses
Taff} and {A50 crosses Tywn } are also added. The following rule is then added
to the rule base as a default.
[< label > riverRoadCross < /label >< ruleLevel > 0 < /ruleLevel >< ruleGroup >
Topo − Semantic < /ruleGroup >< ruleType > 0 < /ruleType >< ruleClass > 1 <
/ruleClass >: Road(?x) AND River(?y) AND Cross(?x ?y) → error(roadRiverCrossError ?x
Crosses ?y roads rivers do not cross riverRoadCross)]



Algorithm 1 PCHEng
Let S = array of all error individuals in the error ontology
Let P = array of 2-tuple records representing conflicting errors (error, error) - conflict
set
Let Ov = array of all overrides predicates
for (i =0; i < sizeof(S);i++) do

for (int j=0; j < sizeof(S);j++) do
if (i 6= j) then

if (s[i] complementof s[j]) then
add s[i] and s[j] to P

end if
end if

end for
end for
for (int i=0; i < sizeof(P); i++) do

Let found = FALSE
for (int j =0; j < sizeOf(Ov); j++) do

if (Ov[j] represents priority over P[i]) then
Remove defeated error triple
Set found = true

end if
end for
if (found == false) then

remove both error triples
end if

end for

With only the default rule in the rule base, both the A40 and A50 are added
to the error base as shown in figure 3. I.e. roads should not cross rivers.

A further rule is asserted into the knowledge base that contradicts the default
rule by specifying the negation of the error that occurs when the individuals as-
signed to the variables ?x and ?y are A40 and Taff respectively.
[< label > riverRoadCrossException < /label >< ruleLevel > 1 < /ruleLevel ><
ruleGroup > Topo − Semantic < /ruleGroup >< ruleType > 0 < /ruleType ><
ruleClass > 0 < /ruleClass >: Road(A40) AND River(Taff) AND Cross(A40 Taff)
→ notError(roadRiverCrossError http://phils.sorl.ont/A40 Crosses http://phils.sorl.ont/Taff
roads rivers do cross riverRoadCrossException)]

A rule is used to represent the fact that all level 1 rules override all level 0
rules. As a result, because the exception being at a lower level than the default,
the error for that instance is eliminated.
[< label > overrides < /label >:ruleLevel(?x 0) AND ruleLevel(?y 1) → overrides(?x ?y)]

With both the rule exception and the overrides rule now added to the rule
system, only the error between the A50 and Twyn is detected as shown in figure
4.



Fig. 3. Error Base Without Exception Rule(s)

Fig. 4. Error Base After Exception Rule(s) Added

5 Conclusions

A new framework for the representation and management of geo-ontologies is
proposed. Rules for geo-ontologies were shown to serve two primary purposes,
namely, deduction of implicit spatial semantics and expressions of spatial in-
tegrity constraints. Requirements for a spatial rule language for geo-ontologies
are identified and are used as a base for the design and development of a spa-
tial reasoning engine. Particular extensions to support the desired requirements
to the Jena toolkit are described and some examples are given to demonstrate
the developed system. The system developed implements a new spatial rule lan-
guage for geo-ontologies and has been tested and evaluated using synthetic and
realistic geo-ontologies, partly within the scope of the EU SPIRIT project. The
design of the language and details of the evaluation experiments are out of the
scope of this paper.

References

1. Abdelmoty, A. I., Smart, P. D., Jones, C. B., Fu, G., and Finch, D. A
critical evaluation of ontology languages for geographic information retrieval on
the Internet. Journal of Visual Languages & Computing. August 2005, pp. 331–
358.



2. Allen, J. F. Maintaining knowledge about temporal intervals. Tech. rep., Uni-
versity of Rochester, Department of Computer Science, 1981.

3. Antoniou, G., and Bikakis, A. DR-prolog: A system for defeasible reasoning
with rules and ontologies on the semantic web. IEEE Trans. Knowl. Data Eng 19,
2 (2007), 233–245.

4. Bassiliades, N., Antoniou, G., and Vlahavas, I. P. DR-DEVICE: A de-
feasible logic system for the semantic web. In PPSWR (2004), H. J. Ohlbach
and S. Schaffert, Eds., vol. 3208 of Lecture Notes in Computer Science, Springer,
pp. 134–148.

5. Bernard, L., Einspanier, U., and Haubrock, S. Ontology-based dis-
covery and retrieval of geographic information in spatial data infrastruc-
tures. In Geotechnologien Science Report No. 4 (2004). http://www.delphi-
imm.de/meanings/index eng.html.

6. Egenhofer, M. J. Toward the semantic geospatial web. In Proceedings of the
tenth ACM international symposium on Advances in geographic information sys-
tems (2002), ACM Press, pp. 1–4.

7. Forgy, C. Rete: A fast algorithm for the many patterns/many objects match
problem. Artif. Intell 19, 1 (1982), 17–37.

8. Gelfond, M., and Lifschitz, V. The stable model semantics for logic program-
ming. 1070–1080.

9. Goodwin, J. Experiences of using owl at the ordnance survey. 1–11.
http://www.mindswap.org/2005/OWLWorkshop/.

10. Grosof, B. N. Prioritized conflict handling for logic programs. 197–211.
11. Grosof, B. N. Compiling prioritized default rules into ordinary logic programs,

June 23 1999.
12. Grosof, B. N. DIPLOMAT: Compiling prioritized default rules into ordinary

logic programs, for E-commerce applications. In AAAI/IAAI. 1999, pp. 912–913.
13. Horrocks, I., Patel-Schneider, P. F., Tabet, H. B. S., Grosof, B., and

Dean, M. Swrl: A semantic web rule language combining owl and ruleml. In-
ternet Report, May 2004. http://www.w3.org/Submission/2004/SUBM-SWRL-
20040521/.

14. Jones, C., Abdelmoty, A., and Fu, G. Maintaining ontologies for geographical
information retrieval on the web, 2003.

15. Mackworth, A. Consistency in networks of constraints. Artificial Intelligence 8
(1977).

16. Maher, M., and Miller, T. Delores a defeasible logic reasoning system. internet,
2007. http://www.nothingisreal.com/dfki/delores/.

17. McCarthy, J. Circumscription, a form of non-monotonic reasoning. Artificial
Intelligence 13 (1990), 27–39.

18. Montanari, U. Networks of constraints: Fundamental properties and application
to picture processing. In Information Science (1974), vol. 7.

19. Neogy, C. C., (UMBC), S. G., Grosof, B., Dean, M., and Tabet, S. Sweet-
rules. Internet, 2006. http://sweetrules.projects.semwebcentral.org/.

20. Nute, D. General Defeasible Logic. Tech. Rep. forthcoming, University of Georgia,
1989.

21. Reiter, R. A logic for default reasoning. AI 13 (1980), 81–132.
22. RuleML. Ruleml web site. Internet, 2006. http://www.ruleml.org/.
23. Sagonas, K., Swift, T., and Warren, D. S. Xsb: An overview of its use and

implementation. Tech. rep., Nov. 02 1993.
24. Schneier, B. The rete matching algorithm. AI Expert 7, 12 (Dec. 1992), 24–29.


