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1 Introduction

One of the major types of query required of spa-
tial databases is that of proximity search. The inten-
tion is to find objects nearby or within a particular
distance of a given location. In geographical infor-
mation systems (GIS), proximity search is used, for
example, in applications concerned with urban and
regional planning where the distances from certain
phenomena impose constraints on planned develop-
ments. Thus, the user may need to know of all re-
sources of a specified type within a particular dis-
tance of a proposed new facility, or may wish to
know about phenomena within a particular distance
that may affect, or be affected by, a proposed devel-
opment. In robotics, the movement of a machine part
or of a vehicle may require continuous updating of
information on nearby objects that may act as poten-
tial obstructions.

In most geographical databases, spatial queries, such
as point location within a region, range searches and
proximity searches, are implemented by means of
a combination of a spatial index, such as a quadtree
or an R-tree (or one of its variants), with geomet-
ric computation that may require a local, exhaus-
tive search on a subset of the database obtained via
the spatial index. Retrieval of candidate objects for
a spatial search has been described as a filter step,
while the execution of computational geometry pro-
cedures to find the correct answer has been described
as a refinement step (Orenstein 1989). Kriegel et
al. (1991) show that considerable benefits in spatial
query can be obtained at the refinement step by em-
ploying structural decomposition of the spatial ob-
jects. This reflects the results of research in compu-
tational geometry in which the use of decomposi-
tion into trapezia or Voronoi regions, for example,
has been shown to produce very efficient locational
search procedures (Preparata and Shamos 1988).
When decomposition is applied in its basic form, de-
spite the performance improvements of decomposi-
tion into the smallest spatial units such as triangles or
trapezia, itimposes a considerable storage overhead.
For this reason, more complex compromises be-
tween basic decomposition and non-decomposition
have been proposed (Schiwietz and Kriegel 1993).
However, in the particular case of triangulations,
it is notable that some applications and procedures
in GIS already build triangulated spatial models to
exploit their benefits in modelling environmental
and cartographic phenomena. The prime example
in a GIS context is in terrain modelling, in which
triangulated irregular networks (TINS) are widely
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used (in preference to or in combination with regularn this paper, a triangulation-based procedure for
grids) for the advantages that they bring with regardinding the object boundary nearest to an arbitrary
to interpolation between precise representations gjoint is described. It modifies a similar procedure
original sample data (Peucker et al. 1978). This maylescribed by Jones and Ware (1997), by introduc-
include point, line and polygonal features that can acing a priority queue. The performance of the proce-
as constraints on the triangulation. dure is evaluated with five geographical datasets and
Interest in the use of triangulated models has ina comparison with an implementation of the same
creased recently in recognition of their merits in im-query using a PMR quadtree. This has previously
plementing the spatial transformations of map genebeen shown to provide good performance in proxim-
alisation, whereby the cartographic forms of spatialty searches (Hoel and Samet 1991, 1992; Hjaltason
phenomena are simplified to meet the requiremenand Samet 1995).

of information abstraction and the limitations of re-In the remainder of the paper, Sect. 2 reviews the
duced map scales (DeLucia and Black 1987; Jonesharacteristics of constrained Delaunay triangula-
et al. 1995). Neighbourhood search is an essentidibns and makes a comparison with representations
aspect of automating map generalisation operatorbased on generalised Voronoi diagrams and their
Outside GIS, triangulations also have a long histonyduals. This is followed in Sect. 3 by a description
of use in finite element analysis, computer-aided deef a triangulated data structure called the simpli-
sign and robotics. See Baehmann et al. (1987) andal data structure (SDS), which is based on con-
Storer and Rief (1994), for examples. strained Delaunay triangulation. Section 4 docu-
We now summarise several characteristics of triments a nearest-neighbour algorithm implemented
angulated spatial models that motivate further inwith the SDS. Section 5 summarises how the same
vestigation of their application in processing spatialquery is implemented in a quadtree, and gives experi-
database queries. mental results. A comparison of the results of the two

_ ) implementations is presented in Sect. 6, while Sect. 7
Complete representation of map spaCenventional  provides conclusions.

object-based spatial data representations focus on in-

dividual map features that may or may not be con-

nected with neighbouring objects. In a triangulated? Delaunay triangulation

model the entire region, including intervening areas

between map objects, is explicitly represented. A Delaunay triangulation of a set of points is char-

acterised by the fact that the circumcircle of each

triangle contains no other points of the set. It is also

the most equiangular triangulation in the sense of

Maintenance of topological relations between spaMaximising the minimum angle (Sibson 1978). Itis
of particular interest in computational geometry in

tial componentsExplicit storage of connectivity be- o g
tween spatial data elements of a triangulation facilithatitis the dual of the Voronoi diagram and, as such,

tates both the maintenance of consistency under g&-Provides a solution to the problem of determin-

ometric transformation and the efficient computatiod"d the néarest neighbour of each member of a set of
of answers to topological queries. points (Shamos and Hoey 1975). Voronoi regions of

a set of points represent the locations that are closer

Rich proximity relationsNearest-neighbouring ele- to €ach point of the set than to any other point in the
ments are usually connected by triangulation, witfset. The Delaunay triangulation connects, through
the result that proximal search procedures can be inftiangulation edges, each point with each other point
plemented relatively simply and with a potential for With which it shares a boundary of their respective

great efficiency. \oronoi regipns. ' .
Delaunay triangulations of sets of points are com-

Facilitates surface interpolationBy constructing monly used to represent digital elevation models in
the most equiangular triangulation, which may beGISs and to model engineering structures for finite
subject to linear constraints, high-quality interpo-element analysis. In these applications it is common
lation is ensured when the triangulation representpractice to modify the triangulation by introducing

a terrain model or other spatial field. linear constraints to which the triangulation edges

Precise tessellated representatidie original pre-
cision of the source data can be maintained.
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Fig. la—c.Test datasetaab, b ubandcrd3
Fig. 2a—c.SDS representation of datasatab, b ubandc rd3

must conform. In terrain modelling these constraintoriginal data, but, unlike a CDT, it is not an explicit
may correspond to natural features such as ridgesgpresentation of the Cartesian coordinate-based lo-
valleys and breaks of slope, and to structures suctation of the graphic elements.

as roads and buildings located on the terrain. Thin a CDT, the nearest-neighbouring point and line
introduction of constraints to create a constraine@&lements are in fact usually connected by triangu-
Delaunay triangulation (CDT) results in the loss oflation edges. Experiments conducted by the authors
the empty circumcircle criterion, but the triangula-using the datasets described later in this paper found
tion is still the most equiangular triangulation, givennearest-neighbour connectivity in more than 99.5%
the constraints (Lee and Lin 1986; Chew 1989)of all cases tested. Figure 2b illustrates a CDT of the
A further consequence of introducing constraints isset of polygonal objects in Fig. 1b.

that there is no longer a simple duality relationship

with the Voronoi diagram. For a set of points and . . . . -

straight edges, the corresponding Voronoi diagrars PTOXimity relations in a simplicial

is sometimes referred to as a generalised Voronoi data structure (SDS)

diagram, or line Voronoi diagram, and its dual

consists of a triangulated graph in which nearestA SDS is defined to consist of a constrained Delau-
neighbouring elements are directly connected (Lee@ay triangulationT of a set of points and straight
and Drysdale 1981). Each node of the graph coredge sitesSrepresenting the geometry of a set of ob-
responds to either a point or a line element in thgects O. Objects may be one of three types: point,
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line and area. A point objead, € O consists of a search is conducted around that triangle starting
a single point sites, € S. A line objecto € O con-  with the proximal-0, i.e. contiguous, neighbours of
sists of one or more edgsse S while an area object the triangle.

0, € O is a simple polygon represented by at leastn a boundary-nearest-a-point query, the extent to
three edges. € S. which the search needs to proceed beyond the
It is possible to describe several proximity relationsproximal-0 elements depends upon the degree of
in terms of the triangulatiom of a set of point equiangularity of the triangulation. This is illus-
and straight edge siteéS Two objects are contigu- trated in Fig. 3. Having found a candidate nearest
ous if they share one or more elemests S. Con-  neighbour in the proximal-0 elements of the seed
tiguity may be either point contiguity if the ob- triangle in an equiangular triangulation, the actual
jects share a vertex, or edge contiguity if the ob-nearest neighbour has a great likelihood of also be-
jects share an edge. Both cases are referred to harg proximal-0. In a nonequiangular triangulation,
as proximal-0. Non-contiguous proximality is de-the proximal-0 initial candidate nearest neighbour
scribed as proximat, wheren > 0 is the minimum may be relatively far from the seed location, and
number of triangulation edges that must be traversed search could require examining triangles at sev-
(from vertex to vertex) to move from one object to eral degrees of proximity beyond the connected set
the other. to prove that the nearest neighbour has been found. It
In a Delaunay triangulation of a set of points, may be noted, however, that the search need not pro-
Voronoi neighbours are proximal-1 related. Ina CDTgeed beyond any given triangle edge if that edge is
Voronoi neighbours, i.e. those point and line ele-at a distance equal to or greater than the distance to
ments that would share a boundary of their respea current nearest-neighbour candidate in the search
tive Voronoi regions, are not necessarily proximal-1procedure.

though as already indicated, direct connectivity and

hence the proximal-1 relationship is found to hold in

avery large proportion of cases. 3.2 Components of the SDS

3.1 Nearest-neighbour search in a SDS Here we describe an implementation of the SDS in
which all objects are either lines or areas. Inclu-

sion of point objects is a simple extension, and it
To find the nearest-neighbouring object of an obis not described here. The data structure is based
jectin the SDS, it is possible to implement a searclon a constrained Delaunay triangulati@nof ver-
procedure that enumerates the component edgéises and constraining edges constituting the sges
of triangles in the vicinity of the source object in as previously stated. The triangulation is defined in
distance order, examining components of the SD$rms of a set of edge& and verticesV. An ob-
in increasing order of their proximal-relation to ject is classified as either a line objegt which
the source object. The search terminates when it is associated with pointers to the set of component
proved that there is no nearer object than a currer@dgesk,, € E, or an areal objecb,, which is as-
nearest-neighbour candidate. Clearly, if it had beesociated with pointers to the set of component tri-
known that the nearest non-contiguous neighbouainglesT,, € T. Eachtriangle € T is associated with
was proximal-1, the search would have had a localla triangle identifier and a set of three pointers to the
constrained performance that depended upon the vaemponent edgei®;, e, e3}. If the triangle belongs
lency of the triangulation nodes on the boundary oto an areal object, the identity of that object is stored
the source object. Without guaranteed direct confotherwise this value is null). Each edge is classi-
nectivity, i.e. proximal-1 relations, the search will fied as either a real edge if it coincides with an edge
often need to proceed beyond the directly connectegl € S, or a virtual edge. If an edge is real and it be-
neighbouring elements. longs to a linear object, the identity of that object is
In this paper we focus on searching for the boundstored; otherwise this value is null. An edge is as-
ary of the nearest neighbour of an arbitrary pgint sociated with pointers to its two component vertices
that is not a member of the original sit€sIn this  {vs, ve} and to each of its adjacent triangles on the left
case the containing triangle of the pointis found, anénd right sidest;, t; }.
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Fig. 3a, b. Finding the nearest object boundary to a pgintn both cases, a candidate elemerns$ found. Case
requires fewer triangles to be processed thalue to greater triangle equiangularityan

4 The SDS algorithm for the (initially set to an appropriatéarge_valug, then
neighbour nearest to a point a test is carried out (with the Boolean function
IsRea) to check whethee is a real edge. If it is,
theneg, is set to the value ok andd, is updated
The problem of finding the object boundary nearesto d. Alternatively, if e is a virtual edge (and lies
to an arbitrarily placed point can be reduced to thatvithin a distancel, of p), thenitis added to a queue
of finding the real edge nearest to that point. If thissearch_queuef edges waiting further processing.
edge belongs to a linear object, then the identity off he search_queués initially set to empty byini-
the object is found by examining the edge’s objectialiseQueueand edges are added with the function
pointer. Alternatively, if the edge belongs to an arealAddToQueueEach search_queud&em records, in
object(s), then the object(s) is found by examiningaddition toe, the identity of the triangle used in lo-
the object identifiers associated with its adjacent tricating e and the minimum separating distande
angles. AddToQueueensures that edges are maintained
The algorithm for finding the real edg® nearest in search_queudn order of increasing distance
to an arbitrarily placed poinp is listed in pseudo- from p.
code in Fig. 4. The algorithm assumes that the tri-The next part of the search algorithm (step 2) con-
angle t; containing p has been found previously sists of a loop in which items (each consisting of an
by means of a spatial index (in this implementa-edgee, a trianglet and a distancel) are removed
tion the index is in the form of a regular grid). To from the head ofsearch_queuavith the function
find e,, the search proceeds outward fragnenu- TakeFromQueueThe loop is repeated until either
merating the SDS edges in increasing order of dissearch_queus emptied or no edge search_queue
tance fromp. A record of the real edge currently lies nearer tp than the current nearest edgge Af-
found to be nearest is kept throughout the searchier an edge is removed from the queue, processing
together with its associated minimum separating disthe edge begins with a test to see if its distadce
tanced, from p. During the search, edges and trian-to p is less than the currerd,. If it is not, then
gles are marked as having been visited when they atlis indicates that the true nearest real edge has al-
processed. ready been found and the search can stop. Alterna-
Initially, each edgee of t; is examined in turn tively, if d is less thard,, then further processing
(step 1). If the minimum separating distandde- of e is required. This involves, firstly, finding the
tween p ande (calculated with the functioRoint-  trianglet; adjacent td and sharing with it the com-
EdgeDistancgis less than the current value df  mon edges with the functionTriangleEdgeConnect
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BeginPriorityQueueSDSSearch
InitialiseQueue(search_queue)
d, < large_value
STEP 1:
For each edge e € t;
d < PointEdgeDistance(p, e)
If (d<dp)
If (IsReal(e))
e, «— e
dy <~ d
Else
AddToQueue(search_queue, e, t;, d)
Endif
Endif
Mark e as visited
Endfor
Mark t; as visited
continue <— TRUE
STEP 2:
Do while (NotEmpty(search_queue)) and (continue)
TakeFromQueue(search_queue, e, t, d)
If (d<dp)
t; < TriangleEdgeConnect(t, e)
If (NotAlready Visited(t;))
For each edge e; € t;
If (NotAlreadyVisited(ez))
d; < PointEdgeDistance(p, e;1)
If (d; < dp)
If (IsReal(ez))
eh < €1
dn <~ dl
Else
AddToQueue(search_queue, ey, t1, d1)
Endif
Endif
Endif
Mark e; as visited
Endfor
Mark t; as visited
Endif
Else
continue <— FALSE
Endif
Enddo
EndPriorityQueueSDSSearch

Fig. 4. Pseudo-code for Algorithm 1, a SDS search prog

dure using a priority queue

D

4.1 Correctness of Algorithm 1:
FindNearestRealEdge ToPoint

Proof of correctness of the algorithm is based on the
assertion that the algorithm will build a polygonal
region that contains the query point and the nearest-
neighbouring edge, and that, when the algorithm ter-
minates, all parts of the boundary of the region will
be at least as far away fromp as the nearest edge
is. It is assumed that the triangulation is fully edge-
connected in that it is possible to move within the
triangulation from any point to any other point by
crossing triangle edges and passing within the inte-
rior of triangles.

Lemma 1. Given a query pointp located inside
a triangle ts belonging to the triangulatio, the
edge-based search in Algorithm 1 will build and
maintain a polygonal region that containg and
consists of the union of the processed trianglgs

Proof.Once processed, the triangleconstitutes the
initial state of the polygon, and by definitiadnicon-

tains p. The next triangle,, to be processed at all
stages in the search process is the one externally con-
nected to the edge in the queue that is nearest to the
query pointp. Trianglet, must therefore be edge-
connected to the processed triangle set, since edges
are placed in the queue only as a consequence of pro-
cessing a triangle which becomes a member of the
setTp.

Lemma 2. Given a query pointp located inside
a constrained triangulatio, Algorithm 1 will find

the real edges, € T such that the distance frop

to e, is smaller than or equal to the distance frgm
to all otherrealedges, € T.

Proof. SinceT, defines a polygonal region contain-
ing p, it will be possible to prove that the nearest
edge has beenfound ifthere is areal egljge T, and
there is no other edge (real or virtual)e T, that is
nearer top thane, is. The first step of the algorithm

Then, provided,; has not been processed previouslyconsists in processing the triangdghat containg.
each edge of; is examined in turn. For a particular Thus, from Lemma 1, the algorithm cannot terminate
edgee,, this involves an initial test to check if the without having built a polygon containing. When
edge has been examined previously. If it has notg has been processed, if one or more of its edges is
then the distancd; betweenp ande; is calculated.

If d; is less thard, ande; is a real edge, then,

andd, are set to the values @& andd;, respec-

tively. If, however,d; is less thard, ande; is vir-

tual, thene; (together witht; andd,) is added to

search_queue
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real, then there will be a candidate nearest egige

If this edge is nearer tp than the other edges tf
then no triangles will have been placed in the queue
and the algorithm will terminate, having identified
the real edge on the boundarykgfthat is nearer than
all other parts of the boundary. Alternatively, T,



grows beyond, the process of growing, willonly  centre of the square. In this situation, the nearest
terminate when there is no edge in the queue that isdge would be proximal-0 to the seed triangle, but it
nearer top thane, is. If there is no such edge in the would be necessary to search in both directions par-
queue, then all boundary edgesTf must be far- allel to the rows to create a processed triangle set
ther frompthane,; otherwise, they would have been in which all boundary edges were farther than or at
queued. equal distance to the nearest edge(s).
The worst-case analysis represents what would be
an extremely unlikely configuration of the data for
4.2 Analysis geographical applications. The number of edges pro-
cessed in a query is itself determined by the num-
The algorithm requires a preprocessing stage to builber of triangles required to construct the surround-
the constrained Delaunay triangulatibnThis stage ing polygon of the query point. This polygon always
requiresO(N log N) time andO(N) storage (Chew covers the disc of radius equal to the distance to the
1989), whereN is the number of vertices. Step 1 nearest neighbour. Hence, the number of such trian-
of the algorithm calculates three distances and addges will be related to the degree of equiangularity
a maximum of three items to the queue; it therefordas illustrated in Fig. 2).
requiresO(1) time. Step 2 consists of an iterative
process in which the functioTakeFromQueuand
PointEdgeDistanceeach require a constant time, 4.3 Experimental results for the object
while the function AddTOQueUﬁakeS |Og time nearest to a po[nt When the SDS was
wherel is the length of the queue. The number of
iterations is equal to the number of edges that are used
processed.
It is easy to establish that the lower bound on the alin order to examine the performance of the algo-
gorithm is O(1), as this follows from the fact that rithm in practice, five datasets were used in the
the algorithm will terminate after step 1 if no edgestests. This section reports on results from the SDS
are placed in the queue. If items are placed in thalgorithm, while the next section reports on the re-
gueue, then processing time@gklogk) wherekis  sults when a quadtree was used for the same set
the number of edges that are processed. of searches. Three of the datasets are illustrated
It is possible to envisage worst-case scenarios forthe Fig. 1. Datasetab consists of administrative
algorithm in which, due to a particular configurationboundaries, such as counties. Datadetonsists of
of the data, all edges df are examined before the urban area boundaries. Dataselts andrd2 consists
algorithm terminates, giving a time @(N log N).  of two different sets of roads, while datasé8 con-
This could arise if the data points were organisedists of a generalised versionrd, i.e. one in which
in the form of two parallel rows on opposite sidesthe numbers of vertices has been reduced. The char-
of a square and the query point was located at thacteristics of the datasets are summarised in Table 1.

Table 1. Description of datasets

Data Number Number Number Number SDS storage Average Average Average  Quadtree
set of of of of real virtual triangle storage
objects edges  vertices SDS edge edge aspect  (in bytes)
triangles  Triangulation Grid length length ratio

(inmetres) (in metres)

ab 10 858 859 1712 41120 39575 269 22184 3004 48 602
ub 313 5012 4968 9930 239024 276728 263 8887 8.80 188 496
rd1 1423 6154 5648 11289 279088 321036 B05 9457 7.05 319 160
rd2 4209 9252 8003 16 000 404 032 519 468 300 7160 5.64 484018
rd3 4209 4122 2963 5920 162 112 195 540 673 11085 4.68 226 138

A triangles aspect ratio is calculated by dividing its longest edge length by its shortest height
SDS, Simplicial data structure

241



The tests consisted of generatit@000query points  Note that the average value of humbers of calcula-
on a regular grid and finding the object nearestions in Table 2, based only on point—-edge distance
each point for each of the datasets. The results amalculations is less tha2v in all cases, but the max-
tabulated in Tables 2 and 3. This was done in orimum value rises t85for two of the datasets.

der to cast some light on the applicability of theThe CPU times per query, on a SPARC 10 compulter,
theoretical evaluation of performance already disfanged from0.00009 sfor datasetd3 to 0.00025 s
cussed. In Table 2, the number of calculations referir dataseab.

to the number of point—edge distance calculations

that were performed relative to edges of the tri-

angulation,passuming that the seedgtriangle has a2 PMR Quadtree search for the

ready been found. Note that the point—edge distance neighbour nearest to a point

calculations are required for examining both real

and virtual edges of the triangulation. In Table 3,In an effort to evaluate the triangulation proxim-
the number of calculations refers to a value thaity search algorithm with respect to other search
adds the number of point—edge distance calculatiomaethods, the same set of tests was run with an
that were performed for the triangulation edges tamplementation of the PMR quadtree (Nelson and
double the number of point-in-triangle tests neede@amet 1986). This was chosen as an alternative
to find the seed triangle from the spatial index.data structure for comparative purposes as it has
The factor of two is based on a comparison obeen documented in some detail and has itself
the number of multiplications and divisions usedbeen compared systematically with other spatial
in the point-edge distance function and the numdata structures (Hoel and Samet 1992). In particu-
bers of such operations used in the point-in-triangléar, Hoel and Samet (1991) report detailed results for
function. finding the edge nearest to a point in a ‘bottom-up’

Table 2. Results of the object-nearest-to-point test with simplicial data structure

Data Number of calculations Average Time taken
set number (in seconds)
Average Standard ~ Minimum Maximum  of real edges Average Standard

deviation examined deviation

ab 23.66 1339 3 84 666 0000244 0000311

ub 14.64 744 3 58 403 0000133 0000154

rd1 1353 7.46 3 56 418 0000123 0000160

rd2 1047 618 3 95 353 0000098 0000164

rd3 7.27 484 3 95 292 0000070 0000091

The initial containing triangle is assumed to be known. Each test inva@€90point queries

Table 3. Results of the object-nearest-to-point tests with simplicial data structure

Data Number of calculations Time taken
set (in seconds)
Average Standard Minimum Maximum Average  Standard
deviation deviation

ab 2853 1566 3 148 0000250 000031

ub 19.40 794 3 75 0000143 000016

rd1 1881 7.83 3 76 0000134 000015

rd2 1534 7.95 3 193 0000109 000017

rd3 12.06 725 3 197 0000085 000015

This includes calculations and time required to locate the initial containing triangle. Each test involves
10 000point queries. Note that the average number of real edges examined is the same as for the
corresponding experiment in Table 2
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procedure. The containing cell of the query point isThe procedure for a quadtree search with a priority
found, then adjacent cells within the radius of thequeue builds a list of quadtree cells in the vicinity
currently nearestidentified edge are examined to findf the cell containing the query point following the
the edge that is nearest. An analysis of the PMRnethod of Arya et al. (1994), which is adapted to
guadtree for finding the edge nearest to a point showtbe particular case of the quadtree decomposition of
that the procedure gave averagetime of O(k), space. The approach is based on enumerating cells
wherek is the splitting threshold of the quadtree.in order of their distance from the query point. The
Experimental results were presented with geograplpriority queue is built dynamically; only those neigh-
ical data. The PMR quadtree has also been used asuring cells of a current cell that are candidates for
the basis of a description of a top-down distanceeontaining the nearest object are added.
ranking procedure that uses a priority queue to find'he procedure, which is summarised in pseudo-code
all neighbours nearest, d&rnearest, to a given ob- in Fig. 5, starts by finding the cell containing the
ject (Hjaltason and Samet 1995). An analysis of thejuery pointp and recording the distances to and the
latter procedure concludes that the worst-case timeoordinates of the nearest locationgton each face
complexity wasO(N log N), whereN is the num- of the cell. The edges referenced by the cell are ex-
ber of leaf blocks in the quadtree and the germ amined, and, if there are edges in the cell, the edge
refers to the cost of updating the priority queue.nearestt@is saved. Forthose faces of the cell closer
This analysis also applied to the case of finding théhan the current nearest edge, the neighbouring cell
neighbour nearest to an object, but was described axross the face is found and placed in the priority
corresponding to a pathological worst case. queue. Cells are inserted into the priority queue by
In making a comparison with the SDS-based searctietermining the distance to the query point for each
procedure with regard to distance-based calculadace. The smallest of these distances (and hence the
tions in the quadtree search procedure, it is neshortest distance fromto the cell) is used to deter-
cessary to take account of the cost of determiningnine the sorting order in the priority queue. Provided
whether a quadtree cell is within the current searclthe priority queue is not empty, the cell at the head
radius. This is required as part of the pruning processf the queue is removed from it. If the distance to
whereby the contents of a cell are only examined ithis cellis less than the distance to the current nearest
the cell itself is within the radius. Distance measure-edge, its referenced edges are examined. If its neigh-
ments to each of the horizontal and vertical faces obouring cells are within the current search distance,
the cells require about one-quarter of the number athey are added to the priority queue, as already in-
floating point operations required by the function todicated, provided that they have not previously been
determine the distance from a point to an arbitraryinserted into the queue. Note that one of the four
edge. Thus, the four distance tests for all faces ofeighbours of each cell will be the cell from which it
a cell can be weighted as approximately equivalent twvas entered. The process terminates either when the
the cost of a single point—edge distance calculation. cell at the head of the priority queue is farther away
than the currently nearest edge, or when the priority

5.1 Quadtree search procedure queue is empty.

A main memory linear PMR quadtree, in which . .
only leaf nodes were stored, was implemented. Thg'z Observations on the analysis of the

quadtree cells were identified by Morton numbers  quadtree search procedure

and the associated level in the tree. The search proce-

dure uses a priority queue and adopts the bottom-uphe quadtree search procedure is used here for ex-
approach described by Arya et al. (1994) in theirperimental comparison only and is based on prin-
account of a nearest-neighbour procedure, whictgiples described elsewhere (Nelson and Samet 1986;
with their specialised (not quadtree) spatial indexingHoel and Samet 1991, 1992; Arya et al. 1994; Hjalta-
method, gave a search time complexity@iog N).  sonand Samet 1995). We provide some observations
Note that the quadtree was implemented in mairon the worst-case complexity of Algorithm 2, which
memory to assist in timing comparisons with thegives the same result as that of Hjaltason and Samet,
SDS search technique, which is also main-memorgnd we comment briefly on the lower-bound time
based. complexity of the algorithm.
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BeginPriorityQueueQuadtreeSearch
search_radius <— maximum range of data
Find cell ¢ containing query point q
For each face f of cell ¢
fdof < distance(q, )
npf <— nearest point to q on f
Endfor
distance_to_cell < 0
continue <— TRUE
While ((distance _to_cell < search_radius) and continue)
For each edge e referenced by cell ¢
distance_to_edge <« distance(q, e)
If (distance_to_edge < search radius)
search_radius < distance_to_edge
nearest_edge < e
Endif
Endfor
For each face f of cell ¢
If (fdcf < search radius)
Find neighbouring cell n at nearest point (npf) to q on f
If (n is inside the quadtree and n has not been visited)
For each face f of cell n
fdps < distance(q, )
nppf <— nearest point to q on f
Endfor
distance_to_cell <— min{fdg}
Add_to_priority_queue(n, {fdpy, fdno, fdng, fdna}, {nPn1, NPn2, NPn3, NP4t
distance_to_cell)
Mark n as visited
Endif
Endif
Endfor
If (notempty(priority queue))
¢ < head of priority queue
Else
continue < FALSE
Endif
Endwhile Fig. 5. Pseudo-code for Algorithm 2, a quadtree search prd

EndPriorityQueueQuadtreeSearch cedure using a priority queue

Processing a cell to place it in the priority queuewhich the query point is located at the centre of the
requires a constant number of distance calculeeircle can be envisaged. Since the algorithm will
tions and a search to find the identity of the neigh-only terminate when either there are no items in
bouring cell for each face. In our implementation,the priority queue or there is no item in the queue
this neighbouring-cell location procedure involvesthat is nearer than the nearest edge, it will be nec-
a search through the Morton-ordered list of leafessary to process dllquadtree cells that reference
nodes to find an equivalent or immediately-less-thamlata. This is due to the fact that the boundaries of
match between a leaf node and the Morton code dhose cells will be either at the nearest-neighbour
the location generated by neighbourhood operationsearch radius or inside it. The only cells of the
This therefore require®(log N) time, whereN is  quadtree not to be processed would be those be-
the number of leaf nodes.Assuming that there argond (relative to the query point) the set of cells
m cells placed on the priority queue before the nearreferencing data items. Thus, the algorithm will
est edge is found, this leadsitolog N time. Inser-  require O(log N) operations to find neighbouring
tion into the priority queue is governed by a sortingcells plusO(klog N) operations to insert cells into
order and therefore takes tini&logm), wheremis  the queue. Sincd will approximate to (but not
the length of the priority queue. exceed)N, the total number of leaf nodes in the
A worst-case scenario for Algorithm 2 in which all data configuration envisaged, the worst-case time
data edges are located tangential to a circle and i3 O(N log N).
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A lower bound on the time complexity of the algo- distance computations, expressed in terms of com-
rithm is given by the case in which the quadtree celparable calculations. In summary, the average num-
containing the query point also contains the nearbers of calculations ranged froh2.1 to 28.5 for the

est edge, and in which all faces of the cell are farSDS including the search for the seed triangle, and
ther from the query point than the nearest edge. Ifrom 11.9 to 26.3 for the quadtree, taking account of
this situation, no cell will be placed in the priority all datasets. In an effort to provide some comparison
queue, and the algorithm will terminate after pro-with the method of presenting results used by Hoel
cessing a single cell giving a time @(1). Note and Samet (1991, 1992) for a similar query, we have
that the number of edges that can be referenced tajlso reported the numbers of edges (‘real edges’) of
a cell is limited to that of the splitting threshold value the source data that were examined for purposes of

specified for the quadtree. point-edge distance calculations. In the SDS these
range from2.9 to 6.7, while in the quadtree they
5.3 Quadltree search test results range from9.6 to 16.5. The lower and upper val-

ues correspond to the same datasets, namtdy
Table 4 contains the results of the quadtree searcindab, respectively, for both procedures. Hoel and
tests for the five datasets, and Fig. 6 illustrates th&amet (1991) found that the numbers of such edges
quadtrees for three of the datasets. The quadtre&xamined in their datasets ranged betw@&67
splitting threshold was in all cases. Note that the and37.22 No experimental results were reported in
number of distance calculations is based on thassociation with the top-down quadtree-ranking pro-
number of point—edge distance calculations plus theedure of Hjaltason and Samet (1995).
number of point—cell distance calculations. Note thafhe average CPU times per query in the SDS
the numbers of such calculations for the datasets vaiacluding the search for the seed triangle range
ied on average betwedri.9 and26.3. One column from 0.00009to 0.00025 while in the quadtree they
of the table reports separately the numbers of reaiinge from0.00045t0 0.0013
edges of the data that were examined, i.e. for whicA'he storage of the SDS, when the spatial grid as-
point-edge distance calculations were performedsociated with the reported results is included, was
The average CPU times per query, on a SPARC 1@bout double the storage required for the quadtree
ranged from0.00045 sfor datasetd2 t0 0.00130s with a threshold 08.
for dataseab. If the threshold of the quadtree is set4pthen the
storage requirements for the two schemes are very
. similar. Doing so results in a very small improve-
6 Comparison of results for SDS and  ment in the numbers of distance calculations for
guadtree search procedures the quadtree, but leads to a notable increase in the
amount of CPU time, as would be expected from the
In comparing results from the SDS and quadtre¢heoretical analysis, which indicates the sensitivity
search procedures, the results presented focus on tteethe number of leaf nodes in the quadtree. The SDS

Table 4. Results of the object-nearest-to-point search using a quadtree

Data Number of calculations (edgesells) Average Time taken
set number (in seconds)
Average Standard Minimum Maximum of real edges Average Standard
deviation examined deviation

ab 164+99=263 1414322 1+1 98+48 16.45 000130 00011

ub 126+4.4=17.0 7.8+139 1+1 59+ 24 1256 000062 000047

rd1 128+4+3.9=16.7 82+133 1+1 67+29 12.78 000059 000059

rd2 111429=140 7.0+ 86 1+1 54+ 16 1113 000045 000032

rd3 9.6+23=119 59+ 6.4 1+1 45+12 9.64 000070 000061

Each test involve40 000point queries
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spatial grid cell size chosen in the results reportegprocedure has been presented and its performance
here was based on an average of one cell per fomvaluated experimentally with digital map datasets.
triangles. The use of smaller cell sizes leads to imThe results have been compared with a procedure
proved performance for the numbers of calculationgo perform the same operation implemented with
though there is no difference in the numbers of reah main memory linear PMR quadtree. The results
edges examined, because they reflect a search pmbtained with the SDS compare favourably to those
cess that takes place after finding the initial triangle. obtained with the quadtree. On the basis of the
numbers of distance calculations, the SDS results
) are very similar to those of the quadtree. How-
7 Conclusions ever, timings for the experimental data show differ-
ences: the SDS procedure is faster than the quadtree.
This paper has shown how the rich proximity rela-This difference reflects the exploitation of the ex-
tions of constrained Delaunay triangulation (CDT)plicit topological relations of the triangulation in the
can be exploited for the purposes of answeringDS. Thus, a neighbouring triangle in the SDS is
nearest-neighbour queries. The particular example @ccessed simply via a single pointer, whereas ac-
finding the nearest linear or polygonal object to arcess to a neighbouring cell in the quadtree requires
arbitrary point has been used. A triangulation-based separate procedure. In a linear implementation of
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the quadtree, this requires searching the sorted list ings of the 2nd Symposium on the Design and Imple-
of Morton codes, while in an explicit pointer-based  mentation of Large Spatial Databases (SSD '91) (Lecture
tree implementation of a quadtree it requires a partial Notes in Computer Science, vol 525) Springer, Zurich,

L . pp 237-256
rewinding of the recursive traversal (Samet 1990)6 Hoel EG, Samet H (1992) A qualitative comparison study

The top-down, pointer-based tree, diStance‘r.anking' of data structures for large line segment databases. ACM
procedure of Hjaltason and Samet (1995) avoids this SIGMOD Record 21:205-214

search by recording all visited nodes in a priority7. Hjaltason GR, Samet H (1995) Ranking in spatial databases.
queue, but the queue |S necessarlly Ionger than that In: Egenhofer MJ, Hernng JR (eds) Advances in Spatla|

: _ databases. (Lecture Notes in Computer Science, vol 951)
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. . . Jones CB, Bundy GL, Ware JM (1995) Map generalisation
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computer-aided design. It is therefore assumed thatl. Kriegel H-P, Hom H, Schiwietz M (1991) The perfor-
the data structure may already be stored for such pur- mance of object decomposition techniques for spatial query
poses, and it is of interest to develop efficient spatial processing. Advances in spatial databases: proceedings of

s . the 2nd Symposium on the Design and Implementation of
search procedures that exploitit. Kriegel etal. (1991) | 5qe Spatial Databases (SSD '91) (Lecture Notes in Com-

also show that spatial decomposition is potentially puter Science, vol 525) Springer, Berlin Heidelberg New
avery efficient approach to query processing. There- York, pp 257-276
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