
Proximity Search with a Triangulated
Spatial Model

CHRISTOPHERB. JONES AND J. MARK WARE

School of Computing, University of Glamorgan, Pontypridd, Mid Glamorgan, CF37 1DL, UK
Email: cbjones@glamorgan.ac.uk

The proximity relations inherent in triangulations of geometric data can be exploited in the
implementation of nearest-neighbour search procedures. This is relevant to applications such as
terrain analysis, cartography and robotics, in which triangulations may be used to model the
spatial data. Here we describe neighbourhood search procedures within constrained Delaunay
triangulations of the vertices of linear objects, for the queries of nearest object to an object and
the nearest object to an arbitrary point. The procedures search locally from object edges, or from a
query point, to build triangulated regions that extend from the source edge or point by a distance at
least equal to that to its nearest neighbouring feature. Several geographical datasets have been used
to evaluate the procedures experimentally. Average numbers of edge–edge distance calculations to
find the nearest line feature edge disjoint to another line feature edge ranged between 15 and 39 for
the different datasets examined, while the average numbers of point–edge distance calculations to

determine the nearest edge to an arbitrary point ranged between 7 and 35.

Received July 14, 1995; revised April 8, 1998

1. INTRODUCTION

Data models in spatial information systems are usually based
either on boundary representations consisting of points,
line segments and polygons, or on regular, rectangular
subdivisions of space in which each cell is associated with
an identity or classification of the phenomena represented.
An alternative approach to regular decomposition in which
subdivision is independent of the phenomena is structural
decomposition, in which the form of the cells is adapted
to the boundaries of the spatial objects. These irregular
structural decompositions, typically based on triangulations
or trapezia, are known to support efficient implementation
of computational geometry problems such as point location
in a planar subdivision [1]. They have also been shown to
provide superior performance in some types of locational
queries on spatial databases [2].

The purpose of this paper is to describe proximal search
procedures and associated experimental results for linear
features, based on the structural decomposition technique of
constrained Delaunay triangulation (CDT). Specifically we
look at procedures to find the nearest-neighbouring object to
a given object and to find the nearest-neighbouring object to
an arbitrary point. In the latter case it is assumed that the
containing triangle of the point has been found using either
conventional containment search spatial indexing methods
such as quadtrees, regular grids, and R-trees [3, 4], or via
hierarchical structures based on the triangulation [5, 6, 7].

1.1. Motivation

The motivation for developing efficient proximal search pro-
cedures based on CDT is twofold. Delaunay triangulations

and the CDT are currently used in data structures for
representing some types of spatial data and it is of interest
therefore to seek the exploitation of the rich spatial prox-
imity properties of these data structures for purposes of
local search, rather than maintaining associated or supple-
mentary structures. This is particularly significant when
the application involves updates to a main memory spatial
representation. It is also the case that some applications
depending heavily upon multiple neighbourhood searches
may benefit from the use of a data structure which by its
nature is based on local proximity relations.

There are several examples of the use of triangulations in
spatial data handling. The benefits of triangulations for spa-
tial interpolation have underpinned their use in representing
terrain elevation data, in the form of triangulated irregular
networks (TINs), whereby the triangles may be regarded
as planar facets for linear interpolation, or as the basis
for quintic surface interpolation [8, 9]. Triangulated digital
terrain models hold considerable promise for integrating
elevation data with detailed boundary representations of
topographic and geological features [10, 11, 12]. Such
terrain models can be used for visualizing landscapes and for
performing intervisibility analysis [6, 7, 13]. Triangulations
have been shown to be useful in implementing a variety
of automated cartographic design procedures, particularly
relating to map generalization [14, 15], and their potential
for the explicit maintenance of topological relations between
a set of two-dimensional geographical point locations has
previously been recognized [16, 17]. Triangulations have a
long history of use in finite-element modelling for mechan-
ical engineering [18] and they have been used to represent
space in robotics applications [19].

THE COMPUTER JOURNAL, Vol. 41, No. 2, 1998



72 C. B. JONES AND J. M. WARE

1.2. Triangulations for proximal search

The idea of exploiting the structure of a triangulation
for proximal search was used in some of the earliest
algorithms for constructing triangulations [8]. Proximal
search within a triangulation is also employed in some of the
applications of triangulations, referred to above, for example
in intervisibility analysis [20]. Dickerson and Drysdale
[21] and Dickersonet al. [22] are notable for drawing
attention explicitly to the advantages of triangulations for
implementing nearest-neighbour search for the specific
cases of fixed radius search for points and for line segments,
and for enumerating the smallest distances between pairs of
points, and thek nearest-neighbours of points.

In this paper we focus on the problems of neighbouring
linear features and the nearest linear feature to an
arbitrary point, and present experimental results for several
geographical datasets. These results illustrate average case
performance and highlight the variation in performance
which is related at least partially to the degree of
equiangularity of the triangulations of the datasets. Despite
this variation, for all datasets studied the average numbers
of distance measurements per edge of a source object, and
per arbitrary query point, were not found to be more than
about double the number of edges of triangles that would
be directly connected to either the source edge, or the seed
triangle containing the query point, if a triangulation with a
vertex valency of six was assumed.

In the remainder of this paper we elaborate in Section 2 on
the properties of triangulations and their relationships with
Voronoi diagrams. In Section 3 we define the components
and relevant characteristics of a constrained triangulated data
model. Procedures for determining the nearest object to a
specified object and the nearest-neighbouring object to an
arbitrary point are described in Section 4. Section 5 presents
experimental results. The paper concludes in Section 6.

2. TRIANGULATIONS AND VORONOI DIAGRAMS

For the purpose of determining neighbourhood relations
between point locations, the Delaunay triangulation and
its dual, the Voronoi diagram, have been well documented
[1, 23]. In particular, computation of the Voronoi diagram
provides a direct solution to the all nearest-neighbour
problem for a set of points [24]. The properties
and applications of Delaunay triangulations and Voronoi
diagrams have been documented in detail in [25]. Here
we summarize briefly the main properties and note
characteristics relevant to our algorithms.

Given a set of point sitesS, the Voronoi diagram delimits
for each sitesi ∈ S the region of spacevi such that
for all locationsx inside vi , the distanced(x, si ) is less
than or equal to the distanced(x, sk) to all other sites
sk ∈ S. In a Delaunay triangulation, the triangulation
edges connect those neighbouring point sites which share
a common edge of their respective Voronoi regions. A
Delaunay triangulation of a set of points is characterized by
the fact that, for each triangle, a circle passing through the
vertices of the triangle does not contain any other points in

the triangulation.
The characteristics of a Delaunay triangulation can be

modified somewhat if the vertices belong to linear or
polygonal features, the edges of which are required to be
represented in the triangulation. In the resulting CDT [26],
constraining edges, corresponding to the line segments, act
as barriers to the intervisibility of points. As a consequence,
the circumcircle property is modified such that the circle
passing through the vertices of any given triangle contains no
point of the triangulation that is visible to all three vertices
of the triangle. In addition, the property of most equiangular
triangulation is maintained, given the constraints [27].
Examples of CDTs of geographical data are illustrated in
Figures 5 to 9.

Properties of connectivity of the CDT are exploited in the
algorithms presented here. We define an edge-connected set
of triangles as one in which every triangle in the set shares
at least one edge with another member of the set. We note
that in such a set it will therefore always be possible to trace
a path between any given pair of triangles that are members
of the set by stepping from one triangle to another across
triangle edges. Such a path is called an edge-connected
path. This leads to the following lemma which underpins
the algorithms presented.

LEMMA 2.1.Given a CDT of the vertices of a set of
line segments, in which the triangulation is bounded by the
convex hull of the vertices, all nearest-neighbouring pairs
of disjoint line segments are accessible to each other by an
edge-connected path in the triangulation.

Proof. This lemma follows from a proof that the entire
triangulation is itself an edge-connected set. If it was not
such a set there would be at least two subsets of triangles
that were connected only by a common vertex. For this to be
so, there would need to be no intervening triangle present on
either side of the common vertex, in which case the vertex
would have to be on the boundary of the triangulation. Since
the boundary of a convex hull is not self-intersecting, either
the two triangle subsets would have to be edge connected
on the inside of the boundary or there would have to be at
least one intervening triangle to fill the internal concavity
and hence provide an edge-connected path between the two
subsets. Both of these situations contradict the proposition
of sole vertex connectivity between the triangle subsets.

Given therefore that the entire triangulation is an edge-
connected set, we may note that since each pair of nearest-
neighbouring disjoint edges must belong to triangles of the
triangulation, there must be an edge-connected path between
those pairs of triangles. �

2.1. The line Voronoi diagram

It may be noted, in contrast to the approach adopted
here, that the Voronoi diagram of line segments provides a
solution to the nearest-neighbouring line segment problem,
since in a line Voronoi diagram (originally referred
to as a generalized Voronoi diagram [28]), nearest-
neighbouring segments will share a common boundary of

THE COMPUTER JOURNAL, Vol. 41, No. 2, 1998



PROXIMITY SEARCH WITH A TRIANGULATED SPATIAL MODEL 73

the neighbouring Voronoi regions. This latter property may
be used to construct the dual of the line Voronoi diagram
which, analogously with the (non-constrained) Delaunay
triangulation of point sites, provides an explicit record of
the nearest neighbours of each object. As we show in this
paper, search procedures based on the CDT can be used
dynamically to determine these nearest-neighbour relations
when required, without recourse to constructing the line
Voronoi diagram and its dual.

3. A SPATIAL MODEL BASED ON CONSTRAINED
DELAUNAY TRIANGULATION

We consider here a spatial modelM = (O, F) representing
linear objectsO and regions of free spaceF between disjoint
objects and internally contained within polygonal-shaped
objects. The linear objects consist of one or more sequences
of straight line segments that constitute a connected graph.
All space within the model is represented by a CDTT of
line segment vertices. All line segments of all objectsO are
constraints withinT . Of all edgesE in the triangulation,
those representing line segments of objects are referred to as
real edgesE r while all other edges are referred to as virtual
edgesEv. HenceE = {E r, Ev}. The set of real edges
belonging to an objectoi is designated byE ri .

3.1. A data structure for the spatial model

The structure of the triangulation is represented through a
set of explicit relations between linear objects and edges,
between triangles and edges and between edges and vertices.
Linear objects are defined in terms of real edges with each
linear object maintaining a pointer to each of its constituent
edges. Triangles are described by pointers to constituent
edges, each of which are in turn described by pointers to
their two vertices. Each edge is associated with additional
topological information in the form of a pointer to the
triangle lying immediately to its left and a pointer to the
triangle lying immediately to its right (that is, the two
triangles to which the edge belongs). A Boolean flag is also
stored with each edge indicating whether it is a real edge
or a virtual edge. Real edges of linear objects reference a
pointer to the linear object to which they belong. Each vertex
is associated with co-ordinate data in the form ofx and y
values.

This triangulated data structure conforms to conventional
triangulated data structures used in applications referred
to in Section 1, although it differs from the simplest of
these in referencing parent objects that are defined in terms
of triangulation components. For a measure of storage
requirements we assume that there aren points in the input
line segment data and approximatelyn real edges. The
number of triangles is given by 2n − b − 2, whereb is the
number of boundary points. This approximates to 2n for
large datasets. The number of triangle edges is 3n − b − 3
which again approximates to 3n. The number of virtual
edges is therefore approximately 3n −n = 2n. Each triangle
requires four data items, consisting of a triangle identifier

and three edge pointers. Each virtual edge requires five data
items consisting of an edge identifier, two vertex pointers
and two triangle pointers (the Boolean flag is regarded as
negligible). Each real edge requires six data items consisting
of an edge identifier, two triangle pointers, two vertex
pointers and an object identifier. Each vertex is associated
with a vertex identifier and two co-ordinates. Thus for each
input point there is a total of(4×2+5×2+6×1+3×1),
i.e. 27, data items.

The data structure is assumed to be associated with a
spatial index on the triangles. This may be a temporary
structure or, if the triangulation is stored in a database, it
is a permanent database spatial index.

4. PROXIMITY SEARCH PROCEDURES

In this section we describe procedures to find the nearest
object to a specified object and the nearest object to an
arbitrary point. We start by defining the two search
problems.

The distancedoo(ox , oy) between two objectsox andoy is
given by the minimum of the distancesdee(k, l) between all
pairs of edgesk ∈ E rx andl ∈ E ry . The distancedee(k, l)
between two edgesk andl is given by the minimum of the
four distances between a vertex of one edge and the nearest
point located on the other edge. The nearest neighbour
oy ∈ O of an objectox ∈ O therefore satisfies the following
condition:

doo(ox , oy) = min(dee(k, l))

k ∈ E rx ; l ∈ (E r − E rx ).

The nearest linear object to a pointp satisfies the condition
that the distancedpe(p, e) between the pointp and one of
the edgese of the object is the shortest distance between the
point and all real edges inE . Thus the distancedpo(p, ox)

from point p to the nearest objectox ∈ O is given by

dpo(p, ox) = min(dpe(p, e)) e ∈ E r.

4.1. Algorithm 1. Finding the nearest object to an
object

The procedureFindNearestObjectToObject, referred to
as Algorithm 1, will find the nearest-neighbouring linear
object, or neighbours if there is more than one, of a linear
objectoi , referred to as the source object and consisting of
the set of real edgesE ri . The nearest neighbour(s) is stored
in the list Ni and the distance between this object(s) and
oi is stored indi N . The technique adopted in findingNi

involves a sequence of local searches from each edge ofoi .
The search from an individual source edge stops when the
distance between that edge and all inspected neighbouring
triangulation edges at the boundary of the local search region
exceeds the current value ofdi N .

The procedure begins by initializingNi to empty and
settingdi N to a large value. The main loop of the procedure
processes each source edgee ∈ E ri of object oi . For

THE COMPUTER JOURNAL, Vol. 41, No. 2, 1998



74 C. B. JONES AND J. M. WARE

ALGORITHM 1.

a particular source edgee the search begins by placinge
on a previously empty queue (Search Queue) which is
to contain triangle edges awaiting processing. Edges are
removed from this queue in turn and processing for an
individual source edge finishes when there are no more
edges on the queue.

On removing an edgee1 from the queue, a test is
performed to determine whether the edge is nearer to the
source edge than the current nearest object. If it is nearer
then each of its adjacent triangles is processed, provided
they have not previously been processed. For an individual
triangle t adjacent toe1 this processing entails examining

each constituent edgee2. For an individual edgee2, provided
it has not previously been processed in the local search, the
distanced2 betweene2 ande is calculated. The number of
edge to edge distance calculations is minimized by checking
if e2 is contiguous with, and hence at zero distance from,
e using the Boolean functionEdgesContiguous. If this is
not the case, the functionEdgeEdgeDistance is used to
calculated2.

If d2 is less than or equal todi N then e2 and d2 are
added toSearch Queue, for subsequent processing. Ife2
belongs to an object other thanoi , then if the object is at the
same distance as the current value ofdi N it is added toNi ,

THE COMPUTER JOURNAL, Vol. 41, No. 2, 1998



PROXIMITY SEARCH WITH A TRIANGULATED SPATIAL MODEL 75

otherwiseNi is re-initialized with the new object anddi N is
updated.

4.1.1. Correctness of Algorithm 1

LEMMA 4.1.Let en be an edge belonging to a source
linear featureLi , embedded within a CDT of the vertices of
a set of linear featuresL. For each such edge, Algorithm 1
constructs a surrounding triangle set consisting of the union
of the edge-connected triangles processed for that edge and
defining a polygonal region of space completely surrounding
en (illustrated in Figure 1).

FIGURE 1. All shaded triangles represent the surrounding triangle
set in a local search for the nearest neighbour of an edgee1. The
paler shaded triangles constitute the minimum surrounding triangle
set. Vertices of the linear featuresL1, L2 and L3 have been
triangulated. The nearest neighbours of edgee1 (belonging to
featureL1) are edgese2 and e3, which are equidistant frome1
and belong to featureL3. The oval boundary represents the region
extending from the source edge by the distance of the nearest-
neighbouring edges.

Proof. Note initially that Algorithm 1 always processes
the two edge-connected triangles of a source edge (e1 in
Figure 1). At each end of the source edge is a set of triangles
forming a fan around the respective vertex and connected
to it by edges that are at zero distance. The fan sets are
each internally edge-connected by the zero-distance edges
and they are each edge-connected to the two edge-connected
triangles of the source edge. All of these triangles that are
vertex-connected with the source edge will be processed by
Algorithm 1, since they will be found via edge connectivity
across edges that are all nearer than the current distance
to the nearest neighbour. They form a minimum set of
surrounding triangles (the pale shaded triangles in Figure 1)
for the source edge and their boundary will consist of a
polygon which is disjoint from and therefore contains the
source edge. Further triangles (the darker shaded triangles
in Figure 1) will be added to the minimum surrounding
triangle set, i.e. be processed, if they are edge-connected to
the current surrounding set by edges that are nearer than or
at equal distance to the candidate nearest neighbour.�

It should be remarked that the size of surrounding triangle
set may vary for a particular source edge according to which
of the two adjacent triangles is processed first.

LEMMA 4.2.For an edgeen ∈ Li , embedded within a
CDT of the vertices of a set of linear featuresL, Algorithm 1
finds the nearest-neighbouring disjoint linear feature edge
en ∈ (L − Li ) in time required to process all triangles of the
surrounding triangle set ofen.

Proof. Note that processing of theSearch Queue will
terminate when the queue is empty and hence when
Algorithm 1 can find no more unprocessed edges that
are closer than the candidate nearest edge(s). Since the
surrounding set defines a polygonal region containing the
source edge, for there to be a nearer disjoint real edge than
the candidate nearest edge(s), at this stage in processing,
there would have to be some part of the surrounding triangle
set that was nearer than the candidate. As all edges of all
triangles in the surrounding set will have been queued, there
cannot be a closer edge than the final candidate edge(s).�

Proof of the correctness of Algorithm 1, in finding the
nearest-neighbouring linear feature of another linear feature,
follows from the repeated application of individual edge
nearest-neighbour search. Processing of the first edge of
the source feature finds the nearest disjoint neighbour(s)
of that edge. This neighbouring edge (or edges if there is
more than one at the same distance) becomes the candidate
nearest neighbour against which the neighbouring edges of
the second constituent edge are compared. If a neighbouring
real edge of the second constituent edge is nearer than the
candidate(s) it becomes the new candidate, and processing
will continue for that source edge until any nearer object
edge(s) are found and until no edge of its surrounding
triangle set is nearer than the current candidate(s), as
described above for the case of a single edge. Third and
subsequent edges of the linear feature will be processed in
the same way. On completion, the nearest neighbour(s) will
therefore be the minimum distance nearest neighbour(s) of
all constituent edges and hence the nearest neighbour(s) of
the entire feature.

4.1.2. Observations on the performance of Algorithm 1
The algorithm requires a pre-processing step to construct the
CDT of the N vertices of the linear features. This takes
O(N log N) time [26]. We also construct a regular grid
spatial index on the triangles which requires O(S) time and
O(S + G) space whereS is the number of triangles andG is
the number of grid cells. Each constituent edge of the source
linear feature requires distance calculations to all edges of
all triangles of the surrounding triangle set. For each edge
examined, each possible operation of distance measurement,
distance comparison, enqueuing, dequeuing and access to
the adjacent triangles is performed in constant time, while
the tests for previous processing of edges and triangles take
a maximum time proportional to the number of triangles
examined (and hence the size of the surrounding set). No
edge is processed more than once for each source edge.

THE COMPUTER JOURNAL, Vol. 41, No. 2, 1998



76 C. B. JONES AND J. M. WARE

FIGURE 2. Part of a highly equiangular triangulation centred on
a single source edge (highlighted in bold). The shaded triangles
represent the minimum surrounding triangle set. All bold shaded
edges, other than the source edge, indicate those edges that might
be inspected with Algorithm 1 in a worst case scenario for a highly
equiangular triangulation.

The minimum number of edges examined will correspond
to those of the minimum surrounding triangle set and hence,
in the case of the average number of edges connected to a
vertex being six [1], this would represent 18 edges of which
only eight required distance calculations, the others being
connected to the source edge (Figure 2).

The surrounding triangle set must at least cover the region
of space extending from the source edge by a distance
equal to that of the nearest neighbour to the edge, so
that no part of the polygonal boundary of the surrounding
triangle set can be nearer than the nearest neighbour. In
a highly equiangular triangulation the number of triangles
required to cover the search region would be expected
to differ little from the minimum surrounding triangle set
as illustrated in Figure 2 (in which the minimum set is
shaded). For a highly equiangular triangulation, in the
worst case it would be necessary in Algorithm 1 to inspect
all edges of triangles edge-connected to the boundary of
the minimum surrounding set, in which case 44 edge–edge
distance measurements would be required.

With decreasing equiangularity the need to search beyond
the minimum surrounding set would increase and hence
the number of triangles inspected would tend to increase.
Figure 3 illustrates a non-equiangular triangulation of
three line features that are approximately parallel and in
which the aspect ratio (between the smallest height and
the longest edge) of the triangles is about 10. In the
hypothetical example it would be necessary to perform
distance calculations on 158 triangle edges in order to
process the surrounding triangle set. Although aspect ratios
of about 10 are quite common in datasets that we have
examined, the very regular distribution of data in the figure
is not. The configuration in Figure 3 was chosen to
represent a relatively ‘bad case’ with regard to the search

FIGURE 3. A regular non-equiangular triangulation of three
parallel sets of edges belonging to three linear features, with
an aspect ratio of about 10. In this ‘bad case’ scenario all
triangles illustrated would need to be processed with Algorithm 1
in order to construct the surrounding triangle set for the central
edge (highlighted in bold) of the middle linear feature. The
oval represents the region extending from the source edge by the
distance of the nearest neighbour(s). Note that if the triangulation
extended beyond the upper and lower lines then a further four
triangles (not illustrated) would be added to the surrounding
triangle set.

procedure. Note that if the real edges were long relative to
the minimum triangle height, with a similar arrangement of
parallel features, this would lead to a much lower number
of edge distance calculations. If the example configuration
of data represented the entire dataset then a worst case time
complexity of O(N) time therefore applies, whereN is the
number of triangle edges.

The emphasis of this paper is on experimental evaluation
of the presented procedures and no attempt is made here to
carry out a theoretical analysis of average performance. The
experimental results presented subsequently do, however,
support the proposition that the situation illustrated in
Figure 3 represents an ‘outlier’ and that the average
performance is much nearer to the processing required to
inspect the minimum triangle set.

4.2. Finding the nearest object to a point

Here we describe procedureFindNearestEdgeToPoint
(Algorithm 2) which finds the nearest real edge to a pointp
lying in a trianglet . The procedureFindNearestEdgeTo-
Point takes as input a query pointp and the identity of
the trianglet that contains the point, and outputs a listE p

containing the nearest edge (or edges if there is more than
one at the same distance) and the corresponding distance
dp. The containing triangle is found in our implementation
with the spatial index on the individual triangles. The
procedure starts by initializing to empty aSearch Queue
and aVisited List (for processed triangles and edges), and

THE COMPUTER JOURNAL, Vol. 41, No. 2, 1998



PROXIMITY SEARCH WITH A TRIANGULATED SPATIAL MODEL 77

ALGORITHM 2.

setting the distance variabledp to a large value (greater than
the range of the data).

In the first stage of the procedure, each edge of the
seed triangle is examined. For each edge, the distance
to p is calculated with functionPointEdgeDistance. If
the distance is less than or equal to the current value of
dp then the edge’s identity and the corresponding distance

are queued, along with the identity of the seed triangle.
Furthermore, if the edge is real, the listE p is re-initialized
with the edge’s identity if the distance is less than the current
value ofdp, otherwise, if it is equal, the identity of the edge
is added to the list.

The main body of the procedure consists of a loop which
processes edges on theSearch Queue until that queue is

THE COMPUTER JOURNAL, Vol. 41, No. 2, 1998



78 C. B. JONES AND J. M. WARE

empty. Dequeuing an edge is followed by a comparison
of its distance fromp with the current value ofdp. If the
dequeued edge is further away, then no further processing is
performed on it and the next edge is dequeued. Processing
of a dequeued edge that is nearer than or equal in distance
to the candidate nearest real edge starts by determining the
identity of the trianglet1 on the opposite side of the edge
from the initial triangle to which it belonged, using function
TriangleEdgeConnect. Provided thatt1 has not previously
been processed, the distance top from each previously
unprocessed edgee1 ∈ t1 is found. If e1 is nearer than or
at equal distance to the candidate nearest real edge(s) then it
is queued along with its distance and the identity oft1, and
if it is a real edgeE p anddp are updated as in the first stage.

4.2.1. Correctness of Algorithm 2
Proof of the correctness of Algorithm 2 is similar to, though
simpler than, that for Algorithm 1. Thus Lemma 4.3 refers
to a surrounding triangle set which we use to demonstrate
that the algorithm searches a region of space that extends in
all directions from the point by a distance equal to or greater
than the distance to the nearest-neighbouring real edge.

LEMMA 4.3.Given a CDT of the vertices of a set of linear
featuresL and a query pointp, Algorithm 2 constructs a
surrounding triangle set consisting of the union of the edge-
connected processed triangles and defining a polygonal
region that containsp.

Proof. The proof of Lemma 4.3 follows from the fact that
processing of the query point starts by identifying a triangle
that containsp and constitutes the minimum surrounding
set. Individual further triangles are processed, and hence
added to the surrounding triangle set, if they are edge-
connected to the boundary of the surrounding triangle set
and if the connecting edge is nearer top than is the candidate
nearest neighbour (or neighbours if there is more than one
at an equal distance). Processing of theSearch Queue
will terminate when there are no edges on the queue that
are nearer than the candidate nearest edge. At this stage all
edges inside and on the boundary of the polygonal region
will have been examined and hence there are no real edges
belonging to the region nearer than the candidate nearest
edge and no virtual edges on the boundary that are nearer.�

4.2.2. Observations on performance of Algorithm 2
The lower bound on the time complexity of Algorithm 2 is
O(1) and corresponds to the situation in which the nearest-
neighbouring edge is found in stage one as a result of
processing the seed triangle. Thus one triangle and its three
edges will have been processed. If the seed triangle includes
a virtual edge that is nearer to the query point than is a
real edge of the triangle, or if there are no real edges, then
additional triangles will be processed. A worst case scenario
can be envisaged in which the query point was located half
way between two parallel rows of real edges that were very
short compared with the separation between the rows. If the
entire dataset consisted only of two such rows, the points of

FIGURE 4. A ‘bad case’ for Algorithm 2 (nearest edge to a
point) in which the query point lies equidistant from two parallel
linear features in a triangulation with an aspect ratio of about
10. All triangles illustrated would be processed to construct the
surrounding triangle set. If the triangulation extended beyond the
upper and lower line features, the surrounding triangle set would
include three additional triangles (not illustrated) above and below
the location of the query point.

which were collinear, and the length of the rows was equal
to their separation distance, then the surrounding triangle set
could include all triangles in the triangulation, leading to a
time complexity of O(N).

In practice, with a more uniform distribution of data,
as is encountered in the geographical datasets used in our
experiments, the performance can be expected to vary as a
function of the degree of equiangularity. Figure 4 illustrates
the surrounding triangle set in a situation in which a query
point is located in the centre of a region with parallel sets of
short edges and an aspect ratio of about 10. The nearest real
edge is located in the seed triangle, but it is necessary to build
the surrounding triangle set to cover a region of space with
a radius equal to the distance to the nearest neighbour. In
this case it can be seen that 21 triangles would be processed,
along with 43 edges. In the experimental results presented
below it can be seen that an aspect ratio of 10 is quite typical
and that average performance is better than this hypothetical
‘bad case’ for all datasets examined.

5. EXPERIMENTAL RESULTS

Both of the algorithms presented here were tested experi-
mentally using a variety of geographical datasets containing
topographic features including administrative boundaries
(very irregular), land use categories, roads and build-
ings. Figures 5–9 illustrate several of the datasets. The
characteristics of all the datasets employed, numbered 1–
13, are summarized in Table 1. All except number 12
are Bartholomews topographic digital map data for Great
Britain based on source scales of 1:5000 and 1:250,000.
Dataset 12 is French IGN BDTopo data, based on a source
scale of 1:25,000. Datasets 4 and 5 (roads) are derived from
dataset 3 by filtering vertices. Similarly, dataset 13 is derived
from dataset 7 by filtering vertices.

THE COMPUTER JOURNAL, Vol. 41, No. 2, 1998



PROXIMITY SEARCH WITH A TRIANGULATED SPATIAL MODEL 79

FIGURE 5. Digital map dataset 1 (a) and its CDT (b). Urban
boundaries from Bartholomews Great Britain 1:250,000 digital
map.

5.1. Experimental results for nearest-neighbouring line
edges

The testing of Algorithm 1 was performed using datasets
consisting largely of isolated objects such as buildings and
categories of land use. It was not tested on the datasets
consisting of networks of linear features such as roads,
since most features in these datasets were connected (and
hence at zero distance from each other), rather than disjoint

FIGURE 6. Digital map dataset 2 (a) and its CDT (b).
Administrative boundaries from Bartholomews Great Britain
1:250,000 digital map.

from the nearest neighbours as is assumed by the algorithm.
The results report on finding the nearest disjoint edge to
an individual edge corresponding to a single iteration of
the main loop of Algorithm 1. Statistics for nearest linear
object to another linear object are not reported here as
the individual searches depend (linearly) on the size of
the source object and hence, when averaged for multiple
searches, mask the performance of the core edge–edge
search procedure.

THE COMPUTER JOURNAL, Vol. 41, No. 2, 1998



80 C. B. JONES AND J. M. WARE

FIGURE 7. Digital map dataset 5 (a) and its CDT (b). Roads
(filtered data) derived from Bartholomews Great Britain 1:250,000
digital map.

Results are summarized in Table 2. For each dataset
the number of searches was determined by the total
number of real edges in the dataset, and statistics reported
consist of the average numbers of edge–edge distance
calculations, with their corresponding minimum, maximum
and standard deviations, and the average time in seconds per
source edge, again with minimum, maximum and standard
deviations. Average numbers of edge–edge distance
calculations (equivalent to numbers of edges ‘processed’
per edge) ranged between about 15 and 39. The worst
results correspond to the urban area boundaries of dataset 1

FIGURE 8. Digital map dataset 11 (a) and its CDT (b). Buildings
and land use categories from Bartholomews Great Britain 1:5000
digital map.

consisting of small irregular shaped polygons in which the
object size was small relative to the separation between
objects, and with an average triangulation aspect ratio of
about 7. The best results (dataset 2) were for data that were
relatively uniformly distributed with a triangulation aspect
ratio of about 4. Minimum numbers of calculations per
edge ranged between three and five. Maximum numbers of
edge–edge calculations (116 to 324) were very roughly 10
times higher than the average values. Standard deviations for
edge–edge calculations were similar in magnitude to their
corresponding average values.

THE COMPUTER JOURNAL, Vol. 41, No. 2, 1998



PROXIMITY SEARCH WITH A TRIANGULATED SPATIAL MODEL 81

FIGURE 9. Digital map dataset 12 (a) and its CDT (b). Buildings
and streets from IGN France BDTopo 1:25,000 digital map.

All timings were carried out on a SPARC 20. Average
CPU times were directly proportional to numbers of edges
processed and ranged for the different datasets between
0.00044 and 0.0014 s per source edge. Minimum timings
were, as indicated by the minimum edge–edge calculations,

similar for the different datasets, being between about
0.00008 and 0.0001 s. Maximum values were also similar
ranging from about 0.021 to 0.069 s. Standard deviations for
the CPU timings were mostly two to three times the average.

5.2. Experimental results for nearest edge to a point

Experiments for Algorithm 2 were carried out using all 13
datasets and are tabulated in Table 3. For each dataset,
10,000 nearest neighbour searches were performed, based
on a regular grid of query points. Average numbers of point–
edge distance calculations ranged between 7 and 35. The
best performance datasets were the third roads dataset (5)
and the buildings and street dataset (12) both of which have
relatively equiangular triangulations with aspect ratios about
4. Minimum numbers of point–edge distance calculations
were always three, corresponding to the theoretical analysis
of a lower bound. Maximum numbers ranged from 32
to 287. Standard deviations of the numbers of distance
calculations were between about half and one times the
average values, for the different datasets.

Timings on a SPARC 20 were in the average case
approximately linearly related to the distance calculations.
Average times ranged from 0.00005 to 0.00030 s. Minimum
times were consistent at about 0.000015 s, while maximum
times were in the range 0.021 to 0.097 s. Standard deviations
of the times ranged between about two and seven times the
average values.

6. CONCLUDING REMARKS

This paper has presented search procedures to determine
nearest-neighbour relationships for linear features using a
CDT of their vertices. Proximal queries to determine
the nearest linear object(s) to a given object, and the
nearest linear object(s) to an arbitrary point, exploit the
local connectivity of the triangulation to carry out a search
through the triangles connected to the query object or to the
triangle containing a query point.

The experimental results presented here indicate that,
for the geographical datasets considered, average case
nearest-neighbour queries require distance calculations only
to edges in the immediate neighbourhood of the source
edge or query point. A comparison of numbers of
distance calculations (which dominate performance) for the
object–object search procedure (Algorithm 1) may be made
between the average experimental results obtained here and
the expected results for an ideal hypothetical constrained
triangulation in which it was known that nearest disjoint
neighbouring linear objects were always connected directly
by a non-line-segment (virtual) triangulation edge. This
hypothetical situation may be regarded as similar to the
dual of a line Voronoi diagram. For the query of finding
the nearest disjoint edge to a given edge, the hypothetical
number of (non-zero) edge–edge distance calculations in
a triangulation with assumed valency of six edges per
vertex would be a minimum of eight and a maximum
of 30 (see Figure 2). The average numbers of edge–
edge distance calculations in the experiments presented here

THE COMPUTER JOURNAL, Vol. 41, No. 2, 1998



82 C. B. JONES AND J. M. WARE

TABLE 1. Description of data sets.

Data set Description Scale Objects Edges Vertices Triangles Aspect ratio

1 urban boundaries 250,000 238 5701 5704 11,402 7.16
2 urban boundaries 250,000 79 4408 4397 8788 32.37
3 roads1 250,000 883 4028 3768 7530 8.05
4 roads2 250,000 883 2376 2116 4226 3.88
5 roads3 250,000 883 882 623 1240 4.01
6 buildings 5000 944 5567 5492 10,978 10.79
7 land use 5000 518 5969 5934 11,862 85.63
8 buildings+land use 5000 1462 11,400 11,212 22,418 20.71
9 buildings 5000 640 4894 4857 9708 14.12

10 land use 5000 455 4928 4886 9766 25.73
11 buildings+land use 5000 1095 9742 9638 19,270 14.49
12 buildings+streets 25,000 337 2151 1074 2142 4.17
13 land use 5000 518 2183 2248 4490 10.57

TABLE 2. Results for nearest edge to edge search.

Edge–Edge calculations per edge Time taken per edge
Data set Average Min Max s.d. Average Min Max s.d.

1 39.01 3 315 42.25 0.00139 0.000081 0.025005 0.002788
6 28.18 4 324 40.4 0.001008 0.000096 0.026221 0.003011
7 24.86 4 274 36.24 0.000865 0.000096 0.023845 0.00244
8 18.88 3 253 15.95 0.000505 0.000076 0.02204 0.000909
9 29.16 4 238 25.44 0.000813 0.000098 0.22396 0.001316

10 28.23 3 267 38.64 0.00096 0.000077 0.021684 0.002596
11 24.26 4 273 24.75 0.000684 0.000096 0.02157 0.001406
12 14.94 5 116 8.19 0.000443 0.000119 0.069829 0.002311
13 17.51 4 73 12.57 0.00044 0.000096 0.021827 0.000724

TABLE 3. Results for nearest object to arbitrary point search.

Point–Edge calculations per query Time taken per query
Data set Average Min Max s.d. Average Min Max s.d.

1 25.16 3 69 10.85 0.000181 0.000016 0.022886 0.000371
2 34.87 3 106 16.44 0.00029 0.000014 0.021521 0.000472
3 14.21 3 94 9.49 0.000092 0.000015 0.023429 0.000338
4 11.41 3 92 8.19 0.000073 0.000014 0.030646 0.000391
5 7.24 3 80 6.63 0.000046 0.000014 0.021003 0.000253
6 18.39 3 116 9.05 0.000119 0.000015 0.022719 0.000294
7 30.07 3 287 28.59 0.000303 0.000015 0.02249 0.000719
8 20.25 3 287 20.42 0.000173 0.000015 0.038024 0.000614
9 20.66 3 125 10.99 0.00014 0.000015 0.020633 0.000302

10 23.64 3 118 16.93 0.000193 0.000015 0.097551 0.00104
11 18.01 3 136 11.6 0.000122 0.000015 0.021454 0.0003
12 8.84 3 32 5.02 0.000052 0.000014 0.030721 0.000376
13 17.13 3 44 7.56 0.000107 0.000014 0.021157 0.00281

range from 15 to 39 for all datasets examined. The same
type of comparison cannot be made for Algorithm 2, since
the number of triangles between an arbitrary point and
the nearest object would still not be constrained in the
hypothetical triangulation. However, it may be noted that the
average numbers of point–edge distance calculations ranged
between seven and 35 for the different datasets.

Average timings on a SPARC20 for the nearest-

neighbouring edges queries required 1.4 ms in the ‘worst’
dataset and 0.4 ms in the ‘best’, while for the nearest edge to
an arbitrary point, average timings for the different datasets
ranged between 0.05 and 0.1 ms.

In summary, the results appear to confirm that triangulated
data models do provide a reasonable basis for implementing
proximal search queries. Performance is clearly variable
between datasets. This, however, will also be the case for

THE COMPUTER JOURNAL, Vol. 41, No. 2, 1998



PROXIMITY SEARCH WITH A TRIANGULATED SPATIAL MODEL 83

search procedures implemented using conventional spatial
indexing methods. The algorithms presented here are simple
to implement and may be regarded as of most potential
benefit for applications in which triangulated spatial models
may already have been constructed.

The data structure described here incurs a storage
overhead in the form of the triangulation. In the case of
applications that employ large spatial databases, however,
it may not be necessary to store the explicit triangulation
permanently. Thus a local triangulation may be constructed
for a user-specified window on which it is assumed that
the user may wish to perform multiple operations requiring
spatial query [12].

ACKNOWLEDGEMENTS

The digital map data used in dataset numbers 1 to 11
and number 13 employedc© Bartholomew Digital Data.
Reproduced with permission of HarperCollins Publishers.
http://www.bartholomewmaps.com

REFERENCES

[1] Preparata, F. P. and Shamos, M. I. (1988) Computational
Geometry. Texts and Monographs in Computer Science.
Springer-Verlag, New York.

[2] Kriegel, H.-P., Horn, H. and Schiwietz, M. (1991) The
performance of object decomposition techniques for spatial
query processing.Advances in Spatial Databases: Proc. 2nd
Symp. on the Design and Implementation of Large Spatial
Databases (SSD’91). Lecture Notes in Computer Science,
525, 257–276. Springer-Verlag.

[3] Guttman, A. (1984) R-trees: a dynamic index structure for
spatial searching.Proc. ACM SIGMOD Int. Conf. on the
Management of Data, pp. 47–57. ACM, Boston, MA.

[4] Sellis, T., Roussopoulos, N. and Faloutsos, C. (1987) The R+
tree: a dynamic index for multidimensional objects.13th Int.
Conf. on Very Large Databases, pp. 507–518.

[5] Kirkpatrick, D. (1983) Optimal search in planar subdivisions.
SIAM J. Comput., 12, 28–35.

[6] De Floriani, L. (1989) A pyramidal data structure for triangle-
based surface description.IEEE Comput. Graphics Applic., 9,
67–78.

[7] De Floriani, L., Gattorna, G., Marzano, P. and Puppo, E.
(1994) Spatial queries on a hierarchical terrain model.6th
Int. Symp. on Spatial Data Handling SDH 94, pp. 819–834.
International Geographical Union, Edinburgh.

[8] Gold, C. M., Charters, T. D. and Ramsden, J. (1977)
Automated contour mapping using triangular element data
structures and an interpolant over each triangular domain.
Comput. Graphics (ACM), 2, 170–175.

[9] Peucker, T. K., Fowler, R. J., Little, J. J. and Mark, D. M.
(1978) The triangulated irregular network.ASP/ACSM Digital
Terrain Models (DTM) Symp., pp. 516–540. ACSM, Falls
Church, VA.

[10] Kraak, M. J. (1993) Cartographic terrain modeling in a three-
dimensional GIS environment.Cartography Geogr. Inf. Syst.,
20, 13–18.

[11] Jones, C. B. (1989) Data structures for three-dimensional
spatial information systems in geology.Int. J. Geogr. Inf.
Syst., 3, 15–31.

[12] Jones, C. B., Kidner, D. B. and Ware, J. M. (1994) The
implicit triangulated irregular network and multiscale spatial
databases.Comput. J., 37, 43–57.

[13] De Floriani, L. and Puppo, E. (1988) Constrained Delaunay
triangulation for multiresolution surface description.9th Int.
Conf. on Pattern Recognition, Rome, pp. 566–569. IEEE,
Washington, DC.

[14] DeLucia, A. and Black, T. (1987) A comprehensive
approach to automatic feature generalization.Proc. 13th Int.
Cartographic Conf., pp. 169–191. International Cartographic
Association, Mexico.

[15] Jones, C. B., Bundy, G. Ll. and Ware, J. M. (1995) Map
generalization with a triangulated data structure.Cartogr.
Geogr. Inf. Syst., 22, 317–331.

[16] Frank, A. and Kuhn, W. (1986) Cell graphs: a provable
correct method for the storage of geometry.2nd Int. Symp.
on Spatial Data Handling, Seattle, WA, pp. 411–436.
International Geographical Union, Williamsville, NY.

[17] Egenhofer, M. and Jackson, J. (1989) A topological data
model for spatial databases.Symp on the Design and
Implementation of Large Spatial Databases. Lecture Notes in
Computer Science, 409, 271–286. Springer-Verlag, Berlin.

[18] Baehmann, P. L., Wittchen, S. L., Shephard, M. S., Grice,
K. R. and Yerry, M. A. (1987) Robust, geometrically based,
automatic two-dimensional mesh generation.Int. J. Numer.
Methods Engng., 24, 1043–1078.

[19] Storer, J. A. and Rief, J. H. (1994) Shortest paths in the plane
with polygonal obstacles.J. Assoc. Comput. Mach., 41, 982–
1012.

[20] De Floriani L. and Magillo, P. (1994) Visibility algorithms on
triangulated digital terrain models.Int. J. Geogr .Inf. Syst., 8,
13–41.

[21] Dickerson, M. T., Drysdale, R. L. S. and Sack, J.-D. (1992)
Simple algorithms for enumerating interpoint distances and
finding nearest neighbours.Int. J. Comput. Geom. Appl., 2,
221–239.

[22] Dickerson, M. T. and Drysdale, R. S. (1990) Fixed-radius
near neighbours search algorithms for points and segments.
Inf. Proc. Lett., 35, 269–273.

[23] Aurenhammer, F. (1991) Voronoi diagrams—a survey of a
fundamental geometric data structure.ACM Comput. Surveys,
23, 345–405.

[24] Shamos, M. I. and Hoey, D. (1975) Closest-point problems.
16th Ann. IEEE Symp. on Foundations of Computer Science,
pp. 151–162. IEEE Computer Society Press, New York.

[25] Okabe, A., Boots, B. and Sugihara, K. (1992)Spatial
Tessellations—Concepts and Applications of Voronoi Dia-
grams. Wiley, Chichester.

[26] Chew, L. P. (1989) Constrained Delaunay triangulations.
Algorithmica, 4, 97–108.

[27] Lee, D. T. and Lin, A. K. (1986) Generalized Delaunay
triangulation for planar graphs.Discrete Comput. Geom., 1,
201–217.

[28] Lee, D. R. and Drysdale, R. L. (1981) Generalization
of Voronoi diagrams in the plane.SIAM J. Computing, 10,
73–87.

THE COMPUTER JOURNAL, Vol. 41, No. 2, 1998


