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The triangulated irregular network (TIN) provides a versatile and widely used approach to representing
terrain models in a way that retains the original sample points, adapts to variation in data density and
incorporates linear features corresponding to natural or man-made phenomena. Classification of the
scale-related priority of the constituent points and linear features can be used to create hierarchical,
multiresolution TIN representations. A large proportion of the data items included in conventional and
hierarchical TIN data structures are concerned with recording the topology of the triangulation. Although
TINSs typically use many fewer points than the main alternative representation of regular rectangular
grids, they do not usually occupy much less data storage, due to the topological data. This paper describes
a novel multiresolution storage scheme which uses an approach termed the Implicit TIN, in which storage
requirements are reduced significantly by storing only the vertices and constraining features. TIN topology
is reconstructed by a procedure when required. The Implicit TIN storage scheme has been demonstrated
in the context of an experimental multiscale database. Variable-scale access is provided to polygonal
regions of a terrain model which includes polygon, line and point objects that constrain the constructed
triangulated model.
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1. INTRODUCTION

The rapid growth in the use of geographical information
systems (GIS) has introduced the requirement for terrain
models that combine digital elevation data with natural
and man-made topographic features. Applications
requiring such models include landscape architecture,
civil engineering and radio communications network
planning. A characteristic of many such GIS applications
is the need to retrieve data at different levels of detail,
or generalization, for purposes of scale-variable visual-
ization and analysis.

A spatial model which can represent digital elevation
data at its original locational precision and can conform
exactly to known linear features, such as ridges, roads
and valleys, is the triangulated irregular network (TIN)
[22]. A TIN defines a triangulation for a given set of
sample points. In the absence of linear features, it is
common practice to create a Delaunay triangulation. It
is characterized by providing the set of most equiangular
triangles [11, 23], a property which is desirable when
interpolating within triangles. A Delaunay triangle is
one in which a circumscribing circle passing through its
vertices contains no other points (Figure 1). Sibson [ 23]
states that for a finite set of distinct data sites, there is
only one locally equiangular triangulation, known as
the Delaunay triangulation, which is the dual of the
Dirichlet, Voronoi or Thiessen tessellation. This is an
important concept in geographical applications, since a
Thiessen polygon can be used to define the region of
influence of any point in an areal context [20]. In

Figure 1, points 1-6 are known as the Thiessen neigh-
bours of point P.

Since a Delaunay triangulation is dependent only
upon the spatial distribution of vertices, it cannot be
guaranteed to conform to known linear features that are
defined by subsets of the vertices. However, the triangula-
tion can be constrained, such that the linear features are
correctly represented by a sequence of triangle edges [4].

The main alternative to the TIN is the regular rectan-
gular grid. Although regular grids are convenient for
storage and some spatial data processing operations,
they are not able to preserve arbitrarily located point
and linear data, except at the cost of significant data
redundancy. Some commercial GIS use the TIN for the
primary database and convert to a grid temporarily, to
assist, for example, in visualization.

For the purposes of multiscale retrieval, hierarchical
data structures based on the TIN have been developed.
The Delaunay Pyramid [6] succeeds in retaining the
properties of Delaunay triangulation at all levels of
detail. It has been modified in the Constrained Delaunay
Pyramid (CDP) [7] to incorporate linear features cor-
responding to known structural edges in the terrain.
Differences in resolution or scale between the hierarch-
ical levels of the CDP are determined solely on the basis
of vertical error of a level relative to the highest level of
detail available. If the surface model is constrained by
linear features which represent objecls, such as rivers
and roads, the use of vertical error alone is inadequate,
since it will not retain corresponding degrees of general-
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FIGURE 1.

ization in the lateral displacement of lines. This issue
has been addressed in the Multiresolution Topographic
Surface Database (MTSD) [27], which integrates the
constrained Delaunay Pyramid with a multiresolution
representation of linear features, the Multi-Scale Line
Tree (MSLT) [15, 16].

In creating databases that represent TIN-based data
structures, a large amount of storage is taken up by the
pointers used to represent the topology, such as the
connectivity of triangle vertices and edges. De Floriani
[ 5] states that the topology of a triangular subdivision
is completely and unambiguously represented by any
suitably selected subset of nine adjacency relations
between entities (vertices, edges, triangles). Referring to
Figure 2, the assumption is that having stored the coord-
inates of each uniquely identified vertex Vn, some addi-
tional data must be stored to define the structure of the
triangulation. Which of the nine schemes is most appro-
priate will depend upon a combination of type of opera-
tions to be carried out on the triangulation and the
importance of saving storage space. For any triangula-
tion of N nodes, B of which are on the boundary (convex
hull), there are 2N—B—2 triangles and a total of
3N—B—3 edges, or 6N —2B—6 directed pointers, if
stored as links from each vertex. For a vertex-based TIN
which references edges, each node’s coordinates may be
stored with a pointer to the list of connected vertices
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FIGURE 2.

Local Delaunay triangulation about a point P.

(referred to as a vertex—vertex relation, i.e. 1 in Figure 2).
If coordinates and pointers require the same unit storage
space, the total storage will approximate to 9N (i.e. x, y
and z coordinates for each of the N nodes and
6N —2B—6 links). The triangle-based TIN will require
more storage (approximately 15N) since for each of the
2N — B2 triangles, pointers to the three vertices and
three neighbouring triangles are stored (12N —6B—12),
together with the vertex coordinates (3N).

In contrast to the nine schemes referred to, it is
possible to reduce the permanent storage requirements
of the TIN very greatly by only storing the vertices and
any linear constraints on the triangulation. When the
triangulation, or a part of it, is required for a particular
application, it can be reconstructed temporarily using a
triangulation algorithm. Provided the algorithm oper-
ates on predetermined criteria such as the Delaunay
triangulation and its constrained variant, it is possible
to ensure that the topology of the original triangulation
will be reconstituted. The approach is based on offsetting
storage against computation and is called Implicit
Triangulation. It was implemented originally for the
application of retrieving profiles for radio path loss
calculations from a large, single scale, terrain database
[17]. In this paper we present, for the first time, the
algorithms used to implement the Implicit TIN and
show how they can be applied to create a multiscale

Vertex - Vertex  : Given V1 Store V2, V3, V4
Vertex - Edge : Given V1 Store El,E2,E3
Vertex - Triangle : Given V1 Store T1, T2, T3
Edge - Vertex : Given El Store V1, V2

Edge - Edge : Given E1 Store E4,E2,E5,E3
Edge - Triangle : Given E1 Store T1, T3
Triangle - Vertex : Given T1 Store VI1,V2,V3
Triangle - Edge : Given T1 Store El, E4, E2
Triangle - Triangle : Given T1 Store T2, T3, T4

Illustration of the 9 possible relations between pairs of entities in a TIN (where Vn, vertices; En

L]

, edges and Thn, triangles).
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database which integrates ground elevation data with
other topographic features.

By reconstructing a surface from its original vertices
at the time it is retrieved, the Implicit TIN provides the
basis for a versatile approach to building multiscale
databases. In a multipurpose spatial database, both the
type of features to be retrieved and the detail with which
they should be represented may vary from one retrieval
to another. If terrain elevation data are to be integrated
in a flexible manner with ground surface features, it is
desirable to defer the definition of constraints on the
surface triangulation until the features of interest are
defined. Thus the retrieved surface will consist only of
the relevant features. Classification of vertices according
to their importance in reducing error in vertical elevation
and in laterally defined feature representation allows
selective retrieval of those data items that are appropriate
to the application requirements.

In the following sections we start by describing our
current multiscale version of the Implicit TIN, with
reference to the selection of vertices for different scales
and the reconstruction of an explicit TIN within a
spatially defined subregion of the database. This is
followed in Section 3 by a review of multiscale repres-
entations of linear features and an explanation of how
such features can be integrated with the Implicit TIN.
Section 4 describes briefly how multiscale polygonal
objects can be represented in terms of their consituent
linear boundaries. Section 5 describes the design and
performance characteristics of a multiscale topographic
surface database which integrates terrain elevation data
with points, lines and polygons, and composite objects
defined in terms of these primitive spatial objects. The
final section concludes with a summary of the use of the
Implicit TIN and outlines future research directions
related to multiscale geographical databases.

2. THE IMPLICIT TIN

The Implicit TIN provides a highly compact storage
scheme for representing topographic surfaces originally
encoded as triangulated irregular networks. The imple-
mentation reported in Kidner [17] and Kidner and
Jones [ 18] stored the vertices of the original TIN in a
regular rectangular cell spatial indexing data structure,
in which vertex coordinates were represented by offsets
from the origin of their containing cell. Reconstruction
of the triangulated network in a query window involves
retrieval of the relevant vertices and execution of a
Delaunay triangulation algorithm. In a comparison of
different methods for storing digital elevation data [17]
it was found that the Implicit TIN was the most space
efficient.

2.1. Vertex selection and initial TIN construction

Given a set of points representing vertical elevations
there are several methods for selecting a subset of points
which can be used to describe the sampled surface as a

TIN with a specified vertical error [19]. The need for
selecting vertices from an original set arises when that
set is in the form of a grid which may have considerable
redundancy, and when certain applications only require
a given degree of accuracy which is less than that of the
complete set of points. The approach used by De Floriani
[6] and Kidner [17] is to triangulate initially a small
subset of the original points. This could be known
important points or it could be an artificial set of points
defining a surrounding rectangle. Points are added to
the initial triangulation by selecting the vertically most
distant point from the approximating surface, retriangul-
ating, and repeating the process until no untriangulated
point is further than a specified tolerance from the
triangulated surface. Lee [ 19] favours a more computa-
tionally expensive approach whereby, initially, all points
are triangulated and points are removed selectively until
no triangulated point can be removed without degrading
the accuracy of the surface below a specified tolerance.
Selective removal of points involves finding for a given
triangulation that point which, after removal, is vertically
nearest to the retriangulated surface. Thus it is an
iterative process in which a single point is only selected
for removal after all other points have been considered
in the same way, involving repeated retriangulation.

2.2. Combining spatial access with vertex priority access

Methods such as the above for point insertion or removal
enable all vertices of the original set to be ordered in
terms of their significance in representing the surface.
Although it would be possible to label all points with
their priority, if storage requirements are an important
criterion it may be preferable to place vertices into
classes defined by an associated limiting error. Using
this layered hierarchical approach, the vertices required
to reconstruct a surface are those belonging to classes
with an error less than or equal to that of the retrieval
criterion. Vertices of each layer of the hierarchy may
then be segmented spatially to facilitate the search
process required to rebuild the triangulation. If the
vertices belong to a spatially extensive database, spatial
segmentation is also required to enable efficient retrieval
of an areal subset of the data.

The ideal spatial access scheme, given priority-ordered
vertices, would be one which combined spatial indexing
with scale-related, or priority, indexing. Efficient spatial
indexing depends upon being able to group together in
storage those points which would also be grouped
together in space. Having clustered data in spatial terms
they cannot simultaneously be clustered with equal
efficiency with respect to scale priority, since a cluster
based on scale priority could not be expected to be
clustered in space. In practice therefore it is necessary
to compromise. The solution adopted here is to give
preference to the spatial indexing, flsing a quadtree
directory, but to introduce a hierarchy of spatially
indexed levels where each level corresponds to a prespe-
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cified vertical error associated with the surface. The
highest level cells contain all vertices required to recon-
struct the triangulation to the lowest level of resolution,
i.e. largest error. The next level down the hierarchy
contains the additional vertices which, when combined
with those in the higher level, would reconstruct the
surface to the second resolution level. Thus each lower
level provides the additional vertices required to reduce
the surface error to that corresponding to its level. This
approach is comparable to that used by De Floriani in
the Delaunay Pyramid, except that here we do not store
a triangulation and we do, unlike the latter scheme, use
a spatial index for each level. A closer comparison is
with the methods used for the purposes of multiresolu-
tion storage of lines by Jones and Abraham [16] and
by Becker et al. [3].

2.3. Structural and non-structural lines

Before considering algorithms for reconstructing a trian-
gulation from an Implicit TIN it is necessary to consider
the linear features that may act as constraints on the
triangulation. Linear features that are combined with
terrain models fall into two categories. There are those
which are structural in the sense that their use as
constraints in a terrain model will improve the accuracy
of the model in describing the form of the terrain. These
lines describe phenomena such as ridges, valleys and
breaks of slope. We include in this category any lines
that describe physical objects. Roads, rivers and the
outlines of buildings are notable examples. Other, non-
structural lines are those that may be used to constrain
the triangulation to facilitate visual display of the surface.
Such non-structural lines could, for example, represent
administrative boundaries. In some circumstances these
boundaries might coincide with structural lines.

The significance of this distinction is that when struc-
tural lines are inserted in a topographic surface database,
their vertices can be added to the terrain model data
and the lines designated as necessary constraints. Non-
structural lines can be distinguished as such and they
only act as constraints when a particular query requires
their presence in the retrieved model.

If linear constraints are to be imposed on a multiscale
surface representation it is desirable to be able to control
the degree of detail of the line descriptions. Ideally this
should be comparable with that of the digital elevation
model, but this is not always possible if there is a
mismatch in the levels of detail of the original datasets.
The MSLT provides a means of representing the vertices
of linear features in a similar manner to that used in the
multiscale Implicit TIN (see previous section). The
MSLT is described in more detail in Section 3.

2.4. TIN reconstruction with linear constraints

The effectiveness of the Implicit TIN depends upon the
ability to reconstruct the original triangulation by means
of an algorithm which operates on the relevant vertices

and associated constraints. It is important to ensure that
when only a part of the surface is being reconstructed
(which will be the normal case for retrievals on an
Implicit TIN), all of the relevant vertices and constraints
are found. Note that if only a subsection of the original
surface is required in a given spatial window, some of
the relevant vertices of triangles crossing the border of
the window will lie outside the window.

2.5. Extensive region triangulation

We now present an algorithm which will reconstruct a
constrained TIN for a given query window. The algo-
rithm starts by using the query window to generate a
list of quadtree addresses (Figure 3). These are used to
access the relevant elevation points and constraining
objects. It should be noted that all geometric data
defining objects referenced by quadtree cells are
retrieved, not just geometric data that intersect the query
window. The object data, that may consist of polygons,
linear features or points, are reduced where appropriate
to a list of edges, the constituent vertices of which are

(a)

(b *

FIGURE 3. (a) The query region with respect to the database.
(b) The quadtree cells (and data) accessed in the database.
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stored, along with the height vertices, in a main-memory
based ‘box-sort’ data structure (Figure 4). This regular
grid structure provides spatial indexing in the course of
triangulation [20].

The correct constrained triangulation is obtained
in two stages. First a Delaunay triangulation of
all relevant vertices (from elevation data and
constraining objects) is performed (see Procedure
DELAUNAY__TRIANGULATE). Points that are
interior to the query region will always belong to the
final triangulation, so initially these points are put onto
a stack of points to be triangulated. The Thiessen
neighbours of each point CURRENT__POINT on the
stack are then found in the following way. The nearest
neighbour, NNB, of CURRENT__POINT is deemed to
be the first Thiessen neighbour. The Thiessen neighbour
K to the right of the edge (CURRENT__POINT, NNB)
is then found and added to the list of Thiessen neigh-

(a)

(b)

FIGURE 4. (a) A bounding rectangle placed around quadtree
cells. (b) The initial box-sort data structure with referenced and empty
cells.

bours. The Thiessen neighbour to the right of the edge
(CURRENT__POINT, K) is then found. The process is
repeated until the latest neighbour is equal to the original
neighbour. The search for Thiessen neighbours utilises
the box-sort data structure, such that only local points
within the neighbourhood of a Delaunay edge are tested.
However, if the search for triangle vertices includes box-
sort cells which are empty (lie outside the generated
quadtree region) or extends beyond the box-sort cover-
age, the necessary quadtree cells in the database inter-
sected by the local search region are accessed and the
vertices are retrieved (Figure 5).

The triangulation of all vertices within the query
region will not guarantee a complete TIN coverage over
that region. There may be situations where part of the
query window is not covered, particularly in its corners
where a Delaunay edge crosses the window but both its
vertices are outside (Figure 6). Whenever such an edge
is found, both its vertices are added to the stack of
vertices to be triangulated. Thus when the triangulation
is complete, triangles will have been constructed on both
sides of all such edges (Figure 7). This process introduces
unrequired edges, which can either be retained or dis-
carded. Such an edge is distinguished from other edges
by the fact that one of its endpoints has no neighbour.
The procedure is illustrated in Figure 8.

The second stage of the triangulation process is to
insert the linear constraints of all objects which lie

Box-Sort Grid Cells for Delaunay Search
(defined by coordinates of known edge) _

4 \\\ External Region
» \ (Data Not Always in Memory)
=
Query Region
(Data in Memory)

(a)

Quadtree Cells to be Addressed for Search

] Dpata Not in Memory

Data Currently in Memory

(b)

]
FIGURE 5. (a) The search for vertices extends beyond the query
region. (b) The search region is mapped into quadtree addresses for
retrieval.
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FIGURE 6. The triangulation of all vertices within the query
region. (Note that coverage is not complete in the bottom two
corners.)

FIGURE 7. The final triangulation of query region.

within or intersect the current TIN (see Procedure
CONSTRAIN__TRIANGULATION). Each con-
straining segment (A, B) can have one of five possibilities:
(i) A and B are both vertices within the TIN and form
a Delaunay edge, (ii) A and B are both vertices within
the TIN with no connecting edge, (iii) either A or B is
a TIN vertex whilst the other is external to the TIN,
(iv) both A and B are external to the TIN, or (v) any of
the cases (ii)—(iv) but where the constraining edge passes
through a hole or concavity in the triangulation. The
first two occurences are the most likely, but the probabil-
ities of each will depend upon the sampling densities of
the elevation and object data. In the first instance (i),
the segment exists within the TIN and therefore no
update is necessary. In the other cases, the segment does
not exist and therefore the TIN must be constrained
(Figure 9).

For case (ii), the procedure for inserting an edge
constraint (A, B) into the TIN consists of determining
the current edges which are intersected by the constraint
(Figure 9a), eliminating these edges (Figure 9b),
re-triangulating around the new edge (Figure 9¢) and
updating the TIN data structure. It may be noted that,
initially for case (ii), there will always be one or more
current edges that are intersected by the constraint (A, B)
since this region will have been triangulated initially as

it is within the original query window (otherwise A or
B would be external). The problem of re-triangulating
around the constraining edge is reduced to that of
separately triangulating the two polygons formed either
side of the edge. These polygons are sometimes referred
to as the polygons of influence [7]. The triangulation
of each polygon proceeds as follows. Consider the edge
(A, B) to be the base edge of the polygon. The initial
step is to find the vertex Q of the polygon, discounting
the vertices A and B, which subtends the largest angle
to the base edge. For the upper polygon in Figure 10(a)
this is vertex 5. This vertex is added to the list of
neighbours of both A and B, and similarly A and B
become neighbours of vertex 5. Two sub-polygons have
now been formed with base edge (A,5) and (S5, B)
respectively (Figure 10b). The two sub-polygons, and
any subsequent sub-polygons, are dealt with, recursively,
in the same way as the original polygon (Figures 10c
and d). The recursion continues until the latest new edge
matches an edge in the original TIN.

For a constraining segment with one vertex in the
TIN and a second outside, the procedure is very similar,
but triangle edges may extend to vertices outside the
original TIN. For example, consider the insertion of the
highlighted segment (A, B) in Figure 11(a). Here the
search for the vertex with the largest subtended angle
must include the vertices making up the polygon of
influence (discounting A and B) plus all vertices which
are external to the TIN but lie within the polygon of
influence (Figure 11b). Searches involving any sub-
sequent sub-polygon must include the vertices making
up the sub-polygon (discounting the base edge vertices)
plus any vertex which is external to the TIN but lies
within the sub-polygon. The recursive procedure in this
case continues until either the latest edge matches an
edge in the original TIN or the latest edge fails to
intersect the original TIN (Figure 11c).

The fourth possible situation is where both vertices of
the constraining edge lie outside the original TIN. The
procedure for constrained edge insertion follows that of
the insertion of a constraining edge with one external
vertex (Figure 12).

The Implicit TIN algorithm will sometimes produce
triangulations containing holes due to triangles crossing
concave regions of a query window. Thus the algorithm
has been designed to handle query windows that are
themselves concave in shape or include a hole.
Introducing a constraint which passes through such a
hole or concavity can be catered for by using the
methods for cases (iii) and (iv), as shown in Figure 13.

2.6. Restricted region triangulation

It is noted that to construct the Implicit TIN for any
query, the algorithm requires an initial vertex to start
the triangulation process. In most cases an arbitrary
vertex from within the query region is chosen. However,
in certain circumstances, no vertices lie within the initial
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Untriangulated
Region

(a) External Edge Intersection.

(b) Triangulation of External Vertices.

(c) Removal of unrequired edges.

FIGURE 8. Test for complete coverage and resolution of completeness by triangulation of external vertices.

query window. This situation may arise if the query
window is narrow or has no width as in the case of a
profile. In such a case the initial vertex can be found in
a number of ways. One method is to find the nearest
neighbour of the centre of gravity of the vertices defining
the query region. Another method is to search for
straight line segments (constraints) belonging to linear
features that cross the query window and to select one
of their bounding vertices. This would have to act as a
preliminary method in that it will of course only work
if there is an intersecting constraint. Having found an
initial vertex, the algorithm proceeds by finding its
Thiessen neighbours and testing whether the connecting
edge to each neighbour intersects the query window. If
it does, then the neighbour is placed on a ‘to triangulate’
stack. If no connecting edge crosses the window,
another vertex in the vicinity must be selected and the
procedure is repeated. Once a vertex of an intersecting
triangle edge has been found, its neighbours across
the window can be processed in the same way. All
such opposite neighbour vertices are then processed.
The remainder of the algorithm finds any unprocessed
border triangles in the same way as in Procedure
DELAUNAY__TRIANGULATE. The case where no
intersecting edge exists, when the query region is com-

pletely contained within a Delaunay triangle, is also
catered for. This is achieved by simply finding the
Thiessen neighbours of the vertex closest to the query
region. One of the triangles thus formed will contain the
query region.

3. MULTISCALE STORAGE OF LINEAR
FEATURES

There are several published descriptions of multiresolu-
tion schemes for representing lines. Examples of these
are the strip tree [2], the MSLT [ 15, 16], the Reactive
Tree [25] and the Priority Rectangle (PR) File [3]. The
original strip tree includes no facility for efficient spatial
access and is therefore not satisfactory for use in a large
database.

The MSLT does provide spatial indexing and it is
intended for large databases. Like all of these schemes
it uses a line generalization algorithm (that of Douglas
and Peucker [8]) to simplify linear features. The algo-
rithm is used to classify vertices of a line according to
their scale significance or contributiop to the shape of
the line. A hierarchy is then constructed in which, at the
top level, all vertices required to represent the line in its
most simplified form are stored. At the next level are
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(c)

FIGURE 9. Constrained edge insertion within a TIN. Insertion
of a constraining edge AB involves finding existing edges that
intersect it (a), deletion of these edges (b) and re-triangulation to
include AB as an edge in the triangulation (c).

stored intermediate vertices which when added to those
at the higher level would represent the line to a prespeci-
fied lateral error tolerance. Subsequent lower levels
provide further degrees of detail. Abraham [1] imple-
mented several spatial indexing methods whereby each
level of the hierarchy could be accessed on the basis of
a specified spatial window. For a given level of detail all
spatially relevant parts of the levels down to and includ-
ing that level need to be accessed. The retrieved vertices
are then reassembled to constitute the linear feature at
the required resolution. The MSLT spatial indexing
method subdivided vertices into rectangular cells, based
on a quadtree. The scheme carried a storage overhead
due to the fact that each cell included boundary vertices,
which were spatially located outside the cell’s (spatial)
extent.

The Reactive Tree of van Oosterom [25] uses an
R-Tree spatial index [12] to refer to the occurrence of
linear features which are stored separately in a hierarch-
ical (but not spatially segmented) data structure, the
BLG-tree, which provides access to the scale-classified
vertices of the linear features. The BLG-tree is then
traversed to the level of detail required. Efficiency of this
approach is dependent upon required linear features not

1

3 4
2
A
6
B
(a)
1 3 4
2
A
6
B
(b)
al a3 a4
A
6
B
(c)
A
B
(d)

FIGURE 10. Triangulation within a polygon around a
constrained edge. The inserted edge forms the base of two polygons
to be triangulated (a). Triangulation of each polygon proceeds by
selecting the vertex which subtends the largest angle with the base
edge (vertex 5 in b). Each new edge is treated recursively as a base
edge of a new polygon (c). Triangulation is completed for each
polygon when the edges from the selected vertex to the base edge
belong to the original triangulation (d).

being greatly spatially extensive beyond the region of
the spatial query window, since the BLG-tree requires
accessing the entire line which may subsequently be
clipped to the area of interest.

The PR File [3] is more closely related to the MSLT
in that the vertices of linear features are separated into
spatial units which are present at different levels of detail
(or ‘priority’). It differs however in that the spatial units
are minimum bounding rectangles of arbitrary subdivi-
sions of the stored line and are indexed using an R-Tree
related scheme. This reduces problems of boundary
vertices, though the scheme appears complex to
implement.

In our application of the Implicit TIN we have
adopted an approach which takes aspects of the MSLT
and of the Reactive Tree in order to reference line
features. Like the MSLT (and Becker et al’s PR File)
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Vertices not in TIN, but lying within the
polygon of influence are included in the

search for Q.

5 N\

A A
(@) ()

These edges do not intersect the

original TIN, so recursive process

is stopped.

B
C.
A (0

FIGURE 11. Insertion of an edge with one external vertex (see text for explanation).
B

A (a)

FIGURE 12.

B
A (b)

Insertion of an edge with two external vertices A and B (a) follows the procedure for insertion of an edge with one internal

vertex, to result in the constrained triangulation (b).

[ s B
A
(a)

FIGURE 13.

24

A

(b)

Insertion of an edge through a hole in the triangulation of a concave query window. Triangulation of the constraining edge

AB (a) continues within the polygons of influence until new base edges either belong to the original triangulation or do not intersect the query
window (b shows the triangulation of one side of AB).

vertices are classified into hierarchical levels. Since these
vertices may be a necessary part of the terrain model,
each level stores lists of the sequentially numbered line
vertex identifiers. The corresponding coordinates are
stored separately. The lists are not themselves spatially
segmented, though their presence is referenced by the
quadtree spatial index.

4. POLYGONS AND MULTISCALE LINEAR
FEATURES

Storage of polygonal objects is achieved by subdividing
each polygon into linear components representing their
boundary. In doing so, it is possible to avoid unnecessary
data duplication, since for a map entirely covered by
polygonal regions, all boundaries interior to the map
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will belong to the two adjacent polygons which share
the linear boundary. Provided that polygon representa-
tions are reduced to lists of linear boundaries, the linear
feature multiresolution storage scheme described in the
previous section can be used. Multiscale representation
of polygons can then be achieved by a combination of
a polygonal object description which refers, for a particu-
lar scale of representation, to the relevant linear compon-
ents, and the multiresolution representation of the linear
components themselves. Retrieval of a particular repres-
entation is accompanied by a check for topological
integrity of the polygon, which may have been violated
by the line generalisation procedure. This is then cor-
rected by inserting additional higher resolution vertices
in the linear boundary representations (Figure 14).

5. AMULTISCALE DATABASE

In this section we describe the components of a multis-
cale database which applies the Implicit TIN concept to
the storage of points, lines, polygons, complex polygons
and composite objects constructed from these spatial
objects. All of these spatial objects are regarded as part
of a terrain model, which we refer to as the topo-
graphic surface.

The objective in designing the database was to enable
subsets of spatial objects that are part of a topographic
surface to be retrieved at variable levels of detail deter-
mined by the scale of the required output. The assump-
tion is that for large scale (detailed) retrieval the
geometry will be required at higher resolution than for
small scale retrieval. It is also assumed that the actual
objects retrieved will be required at larger scales and,
furthermore, different types of object will be required
according to the purpose of the retrieval. In a geological
context, finer subdivisions of geological formations might
be represented at larger scales along with classes of
geological unit that were relevant to particular types of
mineral exploitation. In the context of local government
planning the boundaries of individual land parcels or
planning regulation zones might be required along with,
for example, the proposed path of new roads.

All geometric objects in the database are defined in
terms of component points. Individual points are identi-

Before generalisation.

After generalisation - an
intersection of line segments
has occured.

fied uniquely and may be regarded as belonging to both
the terrain surface and any point or linear or polygonal
features on the surface. When a point is inserted into
the database it is allocated a level which characterizes
its priority or scale significance. This priority is deter-
mined by a combination of two factors. One is the
importance in defining the geometry of the terrain
surface and the other is in defining the geometry of any
objects mapped onto the surface. Methods for determin-
ing the priorities were described Section 2.1 and
Section 3.

Spatial objects representing phenomena mapped onto
the terrain surface are viewed hierarchically. Thus point
objects are defined geometrically simply by reference to
a single vertex at a specified level; linear objects are
defined by ordered lists of vertices which may occupy a
specified range of levels; simple polygons are defined by
lists of bounding linear objects; complex polygons are
defined by lists of component simple polygons (a primary
external bounding polygon and the internal bounding
polygon, i.e. holes). Higher level objects defining various
real world phenomena are then defined in terms of the
constituent points, lines or polygons.

In the implemented database, all spatial objects and
all component vertices are indexed by spatial location,
using a quadtree directory, which is itself organised in
levels corresponding to levels of storage of the geometric
coordinate data. Each cell of the quadtree directory
references the objects that intersect it. The number of
objects per quadtree cell has been chosen somewhat
arbitrarily as 5. The purpose of the experimental data-
base is to provide a framework for demonstrating the
multiscale Implicit TIN and no attempt has been made
to optimise spatial indexing. It may be remarked how-
ever that the quadtree indexing scheme is similar in
principle to the PMR quadtree [ 21], which has perform-
ance characteristics that are competitive with other
major alternatives [13].

Queries to the database are answered by accessing
the level or levels appropriate to the specified ‘scale’ or
resolution. At any given level, all objects from the
coursest scale down to that level are recorded in the
spatial index. Thus having entered the database at a

Solution is to replace,
appropriate point or points.

FIGURE 14. Example of error which may occur during line simplification and how the error is corrected.
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particular level, retrieval of the geometry for selected
objects is achieved by accessing the range of levels from
the highest recorded for the object down to the current
level. Since adjacent quadtree cells may reference the
same (non-point) objects if they lie in both cells, it is
necessary to keep a temporary index of already accessed
objects for any particular query, in order to prevent
duplicate retrieval of the associated geometry. The TIN
construction algorithm is applied to the combination of
vertices and constraints retrieved for the specified spat-
ial window.

The experimental database consists of a set of indexed
tables with variable length records. An overview of the
database tables is given in Figure 15, which we will now
explain. The database represents the multiresolution
topographic surface by a sequence of levels where the
top level is the coarsest resolution and the bottom is the
finest resolution. The Levels Table has an entry for each
such level and records the level number, the maximum
vertical terrain height error associated with the level and
the maximum lateral (ground location) error associated
with linear features which may be embedded within the
level and hence constrain the triangulation.

There are two quadtree tables at each level of the
database. The Object Quadtree Table records, for each
quadtree cell, the list of the spatial objects (or features)
that lie inside or intersect the cell. The Point Quadtree
Table stores the point identifiers of the points that lie
inside its respective quadtree cells. The reason for main-
taining separate ‘object’ and ‘point’ quadtrecs is due to
a distinction between real world objects with name and
class attributes and the lower level point geometry used
to describe the objects. Many points will only be used

for describing the ground surface and will not be part
of the boundary of objects mapped onto that surface.

The Point Tables, of which there is one for each level
of the database, store, for each vertex, its point identifier
and x, y and z coordinates. Vertices that define linear
features that are not regarded as essential to defining
the form of the terrain model are assigned a null z value.
When combined with terrain data their z coordinates
are inferred from the terrain elevation data.

The Object Tables, of which there is one for each level
of the database, have an entry for each object at the
corresponding level referred to in the Object Quadtree
Tables. Objects may be composed of polygons, linear
features and point features. The data items for each
object are its ‘real world’ classification and lists of
references to its component polygon, line and point
features. Note that Point objects refer directly to the
Point Table where the coordinates are stored. Clearly
up to two of these lists could be empty if it consisted of
only one type of spatial geometry.

The Polygon Feature Tables, with one table per data-
base level, store the polygon identifier and a list of the
identifiers of the linear features which compose the
polygon.

The Linear Feature Tables, again with one per level
of the database, contain the linear feature identifier, the
highest level of the database in which it is referenced
and a list of the point identifiers and their sequence
numbers within the line. Each such Table only stores
the identifiers of the vertices which are introduced at
that level. Thus to construct a linear feature at a given
level, it is necessary to access all Linear Feature Tables

Object Table
Object Table
Levels Table Object Table
Level number.
Maximum vertical error., :
Maximum lateral error. Object Quadtree Table
ell identifier (Morton code). ist of component linear features.
ell size.
Triangle Table ist of references to intersecting
[Triangle identifier. bjects.
Vertex 1 identifier. : i Polygon Feature Table
Vertex 2 identifier. Point Quadtree Table —_—
V. i — lygon identifier.
ertex 3 identifier. ell identifier (Morton code).
[List of attribute identifiers el size.
ist of references to intersectin;
Linear Feature Table
oint identifier £ NPT
value. ist of component point identifiers.
g list of sequence numbers
FIGURE 15. Overview of the Multiscale Database (in this instance with three levels of detail).
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from the highest level of occurrence down to the cur-
rent level.

The Triangle Table is used to record the form of
explicit triangulations stored temporarily as a result of
triangulating the Implicit TIN. It records for each tri-
angle, the triangle identifier, the Point identifiers of its
three vertices, and attribute identifiers that may be
associated with the triangle. Such attribute identifiers
are assumed to be obtained by the triangle taking on
the classification-related properties of any polygons of
which it is a member.

5.1. An application to geological data

Figure 16 shows the Implicit TIN output produced when
the algorithm described in Section 2 is applied to a small
implementation of the database design described in
Section 5, using an L-shaped query region. The test
database consists of 20 objects comprised of 13 geolo-
gical outcrop regions and seven geological faults. The
outcrop regions are defined by 20 polygons, while there
are a total of 143 linear features used to define these
polygons and the fault lines. The terrain surface is
defined by 612 points, while the constraining features
are defined by 967 points. The quadtree cells have a
maximum of five objects and five points per cell, respect-
ively, for the two types of quadtree. Two levels of detail
are shown to illustrate the differences in the amount of
data relevant to each level. The first level (Figure 16a
and b) was created with vertical and horizontal toler-
ances of 10 m, while the second, more detailed level was
created with vertical and horizontal error tolerances of
Sm. There are 45 retrieved points (14 for the terrain
elevation and 31 for the linear constraints) for the query
window at the first level and 77 points (21 terrain and
56 linear constraints) at the second level. For each of
the two levels, a complete triangulation of the corres-
ponding part of the database is also shown (created
using the conventional constrained Delaunay triangula-
tion algorithm of De Floriani and Puppo [7]). There
are 891 points in the more detailed representation (part
of which is shown in Figure 16d) and 587 in the less
detailed one (Figure 16b). Inspection of Figure 16 shows
that the Implicit TIN produces the same triangles as
those in the conventional TIN.

5.2. Database performance issues

One of the major advantages that an Implicit TIN
system holds over an explicit TIN system is the saving
in storage space. The Implicit TIN database scheme,
described here, when compared to an equivalent explicit
TIN database using triangle adjacency pointers, has an
approximate storage saving of

Y 12N;—6B;—12

i=0
where there are (m+ 1) levels in the database and a total
of N; points (from elevation and linear features) in the

reconstructed TIN at level i, B; of which are boundary
points. The assumption is that the explicit TIN database
stores multiple versions of the triangulations, i.e. one for
each of the m+1 levels. Storage costs for the explicit
scheme include an additional element proportional to
3N to represent coordinates of the points or 4N if we
assume that a unique point identifier is also stored for
each point. Further storage is required for the definition
of objects in terms of their geometry. If the object
definitions are stored as lists of point identifiers and
their sequence numbers, an aproximate upper limit on
the storage required would be IN. Thus 5N is an
estimate of the storage required in addition to triangula-
tion topology pointers. For the Implicit TIN there is no
triangulation topology, other than constraints, thus SN
is a measure of the storage costs for this scheme.
Regarding the size of B;, it is determined here by the
number of points on the convex hull and remains a
constant for all levels of representation. It is usually
small compared with N. Thus for a single level of storage
the triangulation topology approximates to 12N and the
relative size of the Implicit and Explicit TIN scheme is
in the ratio 5/17. As the number of levels increases, the
overheads for the explicit scheme increase significantly.
Taking the example of five levels of storage each of
which involved a reduction in the number of points by
two-thirds, the overhead would amount to about 50%
of that of the of most detailed level, i.e. in proportion to
6N. In this case the ratio of storage between Implicit
and explicit schemes would be 5/23.

It is important to note that storage saving is not the
only justification for using the Implicit TIN. The
approach provides flexibility in integrating selected topo-
graphic features with a terrain model at user-specified
levels of detail. Thus the constraints introduced by the
selected topographic features are not predetermined, as
they would be in a stored constrained explicit TIN.

The usefulness of the Implicit TIN will depend, for
many applications, on the ability to reconstruct the
correct constrained Delaunay triangulation for a given
query region within a satisfactory time, the length of
which will relate to the specific needs of the particular
application. The major time penalty introduced by the
Implicit TIN system is that of having to reconstruct the
constrained Delaunay triangulation from the main
memory data. The reconstruction algorithm currently
used in the system has a worst case time complexity of
O(N log N), where N is the number of points (elevation
and linear feature data) to be triangulated. This repres-
ents an upper bound on time for any serial Delaunay
triangulation algorithm (constrained or unconstrained),
although some parallel algorithms improve on this, with
O(log N) reported by ElGindy [9]. Early experimental
results indicate that a satisfactory reconstruction time is
achieved. For example, the CPU time taken to produce
the triangulation shown in Figure 16(c) is less than
250 ms.
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FIGURE 16. (a)and (c) show the triangulations produced by the Implicit TIN algorithm when applied to two levels in a multiscale
geological database; (b) and (d) are the triangulations for the same area produced using a conventional triangulation algorithm.

6. CONCLUSIONS AND DISCUSSION

The Implicit TIN is a space-efficient triangulated data
storage scheme that has considerable potential for rep-
resenting topographic surfaces in a multiscale database.
For the purposes of representing only elevation data it
can provide a highly compact storage scheme. By classi-
fying vertices according to their scale-related priority, it
can be combined with a multiscale representation of
geographical objects defined by polygons, lines and
points, which are embedded in, and act as constraints
on, the triangulation of the elevation model. The vertices

defining these objects are themselves classified according
to their scale-related priority, allowing them to be
combined selectively with the elevation data when a
particular scale of representation is required. A scale of
representation can be defined at least partially by the
vertical error tolerance associated with the elevation
model vertices and the lateral error tolerance of any
additional features.

Retrieval of an explicit triangulhtion requires applying
a constrained triangulation algorithm to the terrain and
associated objects relevant to the spatial query window.
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Execution of the algorithm inevitably introduces a time
overhead in retrieval from the database. Whether this is
acceptable will depend on the application. Having built
a model from the database components it is envisaged
that it will be retained at least temporarily for purposes
of analysis and visualization. How long it is worth
retaining a triangulated model will depend upon the
time taken to create it. Clearly actual retrieval times will
depend on the quantity of data and the speed of execu-
tion. The introduction of parallel processing methods to
triangulation can be expected to improve performance
in the future [9, 26].

The major benefits of the approach are the storage
efficiency and the flexibility it gives in integrating relev-
ant topographic features with a digital elevation model
at user specified scales.

Multiscale databases for geographical information sys-
tems raise many challenging issues relating to the integ-
ration of data of different quality from different spatial
models and to the automated generalization of the
retrieved data.

When several spatial objects are retrieved and integ-
rated in a model which is at a smaller scale than that of
the original data, major problems can arise in visualising
the model such that its components are clearly repres-
ented and distinguishable. This requires symbolizing the
original geometry in ways that may involve simplifica-
tion, exaggeration and change in location, all of which
are aspects of cartographic generalization. Such general-
ization operations may be applied to data following
retrieval from a multiscale database.

Update of a multiscale database is potentially a com-
plex process in that, for any given spatial region, new
data may be at different levels of detail from that already
stored [ 14]. If the source scale of new data is the same
as existing data the new data may replace the old, unless
a temporal record is required. If it is more detailed it
might replace existing data, though if the new, more
detailed data were highly localized, relative to existing
data, it might be appropriate to maintain it additionally,
without replacement. Likewise, less detailed data might
also be maintained additionally if it provided a poten-
tially useful generalization, perhaps over an extensive
region. Such multiple representation is particularly relev-
ant if there are no satisfactory automatic means for
generalizing the data.

The multiscale database described in this paper is
applicable to the storage of spatial objects that are
defined in terms of their original surveyed geometry, or
simple subsets of it. This is currently applicable, but full
exploitation of the multiscale database will depend on
the implemention of more advanced update and general-
ization procedures that enable data from multiple source
scales to be integrated and to undergo major generaliza-
tion transformations on retrieval.
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APPENDIX

Procedure CONSTRAIN_TRIANGULATION

For each constraining edge A to B
If edge not already in the TIN, then
Identify all points which have 1 or more links that intersect the edge (A, B), keeping a
record of the distance from A of the point of intersection (for points with
more than 1 link intersecting, it is only y to record 1 di )
Delete each point’s intersecting links.
Split the points into 2 sets, S1 and S2, each containing points lying either side of (A, B).
Sort S1 with respect to intersection distance from A.
Sort S2 with respect to intersection distance from B.
Add A to the list of neighbours of B.
Add B to the list of neighbours of A.
TRIANGULATE_POLYGON(A, B, S1).
TRIANGULATE_POLYGON(B, A, S2).
EndIf.
EndFor.

Procedure TRIANGULATE_POLYGON(P1, P2, §).

Find all points not in current TIN but which lie within current polygon and store in V.
Search S and V for the point Q with largest subtended angle to edge (P1, P2).
If Q not already in TIN, then
Add Q to TIN.
EndIf.
Add P1 to the list of neighbours of Q.
Add P2 to the list of neighbours of Q.
Add Q to the list of neighbours of P1.
Add Q to the list of neighbours of P2.
IfQisin S, then
If edge (P1, Q) is not an edge in original TIN, then
Create set S3, containing points in S lying between P1 and Q.
TRIANGULATE_POLYGON(P1, Q, S3).
EndIf.
If edge (P2, Q) is not an edge in original TIN, then
Create set 54, containing points in S lying between Q and P2.
TRIANGULATE_POLYGON(Q, P2, S4).
EndIf.
Else
If edge (P1, Q) intersects original TIN, then
TRIANGULATE_POLYGON(P1, Q, S).
EndlIf.
If edge (P2, Q) intersects original TIN, then
TRIANGULATE_POLYGON(Q, P2, S).
EndIf.
Endlf.

Procedure FIND_THIESSEN_NEIGHBOURS(CURRENT_POINT, TNBS, NTN)

/* TNBS - an array used to hold the list of Thiessen neighbours of a point */
/*NTN - the ber of Thiessen neighb a point has */
/* NNB - the nearest point (neighbour) to the CURRENT_POINT */

Initialise SEARCH_AREA (in terms of box-sort cells).

FOUND = FALSE.

Do While NOT FOUND
Check SEARCH_AREA for nearest point (NNB) to CURRENT_POINT.
1f NNB was found, then

FOUND = TRUE.

Else

Expand SEARCH_AREA.

If SEARCH_AREA now extends outside the buffer limits, then
Generate quadtree addresses for external region and read data into appropriate
external cell.

EndIf.

EndIf.

EndDo.

NTN=1

TNBS[NTN] = NNB.

J = NNB.

FINISHED = FALSE.

Do While NOT FINISHED
Initialise SEARCH_AREA.
FOUND = FLASE.

Do While NOT FOUND

Check SEARCH_AREA for Thiessen neighbour (K) of edge (CURRENT_POINT, ).

If K was found, then
FOUND = TRUE.

Else
Expand SEARCH_AREA.

If SEARCH_AREA now extends outside the buffer limits, then
G te quad dd for I region and read data into
appropriate external cell.
EndIf.
EndIf.
EndDo.
If K # NNB, then

NTN =NTN + 1.

TNBS[NTN] = K.

J=K. .

Else
FINISHED = TRUE.
EndlIf.
EndDo.
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Procedure DELAUNAY_TRIANGULATE

/* TNBS - an array used to hold the list of Thiessen neighbours of a point */

/* NTN - the number of Thiessen neighbours a point has */
Define query region.
Use region definition to the required quad dd for both object data quadtree

and height dataquadtree.
Read required data. Store objects as a sequential list of edges, each referencing two vertices.
Store object vertices and height vertices in the box-sort data structure.
Put all vertices VERTS (NUMBER_OF_VERTICES) on the TRIANGULATION_STACK.
Initialise the stack pointer (STACK_POINTER = 1).
Do While STACK_POINTER # NUMBER_OF_VERTICES
Let CURRENT_POINT = top point of TRIANGULATION_STACK(STACK_POINTER).
FIND_THIESSEN_NEIGHBOURS(CURRENT_POINT, TNBS, NTN).
For each pair of Thiessen neighbours (Na,Nb)
If both neighbours are outside of the query region, then
If external edge (Na,Nb) intersects the query region, then
If Na has not already been triangulated, then
NUMBER_OF_VERTICES = NUMBER_OF_VERTICES + 1.
TRIANGULATION_STACK(NUMBER_OF_VERTICES) = Na.
EndIf.
If Nb has not already been triangulated, then
NUMBER_OF_VERTICES = NUMBER_OF_VERTICES + 1.
TRIANGULATION_STACK(NUMBER_OF_VERTICES) = Nb.
EndIf.
EndIf.
EndIf.
EndFor.
Add CURRENT_POINT and Thiessen neighbours (TNBS) to the TIN.
STACK_POINTER = STACK_POINTER + 1.
EndDo.
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