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ABSTRACT
We propose a method which uses Flickr tags to predict a wide variety of environmental features, such
as climate data, land cover categories, species occurrence, and human assessments of scenicness. The
role of Flickr tags in our method is two-fold. First, we show that Flickr tags capture information
which is highly complementary to what is found in traditional structured environmental datasets. By
combining Flickr tags with traditional datasets, we can thus make more accurate predictions than
is possible using either Flickr tags or traditional datasets alone. Second, we propose a collective
prediction model which crucially relies on Flickr tags to define a neighbourhood structure. The use
of a collective prediction formulation is motivated by the fact that most environmental features are
strongly spatially autocorrelated. While this suggests that geographic distance should play a key role
in determining neighbourhoods, we show that considerable gains can be made by additionally taking
Flickr tags and traditional data into consideration.

1. Introduction
When users share their photos on websites such as Flickr1,

they often provide tags (i.e. short textual descriptions) to
make these photos discoverable. In many cases2, lati-
tude and longitude coordinates are also provided, describ-
ing where the photographs were taken. Since the tags as-
sociated with such georeferenced photographs often corre-
spond to descriptions of the corresponding locations, Flickr
can effectively be seen as a source of environmental informa-
tion. The usefulness of Flickr tags has already been demon-
strated in several disciplines. For example, in geography,
Flickr tags have been used to construct approximate bound-
aries for (vernacular) regions (Cunha and Martins, 2014;
Grothe and Schaab, 2009) and for describing properties of
places (Bahrehdar and Purves, 2018). In environmental
science they have been used for early warning of flooding
(Tkachenko et al., 2017). In linguistics, the tags of georef-
erenced Flickr photos have been found useful for generating
vector space representations of perceptual terms (Bolognesi,
2016). In the domain of ecology, Flickr has been used to
study species distribution (Barve, 2015; Jeawak et al., 2018,
2020).

The aim of this paper is to study the usefulness of Flickr
tags for predicting environmental features, such as climate
features (e.g. average temperature, wind speed, precipita-
tion, solar radiation, water vapor pressure), land cover cate-
gories, species occurrence, and scenicness. In seeking to ex-
ploit Flickr tags for mapping environmental features, it may
be remarked that we work with all tags that have been used
in the vicinity of each predicted location. The nature of these
tags can be expected to varywidely, withmany different phe-
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nomena being photographed and tagged with a wide variety
of possible terminology. We cannot know whether a user is
intending to describe accurately the subject of the photo as
opposed for example to making some arbitrary observation
or comment about it. In some sense the tags might therefore
be regarded as potentially misleading. The methods that we
employ here are however designed to identify those tags that
are consistently positively correlatedwith our target environ-
mental features, and hence serve as reliable indicators, while
downgrading or ignoring the significance other tags.

Our contribution is two-fold. First, we analyze to what ex-
tent Flickr tags can provide information that is complemen-
tary to the datasets that are traditionally used for ecological
analyses. To this end, we represent each location as the con-
catenation of a feature vector derived from Flickr tags and
a feature vector that encodes available information from tra-
ditional structured datasets, and then train a Support Vec-
tor Machine (SVM) or Support Vector Regression (SVR)
model to predict the features of interest. Note that while
the feature vectors include large numbers of tags, the train-
ing process enables the classifier to determine which par-
ticular tags are specifically associated with the target class,
thus distinguishing them from the more generic and hence
less indicative tags. Second, we propose a collective pre-
diction model, which takes advantage of the fact that most
environmental features are strongly spatially autocorrelated
(e.g. climate features typically do not vary much between
places that are just a few kilometres apart). Inspired by An-
gelova and Weikum (2006) and Dori-Hacohen et al. (2016),
a key feature of our approach is that the neighbourhood struc-
ture of the collective prediction model does not only depend
on purely metric geographic distance but also on attribute
similarity, which is estimated in our case from the Flickr
tags associated with each location. This use of attribute
similarity can be thought of as a form of categorical, i.e.
attribute-based, geographic distance that takes into account
non-spatial properties of location. Our use here of attribute
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Figure 1: Modeling locations based on Flickr tags, structured features, and neighbourhood structure.

similarity can be regarded as analogous to the way in which
measures of spatial autocorrelation are used in geostatistics
for purposes of interpolation (Webster and Oliver, 2007).
Geographic attribute similarity complements other alterna-
tive measures of geographic distance such as network dis-
tance and cognitive distance (Montello, 1991; Sack, 1980).
In this way, our model essentially uses Flickr tags to improve
how known measurements, as well as predictions, of a given
environmental feature are interpolated.

The problem we consider is to predict the value of a given
feature (e.g. average temperature or land cover category) for
a given set of locations, where we assume that for a subset
of these locations (i.e. the training data), the correct value
of the considered feature is available (e.g. temperature mea-
surements). The method proceeds in two steps. First, in
the bootstrap stage, an SVM model (for discrete features)
or SVR model (for numerical features) is learned from the
training data. To this end, each location is represented using
a feature vector, which encodes how strongly that location is
related to each Flickr tag, as well as the available structured
information about the location. This is illustrated in the ta-
ble in Figure 1 (where, in practice, the ground truth data is
only available for items from the training data). This model
is then used to predict the value of the considered feature
for the locations which are not in the training data. In the
second step a collective classification approach is adopted
in which for each location a set of neighbours is selected,
and a new classifier is trained, which aims to improve the
predictions by taking into account the earlier predictions in
addition to the true labels of the selected neighbours when
they are available. This whole process is then iterated until
the predictions converge.

The second step crucially relies on how the neighbours
are selected. As a baseline, we could choose the neighbours
of a given location as those locations which are geograph-
ically closest. For example, consider the locations shown
on the map in Figure 1 for the task of predicting scenic-
ness. To improve the prediction for location 8, based on
geographic distance, we could select location 2, 5 and 7 as
neighbours. However, location 1 and 4 are actually more rel-

evant for the purposes of prediction, as they are both more
similar to the target location in that, like location 8, they are
close to railway train stations, which is an important indi-
cator of low scenicness. To determine these more relevant
locations, we first apply a term selection method to identify
those Flickr tags that are most strongly related to the con-
sidered feature. For example, when predicting scenicness,
relevant tags include ‘mountain’ (which is predictive of high
scenicness) and ‘station’ (which is predictive of low scenic-
ness). Then, from the geographically sufficiently close loca-
tions, as neighbours we select those locations whose associ-
ated tags (after term selection) are sufficiently similar.

The remainder of the paper is organized as follows. Sec-
tion 2 gives an overview of related work. Then, in Section
3 we explain how locations are modeled using both Flickr
tags and structured data, while Section 4 describes our col-
lective prediction framework. Subsequently, in Section 5 we
provide a detailed discussion about our experimental results.
Finally, Section 6 summarizes our conclusions.

Some parts of this paper extend our work in Jeawak
et al. (2017), where we demonstrated the complementarity
of Flickr tags and structured information. However, the col-
lective prediction model from Section 4 is completely new.

2. Related work
The related work falls broadly under three themes: citizen

science, geo-spatial analysis of social media, and collective
prediction.
2.1. Citizen science

Considerable progress has been made in recent years in
citizen science projects in the environmental sciences that
recruit participants to actively contribute to particular cam-
paigns such as in land cover mapping (Fritz et al., 2012),
hydrological surveys (Lowry and Fienen, 2013), ornithology
and many forms of ecological study (Dickinson et al., 2010).
In parallel with these initiatives there is growing interest in
the potential of “passive” survey methods that exploit so-
cial media to provide additional useful data. For instance,
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Wang et al. (2013) analysed the visual features of the pho-
tographs on Flickr (in an automated way) to observe natural
world features such as snow cover and particular species of
flowers. In (Zhang et al., 2012) photos from Flickr were used
to estimate snow cover and vegetation cover, and to compare
these estimations with fine-grained ground truth collected by
earth-observing satellites and ground stations. Both the text
associated with Flickr photographs and their visual features
were used in Leung and Newsam (2012) to perform land-use
classification. The approachwas evaluated on two university
campuses and three land-use classes were considered: Aca-
demic, Residential, and Sports. In Estima et al. (2014) and
Estima and Painho (2014), they classified a sample of geo-
referenced Flickr photos according to CORINE land cover
classes. They also evaluated the use of Flickr photos in sup-
porting Land Use/Land Cover (LULC) classification for the
city of Coimbra in Portugal and for comparison with Corine
Land Cover (CLC) level 1 and level 2 classes. Note that their
approach did not use machine learning and the results were
evaluated manually by experts. Their results suggest that
Flickr photos cannot be used as a single source to achieve
this purpose but they could be helpful if combined with other
sources of data.

The authors of (Stadler et al., 2011) explored the rela-
tionship between CORINE land cover classes and the val-
uation of natural scenery, namely scenicness, scenic beauty,
landscape beauty, aesthetics, or cultural ecosystem services
(CES), through user evaluated georeferenced photos from
the ScenicOrNot3 website. They employed the user’s rat-
ing of a photo in a specific area as an evaluation of the land
cover of that area. The results of this study showed that the
highest rated areas belong to the forest and semi natural ar-
eas, and water bodies classes. In another work, Chesnokova
et al. (2017) developed and evaluated a predictive model to
predict the average scenicness of 5km grid cells. They used
text describing the rated images in the ScenicOrNot website
as input to train a Random Forest regression model. Mea-
sures of scenicness are important since they reflect human
well-being and can be taken into consideration in land plan-
ning and decision-making processes. Nonetheless, people’s
perceptions of landscapes are subjective and cannot easily be
quantified (Stadler et al., 2011). Some authors have assessed
the beauty of the landscape through groups of evaluators
using images, videos and/or questionnaires (Stadler et al.,
2011; Pierskalla et al., 2016), while others used geographic
information system (GIS) data such as elevation together
with visual assessments and/or questionnaires to predict the
scenicness (Bishop and Hulse, 1994; Schirpke et al., 2013).
Another group of works, such as Casalegno et al. (2013),
Gliozzo et al. (2016), and Tenerelli et al. (2016), quantify
landscape aesthetics according to the number of photos taken
near a given location (Casalegno et al., 2013) or the num-
ber of people who published photos (Gliozzo et al., 2016) in
photo-sharing websites such as Flickr and Panoramio. Con-
sidering popularity on social media as a surrogate for the
level of appreciation of a place might work with some types

3http://scenic.mysociety.org/

of landscapes, but the results might be liable to be biased
towards more accessible places (one of our experiments re-
ported in Section 5.1 provides evidence to that effect).

Another growing area of interest is in the use of so-
cial media data for ecological monitoring. For example,
Barve (2015) examined Flickr biodiversity data quality by
analysing its metadata and comparing it with ground-truth
data, using Snowy owls and Monarch butterflies as a case
study. They concluded that Flickr data has potential to add
to knowledge of these species in terms of geographic, tax-
onomic, and temporal dimensions, which tends to be com-
plementary to the information contained in other available
sources. In another similar work, based on a manual analy-
sis of Twitter posts, Daume (2016) confirm that social me-
dia mining for ecological analysis is as important as tra-
ditional monitoring and the features derived from Twitter
could be integrated with and hence improve the value of ex-
isting sources of such information. In Richards and Friess
(2015) the content of the Flickr photos was analysed manu-
ally to assess the quality of cultural ecosystem services and
derive useful information tomanage Singapore’smangroves.

2.2. Geo-spatial analysis of social media
Many recent studies have focused on analysing social me-

dia data, with the aim of extracting useful information in
domains such as geography (e.g. Hollenstein and Purves
(2010)). In particular, there is a large number of studies that
derive such information from georeferenced Flickr photos.
For example, Grothe and Schaab (2009) describe two meth-
ods for the automatic delineation of imprecise regions based
on geotagged photos. The first one is a method based on ker-
nel density estimation (KDE) and the second is based on one
class support vector machines (SVMs). Similarly, Cunha
and Martins (2014) present an approach for automatically
defining the geographic boundaries of vague regions by us-
ing one class support vector machines (SVMs) and learning
multiple kernels. To describe regions, they rely on a com-
bination of the Flickr tags of the photos that were tagged
with the region’s name, and external features such as the land
cover data, population count, elevation and the geographi-
cal coordinates (latitude and longitude) of Flickr photos that
are tagged with the region’s name. They showed that their
method performs better than the simpler methods described
by Grothe and Schaab (2009). The first step of our method
is analogous to these approaches, in applying support vector
machine learningmethods to Flickr tags in combination with
other geo-spatial data, but we are concerned with character-
izing and predicting information about the environment.

The authors of (Serdyukov et al., 2009) presented and
evaluated methods for automatically geo-referencing Flickr
photos using the textual annotations of photos to predict the
single most probable location where the image was taken.
They showed that location-specific language models, based
on sets of distinctive tags, can be estimated effectively by
analysing the terms people use to describe images taken at
particular locations. They demonstrated how to incorpo-
rate the GeoNames database and they defined extensions to
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improve their language models using cell based smoothing
and tag based smoothing, and by leveraging spatial ambi-
guity. In Van Canneyt et al. (2014), a language modelling
approach was used to discover and characterize places of
interest (POIs). They experimented with both Flickr data
and Twitter data, finding that Flickr data on its own is more
useful than Twitter data for this task, while combining both
sources led to the best results. Similar to this latter work, we
explore the possibility that sets of tags cannot just distinguish
one location from another, but can contribute to classifying
aspects of the environment.

Our aim of predicting environmental features from vari-
ous attributes might be regarded as analogous to the use of
geostatistical methods such as Co-Kriging and Geograph-
ically Weighted Regression, but in the application of these
methods the numbers of predictor, explanatory or other inde-
pendent variables is very small compared to our task, often
being less than 10 (e.g. Ristea et al. (2018); Liu et al. (2016)).
This contrasts with our data in which, following weighting
and filtering there may be hundreds of thousands of social
media tags each of which is treated as a potentially useful
predictor in addition to conventional environmental data at-
tributes. It should also be noted that the benefits for envi-
ronmental data interpolation of machine learning classifiers
such as support vector machines and random forests in com-
bination with an interpolation method such as inverse dis-
tance squared, or ordinary kriging, have been demonstrated
relative to a variety of conventional interpolation methods
(Li et al., 2011). The latter study used structured environ-
mental data as the predictors.

2.3. Collective prediction
Many machine learning problems involve making predic-

tions about networks of entities, where links in the network
connect entities that are related in someway. The idea of col-
lective prediction is to incorporate additional features in the
learning process, summarizing information about the enti-
ties that are related to the considered one. A standard exam-
ple is the problem of web page categorization (Chakrabarti
et al., 1998; Angelova and Weikum, 2006; Dori-Hacohen
et al., 2016): to determine the category of a website, in addi-
tion to the contents of the website itself, we can also take into
account the categories of the websites it links to. Note that
this creates a cyclic dependency between the predictions for
the different entities in the network. To address this, a vari-
ety of collective prediction methods have been proposed. In
this paper, we will use the Iterative Classification Algorithm
(ICA) from Neville and Jensen (2000), which is conceptu-
ally simple but often highly effective. Other approaches are
based on inference in joint probabilistic models using Gibbs
sampling (Geman and Geman, 1984). However, Gibbs sam-
pling tends to be slow (Sen et al., 2008), which is an impor-
tant limitation in our setting, as we will consider hundreds
of thousands of regions.

The authors of (Chakrabarti et al., 1998) experimentally
demonstrated the effectiveness of taking into account link
structure for web page categorization. More recent meth-

ods often take into account content similarity to improve
the network structure, i.e. better results can often be ob-
tained by only taking into account links from websites that
are sufficiently similar. For example, Angelova andWeikum
(2006) select a reliable set of neighbours for each test doc-
ument by means of a similarity threshold. They only con-
sider the links for which the similarity between the contents
of the two documents (nodes) is sufficiently high. In Dori-
Hacohen et al. (2016), a method is proposed which classifies
Wikipedia pages as controversial or not, using a combina-
tion of intrinsic features (page meta-data) and predictions of
controversy from related pages. They constructed a subnet-
work by choosing for each page the k most similar in-links
(in terms of cosine similarity between the text of the pages)
and the k most similar out-links, where k was chosen as ei-
ther 10 or 300. They then use a stacked model on top of
this constructed network. The stacked approach introduced
in (Kou and Cohen, 2007) uses a non-relational base model
to produce inferred class labels on related instances where
the stacked relational model is trained on these predicted la-
bels rather than the true labels. In Jiang et al. (2017), a col-
lective prediction algorithm based on community structure
(CPC) was proposed. Firstly, they obtained the community
that each node belongs to by using a community detection
algorithm. Then they used the node attribute features and
community structure features as inputs to the local classifi-
cation model in an iterative way. Their experimental results
show that CPC performs better than both a standard predic-
tion method which only utilizes the node attributes and an it-
erative classification algorithmwhich utilizes neighbour fea-
tures in addition to the node attributes.

Although many studies have been conducted in collec-
tive classification, less effort has been focused on collec-
tive regression. Chopra (2008) proposed a relational fac-
tor graph framework for performing regression on relational
data. The proposed models are learned with collective infer-
ences which take a single instance of the entire collection of
samples along with their relationship structure as input. The
framework was applied to the problem of predicting house
prices, taking into account spatiotemporal influences on the
price of every house. Their experiments demonstrate that
identifying and using the relational structure associated with
this problem considerably improves performance. The au-
thors of (Loglisci et al., 2016) presented an algorithm called
CORENA (COllective REgression in Network dAta) which
studies the transduction of collective regression in a sparsely
labeled network. In particular, they iteratively augmented
the descriptive and the target information of the labeled node
set, the descriptive information of the unlabeled node set,
as well as the link structure of the network, in order to col-
lectively determine the numerical targets of the unlabeled
part of the network. Thus, their proposed method can de-
tect the autocorrelations of labels over a group of related
instances and feed back the reliably predicted labels only.
They (Loglisci et al., 2016) show that their proposed method
is able to improve regression performance in the areas of so-
cial and spatial networks.
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In this paper, we focus on both collective classification
and regression problems by developing SVM/SVR models
in an iterative way. We consider several nested sets of neigh-
bours for each location based on their spatial and attribute
similarity. Then, we aggregate the true and the predicted la-
bels of these selected neighbours to generate the collective
features.

3. Modelling locations
In this section we explain how locations are represented

in our framework. Section 3.1 explains how feature vectors
describing locations can be obtained from the tags associated
with georeferenced Flickr photos. In Section 3.2 we then
give an overview of the structured information sources that
we will additionally consider.
3.1. Modelling locations using Flickr tags

Many of the tags associated with Flickr photos tell us
something about the locations where these photos were
taken. For example, tagsmight correspond to city and region
toponyms (e.g. United Kingdom, England, London), land-
marks (e.g. London Eye, Westminster Abbey, Hyde Park)
or land cover types (e.g. forest, beach, airport). Using the
Flickr API, we collected the metadata of all geo-referenced
Flickr photos that were uploaded before the end of Septem-
ber 2015, leading to a total of over 70 million photos with
coordinates in Europe (which is the region our experiments
will focus on).

Let L = {l1, ..., lm} be a set of locations, each character-
ized by latitude and longitude coordinates. Our aim is to as-
sociate with each of these locations a weighted bag of tags,
intuitively encoding for each tag how strongly it is associ-
ated with photos near that location. To this end, we first use a
BallTree4 to retrieve the setFl of all Flickr photos whose dis-tance to the considered location l is at most D. Let us write
Ut,c for the set of users who have assigned tag t to a photo
with coordinates c. Thenwe define n(t, l) = ∑

d(c,l)≤D |Ut,c|,with d the Haversine distance. Intuitively, n(t, l) is the num-
ber of times tag t appears among the photos in Fl. However,to reduce the impact of bulk uploading, we count a tag occur-
rence only once for all photos by the same user at the same
location.

One problem with using n(t, l) to measure the importance
of tag t for location l is that it gives equal weight to all pho-
tos, whereas intuitively we want photos which are closer to l
to influence our characterization of lmore than photos which
are further away. To this end, following Van Canneyt et al.
(2014), we use a Gaussian kernel to weight the tag occur-
rences:

w(t, l) =
∑

d(c,l)≤D
|Ut,c| ⋅ exp

(

−
d2
(

l, c
)

2�2
)

where � is a bandwidth parameter.
4http://scikit-learn.org/stable/modules/generated/sklearn.

neighbours.BallTree.htm

The weight w(t, l) still has the problem that common
words (e.g. iphone) are given the same importance as more
specific words. Intuitively, we want the weight of tag t to re-
flect how strongly it is associated with location l. A standard
way of measuring this in bag-of-words models is to use Pos-
itive Pointwise Mutual Information (PPMI), which is based
on comparing the actual number of occurrences with the ex-
pected number of occurrences (given how many tags occur
overall near l and how common the tag t is). Specifically,
the weight of tag t in our bag-of-words representation of l is
then given by:

PPMI(t, l) = max
(

0, log
(

P (t, l)
P (t)P (l)

))

where:

P (t, l) =
w(t, l)
N

P (t) =
∑

l′∈Lw(t, l′)
N

P (l) =
∑

t′∈T w(t′, l)
N

N =
∑

t′∈T

∑

l′∈L
w(t′, l′)

with T the set of all tags that appear in the collection. Fi-
nally, each location l is represented as a sparse vector, en-
coding the weights PPMI(t, l) for all the tags in T .

3.2. Modelling locations using structured data
There is a wide variety of structured data that can be used

to describe places. The most obvious type of structured data
are the coordinates of the photo itself. Clearly, latitude and
longitude degrees can be helpful for predicting a range of en-
vironmental phenomena (e.g. southern areas of Europe tend
to be warmer than northern areas). In addition to geographic
coordinates, we will consider the following sources of scien-
tific data:

• CORINE Land Cover 20065 is a European dataset
which describes land cover with a 100 meter spatial
resolution. CORINE uses three levels of description:
a top level with 5 classes, an intermediate level with 15
classes and a detailed level with 44 classes.

• SoilGrids6 is a global raster dataset, which classifies lo-
cations into 116 types of soil, using a 250 meter spatial
resolution.

• The Digital Elevation Model over Europe (EU-DEM)7
is a Europe-wide digital surface model, encoding ele-
vation with a spatial resolution of about 30 meter.

• European Population Map 20068 is a digital raster grid
that reports the number of residents (night-time popu-
lation) with a 100 meter spatial resolution.

5http://www.eea.europa.eu/data-and-maps/data/
corine-land-cover-2006-raster-2

6https://www.soilgrids.org
7http://www.eea.europa.eu/data-and-maps/data/eu-dem
8http://data.europa.eu/89h/jrc-luisa-europopmap06
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• WorldClim9 is a global raster dataset, containing aver-
age monthly recordings of the following climate fea-
tures, over the period 1970-2000, using a 1 km spatial
resolution: temperature, precipitation, solar radiation,
wind speed and water vapor pressure. In this work, we
convert the monthly averages reported in the dataset to
a single overall average.

To encode locations, we consider a feature vector that con-
tains one binary feature for each CORINE land cover class
(being 1 if the location belongs to that class and 0 otherwise),
one binary feature for each SoilGrids class, and 9 real-valued
features (encoding latitude, longitude, elevation, population,
and the 5 climate features). The real-valued features have
been normalised using the standard z-score.

Inmost of our experiments, wewill use Flickr tags in com-
bination with structured information. In such cases, we sim-
ply concatenate the PPMI-based feature vector from Section
3.1 with the feature vector modeling the structured informa-
tion.

4. Collective prediction model
Many real world problems can be described as graphs,

where the nodes correspond to objects about which we want
to predict something, and edges denote relationships be-
tween these objects. In collective prediction frameworks,
the class label (in classification problems) or feature value
(in regression problems) of a given object can be used to im-
prove the predictions about related objects.

In particular, the goal of collective prediction is to jointly
determine the labels of all nodes in the graph, taking into
account their interrelationships. To apply the collective pre-
diction framework to our setting, we consider each of the
locations li ∈ L as a node. Two nodes are connected by
an edge if they represent sufficiently similar locations. The
underlying notion of similarity will be partially based on
geographic closeness, but will also take the Flick tags and
structured data that are associated with these locations into
account. We assume that a partition L = T 1∪T 2∪T 3∪T 4
of the locations is given, where T 1 ∪ T 2 ∪ T 3 will be used
as training data and T 4 will be used as testing data. The lo-
cations in T 1 will be used for training a bootstrap classifier,
while those in T 2 will be used for learning how to improve
predictions based on related locations. The locations in T 3,
finally will be used for tuning the classifiers.

The overall method involves the following steps, which
are illustrated in Figure 2.

Bootstrap: In this step, we use the training data in T 1∪T 2
to learn an SVM or SVRmodel, using the feature vector rep-
resentation for each location as explained in Section 3. When
applying our overall model, this classifier (P 1 in Figure 2)
will be used to make an initial prediction for the unlabeled
locations (i.e. for the locations from T 4). This prediction
will later be used to generate the collective features. We also
learn a second classifier (P2 in Figure 2), which is trained in
the same way as P1 but only using the locations from T 1 as

9http://worldclim.org

training data. This variant is needed to allow us to train an it-
erative collective classifier, which will intuitively be learned
by comparing the true labels of T 2 with the predictions that
are made by classifier P2.

Identifying distinctive Tags: A key property of our
method is that it uses Flickr tags to find relevant neighbours,
i.e. to find nearby locations that are sufficiently related to the
considered target location. Clearly, the required notion of re-
latedness depends on what we are trying to predict. For ex-
ample, when predicting scenicness as in the locations shown
on the map in Figure 1, we may want to select location 1 and
4 as the most relevant neighbours to location 8 because all
three of them are close to train stations. To estimate related-
ness, we therefore first determine which tags are most rele-
vant for the considered prediction problem, using a term se-
lection method based on Kullback-Leibler (KL) divergence.
Let us first consider a classification problem with classes
C1, ..., Cn. Given that we are interested in predicting proper-ties of locations, each class Ci here corresponds to a subset
of locations from L that share a particular property (such as,
for example, having a type of land cover).

In particular, we select the 1000 tags that score highest on
the following score:

KL(t) =
n
∑

i=1
P (Ci|t) log

P (Ci|t)
Q(Ci)

(1)

where P (Ci|t) is the probability that the location a photo
with tag t belongs to Ci, whereas Q(Ci) is the probability
that an arbitrary tag occurrence is assigned to a photo with
location l. We estimate Q(Ci) as follows:

Q(Ci) =
1
N

∑

l∈Ci

∑

t′∈T
w(t′, l)

N =
n
∑

j=1

∑

l∈Cj

∑

t′∈T
w(t′, l)

Since P (Ci|t) often has to be estimated from a small number
of tag occurrences, it is estimated using Bayesian smoothing:

P (Ci|t) =

(

∑

l∈Ci w(t, l)
)

+ � ⋅Q(Ci)

N + �

where � is a parameter controlling the amount of smooth-
ing, which will be tuned in the experiments. Intuitively, we
can think of � as a number of samples from the background
distribution Q that are added to our data about tag t. Larger
values of � will have a penalizing effect on rare terms.

For regression problems, we discretize the feature values
and then proceed in the same way. In particular, we dis-
cretize the feature values into three classes C1, C2 and C3based on feature dependent thresholds. For example, to iden-
tify a set of tags that are related to scenicness, we classify
tags into C1 if they occur in locations whose scenicness rateis at least 7 , C2 for the tags that occur in locations whose
scenicness rate is between 3 and 7, and C3 for the tags that
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Figure 2: The collective prediction model.

occur in locations whose scenicness rate is at most 3. Then,
because the most informative tags are likely to be found in
the extreme cases, we only consider tags that are distinctive
for classes C1 and C3 which are determinant as for classifi-
cation problems.

Selecting neighbours: The effectiveness of collective
prediction relies on the assumption that neighbouring nodes
have similar labels. Since environmental features tend to be
spatially autocorrelated, in our setting it is natural to choose
nearby locations as neighbours. However, while only taking
into account geographic closeness already leads to a strong
baseline, as we will see in the experiments, further improve-
ments are possible by additionally taking into account the
structured environmental data and Flickr tags. The underly-
ing motivation is that such tags can reveal whether nearby
locations are actually similar. Consider, for example, a train
station which is located very close to a beach. Despite their
close locations, these places belong to different land cover
classes, and may have a considerably different scenicness
degree. Specifically, to select the neighbours of a given lo-
cation l, we first determine the set of nearby locations (i.e.
those whose location is within a given radius r) and then pick
the k most similar ones among these nearby locations. For
this last step, locations are represented as PPMI-weighted
feature vectors from Flickr data, as in Section 3.1 but only

considering the 1000 tags that were selected based on (1),
concatenated with the structured feature vectors from Sec-
tion 3.2. These feature vectors are then compared using the
cosine similarity.

Iterative inference: In order to improve the predictions
for a given target location, we train a classifier whose input
is derived from the earlier predictions of that location and
its neighbours (see below). Note that all locations from L
are considered as possible neighbours, including the loca-
tions from the training data T 1 and the tuning data T 3. For
neighbours that come from T 1 and T 3, we use the corre-
sponding ground truth instead of a predicted value. In this
sense, we could intuitively think of our proposed method as
a refinement of theK-nearest neighbours method. Note that
while we are using the actual ground truth for neighbours
from T 1, we cannot do the same for neighbours from T 2
during the training phase, since that would lead the iterative
SVM/SVR model (P3 in Figure 2) to simply pick pL as the
only relevant feature, given that this value would correspond
to the ground truth for all training items.

In standard collective prediction only a single set of neigh-
bours is considered, but in this paper we instead consider
several nested sets of neighbours for each target location.
To determine the neighbours of a target location, we have
to choose a radius r and the desired number of neighbours
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k. Rather than fixing a single value for these parameters, we
consider a sequence of radii r1, ..., rn and a corresponding
sequence of numbers k1, ..., kn. Let Ni be the ki most sim-
ilar locations within the radius ri (i.e the set of neighbourscorresponding to the choice (ri, ki)). With each setNi we as-sociate a corresponding prediction xi, which is the average
prediction for the locations in Ni in the case of regression
problems, and the average of the confidence scores associ-
ated with each class in the case of classification problems.
We can give higher weight for those neighbours that have
ground truth (i.e. locations from T 1 and T 3) when com-
puting xi. Let ground(l) be the ground truth value of loca-
tion l,NG

i be the set of neighbouring locations for which the
ground truth is known, while pred(l) be the prediction value
or confidence score of the unlabeled neighbouring location
l. We estimate xi as follows:

xi =

∑

l∈NG
i
� ⋅ ground(l) +

∑

l∈Ni⧵NG
i
pred(l)

� ⋅ |NG
i | + |Ni ⧵NG

i |

where the weight � is used to control how much we want to
boost the evidence coming from neighbours with a known
ground truth.

For this iterative classification step (P3 in Figure 2), the
location l is represented as the n-dimensional feature vector
(pl, x1, ..., xn), where pl is the earlier prediction for the loca-tion l itself. From these feature vectors, we learn an SVM or
SVR model, using the locations from T 2 as training data, to
find an improved prediction for the unlabeled locations (i.e.
for the locations from T 4). This step is then repeated, us-
ing the new predictions as input, until convergence or reach
the maximum number of iterations. We evaluate the con-
vergence here according to the locations in T 3 set. This is
illustrated in Figure 2, which provides an overview of the
whole process.

5. Experiments
In the following experiments, we evaluate how well we

can predict a number of environmental features using Flickr
tags and the considered structured environmental data. For
the variables in Section 3.1, we have set the maximum
Haversine distance D (cluster radius) to 1 kilometre and the
bandwidth � to D/3. The choice of D represents a trade-
off, where larger values can potentially lead to better results
but also lead to a higher computational cost. The choice of
� = D∕3 was found to be reasonable in a small set of ini-
tial experiments. For the variables in Section 4, we exam-
ined various smoothing values to select the distinctive tags
in KL divergence (� = 10, 100, 1000) and chose the best
value for each experiment separately based on held-out tun-
ing data (T 3). The feature dependent thresholds used to dis-
cretize the regression problem data into C1 and C3 classes
when computing KL divergence are listed in Table 1, these
values having been chosen as reasonable values from ini-
tial experiments. To generate the collective feature vector,
we combine the earlier prediction pl with seven collective

Table 1
High and low boundaries for discretizing the regression prob-
lems data into classes.

C1 C3
Scenicness ≥ 7 ≤ 3

Temperature (°C) ≥ 15 ≤ 5
Precipitation (mm) ≥ 100 ≤ 50

Solar Rad (kJ m−2day−1) ≥ 17000 ≤ 10000
Wind Speed (m s−1) ≥ 5 ≤ 3

Water Vapor Press (kPa) ≥ 1 ≤ 0.7

Figure 3: Modeling locations based on collective features.

features where r1-r7 are chosen as 1, 2, 5, 10, 20, 50 and 100kilometres for each location. We test with different numbers
of similar neighbours, choosing ki as ri+1, ri+10 or ri+100,again based on the held-out tuning data (T 3). Figure 3 shows
examples of the collective feature vectors of different loca-
tions with their ground truth labels. We set the ground truth
labels weight � to 5. Finally, we set the maximum number
of iterations to 10.

To make predictions, we use Support Vector Machines
(SVMs) for classification problems and Support Vector Re-
gression (SVR) for regression problems. In both cases, we
used the SVMlight implementation10 Joachims (1998). For
each experiment, the set of locations L was randomly split
into training (T 1 and T 2), tuning (T 3), and testing (T 4) sets
because the effectiveness of collective prediction may de-
pend quite drastically on the amount of training/testing data
that is available. In particular, we have considered three dif-
ferent training/test splits: 5/85, 20/70 and 80/10 while the re-
maining 10% of the data have used for tuning. Each training
set has been split into two equal size subset T 1 and T 2. We
compared the results for seven different variants and baseline
methods:

• “Structured” uses the feature vector modeling the struc-
tured scientific information from Section 3.2 only to
train SVM/SVR model using locations in T 1 and T 2,
and predict label or feature value for locations in T 4.

• “Flickr” uses the PPMI-based feature vector modeling
Flickr tags from Section 3.1 only to train SVM/SVR
model using locations in T 1 and T 2, and predict label
or feature value for locations in T 4.

• “Structured + Flickr” uses the combination of both
Structured data and Flickr data by concatenating the

10http://www.cs.cornell.edu/people/tj/svm_light/
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Figure 4: Structured+Flickr prediction model.

two corresponding feature vectors. This process is il-
lustrated in Figure 4.

• “KNN-All” computes the average result (i.e. predic-
tion values for regression problems and confidence
scores for classification problems) over theK geograph-
ically nearest neighbours where these neighbours are
selected according to the latitude and longitude coordi-
nates only. We consider the neighbours from the train-
ing data T 1 and T 2 sets and tune the value of K using
the tuning data T 3.

• “KNN-K” computes the average result of the K most
similar neighbours. Similarity is defined here as for our
collective prediction method, i.e. based on a feature
vector that contains the PPMI values of the 1000 top
selected Flickr tags together with the structured data.
Again, we consider the neighbours from the training
data T 1 and T 2 sets and tune the value of K using the
tuning data T 3. This process is illustrated in Figure 5.

• “Collective-All” uses the collective features derived
from all neighbours. It is very similar to the method
described in Figure 2 except that the neighbours are se-
lected according to their geographical distance (latitude
and longitude coordinates) only.

• “Collective-K” is our proposed method, as described in
Section 4.

5.1. Predicting the scenicness of a place
In this first experiment, we consider the problem of pre-

dicting people’s opinions of landscape beauty, using the
UGC dataset from the ScenicOrNot website11 as ground
truth. This website allows people to evaluate places in
Britain by rating photos collected from Geograph12. The
dataset ratings for 217,000 photos (at distinct locations),
each of which has been rated by at least three people on a

11http://scenic.mysociety.org/
12http://www.geograph.org.uk/

Figure 5: K nearest neighbours prediction model.

scale from 1 (not scenic) to 10 (very scenic). For 25,395 of
the photos in this dataset, our Flickr collection did not con-
tain any georeferenced photos within a 1 km radius. There-
fore, we only report results for the remaining 191,605 photos
(i.e. 88.3% of the full dataset). The number of Flickr photos
within a 1km radius of these locations varies between 1 and
397982.

For this experiment,L thus contains the locations of these
191,605 photos. To compute KL divergence, we discretize
the locations that have been rated between 7 and 10 as high
scenicness class while those that have been rated between
1 and 3 as low scenicness class. The results in Figure 6a
show the mean absolute error between the predicted and ac-
tual scenicness scores, as well as the Spearman � correla-
tion between the rankings induced by both sets of scores for
the seven considered methods. The mean and standard de-
viation of the data is shown in Table 2. Although the dif-
ferences between the results are small, we find that using
Flickr outperforms using structured data, and that combining
both leads to better results than using them separately. We
also find that all these setups (Structured, Flickr, and Struc-
tured+Flickr) perform better than the K Nearest neighbours
(KNN) method even when we select the most related neigh-
bours in KNN-K. The collective prediction method leads
to the best results overall especially when selecting the K
most similar neighbours (Collective-K). Looking at the top
tags, in terms of KL divergence, we find terms relating to
natural landscape which represent high scenicness such as
highlands, mountains, and beach and names of artificial and
urban phenomena which are representative of low scenic-
ness such as station, bus, and supermarket. This reinforces
the finding from Stadler et al. (2011) that land cover cate-
gories are strongly correlated with scenicness scores. We
also tested whether the number of photos (or users) could be
used to predict scenicness, as was suggested in Casalegno
et al. (2013); Tenerelli et al. (2016); Gliozzo et al. (2016) for
particular restricted settings. However, we actually found
a negative correlation of around -0.12 (resp. -0.1) between
scenicness and the number of photos (resp. users who have
posted photos) near a given location.
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Table 2
Mean and Standard deviation of regression problems data.

Mean STDEV
Scenicness 4.372 1.6

Temperature (°C) 9.268 3.490
Precipitation (mm) 66.625 24.827

Solar Rad (kJ m−2day−1) 11478 2388
Wind Speed (m s−1) 3.605 1.126

Water Vapor Press (kPa) 0.958 0.186

We also analyzed whether the performance could be im-
proved by using a different type of model to make the ini-
tial prediction. In particular, we first used the method from
Jeawak et al. (2019), which learns a low-dimensional vector
space embedding that jointly captures the information from
the Flickr tags and the structured scientific data. The result
of applying this method is that each location is represented
as a dense low-dimensional vector, which has the advantage
that a much wider range of regression models can be used.
In Table 3, we compare our standard model (Collective-K)
with the performance we get with these dense vectors, for
two different cases. First, we again use Support Vector Re-
gression (SVR). Second, we use a Multi-layer Perceptron
(MLP). Note that an MLP model cannot be used directly on
the bag-of-words representations, due to the excessive mem-
ory requirements this would entail. The results are presented
in Table 3. They show that changes in the bootstrap classi-
fier only have a minimal impact on the overall performance,
with our standard approach performing slightly better in the
80% setting, and slightly worse in the other settings. Given
the small differences, for the remaining experiments we will
only focus on the bag-of-words based representation.

5.2. Predicting species distribution
The next experiment we considered was to predict the dis-

tribution of species across Europe, using as ground truth the
dataset of the European network of nature protected sites
Natura 200013. This dataset contains information about
35,600 species from 7 classes: Amphibians, Birds, Fish, In-
vertebrates, Mammals, Plants and Reptilia. In particular, it
specifies which species occur at 26,425 different sites across
Europe. For this experiment, L is defined as the set of these
sites.

For species that only occur at a few of the sites in L, it is
clearly not possible to estimate a reliable distribution model.
Therefore, we focused our evaluation on 100 species which
occur at more than 500 sites. For each of these species, we
consider a binary classification problem, i.e. predicting at
which of the sites the species occurs. Note that as in all
analyses we use all Flickr tags, some of which might in-
clude the species name. The results of predicting species
distribution are reported in Figure 7a in terms of the aver-
age precision, average recall and macro average F1 score
over the 100 species. Note that we do not consider accu-
racy as it is not informative here, given the high class im-

13http://ec.europa.eu/environment/nature/natura2000/index_
en.htm

balance (i.e. a baseline classifier predicting that a species
occurs nowhere would already have a very high accuracy).
The results are clearly showing that combining structured
data with Flickr data leads to substantially better results than
both variants of structured data alone, Flickr data alone and
K Nearest neighbours. However, the collective predictions
(Collective-K) lead to the best results overall especially in
term of F1 score. Note that we used the same set of struc-
tured and Flickr features in KNN-K and Collective-K. We
compute KL divergence for each species separately to iden-
tify the most relevant Flickr tags. In this case, to use the KL-
divergence feature selection method, we treat the locations
where the species is present as one class and all the other lo-
cations where the species is not present at the second class.
Table 4 contains examples of the top tags of some species
as selected by the KL-divergence feature selection method.
Interestingly, most of these tags are place names and land
cover categories and this applies to many of the 100 species.

5.3. Predicting CORINE land cover classes
In this section we consider the task of predicting CORINE

land cover classes. For this experiment, we have used the
same set L of locations as for species distribution. Since
the task is about predicting CORINE land cover classes, for
the results reported in this section we do not consider any
CORINE features in the representations of the locations as
the CORINE data serve as ground truth. We experimented
with predicting CORINE land cover classification at level 1
(5 sub classes), level 2 (15 sub classes) and level 3 (44 sub
classes), each time treating the task as a binary classifica-
tion problem. The results of predicting CORINE land cover
classification at levels 1, 2 and 3 are presented in Figure 7b,
Figure 7c, and Figure 7d respectively in terms of the aver-
age precision, average recall and macro average F1 score.
Again, the results show that combining structured data and
Flickr data clearly leads to better performance than using
them separately, and that the collective prediction method
(Collective-K) leads to the best results overall. We compute
KL divergence for each land cover classes separately where
we treat the locations belonging to the target land cover type
as one class and all the other locations as the second class.

To illustrate how Flickr tags are used to select the neigh-
bours of CORINE land cover classes, Table 5 shows ex-
amples of the top 5 tags of some CORINE level 1 classes
which are clearly informative and semantically related to
those classes. For some classes, especially for CORINE
level 3, we found that the collective prediction converged al-
ready after the first iteration. This seems related to the small
number of locations belonging to these classes where it is not
possible to find the optimal neighbours if only few locations
belong to that class.
5.4. Predicting climate data

In the last experiment, we assess the usefulness of Flickr
tags in the task of predicting climate data. We again use the
same set of sites L as in the species distribution experiment.
In this case, we omit all the climate related features from
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(a) Scenicness (b) Temperature

(c) Precipitation (d) Solar Radiation

(e) Wind Speed (f) Water Vapor Pressure

Figure 6: Results of regression problems.
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(a) Species distribution (b) CORINE1

(c) CORINE2 (d) CORINE3

Figure 7: Results of classification problems.
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Table 3
Results for predicting scenicness.

5% 20 % 80 %
� MAE � MAE � MAE

Collective-K 0.566 1.041 0.583 1.011 0.627 0.972
Collective-K-embeddings-SVR 0.571 1.038 0.591 0.998 0.615 0.984
Collective-K-embeddings-MLP 0.588 1.022 0.600 0.991 0.623 0.969

Table 4
Top 5 Flickr tags of Aquila chrysaetos, Dryocopus martius, and
Lacerta bilineata species in terms of KL divergence.

Aquila chrysaetos Dryocopus martius Lacerta bilineata
montagna nationalpark italy

spain forest tuscany
huesca harz umbria
aragon mountains lombardia

mountain hautesavoie lucertola

Table 5
Top 5 Flickr tags for some CORINE level 1 classes in terms of
KL divergence.

Forest & semi nat. areas Wetlands Water bodies
forest bog sea
woods moor beach

mountains marsh coast
trees swamp lake
wald saline pier

the feature vector representations as they are used as ground
truth. We consider five different regression problems: pre-
dicting average annual temperature, average annual precip-
itation, average annual solar radiation, average annual wind
speed, and average annual water vapor pressure. The results
of these experiments are reported in Figure 6b, Figure 6c,
Figure 6d, Figure 6e and Figure 6f respectively. The mean
and standard deviation of each of those features are shown in
Table 2. As regression problems, we evaluate the results in
terms of Spearman � and mean absolute error (MAE). Over-
all, combining both structured and Flickr data outperforms
using them separately, showing that the information we ob-
tain from Flickr is complementary to what is available as
structured data and using collective prediction leads to an
impressive improvement over the basic prediction methods,
especially with the collective-K variant leading to the best
results overall. Looking at the top selected tags in terms
of KL divergence, we find names of countries, regions, or
weather phenomena, which are indicative of either high or
low values of the corresponding feature as shown in Table 6.

5.5. Qualitative analysis
We present two examples to illustrate how Flickr tags can

help to determine the neighbourhood structure. First, look-
ing at Figure 8, we can clearly see a scenic coastal area rated
with 7.2 by the users in the SenicOrNot dataset. We note that
considering the neighbours according to geographic prox-
imity leads to a predicted value of 5.4. This is close to the
average value, hence the model has failed to identify the lo-

cation as being scenic in this case. However, using Flickr
tags to filter these neighbours helps to make a more accurate
prediction, with the value 7.8. The most characteristic tags
used to select these neighbours are sand, beach, and coast,
showing that the method has correctly identified that what
matters most in determining the scenicness of the target lo-
cation is that it is at the coast. Another interesting example is
shown in Figure 9; looking at the image, we can see a hous-
ing development, which has been rated as not scenic with a
value of 1.2. Considering the neighbours according to their
geographic distance leads to a poor prediction, with the value
of 5.7. However, using Flickr tags (and scientific features)
to choose the neighbours leads to a much better prediction
of 2.3. The most characteristic tags in this case were road,
houses, and buildings.

6. Conclusions
In this paper, we have proposed a method which uses

Flickr tags in tasks that rely on characterizing the environ-
ment. To this end, we have considered four different evalua-
tion tasks. The first experiment aimed to predict the scenic-
ness of a place, as assessed subjectively by humans on the
ScenicOrNot website. In the second experiment, we fo-
cused on modelling the distribution of species across Eu-
rope, using observations from the Natura 2000 dataset as
ground truth. The third experiment consisted in predicting
CORINE land cover categories. Finally, we looked at pre-
dicting five climate related properties. The role of Flickr
tags in our method is two-fold. First, we showed that Flickr
tags can be used to supplement structured scientific data.
We found that the combined model substantially and con-
sistently outperformed the model that relied on either struc-
tured data sources or Flickr tags alone. This strongly sug-
gests that Flickr can indeed be valuable, as a supplement
to more traditional datasets in environmental analyses. Al-
though all experiments demonstrated the benefits of using
Flickr for selected environmental features, it may be specu-
lated that in practice its use may be most beneficial in future
for tasks such as species distribution modelling and scenic-
ness prediction where, unlike temperature for example, there
are no existing methods for direct instrumental recording of
the phenomena. Second, we proposed a collective prediction
model which again relied on both Flickr tags and structured
data to define a neighbourhood structure. The use of a col-
lective prediction formulation was motivated by the fact that
most environmental features are strongly spatially autocor-
related. While this suggests that geographic distance should
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Table 6
Top 5 Flickr tags for different climate related features in terms of KL divergence.

Temperature Precipitation Solar Radiation Wind Speed Water Vapor Pressure
sweden scotland finland island sea
finland ireland sweden sea sardegna
snow canaryislands spain denmark mallorca
spain nubes italy highlands portugal
italy clouds france beach spain

Figure 8: Neighbourhood structure for location coordinates (50.827,-4.559), photo link:
https://www.geograph.org.uk/photo/130830

play a key role in determining neighbourhoods, we showed
that considerable gains can be made by additionally taking
Flickr tags and traditional data into consideration.
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