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An Iterative Displacement Method for Conflict
Resolution in Map Generalization1

M. Lonergan2 and C. B. Jones2

Abstract. Cartographic generalization involves a trade-off between information content, accuracy and leg-
ibility. Conflict resolution, dealing with the problems of having too much information competing for too little
space, is an important part of this process. For an iterative approach to conflict resolution two things are re-
quired: a measure of the acceptability of each intermediate map, and a strategy for finding a better one. Both the
map quality measure and search strategy can have a large impact on the overall speed of the resulting process.
This paper confines its map quality criterion to the minimum distance separating pairs of map features, an
important component of legibility. This measure is combined with an iterative improvement technique, based
on maximizing nearest neighbour distances, which attempts to find an acceptable solution where conflicts can
be solved by displacement alone. The method also indicates those groups of features for which no such solution
is possible. An experimental evaluation compares the method with one which uses simulated annealing and
highlights its advantages with regard to generating many fewer candidate states and operating in a deterministic
manner.
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1. Introduction. Cartographic generalization is the process of selecting and repre-
senting information on a map in a way that adapts to the scale of the display medium
and the purpose of the map. On all but the largest-scale maps, many of the symbols
used to denote the mapped features will occupy a larger area on the map than a correct
scale representation. The result is that there is a competition for map space requiring
selectivity in the choice of which features to represent as well as symbolic abstrac-
tion of form. This can involve simplifying and caricaturing individual features as well
as representing groups of related features with single symbols. It may also be nec-
essary to displace nearby objects from their initial locations to ensure their legibility
[1], [2].

Given the numerous ways in which information may be represented, some criteria
are needed for determining whether a map can be regarded as acceptable for its intended
use [3]. For the purposes of automation, map generalization may be regarded as an
optimization problem. The criteria determining map quality can then be formulated as an
evaluation function and used to compare different possible maps of a given situation. How
such a measure of map quality is best defined will depend on the particular circumstances.
The simplest definitions will produce a Boolean result; either the map is good enough or
it is not. While this is sufficient for deciding whether a single map is acceptable, it gives
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no assistance in finding such a map. For this a measure is required that indicates how far
from acceptability the map is. Information on how and where the map is inadequate is
also valuable. A useful measure also needs to be unambiguous, objective and repeatable.
Ideally it should be both good at discriminating between potential solutions and quick
to calculate.

Once a quality measure has been chosen, it can be used to evaluate potential maps.
However, there is an infinite number of possible ways of representing even a small data-
set. In general, most real problems involve producing maps of relatively complicated
situations from large databases. Therefore only a very small subset of the potential
solutions can be examined individually. A strategy is needed to search the space of
candidate maps. Without detailed knowledge of the topography of the search space,
non-exhaustive strategies cannot be guaranteed to find an optimal solution. This means
that realistically the search is for an acceptable, rather than the “best”, map for a particular
purpose.

The speed of a search depends on the strategy and quality measure chosen and how well
they match the search space. For each individual search, the interaction of strategy and
measure can be seen as producing an ordering on the search space. Each numeric quality
measure can be considered to define a surface over the ordered space. The complexity
of this surface’s topography determines the overall speed of the search. The choice of
an appropriate quality measure and search strategy can greatly increase the speed of
the search. In the case of map generalization, good generalization methodologies begin
by making those changes that are most likely to reduce the number and complexity of
subsequent modifications required.

Two features on a map can be said to be in conflict if they are too close together to be
distinguished. This is usually represented by a fixed distance corresponding to average
visual acuity. A method for resolving conflicts by object displacement is recognized as an
important part of map generalization. The problem of how to relocate single objects has
been investigated previously, for example in [4] and [5]. Previous work on the iterative
displacement of multiple objects has attempted to minimize the number of conflicts
observed [6] or some function of the total amount of conflict observed [7]–[9]. Two
basic strategies have been applied to find the new positions for objects. In [6] and [10]
fixed sets of trial positions were investigated for each object. This project follows the
more common approach of directly calculating displacements. The method used focuses
on reducing the severity of the worst conflict and allows the creation of new conflicts,
enabling the solution of conflict by the displacement of other objects not initially in
conflict. The result is a continuous and deterministic gradient descent method applicable
to a wide range of situations. It identifies the set of features whose modification or
elimination could help solve each individual remaining problem on the map. The method
used to calculate displacement vectors also has the advantage of reducing the number
of object displacements to be investigated when compared with the simulated annealing
method of [6].

The paper describes a simple measure of map quality and an iterative strategy for
object displacement that can be used in the search for an acceptable map of a given
situation. The computational complexity of the new method is evaluated. An experimen-
tal implementation is then compared with one using simulated annealing. Finally, the
potential of this approach for practical map generalization is discussed.
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2. Measuring Map Quality. A very simple measure of overall map quality is used.
We consider a map to be made up of a collection of rigid polygonal objects representing
individual features. In principle each one could either be included in the final map or
excluded from consideration, though this paper only considers improving the map by
object displacement without deletion. Features must be separated from each other by at
least a given minimum distance in the final map and each one can be moved by up to
a given maximum displacement from its original, reference, position to achieve this. A
map that satisfies these criteria is considered acceptable. For intermediate maps all the
features must be within the given distance of their reference positions. The better of two
intermediate maps is then the one with the larger minimum nearest neighbour distance.
(In the case of a tie the second smallest nearest neighbour distances are compared, and
this process repeated until a difference is detected.) This quality measure is incomplete
in that it considers only the issues of legibility, as affected by separation distances, and
locational accuracy. A complete measure of map quality would also have to consider
many other factors. Investigating the limitations of the results produced by using this
measure may help identify necessary modifications. For now we are attempting to find a
map that is acceptable under these criteria and contains as much information as possible.

3. Search Strategy. Starting from an initial map with each object located at its ref-
erence position, each object in turn is considered. Any object that is in conflict with
any other is moved in an attempt to maximize the distance from it to all its neighbours,
subject to obeying the maximum displacement constraint. This process is repeated un-
til the displacements made become small. During the first pass through the process all
objects have to be considered. After this it is only necessary to look at those whose
surroundings have altered since they themselves last moved. If the final state does not
satisfy the minimum separation criterion, it will result in groups of objects that violate
the criterion. The term cluster is used for these groups. The nearest neighbour of each
object within a cluster is also a member of that cluster. A path can be traced between any
two members of a single cluster consisting of a series of steps between cluster members
such that none of the steps is greater than the minimum separation distance. Only pairs
of objects that both belong to the same cluster are less than the minimal distance apart.

If any clusters of objects in conflict exist, it will be necessary to modify at least one
member of each cluster in order to produce an acceptable map. This could involve the
deletion or merging of objects or changes in their representation. By repeating such a
cycle of cluster identification and object modification, all inter-object distances could
be made acceptable, though this paper does not address the implementation of such a
procedure.

An exact solution of the problem of maximizing the distance between irregular poly-
gons is computationally expensive. In cartographic generalization the situation is further
complicated by the requirement that no polygon moves further than the predetermined
maximum displacement distance. This is a more complicated form of the problem of
placing rectangular text labels to identify point features, which has been shown to be
NP-hard [11]. A simple approximation to the problem was therefore used. The shortest
vectors connecting the individual edges of an object to each of the edges of all nearby
objects are identified, and a selected subset of these used to calculate a new position for
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Fig. 1. Two objects in conflict. The shortest displacement that will solve this is horizontal. Motion along the
line connecting their centres (broken arrow) will preserve the apparent relationship between their positions.
The solid arrow shows a possible interaction between edges that is almost perpendicular to these preferred
directions.

the object under consideration. The displacement process is repeated for each object in
turn.

The calculation of conflicts between individual edges, rather than just between whole
objects, is important in certain situations. Without this, the displacement of an object
away from one part of a large and irregularly shaped neighbour may bring it into conflict
with another part. However, if all edges are allowed to interact other problems can result.
Figure 1 shows a simple case where this happens. The solid arrow shows the possible
interaction between the lower edge of the upper object and the upper edge of the lower
object. A large displacement will be required to separate the objects in this direction and,
could even, in some circumstances, result in the right hand, originally lower, object rising
up to be level with or even above the left hand one. A smaller horizontal displacement
will achieve the same overall separation. Displacement along the direction indicated by
the dashed arrow, while needing to be slightly greater than the horizontal amount will
best preserve the relative positions of the two objects. Such displacements can be found
simply by defining a “field of influence” for each edge.

4. Fields of Influence. Point features and those made up of a single line segment can
each be treated as a unit for the calculation of their contribution to displacement. For
areal features only edges that face each other are considered to interact. Each edge is then
considered to have a “field of influence”, within which it can interact with other objects.
The field of influence extends to a distance of twice the minimum object separationr ,
from both sides of the edge, to allow for maps containing nested objects. For an isolated
edge the field of influence includes all space within distancer of the edge. This region is
referred to asB. When an edge is connected at each end to a neighbouring edge, the field
of influence is in two parts, one for each side. The field of influence on each side of the
edge is found from the intersection ofB with a semi-infinite wedge, bounded on three
sides, by the edge and by two rays emanating from the vertices of the edge. If the angle
between the edge and its neighbouring edge is less than 180◦, the ray for the respective
vertex is coincident with the neighbouring edge. If the angle is greater than 180◦ the ray
bisects the angle between them. If there is no neighbouring edge the field of influence
wraps round the vertex. In Figure 2 the edges of an object are shown as solid lines, and
the boundaries of the field of influence of one of the edges (marked e in the diagram) are
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Fig. 2. The “field of influence” of an object edge. Only features located within the shaded area (for example
at positionsX andZ, but notY) can be influenced by edgee of this object.

indicated by broken lines. An object at positionX can only be affected by edgee; at Y
only by edgef ; and atZ by all four edges of the object shown.

For each edge on the original object the shortest vector between it and each edge
of each neighbouring object is found. If this lies entirely within both edge’s fields of
influence they are considered to be able to affect each other. The force,pj,k, exerted by
edgeej on edgeek, the shortest vector between which isvj,k, is then given by

pj,k = −(2s− |vj,k|)v′j,k,
wheres is the minimum acceptable separation distance,|v| is the magnitude of vectorv
andv′ is the unit vector parallel to it. The factor 2 in the equation speeds up the handling
of clusters, and is discussed later in the paper.

5. Displacement Calculation. For each object that is in conflict with some others,
all the forces on it need to be combined to give a single displacement. Hirsch [12]
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Fig. 3. Method used for combining forces on an object into a resultant. The forces are resolved along two
standard directions and the largest components in each of the four cardinal directions are summed to give the
resultant.

applies a similar, vector-based, approach to the name-placement problem, though they
sum the repulsive vectors. Summing or averaging can result in several small effects
combining to outweigh a single larger one. This is avoided here by resolving each
individual force along thex and y (or east–west and north–south) axes and summing
the single largest component in each of the four directions to produce a resultant force.
Figure 3 demonstrates this for the three vectorsv1, v2, v3 (shown as solid lines). Each is
resolved into components in thex andy directions (the dotted lines). The largest positive
and negative components for each axis (in this casex1, x3, y2, y3) are then summed to
give the resultant,r , which equals(x1− x3, y2− y3).

Displacing the object by a vector parallel to this resultant, and with half its mag-
nitude, should place the object at a point where the new forces it experiences are in
balance. (The use of fields of influence that reach out to twice the minimum accept-
able separation distance, as described above, ensures the satisfactory displacement of
objects whose motion would otherwise be unopposed in one direction.) The object is
then moved by this amount, assuming that this does not take it too far from its refer-
ence position. If this is not possible, it needs to be placed at the best of the positions
that meet the object displacement constraint. Since the purpose is to maximize nearest
neighbour distance this is the location within the permissible area that minimizes the
largest remaining force on the object. Figure 4 shows how this is calculated. While the
description of the process is long winded, the calculations it requires are simple and
straightforward.

In Figure 4 the reference position of the object is atO and the calculated displacement
would move the object from some pointP to place it atT . Depending on the relative sizes
of the forces involved and the maximum allowable displacement, there are four possible
cases. Each of the four circles shows the area within which the object may be placed for
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Fig. 4. Movement of an object. Where the preferred displacement toT would take the object too far from its
original position a smaller displacement is made. As described in the text, each circle corresponds to a different
maximum allowable displacement of an object originally located atO. T,U,V andW are the final positions
of the object under the four cases.

one of the cases. The radius of each circle corresponds to the maximum displacement,m,
for the object on a particular map at a particular scale and contains the set of acceptable
positions for it. Here acceptable means only that the object is sufficiently close to its
original position and does not consider any potential conflicts with other, neighbouring,
objects. At the start of the process the object is at some pointP. If the object has not been
displaced previously this will be coincident withO, otherwise it may not be. Conflicts
with neighbouring objects can be resolved to give forces on the object of+a,−b,+c,−d
along the positive and negativex andy axes, respectively.

Given the forces at one point, those at other, nearby, locations can be approximated by
taking each resolved force to reduce by one in magnitude when the object moves a unit
distance in the direction of the force. So if the object is placed at the point one unit below
and two to the right ofP the four forces become(+a − 2,−b− 2,+c+ 1,−d + 1),
using the same ordering as above. These changes are not permitted to alter the directions
of the four forces. Where this would occur the relevant forces are instead set to zero.
The result is approximate in that it treats the surrounding objects as if they formed a box
aligned with the axes and containing the object being displaced, and assumes no other
objects can become involved in the process during the displacement.

T is the point at which the above approximation produces a zero overall resultant force
on the object. It is displaced fromP by the vector12(a− b, c− d) since this produces a
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balance in both the horizontal and vertical forces. This is therefore the preferred position
for the object to move to. However, this may not be an acceptable position for the object,
since it may require moving it further from its initial position than is permitted.

Case 1 is the simplest. HereT is within the set of acceptable positions for the object,
so it moves to this point. The outer circle in Figure 4 corresponds to this situation.

If T is an unacceptable position for the object with regard to its displacement, the object
must instead be placed in the acceptable position that maximizes its nearest neighbour
distance. Though there is no net force on the object at positionT , the magnitudes of the
component forces at this position may not be zero.A is the point at which the three largest
forces on the object are equal to the largest forces atT . It is found by considering the
magnitudes of the component forces at the positionT . Depending on the relative sizes of
the horizontal and vertical forces,A will be aligned either vertically or horizontally with
T . Assuming that the vertical forces are greater than the horizontal ones atT , andT lies
to the right ofO, as shown in Figure 4,A is displaced fromT by ((a+b− c−d)/2,0).
At this location the object would experience three forces of magnitude(c+ d)/2. The
fourth would be the greater of(a+ b− (c+ d)/2) and zero.

Case 2 occurs when part of lineTA is within the area of acceptable positions for the
object, butT is not. The object is then placed at the acceptable position on lineTA that
is closest toT . This is marked as positionU for the second labelled circle in Figure 4.

If no part ofTA is an acceptable position for the object, the object must experience a
larger maximum force at the best of the acceptable positions than it would atT . This is
found by projecting a line angled at 45◦ to the horizontal and towardsO. B is the first
point where one of the line’s coordinates matches that ofO. For clarity this is again only
shown for one possibility.

Case 3 occurs whenB is an acceptable position for the object butA is not. The object
is then placed at pointV , the point onAB that is closest toA and acceptable.

Case 4 is where pointB is unacceptable. The object is put at positionW, the acceptable
point onOB that is closest toB.

This process allows a reasonable approximation to the best location to be found. It
reduces the number of object movements that are required while avoiding having to
recalculate all the forces for each intermediate step.

6. Implementation. The system was implemented in C++. A simple data structure
with individual objects stored as polygons containing pointers to their edges and vertices
was used. Each edge points to its endpoints and each point stores its own location. To
speed up the system’s operation an initial preprocessing step identifies objects that have
acceptable positions with regard to their own displacement but which might be too close
to some other objects. During the operation of the main program, another check is made
to find whether the objects’ centres are close enough together for conflict between them
to be possible in their present positions. The overall structure of the system, as presently
implemented, is shown below:

1. Preprocessing:
(a) Load original objects,Oi . These remain unchanged through the process and act

as a reference for calculating object displacements.
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(b) Make a copy of the objects,Mi . These “map objects” can be moved and may
appear on the final map.

(c) Find centroid (average of vertex positions)ci and spread (distance of furthest
vertex from centroid)ri of each map objectMi .

(d) Find all pairs of objectsMi ,Mj that satisfy

|ci − cj | < (ri + r j + 2m+ 2s),

wherem is the maximum displacement allowable ands is the minimum separation
distance required. (No other objects can conflict for any allowable positions.)

(e) Make all map objects modifiable.
2. Find all those of the pairs that satisfy step 1(d) that also satisfy

|ci − cj | < (ri + r j + 2s).

These might conflict in their present positions.
3. For each mapobjectMi that is modifiable:

(a) set maxforce= 0;
(b) for each edgee of Mi :

for each edgee′ of each objectMj that might conflict withMi in its present
position:

if e′ is in the field of influence ofe, ande is in the field of influence ofe′

(see Section 3 for description of these):
(i) Find shortest vectorv betweene ande′.

(ii) Calculate

force(e,e′) = (px, py),

force(e,e′) = (2s− |v|)v′

(v′ is the unit vector parallel withv).
(iii) If | force(e,e′)| > max force;

set maxforce= force(e,e′);
(c) if |max force| > s (Mi is in conflict with at least one other object)

(i) Find maximum and minimum of each ofpx (px max, px min) and py (py max,
py min).

a = Max{px max,0}
−b = Min{px min,0}

c = Max{py max,0}
−d = Min{py min,0}

(ii) Calculate totalforce(i ) = (a− b, c− d).
(iii) If moving Mi by a distance equal to totalforce(i )/2 is permissable, do this;

else moveMi to best acceptable position (as described in Section 4).
(iv) MakeMi unmodifiable. IfMi has moved make all its neighbours modifiable.

4. Repeat from step 2 until maximum displacement is less than some preset value.

7. Time Complexity. The system falls naturally into two parts for analysis: prepro-
cessing and displacement. Four attributes of the data determine the time the system takes
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to calculate results: the total number of objects considered,n; the maximum number
of edges any one object has,e; the maximum number of other objects that can directly
influence each object,d; and the maximum number of objects in a single cluster,c.

The preprocessing stage described (step 1 above) has a worst-case time complexity of
O(n2), though this could be improved by the use of an appropriate spatial data structure.
Since the neighbourhood search procedure is based on a fixed maximum distance relative
to object edges, following [13] in the use of a triangulation of the object vertices and
edge subdivision would provide anO(n log(n)) method.

The maximum time required to carry out one displacement of each object (steps 2
and 3 above) isO(nde2), since each edge of each object has to be checked against all
the edges of all the objects that can directly interact with it.

The number of iterations through the process (step 4) depends on the cluster size.
The factor 2 applied in calculating the individual forces on an object increases the
displacement of objects under forces from only one direction beyond that necessary to
resolve the immediate conflict they are experiencing. The overall effect of this is to tend
to displace the outermost objects in a potential cluster to their extreme positions in the
first iteration of the process. These movements produce enough space for further objects
to move. Each subsequent iteration will then push another “layer” of objects out. Without
this factor each iteration can do no more than halve the remaining conflicts.

Assuming an even distribution of objects, the total number of iterations required by the
system will therefore beO(c1/2), making the total calculation time for the whole system
O(nde2c1/2). Ignoring map edge effects, it would seem reasonable that the cluster size
should depend ond, but for an individual situation the actual relationship may depend
on the objects’ arrangement and the particular scale change considered.

8. Results and Comparison with Simulated Annealing. Figure 5 demonstrates the
methodology for a simple test case. Here three moveable objects are partially constrained

Fig. 5.Displacement of three objects near a fixed boundary. (a) Initial state. The broken lines indicate conflicts.
(b) After displacement. 1′′, 2′, and 3′ are the final positions of the three objects.
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by a fixed boundary. Initial conflicts are indicated by dotted lines in Figure 5(a). In this
situation, objects that are not directly involved in any conflicts need to be displaced to
make space for others to separate. The initial movement of the largest object (from 1 to 1′

in Figure 5(b)), causes two additional conflicts with the other objects (2 and 3), leading
on to their displacement (to positions 2′ and 3′, respectively). A further displacement
of the large object (from 1′ to 1′′) utilizes the extra space for the solution of the initial
conflicts. This strategy is less easily applied to methods based on either the total amount
of conflict (which is unchanged by the initial object displacement) or those that count
conflicts. Simulated annealing can be used to deal with such situations [6], but this can
require a large number of trial moves and produces a randomly chosen member of the
set of possible solutions.

If the displacement of the smaller objects (2, 3) in Figure 5(b) were only enough to
solve the immediate problem, the cycle of displacement would repeat indefinitely, halving
the conflict each time round. Instead, as the objects are being pushed from only one side,
they move as far as possible away from this force. The subsequent displacement of the
larger object (to 1′′) will then produce a solution, assuming one exists. In this example the
whole process makes four moves to produce an acceptable solution to the problem, one
more than would be required if each object were placed directly into its final position,
but without the necessity to consider multiple object interactions directly.

While the solution found is acceptable under our criteria, it is not ideal. A further
post-processing step to draw each object back towards its reference position, where this
is permissible, would improve the final position further.

A more complicated situation is shown in Figure 6. This involves many more (∼ 320)
moveable objects and more complex fixed linear boundaries. This is the same example
as used by Ware and Jones [6]. Their approach considered a total of 350,000 moves to
produce a solution. The new method makes around 400 moves, depending on the stopping
conditions used. A total of 38 conflicts remain after this (out of an initial 153), similar
to the number Ware and Jones [6] were left with. Measuring the total amount of conflict
remaining in the map, by subtracting the lengths of the shortest inter-object vectors
from the minimum acceptable separation and summing the results, gives an alternative
measure of success. Our method reduces this from 578 to 66. As the technique operates
by attempting to reduce the severity, rather than number, of conflicts this may be a better
assessment of its achievements.

Figure 7 shows a portion of the area covered by Figure 6. This is the “Region 1” dis-
cussed in [6] where gradient descent appeared unable to solve all the conflicts observed.
The broken lines indicate the original locations of the objects and the solid lines their
final positions. The new quality measure has enabled our gradient descent method to
resolve all the conflicts in this area, where [6] required simulated annealing.

While the number of moves made under our method is much lower than that for
the simulated annealing approach, each move requires more complicated calculations.
Direct comparisons of the speeds of the two methods are complicated by the different
program structures and machines used. Ware and Jones [6] report a time of 40 seconds
on a “Sun Enterprise 2 model 220 (2× 200 MHz Ultrasparc processors)” following
preprocessing to generate a triangulated data structure and store the initial values of
all the object interactions. These then merely required updating as objects moved. The
method described here required 32 seconds on a 233 MHz PC to carry out one pass
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Fig. 6.Dataset used in the experimental evaluation of the method.

through the process and 78 seconds to carry out four passes and produce the results
shown, again following preprocessing to identify each object’s potential neighbours.
Our program recalculated all the interactions at each step. The simulated annealing
experiment considered only a limited set of potential positions for each object (though
that is not a requirement of the method), rather than the continuous distribution in this
paper. Neither system was optimized for speed of calculation.

9. Discussion. The method presented here provides a reasonably quick deterministic
solution to the problem of finding a set of displacements that solve spatial conflicts
between a group of objects. The clusters it produces also indicate which objects’ modi-
fication or elimination could contribute to the solution of each part of the problem that
is insoluble to displacement alone. It does this purely by looking at interactions between
pairs of objects. Any iterative generalization technique has to balance the number of oper-
ations it carries out against their individual complexity. By avoiding the direct calculation
of multiple object interactions this approach simplifies each step, while its combination
of the effects of all the interactions of pairs of objects reduces to a manageable level the
number of times each object is moved.

The method does not attempt to produce the best possible map of a situation, merely
an acceptable one. The results could be further improved by post-processing to reduce
the amount of unnecessary displacement of objects. Individual objects are deliberately
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Fig. 7.Magnified view of part of dataset in Figure 6 showing results of displacement. Broken outlines indicate
original positions, solid lines are final positions.

displaced further than is immediately necessary during the process to reduce the number
of moves required to handle large groups in conflict. It would be possible to draw each
object back as near to its reference location as is possible without causing conflicts with
others, though whether the improvement in the results would justify the extra computation
involved is unclear. Future work will examine this issue.

For simplicity, our implementation calculated the “forces” on, and displacement of,
each object in turn. An alternative strategy, as used in [6], would be to store all the
interactions between the objects, move the object under the greatest resultant force and
then update everything this affects. This may well reduce the number of moves required
to find a solution, but requires the storage and manipulation of much more information.
For real situations, involving large numbers of objects and interactions, it is not clear
whether this, along with the need to identify the next object to move, would outweigh
any advantages of a more sophisticated strategy. This will also be further investigated.

Another possible way to accelerate the conflict resolution process is to carry out a
simple preprocessing step to deal with some of the most obviously insoluble situations.
The method we describe here involves detailed calculations, comparing individual edges
of the objects. Less complex techniques, perhaps based on object areas and approximate
arrangements, may suffice to identify a significant proportion of problems. The present
implementation uses simple circle-based methods (steps 1(d) and 2 in the algorithm
described) to restrict the numbers of potential interactions to be examined. These are
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similar to the methodology in [10], though that paper applies them directly to the selection
of new positions, considering the unnecessary displacements produced to be outweighed
by the overall simplicity. What proportion of situations require which techniques is likely
to vary between scales, data sources and map types, and only become apparent through
experimentation.

A major advantage of this approach over simulated annealing is its determinism.
A given initial situation will always produce the same result, while a system based on
simulated annealing can produce very different results each time it is run. It is not always
essential that two maps of the same situation and scale should be identical, but there are
cases where it may be important. Another benefit of the new method is its identification
of all possible objects that could be merged or eliminated to assist in solving a problem.

The methodology presented here is anisotropic. As the “forces” are resolved along
the map’s north–south and east–west axes, rotating the axes could produce slightly
different results. Resolving along and perpendicular to the direction of the largest “force”
experienced by an individual object could solve this, but makes the results very sensitive
to initial conditions in cases where non-orthogonal forces are similarly sized. Whether
the small differences this makes in the final map are important will, again, depend upon
its purpose.

Further work is under way to extend the method to include generalizing lines and
the displacement of deformable objects. Once these processes have been added to the
system it will be possible to start examining the results for simple maps of real situations
and assessing their utility.

Overall the relative crudity of the measure of map quality may limit the use of the
method’s results to certain purposes, but it may be that relatively simple modifications
to the quality measure could greatly increase its applicability. Many maps allow at least
some type of objects to be in direct contact and this may need to be incorporated into
the technique. Representing large-scale structure and retaining patterns within groups of
objects while removing some members is likely to be more difficult. Ruas [8] suggests
an approach to the problem of local distortion, based on each object’s motion drawing
its neighbours along with it. Incorporating this into the method might provide a partial
answer to the problems of large-scale structure. However, an entirely different approach
may be required to identify and simplify regular patterns of objects and networks of linear
features (such as those suggested in [14] and [15]). The approach presented here could
then be applied to optimizing the arrangement of the groups and structures identified or
produced by such a system.
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