
1 Introduction

Triangulated spatial
models and
neighbourhood search: an
experimental comparison
with quadtrees

Christopher B. Jones,
J. Mark Ware,
Christopher D. Eynon

School of Computing, University of Glamorgan,
Pontypridd, Wales CF37 1DL,
United Kingdom
e-mail: cbjones@glamorgan.ac.uk

We describe a Delaunay triangulation-based
algorithm to search for the nearest line or
polygonal boundary to an arbitrary point. We
use geographical data to compare the algo-
rithm experimentally with a linear quadtree
search procedure. Both algorithms use pri-
ority queues. The rich proximity relations of
the triangulation result in run-time perfor-
mance that is clearly competitive with the
quadtree, being quite similar with respect to
the numbers of distance-based calculations
and faster with regard to execution time. It
is envisaged that the main benefits of trian-
gulation for neighbourhood search are in ap-
plications in which the data are permanently
triangulated or in which a triangulation as-
sists in an application-specific analysis or
transformation.

Key words: Nearest neighbour search – De-
launay triangulation – GIS – Priority queue –
Quadtree

∗Correspondence to:C.B. Jones

One of the major types of query required of spa-
tial databases is that of proximity search. The inten-
tion is to find objects nearby or within a particular
distance of a given location. In geographical infor-
mation systems (GIS), proximity search is used, for
example, in applications concerned with urban and
regional planning where the distances from certain
phenomena impose constraints on planned develop-
ments. Thus, the user may need to know of all re-
sources of a specified type within a particular dis-
tance of a proposed new facility, or may wish to
know about phenomena within a particular distance
that may affect, or be affected by, a proposed devel-
opment. In robotics, the movement of a machine part
or of a vehicle may require continuous updating of
information on nearby objects that may act as poten-
tial obstructions.
In most geographical databases, spatial queries, such
as point location within a region, range searches and
proximity searches, are implemented by means of
a combination of a spatial index, such as a quadtree
or an R-tree (or one of its variants), with geomet-
ric computation that may require a local, exhaus-
tive search on a subset of the database obtained via
the spatial index. Retrieval of candidate objects for
a spatial search has been described as a filter step,
while the execution of computational geometry pro-
cedures to find the correct answer has been described
as a refinement step (Orenstein 1989). Kriegel et
al. (1991) show that considerable benefits in spatial
query can be obtained at the refinement step by em-
ploying structural decomposition of the spatial ob-
jects. This reflects the results of research in compu-
tational geometry in which the use of decomposi-
tion into trapezia or Voronoi regions, for example,
has been shown to produce very efficient locational
search procedures (Preparata and Shamos 1988).
When decomposition is applied in its basic form, de-
spite the performance improvements of decomposi-
tion into the smallest spatial units such as triangles or
trapezia, it imposes a considerable storage overhead.
For this reason, more complex compromises be-
tween basic decomposition and non-decomposition
have been proposed (Schiwietz and Kriegel 1993).
However, in the particular case of triangulations,
it is notable that some applications and procedures
in GIS already build triangulated spatial models to
exploit their benefits in modelling environmental
and cartographic phenomena. The prime example
in a GIS context is in terrain modelling, in which
triangulated irregular networks (TINs) are widely

The Visual Computer (1999) 15:235–248
c© Springer-Verlag 1999 235



used (in preference to or in combination with regular
grids) for the advantages that they bring with regard
to interpolation between precise representations of
original sample data (Peucker et al. 1978). This may
include point, line and polygonal features that can act
as constraints on the triangulation.
Interest in the use of triangulated models has in-
creased recently in recognition of their merits in im-
plementing the spatial transformations of map gener-
alisation, whereby the cartographic forms of spatial
phenomena are simplified to meet the requirements
of information abstraction and the limitations of re-
duced map scales (DeLucia and Black 1987; Jones
et al. 1995). Neighbourhood search is an essential
aspect of automating map generalisation operators.
Outside GIS, triangulations also have a long history
of use in finite element analysis, computer-aided de-
sign and robotics. See Baehmann et al. (1987) and
Storer and Rief (1994), for examples.
We now summarise several characteristics of tri-
angulated spatial models that motivate further in-
vestigation of their application in processing spatial
database queries.

Complete representation of map space.Conventional
object-based spatial data representations focus on in-
dividual map features that may or may not be con-
nected with neighbouring objects. In a triangulated
model the entire region, including intervening areas
between map objects, is explicitly represented.

Precise tessellated representation.The original pre-
cision of the source data can be maintained.

Maintenance of topological relations between spa-
tial components.Explicit storage of connectivity be-
tween spatial data elements of a triangulation facili-
tates both the maintenance of consistency under ge-
ometric transformation and the efficient computation
of answers to topological queries.

Rich proximity relations.Nearest-neighbouring ele-
ments are usually connected by triangulation, with
the result that proximal search procedures can be im-
plemented relatively simply and with a potential for
great efficiency.

Facilitates surface interpolation.By constructing
the most equiangular triangulation, which may be
subject to linear constraints, high-quality interpo-
lation is ensured when the triangulation represents
a terrain model or other spatial field.

In this paper, a triangulation-based procedure for
finding the object boundary nearest to an arbitrary
point is described. It modifies a similar procedure
described by Jones and Ware (1997), by introduc-
ing a priority queue. The performance of the proce-
dure is evaluated with five geographical datasets and
a comparison with an implementation of the same
query using a PMR quadtree. This has previously
been shown to provide good performance in proxim-
ity searches (Hoel and Samet 1991, 1992; Hjaltason
and Samet 1995).
In the remainder of the paper, Sect. 2 reviews the
characteristics of constrained Delaunay triangula-
tions and makes a comparison with representations
based on generalised Voronoi diagrams and their
duals. This is followed in Sect. 3 by a description
of a triangulated data structure called the simpli-
cial data structure (SDS), which is based on con-
strained Delaunay triangulation. Section 4 docu-
ments a nearest-neighbour algorithm implemented
with the SDS. Section 5 summarises how the same
query is implemented in a quadtree, and gives experi-
mental results. A comparison of the results of the two
implementations is presented in Sect. 6, while Sect. 7
provides conclusions.

2 Delaunay triangulation

A Delaunay triangulation of a set of points is char-
acterised by the fact that the circumcircle of each
triangle contains no other points of the set. It is also
the most equiangular triangulation in the sense of
maximising the minimum angle (Sibson 1978). It is
of particular interest in computational geometry in
that it is the dual of the Voronoi diagram and, as such,
it provides a solution to the problem of determin-
ing the nearest neighbour of each member of a set of
points (Shamos and Hoey 1975). Voronoi regions of
a set of points represent the locations that are closer
to each point of the set than to any other point in the
set. The Delaunay triangulation connects, through
triangulation edges, each point with each other point
with which it shares a boundary of their respective
Voronoi regions.
Delaunay triangulations of sets of points are com-
monly used to represent digital elevation models in
GISs and to model engineering structures for finite
element analysis. In these applications it is common
practice to modify the triangulation by introducing
linear constraints to which the triangulation edges

236



1a 1b 1c

2a 2b 2c

Fig. 2a–c.SDS representation of datasetsa ab, b ub andc rd3

Fig. 1a–c.Test datasetsa ab, b ubandc rd3

must conform. In terrain modelling these constraints
may correspond to natural features such as ridges,
valleys and breaks of slope, and to structures such
as roads and buildings located on the terrain. The
introduction of constraints to create a constrained
Delaunay triangulation (CDT) results in the loss of
the empty circumcircle criterion, but the triangula-
tion is still the most equiangular triangulation, given
the constraints (Lee and Lin 1986; Chew 1989).
A further consequence of introducing constraints is
that there is no longer a simple duality relationship
with the Voronoi diagram. For a set of points and
straight edges, the corresponding Voronoi diagram
is sometimes referred to as a generalised Voronoi
diagram, or line Voronoi diagram, and its dual
consists of a triangulated graph in which nearest-
neighbouring elements are directly connected (Lee
and Drysdale 1981). Each node of the graph cor-
responds to either a point or a line element in the

original data, but, unlike a CDT, it is not an explicit
representation of the Cartesian coordinate-based lo-
cation of the graphic elements.
In a CDT, the nearest-neighbouring point and line
elements are in fact usually connected by triangu-
lation edges. Experiments conducted by the authors
using the datasets described later in this paper found
nearest-neighbour connectivity in more than 99.5%
of all cases tested. Figure 2b illustrates a CDT of the
set of polygonal objects in Fig. 1b.

3 Proximity relations in a simplicial
data structure (SDS)

A SDS is defined to consist of a constrained Delau-
nay triangulationT of a set of points and straight
edge sitesSrepresenting the geometry of a set of ob-
jects O. Objects may be one of three types: point,

237



line and area. A point objectop ∈ O consists of
a single point sitesp ∈ S. A line objectol ∈ O con-
sists of one or more edgesse∈ S, while an area object
oa ∈ O is a simple polygon represented by at least
three edgesse∈ S.
It is possible to describe several proximity relations
in terms of the triangulationT of a set of point
and straight edge sitesS. Two objects are contigu-
ous if they share one or more elementss∈ S. Con-
tiguity may be either point contiguity if the ob-
jects share a vertex, or edge contiguity if the ob-
jects share an edge. Both cases are referred to here
as proximal-0. Non-contiguous proximality is de-
scribed as proximal-n, wheren> 0 is the minimum
number of triangulation edges that must be traversed
(from vertex to vertex) to move from one object to
the other.
In a Delaunay triangulation of a set of points,
Voronoi neighbours are proximal-1 related. In a CDT,
Voronoi neighbours, i.e. those point and line ele-
ments that would share a boundary of their respec-
tive Voronoi regions, are not necessarily proximal-1,
though as already indicated, direct connectivity and
hence the proximal-1 relationship is found to hold in
a very large proportion of cases.

3.1 Nearest-neighbour search in a SDS

To find the nearest-neighbouring object of an ob-
ject in the SDS, it is possible to implement a search
procedure that enumerates the component edges
of triangles in the vicinity of the source object in
distance order, examining components of the SDS
in increasing order of their proximal-n relation to
the source object. The search terminates when it is
proved that there is no nearer object than a current
nearest-neighbour candidate. Clearly, if it had been
known that the nearest non-contiguous neighbour
was proximal-1, the search would have had a locally
constrained performance that depended upon the va-
lency of the triangulation nodes on the boundary of
the source object. Without guaranteed direct con-
nectivity, i.e. proximal-1 relations, the search will
often need to proceed beyond the directly connected
neighbouring elements.
In this paper we focus on searching for the bound-
ary of the nearest neighbour of an arbitrary pointp
that is not a member of the original sitesS. In this
case the containing triangle of the point is found, and

a search is conducted around that triangle starting
with the proximal-0, i.e. contiguous, neighbours of
the triangle.
In a boundary-nearest-a-point query, the extent to
which the search needs to proceed beyond the
proximal-0 elements depends upon the degree of
equiangularity of the triangulation. This is illus-
trated in Fig. 3. Having found a candidate nearest
neighbour in the proximal-0 elements of the seed
triangle in an equiangular triangulation, the actual
nearest neighbour has a great likelihood of also be-
ing proximal-0. In a nonequiangular triangulation,
the proximal-0 initial candidate nearest neighbour
may be relatively far from the seed location, and
a search could require examining triangles at sev-
eral degrees of proximity beyond the connected set
to prove that the nearest neighbour has been found. It
may be noted, however, that the search need not pro-
ceed beyond any given triangle edge if that edge is
at a distance equal to or greater than the distance to
a current nearest-neighbour candidate in the search
procedure.

3.2 Components of the SDS

Here we describe an implementation of the SDS in
which all objects are either lines or areas. Inclu-
sion of point objects is a simple extension, and it
is not described here. The data structure is based
on a constrained Delaunay triangulationT of ver-
tices and constraining edges constituting the sitesS,
as previously stated. The triangulation is defined in
terms of a set of edgesE and verticesV. An ob-
ject is classified as either a line objectol , which
is associated with pointers to the set of component
edgesEol ∈ E, or an areal objectoa, which is as-
sociated with pointers to the set of component tri-
anglesToa ∈ T. Each trianglet ∈ T is associated with
a triangle identifier and a set of three pointers to the
component edges{e1,e2,e3}. If the triangle belongs
to an areal object, the identity of that object is stored
(otherwise this value is null). Each edge is classi-
fied as either a real edge if it coincides with an edge
se ∈ S, or a virtual edge. If an edge is real and it be-
longs to a linear object, the identity of that object is
stored; otherwise this value is null. An edge is as-
sociated with pointers to its two component vertices
{vs, ve} and to each of its adjacent triangles on the left
and right sides{tl , tr }.

238



p

e

p

e

a b

Fig. 3a, b.Finding the nearest object boundary to a pointp. In both cases, a candidate elemente is found. Casea
requires fewer triangles to be processed thanb due to greater triangle equiangularity ina

4 The SDS algorithm for the
neighbour nearest to a point

The problem of finding the object boundary nearest
to an arbitrarily placed point can be reduced to that
of finding the real edge nearest to that point. If this
edge belongs to a linear object, then the identity of
the object is found by examining the edge’s object
pointer. Alternatively, if the edge belongs to an areal
object(s), then the object(s) is found by examining
the object identifiers associated with its adjacent tri-
angles.
The algorithm for finding the real edgeen nearest
to an arbitrarily placed pointp is listed in pseudo-
code in Fig. 4. The algorithm assumes that the tri-
angle tc containing p has been found previously
by means of a spatial index (in this implementa-
tion the index is in the form of a regular grid). To
find en, the search proceeds outward fromtc, enu-
merating the SDS edges in increasing order of dis-
tance fromp. A record of the real edge currently
found to be nearest is kept throughout the search,
together with its associated minimum separating dis-
tancedn from p. During the search, edges and trian-
gles are marked as having been visited when they are
processed.
Initially, each edgee of tc is examined in turn
(step 1). If the minimum separating distanced be-
tween p ande (calculated with the functionPoint-
EdgeDistance) is less than the current value ofdn

(initially set to an appropriatelarge_value), then
a test is carried out (with the Boolean function
IsReal) to check whethere is a real edge. If it is,
then en is set to the value ofe and dn is updated
to d. Alternatively, if e is a virtual edge (and lies
within a distancedn of p), then it is added to a queue
search_queueof edges waiting further processing.
The search_queueis initially set to empty byIni-
tialiseQueue, and edges are added with the function
AddToQueue. Eachsearch_queueitem records, in
addition toe, the identity of the triangle used in lo-
cating e and the minimum separating distanced.
AddToQueueensures that edges are maintained
in search_queuein order of increasing distance
from p.
The next part of the search algorithm (step 2) con-
sists of a loop in which items (each consisting of an
edgee, a trianglet and a distanced) are removed
from the head ofsearch_queuewith the function
TakeFromQueue. The loop is repeated until either
search_queueis emptied or no edge insearch_queue
lies nearer top than the current nearest edgeen. Af-
ter an edgee is removed from the queue, processing
the edge begins with a test to see if its distanced
to p is less than the currentdn. If it is not, then
this indicates that the true nearest real edge has al-
ready been found and the search can stop. Alterna-
tively, if d is less thandn, then further processing
of e is required. This involves, firstly, finding the
trianglet1 adjacent tot and sharing with it the com-
mon edgeewith the functionTriangleEdgeConnect.

239



BeginPriorityQueueSDSSearch
InitialiseQueue(search_queue)
dn ← large_value
STEP 1:
For each edge e ∈ tc

d← PointEdgeDistance(p, e)
If (d < dn)

If (IsReal(e))
en ← e
dn ← d

Else
AddToQueue(search_queue, e, tc, d)

Endif
Endif
Mark e as visited

Endfor
Mark tc as visited
continue← TRUE
STEP 2:
Do while (NotEmpty(search_queue)) and (continue)

TakeFromQueue(search_queue, e, t, d)
If (d < dn)

t1 ← TriangleEdgeConnect(t, e)
If (NotAlreadyVisited(t1))

For each edge e1 ∈ t1
If (NotAlreadyVisited(e1))

d1 ← PointEdgeDistance(p, e1)
If (d1 < dn)

If (IsReal(e1))
en ← e1
dn ← d1

Else
AddToQueue(search_queue, e1, t1, d1)

Endif
Endif

Endif
Mark e1 as visited

Endfor
Mark t1 as visited

Endif
Else

continue← FALSE
Endif

Enddo
EndPriorityQueueSDSSearch

Fig. 4.Pseudo-code for Algorithm 1, a SDS search proce-
dure using a priority queue

Then, providedt1 has not been processed previously,
each edge oft1 is examined in turn. For a particular
edgee1, this involves an initial test to check if the
edge has been examined previously. If it has not,
then the distanced1 betweenp ande1 is calculated.
If d1 is less thandn and e1 is a real edge, thenen
and dn are set to the values ofe1 and d1, respec-
tively. If, however,d1 is less thandn ande1 is vir-
tual, thene1 (together witht1 and d1) is added to
search_queue.

4.1 Correctness of Algorithm 1:
FindNearestRealEdgeToPoint

Proof of correctness of the algorithm is based on the
assertion that the algorithm will build a polygonal
region that contains the query point and the nearest-
neighbouring edge, and that, when the algorithm ter-
minates, all parts of the boundary of the region will
be at least as far away fromp as the nearest edge
is. It is assumed that the triangulation is fully edge-
connected in that it is possible to move within the
triangulation from any point to any other point by
crossing triangle edges and passing within the inte-
rior of triangles.

Lemma 1. Given a query pointp located inside
a triangle ts belonging to the triangulationT, the
edge-based search in Algorithm 1 will build and
maintain a polygonal region that containsp and
consists of the union of the processed trianglesTp.

Proof.Once processed, the trianglets constitutes the
initial state of the polygon, and by definitionts con-
tains p. The next triangletn to be processed at all
stages in the search process is the one externally con-
nected to the edge in the queue that is nearest to the
query pointp. Triangle tn must therefore be edge-
connected to the processed triangle set, since edges
are placed in the queue only as a consequence of pro-
cessing a triangle which becomes a member of the
setTp.

Lemma 2. Given a query pointp located inside
a constrained triangulationT, Algorithm 1 will find
the real edgeen ∈ T such that the distance fromp
to en is smaller than or equal to the distance fromp
to all other real edgesek ∈ T.

Proof.SinceTp defines a polygonal region contain-
ing p, it will be possible to prove that the nearest
edge has been found if there is a real edgeen ∈ Tp and
there is no other edge (real or virtual)ek ∈ Tp that is
nearer top thanen is. The first step of the algorithm
consists in processing the trianglets that containsp.
Thus, from Lemma 1, the algorithm cannot terminate
without having built a polygon containingp. When
ts has been processed, if one or more of its edges is
real, then there will be a candidate nearest edgeen.
If this edge is nearer top than the other edges ofts,
then no triangles will have been placed in the queue
and the algorithm will terminate, having identified
the real edge on the boundary ofTp that is nearer than
all other parts of the boundary. Alternatively, ifTp

240



grows beyondts, the process of growingTp will only
terminate when there is no edge in the queue that is
nearer top thanen is. If there is no such edge in the
queue, then all boundary edges ofTp must be far-
ther fromp thanen; otherwise, they would have been
queued.

4.2 Analysis

The algorithm requires a preprocessing stage to build
the constrained Delaunay triangulationT. This stage
requiresO(N log N) time andO(N) storage (Chew
1989), whereN is the number of vertices. Step 1
of the algorithm calculates three distances and adds
a maximum of three items to the queue; it therefore
requiresO(1) time. Step 2 consists of an iterative
process in which the function,TakeFromQueueand
PointEdgeDistanceeach require a constant time,
while the function AddToQueuetakes logl time
wherel is the length of the queue. The number of
iterations is equal to the number of edges that are
processed.
It is easy to establish that the lower bound on the al-
gorithm is O(1), as this follows from the fact that
the algorithm will terminate after step 1 if no edges
are placed in the queue. If items are placed in the
queue, then processing time isO(k logk) wherek is
the number of edges that are processed.
It is possible to envisage worst-case scenarios for the
algorithm in which, due to a particular configuration
of the data, all edges ofT are examined before the
algorithm terminates, giving a time ofO(N log N).
This could arise if the data points were organised
in the form of two parallel rows on opposite sides
of a square and the query point was located at the

Table 1.Description of datasets

Data Number Number Number Number SDS storage Average Average Average Quadtree
set of of of of real virtual triangle storage

objects edges vertices SDS edge edge aspect (in bytes)
triangles Triangulation Grid length length ratio

(in metres) (in metres)

ab 10 858 859 1 712 41 120 39 575 261.9 2218.4 30.04 48 602
ub 313 5012 4968 9 930 239 024 276 728 264.3 888.7 8.80 188 496
rd1 1423 6154 5648 11 289 279 088 321 036 305.8 945.7 7.05 319 160
rd2 4209 9252 8003 16 000 404 032 519 468 300.1 716.0 5.64 484 018
rd3 4209 4122 2963 5 920 162 112 195 540 672.3 1108.5 4.68 226 138

A triangles aspect ratio is calculated by dividing its longest edge length by its shortest height
SDS, Simplicial data structure

centre of the square. In this situation, the nearest
edge would be proximal-0 to the seed triangle, but it
would be necessary to search in both directions par-
allel to the rows to create a processed triangle set
in which all boundary edges were farther than or at
equal distance to the nearest edge(s).
The worst-case analysis represents what would be
an extremely unlikely configuration of the data for
geographical applications. The number of edges pro-
cessed in a query is itself determined by the num-
ber of triangles required to construct the surround-
ing polygon of the query point. This polygon always
covers the disc of radius equal to the distance to the
nearest neighbour. Hence, the number of such trian-
gles will be related to the degree of equiangularity
(as illustrated in Fig. 2).

4.3 Experimental results for the object
nearest to a point when the SDS was
used

In order to examine the performance of the algo-
rithm in practice, five datasets were used in the
tests. This section reports on results from the SDS
algorithm, while the next section reports on the re-
sults when a quadtree was used for the same set
of searches. Three of the datasets are illustrated
in Fig. 1. Datasetab consists of administrative
boundaries, such as counties. Datasetub consists of
urban area boundaries. Datasetsrd1 andrd2 consists
of two different sets of roads, while datasetrd3 con-
sists of a generalised version ofrd2, i.e. one in which
the numbers of vertices has been reduced. The char-
acteristics of the datasets are summarised in Table 1.

241



The tests consisted of generating10 000query points
on a regular grid and finding the object nearest
each point for each of the datasets. The results are
tabulated in Tables 2 and 3. This was done in or-
der to cast some light on the applicability of the
theoretical evaluation of performance already dis-
cussed. In Table 2, the number of calculations refers
to the number of point–edge distance calculations
that were performed relative to edges of the tri-
angulation, assuming that the seed triangle has al-
ready been found. Note that the point–edge distance
calculations are required for examining both real
and virtual edges of the triangulation. In Table 3,
the number of calculations refers to a value that
adds the number of point–edge distance calculations
that were performed for the triangulation edges to
double the number of point-in-triangle tests needed
to find the seed triangle from the spatial index.
The factor of two is based on a comparison of
the number of multiplications and divisions used
in the point-edge distance function and the num-
bers of such operations used in the point-in-triangle
function.

Table 2.Results of the object-nearest-to-point test with simplicial data structure

Data Number of calculations Average Time taken
set number (in seconds)

Average Standard Minimum Maximum of real edges Average Standard
deviation examined deviation

ab 23.66 13.39 3 84 6.66 0.000244 0.000311
ub 14.64 7.44 3 58 4.03 0.000133 0.000154
rd1 13.53 7.46 3 56 4.18 0.000123 0.000160
rd2 10.47 6.18 3 95 3.53 0.000098 0.000164
rd3 7.27 4.84 3 95 2.92 0.000070 0.000091

The initial containing triangle is assumed to be known. Each test involves10 000point queries

Table 3.Results of the object-nearest-to-point tests with simplicial data structure

Data Number of calculations Time taken
set (in seconds)

Average Standard Minimum Maximum Average Standard
deviation deviation

ab 28.53 15.66 3 148 0.000250 0.00031
ub 19.40 7.94 3 75 0.000143 0.00016
rd1 18.81 7.83 3 76 0.000134 0.00015
rd2 15.34 7.95 3 193 0.000109 0.00017
rd3 12.06 7.25 3 197 0.000085 0.00015

This includes calculations and time required to locate the initial containing triangle. Each test involves
10 000point queries. Note that the average number of real edges examined is the same as for the
corresponding experiment in Table 2

Note that the average value of numbers of calcula-
tions in Table 2, based only on point–edge distance
calculations is less than24 in all cases, but the max-
imum value rises to95 for two of the datasets.
The CPU times per query, on a SPARC 10 computer,
ranged from0.00009 sfor datasetrd3 to 0.00025 s
for datasetab.

5 PMR Quadtree search for the
neighbour nearest to a point

In an effort to evaluate the triangulation proxim-
ity search algorithm with respect to other search
methods, the same set of tests was run with an
implementation of the PMR quadtree (Nelson and
Samet 1986). This was chosen as an alternative
data structure for comparative purposes as it has
been documented in some detail and has itself
been compared systematically with other spatial
data structures (Hoel and Samet 1992). In particu-
lar, Hoel and Samet (1991) report detailed results for
finding the edge nearest to a point in a ‘bottom-up’

242



procedure. The containing cell of the query point is
found, then adjacent cells within the radius of the
currently nearest identified edge are examined to find
the edge that is nearest. An analysis of the PMR
quadtree for finding the edge nearest to a point shows
that the procedure gave anaveragetime of O(k),
wherek is the splitting threshold of the quadtree.
Experimental results were presented with geograph-
ical data. The PMR quadtree has also been used as
the basis of a description of a top-down distance-
ranking procedure that uses a priority queue to find
all neighbours nearest, ork-nearest, to a given ob-
ject (Hjaltason and Samet 1995). An analysis of the
latter procedure concludes that the worst-case time
complexity wasO(N log N), whereN is the num-
ber of leaf blocks in the quadtree and the logN term
refers to the cost of updating the priority queue.
This analysis also applied to the case of finding the
neighbour nearest to an object, but was described as
corresponding to a pathological worst case.
In making a comparison with the SDS-based search
procedure with regard to distance-based calcula-
tions in the quadtree search procedure, it is ne-
cessary to take account of the cost of determining
whether a quadtree cell is within the current search
radius. This is required as part of the pruning process
whereby the contents of a cell are only examined if
the cell itself is within the radius. Distance measure-
ments to each of the horizontal and vertical faces of
the cells require about one-quarter of the number of
floating point operations required by the function to
determine the distance from a point to an arbitrary
edge. Thus, the four distance tests for all faces of
a cell can be weighted as approximately equivalent to
the cost of a single point–edge distance calculation.

5.1 Quadtree search procedure

A main memory linear PMR quadtree, in which
only leaf nodes were stored, was implemented. The
quadtree cells were identified by Morton numbers
and the associated level in the tree. The search proce-
dure uses a priority queue and adopts the bottom-up
approach described by Arya et al. (1994) in their
account of a nearest-neighbour procedure, which,
with their specialised (not quadtree) spatial indexing
method, gave a search time complexity ofO(log N).
Note that the quadtree was implemented in main
memory to assist in timing comparisons with the
SDS search technique, which is also main-memory
based.

The procedure for a quadtree search with a priority
queue builds a list of quadtree cells in the vicinity
of the cell containing the query point following the
method of Arya et al. (1994), which is adapted to
the particular case of the quadtree decomposition of
space. The approach is based on enumerating cells
in order of their distance from the query point. The
priority queue is built dynamically; only those neigh-
bouring cells of a current cell that are candidates for
containing the nearest object are added.
The procedure, which is summarised in pseudo-code
in Fig. 5, starts by finding the cell containing the
query pointp and recording the distances to and the
coordinates of the nearest locations top on each face
of the cell. The edges referenced by the cell are ex-
amined, and, if there are edges in the cell, the edge
nearest top is saved. For those faces of the cell closer
than the current nearest edge, the neighbouring cell
across the face is found and placed in the priority
queue. Cells are inserted into the priority queue by
determining the distance to the query point for each
face. The smallest of these distances (and hence the
shortest distance fromp to the cell) is used to deter-
mine the sorting order in the priority queue. Provided
the priority queue is not empty, the cell at the head
of the queue is removed from it. If the distance to
this cell is less than the distance to the current nearest
edge, its referenced edges are examined. If its neigh-
bouring cells are within the current search distance,
they are added to the priority queue, as already in-
dicated, provided that they have not previously been
inserted into the queue. Note that one of the four
neighbours of each cell will be the cell from which it
was entered. The process terminates either when the
cell at the head of the priority queue is farther away
than the currently nearest edge, or when the priority
queue is empty.

5.2 Observations on the analysis of the
quadtree search procedure

The quadtree search procedure is used here for ex-
perimental comparison only and is based on prin-
ciples described elsewhere (Nelson and Samet 1986;
Hoel and Samet 1991, 1992; Arya et al. 1994; Hjalta-
son and Samet 1995). We provide some observations
on the worst-case complexity of Algorithm 2, which
gives the same result as that of Hjaltason and Samet,
and we comment briefly on the lower-bound time
complexity of the algorithm.

243



BeginPriorityQueueQuadtreeSearch
search_radius← maximum range of data
Find cell c containing query point q
For each face f of cell c

fdcf ← distance(q, f)
npcf ← nearest point to q on f

Endfor
distance_to_cell← 0
continue← TRUE
While ((distance _to_cell < search_radius) and continue)

For each edge e referenced by cell c
distance_to_edge← distance(q, e)
If (distance_to_edge < search radius)

search_radius← distance_to_edge
nearest_edge← e

Endif
Endfor
For each face f of cell c

If (fdcf < search radius)
Find neighbouring cell n at nearest point (npcf) to q on f
If (n is inside the quadtree and n has not been visited)

For each face f of cell n
fdnf ← distance(q, f)
npnf ← nearest point to q on f

Endfor
distance_to_cell← min{fdnf}
Add_to_priority_queue(n, {fdn1, fdn2, fdn3, fdn4}, {npn1, npn2, npn3, npn4},

distance_to_cell)
Mark n as visited

Endif
Endif

Endfor
If (notempty(priority queue))

c← head of priority queue
Else

continue← FALSE
Endif

Endwhile
EndPriorityQueueQuadtreeSearch

Fig. 5. Pseudo-code for Algorithm 2, a quadtree search pro-
cedure using a priority queue

Processing a cell to place it in the priority queue
requires a constant number of distance calcula-
tions and a search to find the identity of the neigh-
bouring cell for each face. In our implementation,
this neighbouring-cell location procedure involves
a search through the Morton-ordered list of leaf
nodes to find an equivalent or immediately-less-than
match between a leaf node and the Morton code of
the location generated by neighbourhood operations.
This therefore requiresO(log N) time, whereN is
the number of leaf nodes.Assuming that there are
m cells placed on the priority queue before the near-
est edge is found, this leads tom log N time. Inser-
tion into the priority queue is governed by a sorting
order and therefore takes timeO(logm), wherem is
the length of the priority queue.
A worst-case scenario for Algorithm 2 in which all
data edges are located tangential to a circle and in

which the query point is located at the centre of the
circle can be envisaged. Since the algorithm will
only terminate when either there are no items in
the priority queue or there is no item in the queue
that is nearer than the nearest edge, it will be nec-
essary to process allk quadtree cells that reference
data. This is due to the fact that the boundaries of
those cells will be either at the nearest-neighbour
search radius or inside it. The only cells of the
quadtree not to be processed would be those be-
yond (relative to the query point) the set of cells
referencing data items. Thus, the algorithm will
require O(log N) operations to find neighbouring
cells plusO(k log N) operations to insert cells into
the queue. Sincek will approximate to (but not
exceed)N, the total number of leaf nodes in the
data configuration envisaged, the worst-case time
is O(N log N).

244



A lower bound on the time complexity of the algo-
rithm is given by the case in which the quadtree cell
containing the query point also contains the near-
est edge, and in which all faces of the cell are far-
ther from the query point than the nearest edge. In
this situation, no cell will be placed in the priority
queue, and the algorithm will terminate after pro-
cessing a single cell giving a time ofO(1). Note
that the number of edges that can be referenced by
a cell is limited to that of the splitting threshold value
specified for the quadtree.

5.3 Quadtree search test results

Table 4 contains the results of the quadtree search
tests for the five datasets, and Fig. 6 illustrates the
quadtrees for three of the datasets. The quadtree
splitting threshold was8 in all cases. Note that the
number of distance calculations is based on the
number of point–edge distance calculations plus the
number of point–cell distance calculations. Note that
the numbers of such calculations for the datasets var-
ied on average between11.9 and26.3. One column
of the table reports separately the numbers of real
edges of the data that were examined, i.e. for which
point-edge distance calculations were performed.
The average CPU times per query, on a SPARC 10,
ranged from0.00045 sfor datasetrd2 to 0.00130 s
for datasetab.

6 Comparison of results for SDS and
quadtree search procedures

In comparing results from the SDS and quadtree
search procedures, the results presented focus on the

Table 4.Results of the object-nearest-to-point search using a quadtree

Data Number of calculations (edges+ cells) Average Time taken
set number (in seconds)

Average Standard Minimum Maximum of real edges Average Standard
deviation examined deviation

ab 16.4+9.9= 26.3 14.1+32.2 1+1 98+48 16.45 0.00130 0.0011
ub 12.6+4.4= 17.0 7.8+13.9 1+1 59+24 12.56 0.00062 0.00047
rd1 12.8+3.9= 16.7 8.2+13.3 1+1 67+29 12.78 0.00059 0.00059
rd2 11.1+2.9= 14.0 7.0+ 8.6 1+1 54+16 11.13 0.00045 0.00032
rd3 9.6+2.3= 11.9 5.9+ 6.4 1+1 45+12 9.64 0.00070 0.00061

Each test involves10 000point queries

distance computations, expressed in terms of com-
parable calculations. In summary, the average num-
bers of calculations ranged from12.1 to 28.5 for the
SDS including the search for the seed triangle, and
from 11.9 to 26.3 for the quadtree, taking account of
all datasets. In an effort to provide some comparison
with the method of presenting results used by Hoel
and Samet (1991, 1992) for a similar query, we have
also reported the numbers of edges (‘real edges’) of
the source data that were examined for purposes of
point-edge distance calculations. In the SDS these
range from2.9 to 6.7, while in the quadtree they
range from9.6 to 16.5. The lower and upper val-
ues correspond to the same datasets, namelyrd3
andab, respectively, for both procedures. Hoel and
Samet (1991) found that the numbers of such edges
examined in their datasets ranged between29.67
and37.22. No experimental results were reported in
association with the top-down quadtree-ranking pro-
cedure of Hjaltason and Samet (1995).
The average CPU times per query in the SDS
including the search for the seed triangle range
from 0.00009to 0.00025, while in the quadtree they
range from0.00045to 0.0013.
The storage of the SDS, when the spatial grid as-
sociated with the reported results is included, was
about double the storage required for the quadtree
with a threshold of8.
If the threshold of the quadtree is set to4, then the
storage requirements for the two schemes are very
similar. Doing so results in a very small improve-
ment in the numbers of distance calculations for
the quadtree, but leads to a notable increase in the
amount of CPU time, as would be expected from the
theoretical analysis, which indicates the sensitivity
to the number of leaf nodes in the quadtree. The SDS

245



a b

c

Fig. 6a–c.Quadtree representation of datasetsa ab, b ub
andc rd3

spatial grid cell size chosen in the results reported
here was based on an average of one cell per four
triangles. The use of smaller cell sizes leads to im-
proved performance for the numbers of calculations,
though there is no difference in the numbers of real
edges examined, because they reflect a search pro-
cess that takes place after finding the initial triangle.

7 Conclusions

This paper has shown how the rich proximity rela-
tions of constrained Delaunay triangulation (CDT)
can be exploited for the purposes of answering
nearest-neighbour queries. The particular example of
finding the nearest linear or polygonal object to an
arbitrary point has been used. A triangulation-based

procedure has been presented and its performance
evaluated experimentally with digital map datasets.
The results have been compared with a procedure
to perform the same operation implemented with
a main memory linear PMR quadtree. The results
obtained with the SDS compare favourably to those
obtained with the quadtree. On the basis of the
numbers of distance calculations, the SDS results
are very similar to those of the quadtree. How-
ever, timings for the experimental data show differ-
ences: the SDS procedure is faster than the quadtree.
This difference reflects the exploitation of the ex-
plicit topological relations of the triangulation in the
SDS. Thus, a neighbouring triangle in the SDS is
accessed simply via a single pointer, whereas ac-
cess to a neighbouring cell in the quadtree requires
a separate procedure. In a linear implementation of

246



the quadtree, this requires searching the sorted list
of Morton codes, while in an explicit pointer-based
tree implementation of a quadtree it requires a partial
rewinding of the recursive traversal (Samet 1990).
The top-down, pointer-based tree, distance-ranking
procedure of Hjaltason and Samet (1995) avoids this
search by recording all visited nodes in a priority
queue, but the queue is necessarily longer than that
built by the method of Arya et al. (1994). The bene-
fit of the top-down scheme becomes most apparent
when ranking of multiple or all objects is required, as
opposed to finding the nearest object.
The research was motivated by the fact that CDTs
are used in several applications of spatial databases,
notably for terrain modelling, but also for tasks
in cartographic map generalisation, robotics and
computer-aided design. It is therefore assumed that
the data structure may already be stored for such pur-
poses, and it is of interest to develop efficient spatial
search procedures that exploit it. Kriegel et al. (1991)
also show that spatial decomposition is potentially
a very efficient approach to query processing. The re-
sults presented here contribute further to that field of
study. We remark that permanently stored triangu-
lations impose more storage overhead than simpler
spatial data representations. As Jones et al. (1994)
point out, considerable saving on storage can be
achieved by using an implicit triangulation, whereby
the explicit triangulation is constructed at the time
of query from a spatially localised and application-
specific part of what may be a very large database.

References

1. Arya S, Mount DM, Netanyahu NS, Silverman R, Wu
A (1994) An optimal algorithm for approximate nearest
neighbour searching. Proceedings of the 5th ACM-SIAM
Symposium on Discrete Algorithms, Arlington, Virginia,
ACM, pp 573–582

2. Baehmann PL, Wittchen SL, Shephard MS, Grice KR,
Yerry MA (1987) Robust, geometrically based, automatic
two-dimensional mesh generation. Int J Numerical Methods
Eng 24:1043–1078

3. Chew PL (1989) Constrained Delaunay triangulations. Al-
gorithmica 4:97–108

4. DeLucia A, Black T (1987) A comprehensive approach to
automatic feature generalization. Proceedings of the 13th
International Cartographic Conference, Morelia, Mexico,
International Cartographic Association, Morelia, Mexico,
pp 169–191

5. Hoel EG, Samet H (1991) Efficient processing of spa-
tial queries in line segment databases. In: Gunther O,
Schek H-J (eds) Advances in spatial databases: proceed-

ings of the 2nd Symposium on the Design and Imple-
mentation of Large Spatial Databases (SSD ’91) (Lecture
Notes in Computer Science, vol 525) Springer, Zurich,
pp 237–256

6. Hoel EG, Samet H (1992) A qualitative comparison study
of data structures for large line segment databases. ACM
SIGMOD Record 21:205–214

7. Hjaltason GR, Samet H (1995) Ranking in spatial databases.
In: Egenhofer MJ, Herring JR (eds) Advances in spatial
databases. (Lecture Notes in Computer Science, vol 951)
Springer, Berlin Heidelberg New York, pp 237–256

8. Jones CB, Ware JM (1998) Proximity relations with trian-
gulated spatial models. Comput J 41:71–83

9. Jones CB, Kidner DB, Ware JM (1994) The implicit trian-
gulated irregular network and multiscale spatial databases.
Comput J 37:43–57

10. Jones CB, Bundy GL, Ware JM (1995) Map generalisation
with a triangulated data structure. Cartography Geogr Infor-
mation Syst 22:317–331

11. Kriegel H-P, Horn H, Schiwietz M (1991) The perfor-
mance of object decomposition techniques for spatial query
processing. Advances in spatial databases: proceedings of
the 2nd Symposium on the Design and Implementation of
Large Spatial Databases (SSD ’91) (Lecture Notes in Com-
puter Science, vol 525) Springer, Berlin Heidelberg New
York, pp 257–276

12. Lee DR, Drysdale RL (1981) Generalization of Voronoi di-
agrams in the plane. SIAM J Comput 10:73–87

13. Lee DT, Lin AK (1986) Generalized Delaunay triangulation
for planar graphs. Discrete Computat Geom 1:201–217

14. Nelson RC, Samet H (1986) A consistent hierarchical
representation for vector data. Computer Graphics (SIG-
GRAPH ’86 Proceedings) Vol 20, No 4, 197–206

15. Orenstein JA (1989) Strategies for optimising the use of
redundancy in spatial databases. 1st Symposium on the
Design and Implementation of Large Spatial Databases,
Santa Barbara, Calif., Lecture Notes in Computer Science
Vol 409, Springer, Berlin Heidelberg New York, pp 115–134

16. Peucker TK, Fowler RJ, Little JJ, Mark DM (1978) The
triangulated irregular network. ASP/ACSM Digital Terrain
Models (DTM) Symposium, ACSM, Falls Church, Vir-
ginia, 516–540

17. Preparata FP, Shamos MI (1988) Computational geometry.
Texts and monographs in computer science. Springer, New
York

18. Samet H (1990) The design and analysis of spatial data
structures. Addison-Wesley, Reading, Mass.

19. Schiwietz M, Kriegel H-P (1993) Query processing of spa-
tial objects: complexity versus redundancy. In: Abel D, Ooi
BC (eds) Advances in spatial databases. (Lecture Notes in
Computer Science, vol 692) Springer, Berlin Heidelberg
New York, pp 377–396

20. Shamos MI, Hoey D (1975) Closest-point problems. The
16th Annual IEEE Symposium on Foundations of Com-
puter Science, University of California, Berkeley. IEEE
pp 151–162

21. Sibson R (1978) Locally equiangular triangulations. Com-
put J 21:243–245

22. Storer JA, Rief JH (1994) Shortest paths in the plane with
polygonal obstacles. J ACM 41:982–1012

247



CHRIS JONES is Professor of
Geographical Information Sys-
tems at the University of Glam-
organ. He worked previously at
the University of Cambridge,
BP Exploration and the British
Geological Survey. He studied
geology and graduated from
Bristol University. He received
a PhD from the University of
Newcastle upon Tyne for re-
search on periodicities in fossil
growth rhythms. His current re-
search interests include the use
of geographical information in

hypermedia for public information access, multiscale spatial
databases, the computer reconstruction and visualisation of fos-
sils, and automated cartographic design with regard to map
generalisation and automated text placement.

MARK WARE is a Lecturer
at the School of Computing at
the University of Glamorgan.
He studied Maths and Comput-
ing and graduated from the then
Polytechnic of Wales in 1989.
He received a PhD (1994) from
his present university for re-
search on multiscale data struc-
tures for spatial information sys-
tems. His current research inter-
ests include automated cartogra-
phy (map generalisation), spatial
database error, automated envi-
ronmental change detection and
digital terrain modelling.

CHRISTOPHER EYNON is
a Research Assistant in Geo-
graphical Informations Systems
at the University of Glamor-
gan. He has a BSc in Physics
with Astronomy and an MSc.
in Computing, both from the
University of Wales, Cardiff.
His current research interests in-
clude computational geometry,
quadtree-based spatial indexing
techniques and automated map
generalisation.

248


